EP0900277A1 - Nucleinsäuremoleküle, die debranching-enzyme aus kartoffel codieren - Google Patents

Nucleinsäuremoleküle, die debranching-enzyme aus kartoffel codieren

Info

Publication number
EP0900277A1
EP0900277A1 EP97922969A EP97922969A EP0900277A1 EP 0900277 A1 EP0900277 A1 EP 0900277A1 EP 97922969 A EP97922969 A EP 97922969A EP 97922969 A EP97922969 A EP 97922969A EP 0900277 A1 EP0900277 A1 EP 0900277A1
Authority
EP
European Patent Office
Prior art keywords
nucleic acid
starch
plant
acid molecule
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97922969A
Other languages
English (en)
French (fr)
Inventor
Michael Emmermann
Jens Kossmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Bioscience GmbH
Original Assignee
Planttec Biotechnologie GmbH Forschung and Entwicklung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Planttec Biotechnologie GmbH Forschung and Entwicklung filed Critical Planttec Biotechnologie GmbH Forschung and Entwicklung
Publication of EP0900277A1 publication Critical patent/EP0900277A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2451Glucanases acting on alpha-1,6-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2451Glucanases acting on alpha-1,6-glucosidic bonds
    • C12N9/2457Pullulanase (3.2.1.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01041Pullulanase (3.2.1.41)

Definitions

  • the present invention relates to nucleic acid molecules that encode potato proteins with the enzymatic activity of a debranching enzyme. Furthermore, the invention relates to transgenic plants and plant cells in which the expression of an additional debranching enzyme activity from potato or the inhibition of an endogenous debranching enzyme activity leads to the synthesis of an amylopectin with an altered degree of branching, and which is obtained from said transgenic plant cells and plants ⁇ strength.
  • Starch plays an important role both as a storage material in a large number of plants and as a renewable, industrially usable raw material and is becoming increasingly important.
  • For the industrial use of the starch it is necessary that it corresponds to the requirements of the processing industry in terms of structure, shape and / or other physico-chemical parameters.
  • the polysaccharide starch is made up of chemically uniform basic building blocks, the glucose molecules, but is a complex mixture of different molecular forms which have differences in the degree of polymerization and the occurrence of branches.
  • amylose starch an essentially unbranched polymer made from ⁇ -1,4-glycosidically linked glucose molecules
  • amylopectin starch a branched polymer in which the branches are formed by the occurrence of additional ⁇ -1, 6-glycosidic linkages come about.
  • amylopectin In typical plants used for starch production, e.g. Corn or potato, the two forms of starch occur in a ratio of approx. 25 parts amylose to 75 parts amylopectin.
  • amylopectin there is, for example, a further branched polysaccharide, the so-called phytoglycogen, which differs from amylopectin in that it has a higher degree of branching and a different solubility behavior (see, for example, Lee et al., Arch. Biochem. Biophys. 143 (1971), 365-374; Pan and Nelson, Plant Physiol. 74 (1984), 324-328).
  • amylopectin is used to include the phytoglycogen.
  • starch-producing plants are required which, for example, only contain the component amylopectin or only the component amylose. Plants are required for a number of other uses which synthesize forms of amylopectin with different degrees of branching.
  • Such plants can be produced, for example, by breeding or mutagenesis techniques.
  • mutagenesis can produce varieties which only form amylopectin.
  • a genotype was also generated by chemical mutagenesis in a haploid line that does not form amylose (Hovenkamp-Hermelink, Theor. Appl. Genet. 75 (1987), 217-221).
  • the present invention is therefore based on the object of identifying further debranching enzymes which may occur in potatoes or of isolating corresponding nucleic acid molecules which code for these enzymes.
  • the present invention thus relates to nucleic acid molecules which encode proteins with the biological activity of a debranching enzyme from potato.
  • Such a nucleic acid molecule preferably encodes a protein with the biological activity of a debranching enzyme from potato, which corresponds to the under Seq ID No. 2 indicated amino acid sequence.
  • Such a nucleic acid molecule particularly preferably comprises those listed under Seq ID No. 1 indicated nucleotide sequence, in particular the coding region.
  • the invention also relates to nucleic acid molecules which encode proteins with the biological activity of a debranching enzyme from potato and which with a hybridize the above-described nucleic acid molecules or their complementary strand.
  • the present invention relates to nucleic acid molecules, the sequences of which differ from the sequences of the abovementioned nucleic acid molecules due to the degeneration of the genetic code, and which encode a protein which has the biological activity of a debranching enzyme from potato.
  • from potato means that the debranching enzymes encoded by the nucleic acid molecules according to the invention are typical of the species Soianum tuberosum, i.e. either occur naturally in such plants, for example encoded by genomic or RNA molecules, or molecules derived from them. Derived molecules can be generated, for example, by reverse transcription of RNA molecules, amplification, mutation, deletion, substitution, insertion, etc. That the term also encompasses enzymes encoded by alleles or derivatives of sequences found naturally in potato. These can be generated, for example, by genetic engineering methods in vivo or in vitro.
  • hybridization means hybridization under conventional hybridization conditions, preferably under stringent conditions, as described, for example, in Sambrock et al. , Molecular Cloning, A Laboratory Manual, 2nd ed. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY).
  • nucleic acid molecules which hybridize with the nucleic acid molecules according to the invention can originate from any potato plant.
  • Nucleic acid molecules that hybridize with the molecules according to the invention can e.g. can be isolated from genomic or from cDNA libraries.
  • nucleic acid molecules or parts of these molecules or the reverse complement of these molecules are carried out, for example by means of hybridization according to standard methods (see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) or by amplification using PCR.
  • nucleic acid molecules can be used as the hybridization sample that exactly or essentially the Seq ID No. 1 indicated nucleotide sequence or parts of this sequence.
  • the fragments used as a hybridization sample can also be synthetic fragments which were produced with the aid of the common synthetic techniques and whose sequence essentially corresponds to that of a nucleic acid molecule according to the invention. If genes which hybridize with the nucleic acid sequences according to the invention have been identified and isolated, a determination of the sequence and an analysis of the properties of the proteins encoded by this sequence are necessary.
  • the molecules hybridizing with the nucleic acid molecules according to the invention include in particular fragments, derivatives and allelic variants of the DNA molecules described above, which encode a protein with the enzymatic activity of a potato debranching enzyme or a biologically, ie enzymatically active fragment thereof.
  • Fragments are understood to mean parts of the nucleic acid molecules that are long enough to encode a polypeptide with the enzymatic activity of a debranching enzyme.
  • the term derivative means that the sequences of these molecules differ from the sequences of the nucleic acid molecules described above at one or more positions and have a high degree of homology to these sequences.
  • Homology means a sequence identity of at least 70%, in particular an identity of at least 80%, preferably over 90% and particularly preferably over 95%.
  • the deviations from the nucleic acid molecules described above can be determined by deletion, ad- dition, substitution, insertion or recombination have arisen.
  • nucleic acid molecules which are homologous to the molecules described above and represent derivatives of these molecules are generally variations of these molecules which represent modifications which have the same biological function. These can be both naturally occurring variations, for example sequences from other potato plants or varieties, or mutations, wherein these mutations can have occurred naturally or have been introduced by targeted mutagenesis. Furthermore, the variations can be synthetically produced sequences.
  • allelic variants can be both naturally occurring variants and also synthetically produced variants or those produced by recombinant DNA techniques.
  • the proteins encoded by the different variants of the nucleic acid molecules according to the invention have certain common characteristics.
  • the enzymatic activity of the debranching enzyme can be detected, for example, by a staining test, as described in WO 95/04826. This is based on the fact that a protein with a starch-modifying activity can be detected when protein extracts, for example from potato tubers, are separated in non-denaturing, amylopectin-containing polyacrylamide gels (PAAG) and the gel, after incubation in a suitable buffer, is finally undergoes iodine staining. While unbranched amylose forms a blue complex with iodine, amylopectin gives a reddish-violet color.
  • a staining test as described in WO 95/04826.
  • amylopectin-containing polyacrylamide gels which stain reddish-violet with iodine, there is a shift in color to a blue coloration of the gel at locations where debranching activity is localized, since the branches of the violet-staining amylopectin from this Debranching enzyme are degraded.
  • the debranching enzyme activity can be detected using the DNSS test (see Ludwig et al., Plant Physiol. 74 (1984), 856-861).
  • the nucleic acid molecules according to the invention can be any nucleic acid molecules, in particular act as DNA or RNA molecules, for example cDNA, genomic DNA, mRNA etc. They can be naturally occurring molecules or produced by genetic engineering or chemical synthesis methods.
  • the nucleic acid molecules according to the invention encode a previously unknown new protein from potato with the enzymatic activity of a debranching enzyme. So far, only a debranching enzyme has been described for potatoes. So far there has been no evidence in the literature that there are genes in potatoes that encode further debranching enzymes. It has now surprisingly been found that in addition to the previously known debranching enzyme in potatoes there is at least one further enzyme with debranching activity. Thus, the molecules of the invention encode a new type of potato debranching enzyme. With the help of these molecules, it is now possible to specifically intervene in the starch metabolism of potato and other starch-storing plants and thus to enable the synthesis of a starch modified in its chemical or physical properties.
  • nucleic acid molecules according to the invention can be overexpression of the nucleic acid molecules according to the invention in any, preferably starch-storing plants, or by Reduction of the debranching enzyme activity in potato plants by using the nucleic acid sequences according to the invention, for example by means of antisense or ribozyme effects.
  • the present invention relates to nucleic acid molecules of at least 15, preferably more than 50 and particularly preferably more than 200 base pairs in length, which specifically hybridize with the nucleic acid molecules according to the invention.
  • Hybridizing specifically means that these molecules hybridize with nucleic acid molecules which encode the new potato debranching enzymes, but not with nucleic acid molecules which encode other proteins.
  • Hybridization here preferably means hybridization under stringent conditions (see above).
  • the invention relates to those nucleic acid molecules which hybridize with transcripts of nucleic acid molecules according to the invention and can thereby prevent their translation.
  • Such nucleic acid molecules that hybridize specifically with the nucleic acid molecules according to the invention can, for example, be components of mRNA constructs or ribozymes or can be used as primers for amplification by means of PCR.
  • the invention relates to vectors, in particular plasmids, cosmids, viruses, bacteriophages and other vectors common in genetic engineering, which contain the nucleic acid molecules according to the invention described above.
  • nucleic acid molecules contained in the vectors are linked to regulatory elements which ensure transcription and translation in prokaryotic or eukaryotic cells.
  • the invention relates to host cells, in particular prokaryotic or eukaryotic cells, which have been transformed with a nucleic acid molecule or a vector described above, and cells, which originate from such host cells and which contain the described nucleic acid molecules or vectors.
  • the host cells can be bacterial or fungal cells, as well as plant or animal cells.
  • the invention also relates to proteins with the biological activity of a debranching enzyme from potato, which are encoded by the nucleic acid molecules according to the invention, or biologically active fragments thereof.
  • the present invention relates to methods for producing a protein with the biological activity of a debranching enzyme from potato or a biologically active fragment thereof, in which host cells according to the invention are cultivated under suitable conditions and the protein from the culture, i.e. is obtained from the cells and / or the culture medium.
  • the host cells according to the invention are transgenic plant cells which, owing to the presence and expression of an introduced nucleic acid molecule according to the invention, have either a new or an increased debranching enzyme activity compared to non-transformed cells.
  • nucleic acid molecules according to the invention it is now possible to use genetic engineering methods to modify plant cells to have a new or increased debranching enzyme activity compared to wild-type cells.
  • Such transgenic plant cells differ from non-transformed cells in that the nucleic acid molecule introduced is either heterologous to the transformed cell, ie originates from a cell with a different genomic background, or in that the nucleic acid molecule introduced if it is homologous to the transformed plant species is located in the genome at a location where it is natural in non-transformed cells does not occur.
  • the nucleic acid molecule introduced can either be under the control of its natural promoter or linked to regulatory elements of foreign genes.
  • the invention further relates to transgenic plants which contain the transgenic plant cells described above.
  • the plant which is transformed with the nucleic acid molecules according to the invention and in which a debranching enzyme is synthesized from potato due to the introduction of such a molecule can in principle be any plant. It is preferably a monocotyledon or dicotyledon crop, in particular a starch-storing plant, such as e.g. Cereal plants, legumes, potatoes or cassava.
  • Grain plants are understood in particular as monocotyledonous plants belonging to the order Poales, preferably those belonging to the family of the Poaceae. Examples include the plants belonging to the genera Avena (oat), Triticum (wheat), Seeale (rye), Hordeum (barley), Oryza (rice), Panicum, Pennisetum, Setaria, Sorghum (millet), Zea (corn) etc. belong.
  • Starch-storing legumes are e.g. some species of the genus Pisum (e.g. Pisum sativum), Vicia (e.g. Vicia faba), Cicer (e.g. Cicer arietinum), Lens (e.g. Lens culinaris), Phaseolus (e.g. Phaseolus vulgaris and Phaseolus coccineus), etc.
  • the present invention also relates to the starch obtainable from the transgenic plant cells or plants.
  • the expression of a new or additional debranching enzyme activity from potato in the transgenic plant cells and plants according to the invention has an influence on the degree of branching of the amylopectin synthesized in the cells and plants.
  • a starch synthesized in these plants therefore has changed physical and / or chemical properties compared to starch from wild-type plants.
  • the invention further relates to propagation material from transgenic plants according to the invention, for example seeds, fruits, cuttings, tubers, rhizomes, etc., this propagation material containing transgenic plant cells described above. In the case of potato plants, the propagation material is preferably the bulbs.
  • the present invention relates to transgenic plant cells of potato in which the activity of the debranching enzyme according to the invention is reduced due to the inhibition of the transcription or translation of endogenous nucleic acid molecules which code for such a new debranching enzyme.
  • This is preferably achieved in that a nucleic acid molecule according to the invention or a part thereof is expressed in the corresponding plant cells in an antisense orientation and the described debranching enzyme activity is reduced due to an antisense effect.
  • a further possibility for reducing the debranching enzyme activity in plant cells consists in the expression of suitable ribozymes which specifically split transcripts of the DNA molecules according to the invention. The production of such ribozymes with the aid of the DNA molecules according to the invention is possible familiar to the expert.
  • the debranching enzyme activity in the plant cells can also be reduced by a co-suppression effect.
  • the method for reducing the activity of enzymes according to the invention in the plant cells by means of a cosuppression effect is known to the person skilled in the art and is described, for example, in Jorgensen (Trends Biotechnol. 8 (1990), 340-344), Niebel et al. , (Curr. Top Microbiol. Immunol. 197 (1995), 91-103), Flavell et al. (Curr. Top. Microbiol. Immunol.
  • ribozymes for reducing the activity of certain enzymes in cells is also known to the person skilled in the art and is described, for example, in EP-Bl 0 321 201.
  • the expression of ribozymes in plant cells has been described in e.g. described in Feyter et al. (Mol. Gen. Genet. 250 (1996), 329-338).
  • genomic sequences which code for such enzymes, e.g. by "gene tagging” or transposon mutagenesis or the expression of antibodies which specifically recognize the new debranching enzymes.
  • the mutagenesis of genomic sequences can concern coding regions of the gene (introns or exons) as well as regulatory regions, in particular those necessary for the initiation of transcription.
  • the invention further relates to transgenic potato plants which contain the transgenic plant cells described above with reduced debranching enzyme activity.
  • the invention also relates to the modified starch obtainable from the transgenic cells or plants.
  • the amylopectin starch of the transgenic cells and plants has a different degree of branching due to the reduced debranching enzyme activity compared to starch from untransformed plants.
  • the invention also relates to propagation material of the transgenic plants described above, in particular seeds and tubers, these containing transgenic plant cells described above.
  • Transgenic plant cells which, owing to the expression of a new or additional debranching enzyme activity, form an amylopectin starch with a different degree of branching compared to amylopectin starch synthesized in wild-type plants can be produced, for example, by a process which comprises the following steps:
  • nucleic acid sequence which encodes a protein with the enzymatic activity of a debranching enzyme or a biologically active fragment thereof and is coupled in sense orientation to the 3 'end of the promoter;
  • Transgenic plant cells which, owing to the reduction in the debranching enzyme activity described, form an amylopectin starch with a different degree of branching compared to amylopectin starch synthesized in wild-type plants can be produced, for example, by a process which comprises the following steps:
  • a promoter which ensures transcription in plant cells;
  • at least one nucleic acid sequence according to the invention which encodes a protein with the enzymatic activity of a debranching enzyme or a part of such a protein and which is coupled in antisense orientation to the 3 'end of the promoter;
  • step (iii) optionally a termination signal for the termination of the transcription and the addition of a poly-A tail to the resulting transcript, which is coupled to the 3 'end of the coding region; and (b) transforming plant cells with that in step
  • any promoter functional in the plants selected for the transformation can be used for the promoter mentioned under (i).
  • the promoter can be homologous or heterologous with respect to the plant species used.
  • the 35S promoter of the cauliflower mosaic virus (Odell et al., Nature 313 (1985), 810-812) is suitable, which ensures constitutive expression in all tissues of a plant and that described in WO / 9401571 Promoter construct.
  • Another example is the promoters of maize polyubiquitin genes (Christensen et al., Plant Mol. Biol. 18 (1992), 675-689).
  • promoters can also be used which are only activated at a point in time determined by external influences (see, for example, WO / 9307279).
  • Promoters of heat shock proteins that allow simple induction can be of particular interest.
  • the promoters which lead to expression of downstream sequences in a specific tissue of the plant can be used (see, for example, Stockhaus et al., EMBO J. 8 (1989), 2245-2251). Preference is given to using promoters which are active in the starch-storing organs of the plants to be transformed. For corn, for example, these are the corn kernels, while the potatoes are the tubers.
  • the bulb-specific B33 promoter can be used to overexpress the Nucleic acid molecules according to the invention in the potato.
  • the bulb-specific B33 promoter (Rochasosa et al., EMBO J. 8 (1989), 23-29) can be used. Seed-specific promoters have already been described for various plant species.
  • promoters of the zein genes ensure a specific expression in the endosperm of the maize kernels (Pedersen et al., Cell 29 (1982), 1015-1026; Quattrocchio et al., Plant Mol. Biol. 15 (1990) , 81-93).
  • nucleic acid sequence mentioned under process step (a) (ii), which encodes a protein with the enzymatic activity of a debranching enzyme from potato is linked in sense orientation to the promoter
  • this nucleic acid sequence can be both native or homologous in origin and foreign or heterologous in origin with respect to the plant species to be transformed, ie Both potato plants and any other plants can be transformed with the expression cassette described, preferably the above-mentioned starch-storing plants.
  • the synthesized protein can be localized in any compartment of the plant cell.
  • Vegetable debranching enzymes are usually localized in the plastids and therefore have a signal sequence for translocation into these organelles.
  • the DNA sequence which codes this signal sequence must be removed and the coding region linked to DNA sequences which ensure localization in the respective compartment .
  • Such sequences are known (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Be. USA 85: 846-850 (1988); Sonnewald et al. , Plant J. 1 (1991), 95-106).
  • nucleic acid sequence from potato mentioned under process step (a) (ii), which encodes a protein with the enzymatic activity of a debranching enzyme is linked in antisense orientation to the promoter this is preferably of a nucleic acid sequence of homologous origin with respect to the plants to be transformed.
  • nucleic acid sequences can also be used which have a high degree of homology to endogenously present debranching enzyme genes, in particular homologies higher than 80%, preferably homologies between 90% and 100% and particularly preferably homology over 95%.
  • Sequences up to a minimum length of 15 bp can be used. An inhibitory effect is not excluded even when using shorter sequences. Longer sequences between 100 and 500 base pairs are preferably used, and sequences with a length of over 500 base pairs are used in particular for efficient antisense inhibition. As a rule, sequences are used which are shorter than 5000 base pairs, preferably sequences which are shorter than 2500 base pairs.
  • Termination signals for transcription in plant cells are described and can be interchanged with one another as desired.
  • the termination sequence of the octopine synthase gene from Agrobacterium tumefaciens can be used.
  • the transfer of the expression cassette constructed according to process step (a) into plant cells is preferably carried out using plasmids, in particular with the aid of plasmids, which ensure stable integration of the expression cassette into the plant genome.
  • the procedure described above for overexpressing a new debranching enzyme from potato can in principle be applied to all plant species. Are of interest both monocot and dicot plants, in particular the starch-storing plants described above.
  • the method described above for reducing the debranching enzyme activity is preferably used on dicotyledonous plants, in particular on potatoes.
  • an RNA is formed in the transformed plant cells. If the nucleic acid sequence encoding a potato debranching enzyme in the expression cassette is linked in sense orientation to the promoter, an mRNA is synthesized, which acts as a template for the synthesis of an additional or new potato debranching enzyme in the plant cells can serve. As a result, these cells have an activity or an increased activity of the potato debranching enzyme, which leads to a change in the degree of branching of the amylopectin formed in the cells. This makes a strength accessible which, in comparison to the naturally occurring strength, is distinguished by a more orderly spatial structure and an increased uniformity. Among other things, this can have favorable effects on the film-forming properties.
  • an antisense RNA is synthesized in transgenic plant cells, which inhibits the expression of endogenous debranching enzyme genes. As a result, these cells show reduced activity of the new potato debranching enzyme, resulting in the formation of a modified starch.
  • the anfcisense technique it is possible to produce plants in which the expression of an endogenous debranching enzyme gene in potatoes is inhibited to varying degrees in a range from 0% to 100%. This enables in particular the production of potato plants which synthesize amylopectin starch with a wide variety of variations in the degree of branching.
  • Potato is particularly suitable for the production of modified amylopectin using the nucleic acid molecules according to the invention which encode debranching enzymes.
  • the application of the invention is not restricted to these plant species. Any other plant species can be used for the overexpression.
  • the modified starch synthesized in the transgenic plants can be isolated from the plants or from the plant cells using conventional methods and, after purification, can be used for the production of foods and industrial products.
  • starches according to the invention can be modified by processes known to the person skilled in the art and are suitable in unmodified or modified form for various uses in the food or non-food sector.
  • starch can be divided into two large areas.
  • One area comprises the hydrolysis products of starch, mainly glucose and glucon units, which are obtained by enzymatic or chemical processes. They serve as the starting material for further chemical modifications and processes, such as fermentation.
  • the simplicity and cost-effective implementation of a hydrolysis process can be important for reducing the costs. It is currently essentially enzymatic using amyloglucosidase. A cost saving would be conceivable through a lower use of enzymes.
  • a change in the structure of the starch for example an increase in the surface area of the grain, easier digestibility due to a lower degree of branching or a steric structure which limits the accessibility for the enzymes used, could cause this.
  • Starch is a classic additive for many foodstuffs, in which it essentially takes on the function of binding aqueous additives or causes an increase in viscosity or increased gel formation. Important characteristics are the flow and sorption behavior, the swelling and gelatinization temperature, the viscosity and thickening performance, the solubility of the starch, the transparency and paste structure, the heat, shear and acid stability, the tendency to retrogradation, the ability for film formation, freeze / thaw stability, digestibility and the ability to form complexes with eg inorganic or organic ions.
  • the starch can be used as an auxiliary for different manufacturing processes or as an additive in technical products.
  • the paper and cardboard industry should be mentioned in particular.
  • the starch is used primarily for retardation (retention of solids), the setting of filler and fine particles, as a strengthening agent and for drainage.
  • the favorable properties of the starch in terms of rigidity, hardness, sound, grip, gloss, smoothness, splitting resistance and surfaces are exploited.
  • the requirements for the starch in relation to the surface treatment are essentially a high degree of whiteness, an adapted viscosity, high viscosity stability, good film formation and low dust formation.
  • the solids content, an adapted viscosity, a high binding capacity and high pigment affinity play an important role.
  • a rapid, uniform, loss-free distribution, high mechanical stability and complete restraint in the paper flow are important.
  • an adapted solids content, high viscosity and high binding capacity are also important.
  • starches A large area of use of the starches is in the adhesive industry, where the possible uses are divided into four areas: use as pure starch glue, use with starch glues prepared with special chemicals, use of starch as an additive to synthetic resins and polymer dispersions and the use of starches as extenders for synthetic adhesives.
  • 90% of the starch-based adhesives are used in the fields of corrugated board production, production of paper sacks, bags and pouches, production of composite materials for paper and aluminum, production of cardboard packaging and rewetting glue for envelopes, stamps, etc.
  • starch as a sizing agent, i.e. as an auxiliary for smoothing and strengthening the Velcro behavior to protect against the tensile forces acting during weaving as well as for increasing the abrasion resistance during weaving
  • starch as an agent for textile upgrading, especially after pre-treatments such as bleaching, dyeing etc. which impair quality
  • starch as a thickening agent during production of color pastes to prevent dye diffusion and starch as an additive to chain agents for sewing threads.
  • the fourth area of application is the use of starches as an additive in building materials.
  • One example is the production of plasterboard, in which the starch mixed in the gypsum paste pastes with the water, diffuses to the surface of the plasterboard and binds the cardboard to the plate there.
  • Other areas of application are admixing to plaster and mineral fibers.
  • starch products are used to delay setting.
  • starch Another market for starch is in the manufacture of soil stabilizers that are used to temporarily protect soil particles from water during artificial earthmoving. Combination products made of starch and polymer emulsions are, according to current knowledge, equivalent to the products used hitherto in their erosion and incrustation-reducing effects, but are priced significantly below these. 2.6 Use in crop protection and fertilizers
  • starch in crop protection agents to change the specific properties of the preparations.
  • the starch can be used to improve the wetting of crop protection agents and fertilizers, for the metered release of the active substances, for converting liquid, volatile and / or malodorous substances into microcrystalline, stable, moldable substances, for mixing incompatible compounds and for Extension of the duration of action by reducing the decomposition can be used.
  • starch can be used as a binder for tablets or for binder dilution in capsules.
  • the starch can furthermore serve as a tablet disintegrant, since after swallowing it absorbs liquid and swells to such an extent after a short time that the active substance is released.
  • Medical sliding and wound powders are based on starch for qualitative reasons.
  • starches are used, for example, as carriers for powder additives, such as fragrances and salicylic acid.
  • a relatively large area of application for the starch is toothpaste.
  • Starch is used as an additive to coal and briquette. Coal can be agglomerated or briquetted with a high-quality addition of starch, which prevents the briquettes from breaking down prematurely.
  • the added starch is between 4 and 6% for barbecued coal and between 0.1 and 0.5% for calorized coal. Furthermore, strengths gain as a binding of importance, since the addition of coal and briquette can significantly reduce the emission of harmful substances.
  • the starch can also be used as a flocculant in ore and coal sludge processing.
  • Another area of application is as an additive to foundry additives.
  • Various casting processes require cores that are made from binder-mixed sands.
  • Bentonite which is mixed with modified starches, mostly swelling starches, is predominantly used today as a binder.
  • the purpose of the starch addition is to increase the flow resistance and to improve the binding strength.
  • the swelling starches can have other production requirements, such as dispersibility in cold water, rehydration, good miscibility in sand and high water-binding capacity.
  • the starch can be used in the rubber industry to improve the technical and optical quality.
  • the reasons for this are the improvement of the surface gloss, the improvement of the grip and the appearance, for this reason starch is sprinkled on the sticky rubberized surfaces of rubber materials before the cold vulcanization, and the improvement of the printability of the rubber.
  • starch secondary products in the processing process (starch is only filler, there is no direct bond between synthetic polymer and starch) or alternatively the integration of starch secondary products in the production of polymers (starch and polymer form a firm bond).
  • starch as a pure filler is not competitive compared to other substances such as talc. The situation is different when the specific starch properties come into play and the property profile of the end products is thereby significantly changed.
  • An example of this is the use of starch products in the processing of thermoplastics, such as polyethylene.
  • the starch and the synthetic polymer are combined by co-expression in a ratio of 1: 1 to form a 'master batch', from which various products are produced using granulated polyethylene using conventional process techniques.
  • starch in polyurethane foams.
  • starch derivatives By adapting the starch derivatives and by optimizing the process, it is possible to control the reaction between synthetic polymers and the hydroxy groups of the starches.
  • the result is polyurethane films which, through the use of starch, obtain the following property profiles: a reduction in the coefficient of thermal expansion, a reduction in shrinkage behavior, an improvement in the pressure / stress behavior, an increase in water vapor permeability without changing the water absorption, a reduction in the flammability and the tear - dense, no dripping of flammable parts, freedom from halogen and reduced aging.
  • Disadvantages that are currently still present are reduced compressive strength and reduced impact resistance.
  • Solid plastic products such as pots, plates and bowls can also be manufactured with a starch content of over 50%.
  • starch / polymer mixtures can be assessed favorably, since they have a much higher biodegradability.
  • starch graft polymers Because of their extreme water-binding capacity, starch graft polymers have also become extremely important. These are products with a backbone made of starch and a side lattice grafted on according to the principle of the radical chain mechanism of a synthetic monomer.
  • the starch graft polymers available today are characterized by better binding and retention properties of up to 1000 g of water per g of starch with high viscosity.
  • the areas of application for these superabsorbers have expanded considerably in recent years and are in the hygiene area with products of diapers and underlays as well as in the agricultural sector, e.g. seed pilling.
  • Ash / phosphate content, amylose / amylopectin ratio, molar mass distribution, degree of branching, grain size and shape as well as crystallinity on the other hand also the properties that result in the following characteristics: flow and sorption behavior, gelatinization temperature, viscosity, thickening performance, solubility, paste structure and transparency , Heat, shear and acid stability, tendency to retrogradation, gelation, freeze / thaw stability, complex formation, iodine binding, film formation, adhesive strength, enzyme stability, digestibility and reactivity.
  • modified starches by means of genetic engineering interventions in a transgenic plant can on the one hand change the properties of the starch obtained from the plant in such a way that further modifications by means of chemical or physical processes no longer appear to be necessary.
  • the starches modified by genetic engineering processes can be subjected to further chemical modifications, which leads to further improvements in quality for certain of the fields of application described above.
  • the invention further relates to the use of the nucleic acid molecules according to the invention for the production of plants which synthesize an amylopectin starch with a different degree of branching compared to wild-type plants.
  • Another object of the present invention is the use of the nucleic acid molecules according to the invention or parts of these molecules or the reverse complements of these molecules for the identification and isolation of homologous molecules which encode proteins with the enzymatic activity of a de-branching enzyme or fragments of such products teine, from plants or other organisms.
  • homologous molecules which encode proteins with the enzymatic activity of a de-branching enzyme or fragments of such products teine, from plants or other organisms.
  • nucleic acid molecules according to the invention can also be used to produce plants in which the activity of the debranching enzyme according to the invention is increased or decreased and at the same time the activities of other enzymes involved in starch biosynthesis are changed. All combinations and permutations are conceivable.
  • nucleic acid molecules which encode a protein according to the invention or corresponding antisense constructs can be introduced into plant cells in which the synthesis of endogenous debranching enzymes, GBSS I, SSS I, II or GBSS II Pro or teine is inhibited due to an antisense effect or a mutation or the synthesis of the branching enzyme is inhibited (as described for example in WO92 / 14827 or the ae mutant of maize (Shannon and Garwood, in Whistler, BeMiller and Paschall, Starch: Chemistry and Technology, Academic Press, London, 2nd Edition (1984), 25-86)).
  • DNA molecules can be used for the transformation which simultaneously contain several regions coding for the corresponding debranching enzymes in antisense orientation under the control of a suitable promoter.
  • each sequence can be under the control of its own promoter, or the sequences can be transcribed as a fusion from a common promoter. The latter alternative will usually be preferable because of this If the synthesis of the corresponding proteins should be inhibited to approximately the same extent.
  • molecules which, in addition to sequences coding for debranching enzymes, contain further DNA sequences which code for other proteins involved in starch synthesis or modification. These are each coupled in an antisense orientation to a suitable promoter.
  • the sequences can in turn be connected in series and can be transcribed by a common promoter or else can be transcribed by separate promoters.
  • the resulting transcript should generally have a length of no more than 20 kb, preferably no more than 5 kb.
  • Coding regions which are located in such DNA molecules in combination with other coding regions in an antisense orientation behind a suitable promoter can originate from DNA sequences which code for the following proteins: Starch grain-bound (GBSS I and II) and soluble starch synthases (eg SSS I and II), branching enzymes, other debranching enzymes, disproportionation enzymes and starch phosphorylases. This is only an exemplary list. The use of other DNA sequences in the context of such a combination is also conceivable. With the help of such constructs it is possible to inhibit the synthesis of several enzymes simultaneously in plant cells which have been transformed with them.
  • GBSS I and II Starch grain-bound
  • SSS I and II soluble starch synthases
  • the constructs can furthermore be introduced into classic mutants which are defective for one or more genes of starch biosynthesis. These defects can relate, for example, to the following proteins: starch-grain-bound (GBSS I and II) and soluble starch synthases (eg SSS I and II), ver branching enzymes (BE I and II), debranching enzymes, disproportionation enzymes and starch phosphorylases. Again, this is only an exemplary list.
  • cloning vectors which contain a replication signal for E. coli and a marker gene for the selection of transformed bacterial cells.
  • examples of such vectors are pBR322, pUC series, M13mp series, pACYC184 etc.
  • the desired sequence can be introduced into the vector at a suitable restriction site.
  • the plasmid obtained is used for the transformation of E. coli cells.
  • Transformed E. coli cells are grown in a suitable medium, then harvested and lysed.
  • the plasmid is recovered. Restriction analyzes, gel electrophoresis and other biochemical-molecular biological methods are generally used as the analysis method for characterizing the plasmid DNA obtained.
  • the plasmid DNA can be cleaved and DNA fragments obtained can be linked to other DNA sequences.
  • Each plasmid DNA sequence can be cloned into the same or different plasmids.
  • a variety of techniques are available for introducing DNA into a plant host cell. These techniques include the transformation of plant cells with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as the transformation agent, the fusion of protoplasts, the injection, the electroporation of DNA, the introduction of DNA using the biolistic method and other possibilities.
  • plasmids When injecting and electroporation of DNA into plant cells, no special requirements are made of the plasmids used. Simple plasmids such as pUC derivatives can be used. If whole plants are to be regenerated from cells transformed in this way , a selectable marker gene should advantageously be present.
  • the Ti or Ri plasmid is used for the transformation of the plant cell, at least the right boundary, but advantageously the right and left boundary of the Ti and Ri plasmid T-DNA as the flank region, should be linked to the genes to be introduced ⁇ the.
  • the DNA to be introduced should be cloned into special plasmids, either in an intermediate vector or in a binary vector.
  • the intermediate vectors can be integrated into the Ti or Ri plasmid of the agrobacteria on the basis of sequences which are homologous to sequences in the T-DNA by homologous recombination. This also contains the vir region necessary for the transfer of the T-DNA.
  • Intermediate vectors cannot replicate in agrobacteria.
  • the intermediate vector can be transferred to Agrobacterium tumefaciens by means of a helper plasmid (conjugation).
  • Binary vectors can replicate in both E. coli and agrobacteria.
  • the agrobacterium serving as the host cell should contain a plasmid carrying a vir region. The vir region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be present.
  • the agrobacterium transformed in this way is used for the transformation of plant cells.
  • T-DNA for the transformation of plant cells has been intensively investigated and is sufficient in EP 120 516; Hoekema, In: The Binary Plant Vector System Offset- drukkerij Kanters BV, Alblasserdam (1985), Chapter V; Fraley et al. , Crit. Rev. Plant. Sci., 4, 1-46 and An et al. EMBO J. 4 (1985), 277-287.
  • plant explants can expediently be cultivated with Agrobacterium tumefaciens or Agrobacterium rhizogenes.
  • Whole plants can then be regenerated from the infected plant material (e.g. leaf pieces, stem segments, roots, but also protoplasts or suspension-cultivated plant cells) in a suitable medium, which can contain antibiotics or biocides for the selection of transformed cells.
  • the plants obtained in this way can then be examined for the presence of the introduced DNA.
  • Other possibilities of introducing foreign DNA using the biolistic method or by protoplast transformation are known (cf. for example Willmitzer, L., 1993 Transgenic plants. In: Biotechnology, A Multi-Volume Comprehensive Treatise (HJ Rehm, G. Reed , A. Pühler, P. Stadler, eds.), Vol. 2, 627-659, VCH Weinheim-New York-Basel-Cambridge).
  • EP 292 435 describes a process by means of which fertile plants can be obtained starting from a slimy, soft (friable) granular corn callus. Shillito et al.
  • the introduced DNA is integrated in the genome of the plant cell, it is generally stable there and is also retained in the progeny of the originally transformed cell. It normally contains a selection marker which gives the transformed plant cells resistance to a biocide or an antibiotic such as kanamycin, G 418, bleomycin, hygromycin or phosphinotricin and others. averages.
  • the individually chosen marker should therefore allow the selection of transformed cells from cells that lack the inserted DNA.
  • the transformed cells grow within the plant in the usual way (see also McCormick et al., Plant Cell Reports 5 (1986), 81-84).
  • the resulting plants can be grown normally and crossed with plants that have the same transformed genetic makeup or other genetic makeup.
  • the resulting hybrid individuals have the corresponding phenotypic properties. Seeds can be obtained from the plant cells. Two or more generations should be grown to ensure that the phenotypic trait is stably maintained and inherited. Seeds should also be harvested to ensure that the appropriate phenotype or other characteristics have been preserved.
  • the vector pBluescript II SK (Stratagene) was used for cloning in E. coli.
  • the E.coli strain DH5 ⁇ (Bethesda Research Laborato ⁇ ries, Gaithersburgh, USA) was used for the Bluescript vector and for the pUSP constructs.
  • the E.coli strain XLl-Blue was used for in vivo excision.
  • the radioactive labeling of DNA fragments was carried out using a DNA random primer labeling kit from the company Boehringer (Germany) according to the manufacturer's instructions.
  • a cDNA library based on polyA + RNA from tuber material was created in the vector Lambda ZAPII (Stratagene) and packed in phage heads. E. coli cells of the XLl-Blue strain were then infected with the phages containing the cDNA fragments (1 ⁇ 10 pfu) and plated out on medium in Petri dishes at a density of approximately 30,000 per 75 cm 2 . After about 8 hours of incubation, nitrocellulose membranes were placed on the lysed bacterial turf, which were removed after one minute.
  • the filters were placed in 0.5 M NaOH for 2 min; 1.5 M NaCl, then incubated in 0.5 M Tris / HCl pH 7.0 for 2 min and then in 2 x SSC for 2 min. After the DNA had been dried and fixed by UV crosslinking, the filters were incubated in hybridization buffer at 48 ° C. for 3 hours before radioactively labeled sample was added.
  • a maize cDNA sequence encoding a debranching enzyme was used as a sample (see James et al., Plant Cell 7 (1995), 417-429, nucleotides 1150-2128)]. The hybridization was carried out at 48 ° C.
  • the nucleotide sequence of the cDNA insertion was determined by standard methods using the dideoxy method (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463-5467). The insertion is 2295 bp long and the nucleotide sequence of 2133 bp of this insertion as well as the derived amino acid sequence is in Seq ID No. 1 specified. Homology comparisons showed that the encoded protein is a new debranching enzyme from potato.
  • the Seq ID No. 1 indicated nucleotide sequence represents a partial cDNA which encodes a previously unknown de-branching enzyme from potato. With the aid of this sequence, it is possible to isolate a complete cDNA sequence or a genomic sequence from suitable cDNA or genomic libraries using conventional methods.
  • MOLECULE TYPE cDNA to mRNA
  • HYPOTHETICAL NO
  • ANTISENSE NO
  • GCC AAA CAA TAT TCT CAT TTT CTG GAC GCG AAC CAG TAT CCG ATG CTC 1774 Ala Lys Gin Tyr Ser His Phe Leu Asp Ala Asn Gin Tyr Pro Met Leu 580 585 590
  • MOLECULE TYPE Protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Es werden Nucleinsäuremoleküle beschrieben, die Debranching-Enzyme aus Kartoffel codieren, sowie transgene Pflanzenzellen und Pflanzen, in denen es aufgrund der Expression eines Debranching-Enzyms aus Kartoffel oder der Inhibition einer solchen endogenen Debranching-Enzymaktivität zur Synthese eines in seinen Eigenschaften veränderten Amylopektins kommt.

Description

Nucleinsäuremoleküle, die Debranching-Enzyme aus Kartoffel codieren
Die vorliegende Erfindung betrifft Nucleinsäuremoleküle, die Proteine aus Kartoffel mit der enzymatischen Aktivität eines Debranching-Enzyms codieren. Ferner betrifft die Erfindung transgene Pflanzen und Pflanzenzellen, in denen es aufgrund der Expression einer zusätzlichen Debranching-Enzymaktivitat aus Kartoffel oder der Inhibierung einer endogenen Debranching-Enzymaktivität zur Synthese eines Amylopektins mit einem veränderten Verzweigungsgrad kommt, sowie die aus den besagten transgenen Pflanzenzellen und Pflanzen erhält¬ liche Stärke.
Stärke spielt sowohl als Speicherstoff in einer Vielzahl von Pflanzen als auch als nachwachsender, industriell verwertba¬ rer Rohstoff eine wichtige Rolle und gewinnt zunehmend an Bedeutung. Für die industrielle Verwendung der Stärke ist es erforderlich, daß diese hinsichtlich der Struktur, Form und/oder sonstigen physikalisch-chemischen Parametern den Erfordernissen der verarbeitenden Industrie entspricht. Für den Einsatz in möglichst vielen Einsatzgebieten ist es dar¬ über hinaus erforderlich, eine große Stoffvielfalt zu errei¬ chen.
Das Polysaccharid Stärke ist aus chemisch einheitlichen Grundbausteinen, den Glucosemolekülen, aufgebaut, stellt je¬ doch ein komplexes Gemisch aus unterschiedlichen Molekülfor¬ men dar, die Unterschiede hinsichtlich des Polymerisations¬ grades und des Auftretens von Verzweigungen aufweisen. Man unterscheidet die Amylose-Stärke, ein im wesentlichen unver¬ zweigtes Polymer aus α-1,4-glycosidisch verknüpften Glucose¬ molekülen, von der Amylopektin-Stärke, ein verzweigtes Poly¬ mer, bei dem die Verzweigungen durch das Auftreten von zu- sätzlichen α-1, 6-glykosidischen Verknüpfungen zustande kom¬ men.
In typischen für die Stärkeproduktion verwendeten Pflanzen, wie z.B. Mais oder Kartoffel, kommen die beiden Stärkeformen in einem Verhältnis von ca. 25 Teilen Amylose zu 75 Teilen Amylopektin vor. Neben dem Amylopektin kommt beispielsweise beim Mais ein weiteres verzweigtes Polysaccharid, das soge¬ nannte Phytoglycogen, vor, das sich vom Amylopektin durch einen stärkeren Verzweigungsgrad und ein anderes Löslich- keitsverhalten unterscheidet (siehe z.B. Lee et al. , Arch. Biochem. Biophys. 143 (1971) , 365-374; Pan und Nelson, Plant Physiol. 74 (1984) , 324-328) . Im Rahmen dieser Anmeldung wird der Begriff Amylopektin so verwendet, daß er das Phyto¬ glycogen umfaßt.
Im Hinblick auf die Einheitlichkeit des Grundstoffes Stärke für seine Anwendung im industriellen Bereich werden Stärke- produzierende Pflanzen benötigt, die beispielsweise nur noch die Komponente Amylopektin oder nur noch die Komponente Amy¬ lose enthalten. Für eine Reihe weiterer Verwendungen werden Pflanzen benötigt, die unterschiedlich stark verzweigte Amy¬ lopektin-Formen synthetisieren.
Derartige Pflanzen können beispielsweise durch Züchtung oder Mutagenesetechniken erzeugt werden. Für bestimmte Pflanzen¬ spezies, z.B. Mais, ist bekannt, daß durch Mutagenese Sorten erzeugt werden können, die nur noch Amylopektin bilden. Für die Kartoffel wurde ebenfalls durch chemische Mutagenese bei einer haploiden Linie ein Genotyp erzeugt, der keine Amylose bildet (Hovenkamp-Hermelink, Theor. Appl. Genet. 75 (1987) , 217-221) .
Neben den klassischen Züchtungs- und Mutagenesetechniken werden inzwischen zunehmend gentechnische Methoden angewen¬ det, um gezielt in den Stärkemetabolismus stärkespeichernder Pflanzen einzugreifen. Voraussetzung hierfür ist, daß DNA- Sequenzen zur Verfügung stehen, die am Stärkemetabolismus beteiligte Enzyme codieren. Bei der Kartoffel sind bei¬ spielsweise inzwischen DNA-Sequenzen, die Stärkekorn-gebun- dene Stärkesynthase oder Verzweigungsenzym (Q-Enzym) codie¬ ren, bekannt und zur gentechnischen Veränderung von Pflanzen verwendet worden.
Für eine weitere gezielte Veränderung der Stärke in Pflan¬ zen, insbesondere des Verzweigungsgrades von in Pflanzen synthetisierter Stärke mit Hilfe gentechnischer Verfahren ist es nach wie vor erforderlich, DNA-Sequenzen zu identifi¬ zieren, die Enzyme codieren, die am Stärkemetabolismus, ins¬ besondere der Verzweigung von Stärkemolekülen, beteiligt sind.
Neben den Q-Enzymen, die Verzweigungen in Stärkemoleküle einführen, kommen in Pflanzen Enzyme vor, die Verzweigungen auflösen können. Diese Enzyme werden als Debranching-Enzyme bezeichnet.
In Zuckerrübe konnte von Li et al. (Plant Physiol. 98 (1992) , 1277-1284) neben fünf Endo- und zwei Exoamylasen nur ein Debranching-Enzym nachgewiesen werden. Dieses Enzym, das eine Größe von ca. 100 kD und ein pH-Optimum von 5,5 auf¬ weist, ist in den Chloroplasten lokalisiert. Auch für Spinat wurde ein Debranching-Enzym beschrieben. Sowohl das Debranching-Enzym aus Spinat als auch das aus der Zuckerrübe besitzen bei der Reaktion mit Amylopektin als Substrat ver¬ glichen mit Pullulan als Substrat eine 5-fach geringere Ak¬ tivität (Ludwig et al., Plant Physiol. 74 (1984) , 856-861; Li et al., Plant Physiol. 98 (1992), 1277-1284) . Für Spinat wurde die Isolierung einer cDNA, die ein Debranching-Enzym codiert, beschrieben (Renz et al, Plant Physiol. 108 (1995) , 1342) .
Für Mais wurde in der Literatur die Existenz eines Debranching-Enzyms beschrieben. Die entsprechende Mutante wird als su (sugary) bezeichnet. Das Gen des sugary-Locus wurde kürzlich cloniert (siehe James et al. , Plant Cell 7 (1995) , 417-429) .
Bei der landwirtschaftlich wichtigen stärkespeichernden Kul¬ turpflanze Kartoffel wurde die Aktivität eines Debranching- Enzyms von Hobson et al . (J. Chem. Soc, (1951) , 1451) un- tersucht. Es gelang der Nachweis, daß das entsprechende En¬ zym im Gegensatz zum Q-Enzym keine kettenverlängernde Akti¬ vität besitzt, sondern lediglich ot- 1 , 6-glycosidische Bindun¬ gen hydrolysiert. Es wurden bereits Verfahren zur Reinigung eines Debranching-Enzyms aus Kartoffel sowie partielle Pep- tidsequenzen des gereinigten Proteins beschrieben (WO 95/04826) .
Es gab bisher keinerlei Hinweise, daß in Kartoffel weitere Debranching-Enzymformen vorkommen. Sollte dies der Fall sein, so müßte man für die Herstellung transgener Kartoffel- pflanzen, die keinerlei Debranching-Enzymaktivität mehr auf¬ weisen, z.B. um eine Veränderung des Verzweigungsgrades der Amylopektinstärke zu erzielen, alle in der Kartoffel vorkom¬ menden Debranching-Enzymformen identifizieren und die ent¬ sprechenden Gene oder cDNA-Sequenzen isolieren.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, weitere möglicherweise bei Kartoffel vorkommende Debran- ching-Enzyme zu identifizieren bzw. entsprechende Nuclein- säuremoleküle, die diese Enzyme codieren, zu isolieren.
Diese Aufgabe wird durch die Bereitstellung der in den Pa¬ tentansprüchen bezeichneten Ausführungsformen gelöst.
Somit betrifft die vorliegende Erfindung Nucleinsäuremole- küle, die Proteine mit der biologischen Aktivität eines Debranching-Enzyms aus Kartoffel codieren.
Ein derartiges Nucleinsäuremolekül codiert vorzugsweise ein Protein mit der biologischen Aktivität eines Debranching- Enzyms aus Kartoffel, das die unter Seq ID No. 2 angegebene Aminosäuresequenz aufweist . Besonders bevorzugt umfaßt ein derartiges Nucleinsäuremolekül die unter Seq ID No. 1 ange¬ gebene Nucleotidsequenz, insbesondere die codierende Region. Gegenstand der Erfindung sind ebenfalls Nucleinsäuremolekü- le, die Proteine mit der biologischen Aktivität eines Debranching-Enzyms aus Kartoffel codieren und die mit einem der oben beschriebenen Nucleinsäuremoleküle bzw. deren komplementären Strang hybridisieren.
Weiterhin betrifft die vorliegende Erfindung Nucleinsäuremo¬ leküle, deren Sequenzen sich aufgrund der Degeneration des genetischen Codes von den Sequenzen der obengenannten Nucleinsäuremoleküle unterscheidet, und die ein Protein co¬ dieren, das die biologische Aktivität eines Debranching- Enzyms aus Kartoffel aufweist.
Der Begriff "aus Kartoffel" bedeutet, daß die durch die er¬ findungsgemäßen Nucleinsäuremoleküle codierten Debranching- Enzyme typisch sind für die Spezies Soianum tuberosum, d.h. entweder natürlicherweise in solchen Pflanzen vorkommen, beispielsweise codiert durch genomische oder RNA-Moleküle, oder von davon abgeleiteten Molekülen. Abgeleitete Moleküle können beispielsweise durch reverse Transkription von RNA- Molekülen, Amplifikation, Mutation, Deletion, Substitution, Insertion etc. erzeugt werden. D.h. der Begriff umfaßt auch Enzyme, die von Allelen oder Derivaten von natürlicherweise in Kartoffel vorkommenden Sequenzen codiert werden. Diese können beispielsweise durch gentechnische Methoden in vivo oder in vitro erzeugt werden.
Der Begriff "Hybridisierung" bedeutet im Rahmen dieser Er¬ findung eine Hybridisierung unter konventionellen Hybridi- sierungsbedingungen, vorzugsweise unter stringenten Bedin¬ gungen, wie sie beispielsweise in Sambrock et al. , Molecular Cloning, A Laboratory Manual, 2. Aufl. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) beschrieben sind. Nucleinsäuremoleküle, die mit den erfindungsgemäßen Nucleinsäuremolekülen hybridisieren, können prinzipiell aus jeder beliebigen Kartoffelpflanze stammen.
Nucleinsäuremoleküle, die mit den erfindungsgemäßen Molekü¬ len hybridisieren, können z.B. aus genomischen oder aus cDNA-Bibliotheken isoliert werden.
Die Identifizierung und Isolierung derartiger Nucleinsäure¬ moleküle kann dabei unter Verwendung der erfindungsgemäßen Nucleinsäuremoleküle oder Teile dieser Moleküle bzw. der re- versen Komplemente dieser Moleküle erfolgen, z.B. mittels Hybridisierung nach Standardverfahren (siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) oder durch Amplifikation mittels PCR. Als Hybridisierungsprobe können z.B. Nucleinsäuremoleküle verwendet werden, die exakt die oder im wesentlichen die un¬ ter Seq ID No. 1 angegebene Nucleotidsequenz oder Teile die¬ ser Sequenz aufweisen. Bei den als Hybridisierungsprobe ver¬ wendeten Fragmenten kann es sich auch um synthetische Frag¬ mente handeln, die mit Hilfe der gängigen Synthesetechniken hergestellt wurden und deren Sequenz im wesentlichen mit der eines erfindungsgemäßen Nucleinsäuremoleküls übereinstimmt. Hat man Gene identifiziert und isoliert, die mit den erfin¬ dungsgemäßen Nucleinsäuresequenzen hybridisieren, ist eine Bestimmung der Sequenz und eine Analyse der Eigenschaften der von dieser Sequenz codierten Proteine erforderlich. Die mit den erfindungsgemäßen Nucleinsäuremolekülen hybridi¬ sierenden Moleküle umfassen insbesondere Fragmente, Derivate und allelische Varianten der oben beschriebenen DNA-Molekü¬ le, die ein Protein codieren mit der enzymatischen Aktivität eines Debranching-Enzyms aus Kartoffel oder ein biologisch, d.h. enzymatisch aktives Fragment davon. Unter Fragmenten werden dabei Teile der Nucleinsäuremoleküle verstanden, die lang genug sind, um ein Polypeptid mit der enzymatischen Ak¬ tivität eines Debranching-Enzyms zu codieren. Der Ausdruck Derivat bedeutet in diesem Zusammenhang, daß die Sequenzen dieser Moleküle sich von den Sequenzen der oben beschrie¬ benen Nucleinsäuremoleküle an einer oder mehreren Positionen unterscheiden und einen hohen Grad an Homologie zu diesen Sequenzen aufweisen. Homologie bedeutet dabei eine Sequenz- identität von mindestens 70 %, insbesondere eine Identität von mindestens 80 %, vorzugsweise über 90 % und besonders bevorzugt über 95 %. Die Abweichungen zu den oben beschrie¬ benen Nucleinsäuremolekülen können dabei durch Deletion, Ad- dition, Substitution, Insertion oder Rekombination entstan¬ den sein.
Homologie bedeutet ferner, daß funktionelle und/oder struk¬ turelle Äquivalenz zwischen den betreffenden Nucleinsäuremo¬ lekülen oder den durch sie codierten Proteinen, besteht. Bei den Nucleinsäuremolekülen, die homolog zu den oben beschrie¬ benen Molekülen sind und Derivate dieser Moleküle darstel¬ len, handelt es sich in der Regel um Variationen dieser Mo¬ leküle, die Modifikationen darstellen, die dieselbe biologi¬ sche Funktion ausüben. Es kann sich dabei sowohl um natürli¬ cherweise auftretende Variationen handeln, beispielsweise um Sequenzen aus anderen Kartoffelpflanzen oder -sorten, oder um Mutationen, wobei diese Mutationen auf natürliche Weise aufgetreten sein können oder durch gezielte Mutagenese ein¬ geführt wurden. Ferner kann es sich bei den Variationen um synthetisch hergestellte Sequenzen handeln. Bei den alleli- schen Varianten kann es sich sowohl um natürlich auftretende Varianten handeln, als auch um synthetisch hergestellte oder durch rekombinante DNA-Techniken erzeugte Varianten. Die von den verschiedenen Varianten der erfindungsgemäßen Nucleinsäuremoleküle codierten Proteine weisen bestimmte ge¬ meinsame Charakteristika auf. Dazu können z.B. Enzymaktivi¬ tät, Molekulargewicht, immunologische Reaktivität, Konforma¬ tion etc. gehören, sowie physikalische Eigenschaften wie z.B. das Laufverhalten in Gelelektrophoresen, chromatogra¬ phisches Verhalten, Sedimentationskoeffizienten, Löslich¬ keit, spektroskopische Eigenschaften, Stabilität; pH-Opti¬ mum, Temperatur-Optimum etc.
Der Nachweis der enzymatischen Aktivität des Debranching-En¬ zyms kann beispielsweise durch einen Färbetest erfolgen, wie in der WO 95/04826 beschrieben. Dieser beruht darauf, daß sich ein Protein mit einer stärkemodifizierenden Aktivität nachweisen läßt, wenn Proteinextrake, beispielsweise aus Kartoffelknollen, in nicht-denaturierenden, amylopektinhal¬ tigen Polyacrylamidgelen (PAAG) aufgetrennt werden und das Gel, nach Inkubation in einem geeigneten Puffer, an- schließend einer Jodfärbung unterzogen wird. Während unver¬ zweigte Amylose mit Jod einen blauen Komplex bildet, ergibt Amylopektin eine rötlich-violette Färbung. In amylopektin- haltigen Polyacrylamidgelen, die mit Jod rötlich-violett färben, kommt es an Orten, an denen eine Debranching-Aktivi- tät lokalisiert ist, zu einer Farbverschiebung hin zu einer Blaufärbung des Gels, da die Verzweigungen des violettfär¬ benden Amylopektins von dem Debranching-Enzym abgebaut wer¬ den.
Alternativ kann der Nachweis der Debranching-Enzymaktivität mit Hilfe des DNSS-Tests (siehe Ludwig et al . , Plant Physiol. 74 (1984), 856-861) erfolgen.
Die erfindungsgemäßen Nucleinsäuremoleküle können beliebige Nucleinsäuremoleküle sein, insbesondere DNA- oder RNA-Mole- küle handeln, beispielsweise cDNA, genomische DNA, mRNA etc. Sie können natürlich vorkommende Moleküle sein, oder durch gentechnische oder chemische Syntheseverfahren hergestellte.
Die erfindungsgemäßen Nucleinsäuremoleküle codieren ein bis¬ her unbekanntes neues Protein aus Kartoffel mit der enzyma¬ tischen Aktivität eines Debranching-Enzyms. Bisher war für Kartoffel lediglich ein Debranching-Enzym beschrieben wor¬ den. In der Literatur gab es bisher keinerlei Hinweise, daß es in Kartoffel Gene gibt, die weitere Debranching-Enzyme codieren. Es wurde nun überraschenderweise gefunden, daß es neben dem bisher bekannten Debranching-Enzym in Kartoffel zumindest ein weiteres Enzym mit Debranching-Aktivität gibt. Somit codieren die erfindungsgemäßen Moleküle einen neuen Typ von Debranching-Enzymen aus Kartoffel. Mit Hilfe dieser Moleküle ist es nun möglich gezielt in den Stärkemetabolis¬ mus von Kartoffel und anderen stärkespeichernden Pflanzen einzugreifen und somit die Synthese einer in ihren chemi¬ schen oder physikalischen Eigenschaften modifizierten Stärke zu ermöglichen. Dies kann zum einen durch Überexpression der erfindungsgemäßen Nucleinsäuremoleküle in beliebigen, vor¬ zugsweise stärkespeichernden Pflanzen, erfolgen oder durch Reduktion der Debranching-Enzymaktivität in Kartoffelpflan¬ zen durch Einsatz der erfindungsgemäßen Nucleinsäuresequen- zen, beispielsweise mittels antisense- oder Ribozymeffekte.
Ferner betrifft die vorliegende Erfindung Nucleinsäuremole¬ küle von mindestens 15, vorzugsweise mehr als 50 und beson¬ ders bevorzugt mehr als 200 Basenpaaren Länge, die spezi¬ fisch mit den erfindungsgemäßen Nucleinsäuremolekülen hybri¬ disieren. Spezifisch hybridisieren bedeutet hierbei, daß diese Moleküle mit Nucleinsäuremolekülen hybridisieren, die die neuen Debranching-Enzyme aus Kartoffel codieren, jedoch nicht mit Nucleinsäuremolekülen, die andere Proteine codie¬ ren. Hybridisieren bedeutet dabei vorzugsweise Hybridisieren unter stringenten Bedingungen (s.o.) . Insbesondere betrifft die Erfindung solche Nucleinsäuremoleküle, die mit Trans¬ kripten von erfindungsgemäßen Nucleinsäuremolekülen hybridi¬ sieren und dadurch deren Translation verhindern können. Sol¬ che Nucleinsäuremoleküle, die spezifisch mit den erfindungs¬ gemäßen Nucleinsäuremolekülen hybridisieren, können bei¬ spielsweise Bestandteile von mRNA-Konstrukten oder Ribozymen sein oder können als Primer für die Amplifikation mittels PCR verwendet werden.
Weiterhin betrifft die Erfindung Vektoren, insbesondere Plasmide, Cosmide, Viren, Bacteriophagen und andere in der Gentechnik gängige Vektoren, die die oben beschriebenen er¬ findungsgemäßen Nucleinsäuremoleküle enthalten.
In einer bevorzugten Ausführungsform sind die in den Vekto¬ ren enthaltenen Nucleinsäuremoleküle verknüpft mit regulato¬ rischen Elementen, die die Transkription und Translation in prokaryontischen oder eukaryontischen Zellen gewährleisten.
In einer weiteren Ausführungsform betrifft die Erfindung Wirtszellen, insbesondere prokaryontische oder eukaryonti- sche Zellen, die mit einem oben beschriebenen Nucleinsäure¬ molekül oder einem Vektor transformiert wurden, und Zellen, die von derartigen Wirtszellen abstammen und die beschriebe¬ nen Nucleinsäuremoleküle oder Vektoren enthalten. Die Wirts¬ zellen können Bakterien- oder Pilzzellen, sowie pflanzliche oder tierische Zellen sein.
Die Erfindung betrifft auch Proteine mit der biologischen Aktivität eines Debranching-Enzyms aus Kartoffel, die durch die erfindungsgemäßen Nucleinsäuremoleküle codiert werden, oder biologisch aktive Fragmente davon.
Ferner betrifft die vorliegende Erfindung Verfahren zur Her¬ stellung eines Proteins mit der biologischen Aktivität eines Debranching-Enzyms aus Kartoffel oder eines biologisch ak¬ tiven Fragmentes davon, bei dem erfindungsgemäße Wirtszellen unter geeigneten Bedingungen kultiviert werden und das Pro¬ tein aus der Kultur, d.h. aus den Zellen und/oder dem Kul¬ turmedium gewonnen wird.
In einer bevorzugten Ausführungsform sind die erfindungsge¬ mäßen Wirtszellen transgene pflanzliche Zellen, die aufgrund der Gegenwart und Expression eines eingeführten erfindungs- gemäßen Nucleinsäuremoleküls im Vergleich zu nichttransfor- mierten Zellen entweder eine neue oder eine gesteigerte Debranching-Enzymaktivität aufweisen.
Durch die Bereitstellung der erfindungsgemäßen Nucleinsäure¬ moleküle besteht nun die Möglichkeit, pflanzliche Zellen mittels gentechnischer Methoden dahingehend zu verändern, daß sie eine neue oder eine gesteigerte Debranching-Enzymak¬ tivität aufweisen im Vergleich zu Wildtyp-Zellen. Solche transgenen Pflanzenzellen unterscheiden sich von nicht-transformierten Zellen dadurch, daß das eingeführte Nucleinsäuremolekül entweder heterolog zu der transformier¬ ten Zelle ist, d.h. aus einer Zelle mit einem anderen geno¬ mischen Hintergrund stammt, oder dadurch daß das eingeführte Nucleinsäuremolekül, wenn es homolog zur transformierten Pflanzenspezies ist, im Genom an einem Ort lokalisiert ist, an dem es in nicht-transformierten Zellen natürlicherweise nicht vorkommt. Dabei kann das eingeführte Nucleinsäuremole¬ kül entweder unter der Kontrolle seines natürlichen Promo¬ tors stehen oder mit regulatorischen Elementen fremder Gene verknüpft sein.
Die Erfindung betrifft ferner transgene Pflanzen, die die oben beschriebenen transgenen Pflanzenzellen enthalten. Bei der Pflanze, die mit den erfindungsgemäßen Nucleinsäure¬ molekülen transformiert ist, und in der aufgrund der Einfüh¬ rung eines solchen Moleküls ein Debranching-Enzym aus Kar¬ toffel synthetisiert wird, kann es sich im Prinzip um jede beliebige Pflanze handeln. Vorzugsweise ist es eine monoko¬ tyle oder dikotyle Nutzpflanze, insbesondere eine stärke¬ speichernde Pflanze, wie z.B. Getreidepflanzen, Leguminosen, Kartoffeln oder Maniok.
Unter Getreidepflanzen werden insbesondere monokotyle Pflan¬ zen verstanden, die zur Ordnung Poales, bevorzugt solche, die zur Familie der Poaceae gehören. Beispiele hierfür sind die Pflanzen, die zu den Gattungen Avena (Hafer) , Triticum (Weizen) , Seeale (Roggen) , Hordeum (Gerste) , Oryza (Reis) , Panicum, Pennisetum, Setaria, Sorghum (Hirse) , Zea (Mais) etc. gehören. Stärkespeichernde Leguminosen sind z.B. manche Arten der Gattung Pisum (z.B. Pisum sativum) , Vicia (z.B. Vicia faba) , Cicer (z.B. Cicer arietinum) , Lens (z.B. Lens culinaris) , Phaseolus (z.B. Phaseolus vulgaris und Phaseolus coccineus) , etc.
Die vorliegende Erfindung betrifft auch die aus den transge¬ nen Pflanzenzellen oder Pflanzen erhältliche Stärke. Die Ex¬ pression einer neuen oder zusätzlichen Debranching-En- zymaktivität aus Kartoffel in den erfindungsgemäßen transge¬ nen Pflanzenzellen und Pflanzen hat einen Einfluß auf den Verzweigungsgrad des in den Zellen und Pflanzen syntheti¬ sierten Amylopektins. Daher besitzt eine in diesen Pflanzen synthetisierte Stärke veränderte physikalische und/oder che¬ mische Eigenschaften im Vergleich zu Stärke aus Wildtyp- Pflanzen. Gegenstand der Erfindung ist ferner Vermehrungsmaterial von erfindungsgemäßen transgenen Pflanzen, beispielsweise Samen, Früchte, Stecklinge, Knollen, Wurzelstöcke etc., wobei die¬ ses Vermehrungsmaterial oben beschriebene transgene Pflan¬ zenzellen enthält. Im Fall von Kartoffelpflanzen handelt es sich bei dem Vermehrungsmaterial vorzugsweise um die Knol¬ len.
Ferner betrifft die vorliegende Erfindung transgene Pflan¬ zenzellen von Kartoffel, bei denen die Aktivität des erfin¬ dungsgemäßen Debranching-Enzyms verringert ist aufgrund der Inhibition der Transkription oder Translation von endogenen Nucleinsäuremolekülen, die ein derartiges neues Debranching- Enzym codieren. Dies wird vorzugsweise dadurch erreicht, daß ein erfindungsgemäßes Nucleinsäuremolekül oder ein Teil da¬ von in den entsprechenden Pflanzenzellen in antisense-Orien- tierung exprimiert wird und es aufgrund eines antisense-Ef- fektes zur Verringerung der beschriebenen Debranching-En- zymaktivität kommt. Eine weitere Möglichkeit zur Verringe¬ rung der Debranching-Enzymaktivität in pflanzlichen Zellen besteht in der Expression von geeigneten Ribozymen, die spe¬ zifisch Transkripte der erfindungsgemäßen DNA-Moleküle spal¬ ten. Die Herstellung derartiger Ribozyme mit Hilfe der er¬ findungsgemäßen DNA-Moleküle ist dem Fachmann geläufig. Mög¬ lich ist auch die Expression von Molekülen, die sowohl einen antisense- als auch einen Ribozymeffekt in Kombination aus¬ üben. Alternativ kann die Verringerung der Debranching-En¬ zymaktivität in den Pflanzenzellen auch durch einen Co- supressionseffekt erfolgen. Das Verfahren zur Verringerung der Aktivität erfindungsgemäßer Enzyme in den Pflanzenzellen durch einen Cosuppressionseffekt ist dem Fachmann bekannt und ist beispielsweise beschrieben in Jorgensen (Trends Biotechnol. 8 (1990) , 340-344) , Niebel et al . , (Curr. Top Microbiol. Immunol . 197 (1995), 91-103) , Flavell et al. (Curr. Top. Microbiol. Immunol. 197 (1995) , 43-46) , Palaqui und Vaucheret (Plant Mol. Biol. 29 (1995) , 149-159) , Vaucheret et al . , (Mol. Gen. Genet . 248 (1995) , 311-317), de Borne et al . (Mol. Gen. Genet 243 (1994) , 613-621) und ande¬ ren Quellen.
Die Expression von Ribozymen zur Verringerung der Aktivität von bestimmten Enzymen in Zellen ist dem Fachmann ebenfalls bekannt und ist beispielsweise beschrieben in EP-Bl 0 321 201. Die Expression von Ribozymen in pflanzlichen Zel¬ len wurde z.B. beschrieben in Feyter et al. (Mol. Gen. Genet. 250 (1996), 329-338) .
Andere Möglichkeiten, die Aktivität der beschriebenen neuen Debranching-Enzyme in pflanzlichen Zellen zu reduzieren, sind dem Fachmann bekannt, beispielsweise die Mutagenese ge¬ nomischer Sequenzen, die derartige Enzyme codieren, z.B. durch "gene tagging" oder Transposon-Mutagenese oder die Ex¬ pression von Antikörpern, die spezifisch die neuen Debranching-Enzyme erkennen. Die Mutagenese genomischer Se¬ quenzen kann sowohl codierende Bereiche des Gens (Introns oder Exons) betreffen, als auch regulatorische Bereiche, insbesondere die für die Initiation der Transkription erfor¬ derlichen.
Die Erfindung betrifft ferner transgene Kartoffelpflanzen, die die oben beschriebenen transgenen Pflanzenzellen mit verringerter Debranching-Enzymaktivität enthalten.
Gegenstand der Erfindung sind ebenfalls die aus den transge¬ nen Zellen oder Pflanzen erhältliche modifizierte Stärke. Die Amylopektinstärke der transgenen Zellen und Pflanzen weist aufgrund der verringerten Debranching-Enzymaktivität einen veränderten Verzweigungsgrad auf im Vergleich zu Stärke aus nichttransformierten Pflanzen.
Die Erfindung betrifft auch Vermehrungsmaterial der vorste¬ hend beschriebenen transgenen Pflanzen, insbesondere Samen und Knollen, wobei diese vorstehend beschriebene transgene Pflanzenzellen enthalten. Transgene Pflanzenzellen, die aufgrund der Expression einer neuen oder zusätzlichen Debranching-Enzymaktivität eine Amy- lopektinstärke mit einem veränderten Verzweigungsgrad bilden im Vergleich zu in Wildtyp-Pflanzen synthetisierter Amylo- pektinstärke, können beispielsweise durch ein Verfahren her¬ gestellt werden, das folgende Schritte umfaßt:
(a) Herstellung einer Expressionskassette, die folgende DNA- Sequenzen umfaßt :
(i) einen Promotor, der die Transkription in pflanzli¬ chen Zellen gewährleistet;
(ii) mindestens eine erfindungsgemäße Nucleinsäurese- quenz, die ein Protein mit der enzymatischen Akti¬ vität eines Debranching-Enzyms codiert oder ein biologisch aktives Fragment davon und in sense- Orientierung an das 3' -Ende des Promotors gekop¬ pelt ist; und
(iii) gegebenenfalls ein Terminationssignal für die Ter- mination der Transkription und die Addition eines poly-A-Schwanzes an das entstehende Transkript, das an das 3 ' -Ende der codierenden Region gekop¬ pelt ist; und
(b) Transformation pflanzlicher Zellen mit der in Schritt (a) hergestellten Expressionskassette.
Transgene Pflanzenzellen, die aufgrund der Verringerung der beschriebenen Debranching-Enzymaktivität eine Amylopek- tinstärke mit einem im Vergleich zu in Wildtyp-Pflanzen syn¬ thetisierter Amylopektinstärke veränderten Verzweigungsgrad bilden, können beispielsweise durch ein Verfahren herge¬ stellt werden, das folgende Schritte umfaßt:
(a) Herstellung einer Expressionskassette, die folgende DNA- Sequenzen umfaßt:
(i) einen Promotor, der die Transkription in pflanzli¬ chen Zellen gewährleistet; (ii) mindestens eine erfindungsgemäße Nucleinsäurese- quenz, die ein Protein mit der enzymatischen Akti¬ vität eines Debranching-Enzyms codiert oder einen Teil eines solchen Proteins und die in antisense- Orientierung an das 3 ' -Ende des Promotors gekop¬ pelt ist; und
(iii) gegebenenfalls ein Terminationssignal für die Ter- mination der Transkription und die Addition eines poly-A-Schwanzes an das entstehende Transkript, das an das 3 ' -Ende der codierenden Region gekop¬ pelt ist; und (b) Transformation pflanzlicher Zellen mit der in Schritt
(a) hergestellten Expressionskassette.
Für den unter (i) genannten Promotor kommt im Prinzip jeder in den für die Transformation gewählten Pflanzen funktionale Promotor in Betracht. Der Promotor kann homolog oder hetero- log in bezug auf die verwendete Pflanzenspezies sein. Ge¬ eignet ist beispielsweise der 35S-Promotor des Cauliflower- Mosaik-Virus (Odell et al., Nature 313 (1985) , 810-812), der eine konstitutive Expression in allen Geweben einer Pflanze gewährleistet und das in der WO/9401571 beschriebene Promo- torkonstrukt . Ein anderes Beispiel sind die Promotoren der Polyubiquitingene aus Mais (Christensen et al. , Plant Mol. Biol. 18 (1992) , 675-689) . Es können jedoch auch Promotoren verwendet werden, die nur zu einem durch äußere Einflüsse determinierten Zeitpunkt aktiviert werden (siehe beispiels¬ weise WO/9307279) . Von besonderem Interesse können hierbei Promotoren von heat-shock-Proteinen sein, die eine einfache Induktion erlauben. Ferner können die Promotoren verwendet werden-, die in einem bestimmten Gewebe der Pflanze zu einer Expression nachgeschalteter Sequenzen führen (siehe z. B. Stockhaus et al. , EMBO J. 8 (1989) , 2245-2251) . Präferen- tiell werden Promotoren eingesetzt, die in den stärkespei¬ chernden Organen der zu transformierenden Pflanzen aktiv sind. Dies sind z.B. bei Mais die Maiskörner, während es bei der Kartoffel die Knollen sind. Zur Überexpression der er- findungsgemäßen Nucleinsäuremoleküle in der Kartoffel kann beispielsweise der knollenspezifische B33-Promotor (Rocha- Sosa et al., EMBO J. 8 (1989) , 23-29) verwendet werden. Samenspezifische Promotoren sind bereits für verschiedene Pflanzenspezies beschrieben worden. So z.B. der USP-Promotor aus Vicia faba, der eine samenspezifische Expression in V. faba und anderen Pflanzen gewährleistet (Fiedler et al. , Plant Mol. Biol. 22 (1993) , 669-679; Bäumlein et al . , Mol Gen. Genet. 225 (1991) , 459-467) . In Mais gewährleisten bei¬ spielsweise Promotoren der Zein-Gene eine spezifische Ex¬ pression im Endosperm der Maiskörner (Pedersen et al. , Cell 29 (1982) , 1015-1026; Quattrocchio et al . , Plant Mol. Biol. 15 (1990) , 81-93) .
In dem Fall, daß die unter Verfahrensschritt (a) (ii) ge¬ nannte, Nucleinsäuresequenz, die ein Protein mit der enzyma¬ tischen Aktivität eines Debranching-Enzyms aus Kartoffel co¬ diert, in sense-Orientierung mit dem Promotor verknüpft ist, kann diese Nucleinsäuresequenz sowohl nativen bzw. homologen Ursprungs als auch fremden bzw. heterologen Ursprungs in be¬ zug auf die zu transformierende Pflanzenspezies sein, d.h. es können sowohl Kartoffelpflanzen als auch beliebige andere Pflanzen mit der beschriebenen Expressionskassette transfor¬ miert werden, vorzugsweise die obengenannten stärkespei¬ chernden Pflanzen.
Es besteht grundsätzlich die Möglichkeit, daß das syntheti¬ sierte Protein in jedem beliebigen Kompartiment der pflanz¬ lichen Zelle lokalisiert sein kann. Pflanzliche Debranching- Enzyme sind in der Regel in den Piastiden lokalisiert und besitzen daher eine Signalsequenz für die Translokation in diese Organellen. Um die Lokalisation in einem anderen Kom¬ partiment der Zelle zu erreichen, muß die DNA-Sequenz, die diese Signalsequenz codiert, entfernt werden und die codie¬ rende Region mit DNA-Sequenzen verknüpft werden, die die Lo¬ kalisierung in dem jeweiligen Kompartiment gewährleisten. Derartige Sequenzen sind bekannt (Siehe beispielsweise Braun et al., EMBO J. 11 (1992) , 3219-3227; Wolter et al . , Proc. Natl. Acad. Sei. USA 85 (1988), 846-850; Sonnewald et al. , Plant J. 1 (1991), 95-106).
In dem Fall, daß die unter Verfahrensschritt (a) (ii) ge¬ nannte Nucleinsäuresequenz aus Kartoffel, die ein Protein mit der enzymatischen Aktivität eines Debranching-Enzyms co¬ diert, in antisense-Orientierung mit dem Promotor verknüpft ist, handelt es sich bei dieser vorzugsweise um eine Nucleinsäuresequenz homologen Ursprungs in bezug auf die zu transformierende Pflanzen. Es können jedoch auch Nucleinsäu- resequenzen verwendet werden, die einen hohen Grad an Homo¬ logie zu endogen vorhandenen Debranching-Enzym-Genen haben, insbesondere Homologien höher als 80 %, vorzugsweise Homolo¬ gien zwischen 90 % und 100 % und besonders bevorzugt Homolo¬ gien über 95 %.
Es können Sequenzen bis zu einer Mindestlänge von 15 bp ver¬ wendet werden. Eine inhibierende Wirkung ist aber auch bei der Verwendung kürzerer Sequenzen nicht ausgeschlossen. Be¬ vorzugt werden längere Sequenzen zwischen 100 und 500 Basen¬ paaren verwendet, für eine effiziente antisense-Inhibition werden insbesondere Sequenzen mit einer Länge über 500 Ba¬ senpaaren verwendet. In der Regel werden Sequenzen verwen¬ det, die kürzer als 5000 Basenpaare sind, bevorzugt Sequen¬ zen, die kürzer als 2500 Basenpaare sind.
Terminationssignale für die Transkription in pflanzlichen Zellen sind beschrieben und sind beliebig gegeneinander aus¬ tauschbar. Verwendet werden kann beispielsweise die Termina- tionssequenz des Octopinsynthase-Gens aus Agrobacterium tumefaciens .
Der Transfer der gemäß Verfahrensschritt (a) konstruierten Expressionskassette in pflanzliche Zellen erfolgt vorzugs¬ weise unter Verwendung von Plasmiden, insbesondere mit Hilfe von Plasmiden, die eine stabile Integration der Expressions¬ kassette in das pflanzliche Genom gewährleisten. Das oben beschriebene Verfahren zur Überexpression eines neuen Debranching-Enzyms aus Kartoffel kann prinzipiell auf alle Pflanzenspezies angewendet werde. Von Interesse sind sowohl monokotyle als auch dikotyle Pflanzen, insbesondere die oben beschriebenen stärkespeichernden Pflanzen. Das oben beschriebene Verfahren zur Reduktion der Debranching-En¬ zymaktivität wird bevorzugt auf zweikeimblättrige Pflanzen, insbesondere auf Kartoffel angewandt.
Infolge der Einführung einer gemäß den beschriebenen Verfah¬ ren konstruierten Expressionskassette kommt es in den trans¬ formierten Pflanzenzellen zur Bildung einer RNA. Ist die ein Debranching-Enzym aus Kartoffel codierende Nucleinsäurese¬ quenz in der Expressionskassette in sense-Orientierung mit dem Promotor verknüpft, kommt es zur Synthese einer mRNA, die als Matrize für die Synthese eines zusätzlichen oder neuen Debranching-Enzyms aus Kartoffel in den pflanzlichen Zellen dienen kann. Als Folge davon weisen diese Zellen eine Aktivität bzw. eine erhöhte Aktivität des Debranching-Enzyms aus Kartoffel auf, was zu einer Veränderung des Verzwei¬ gungsgrades des in den Zellen gebildeten Amylopektins führt. Dadurch wird eine Stärke zugänglich, die sich gegenüber der natürlich vorkommenden Stärke durch eine stärker geordnete Raumstruktur sowie eine gesteigerte Einheitlichkeit aus¬ zeichnet . Dies kann unter anderem günstige Auswirkungen auf die Filmbildungseigenschaften haben.
Ist die ein Debranching-Enzym aus Kartoffel codierende Nucleinsäuresequenz dagegen in antisense-Orientierung mit dem Promotor verknüpft, so kommt es in transgenen Pflanzen¬ zellen zur Synthese einer antisense-RNA, die die Expression von endogenen Debranching-Enzym-Genen inhibiert. Als Folge weisen diese Zellen eine reduzierte Aktivität des neuen Debranching-Enzyms aus Kartoffel auf, was zur Bildung einer modifizierten Stärke führt. Mit Hilfe der anfcisense-Technik ist es möglich Pflanzen herzustellen, bei denen die Expres¬ sion eines endogenen Debranching-Enzym-Gens in Kartoffel in unterschiedlichem Maße inhibiert ist in einem Bereich von 0 % bis zu 100 %. Dies ermöglicht insbesondere die Herstellung von Kartoffelpflanzen, die Amylopektinstärke mit verschie¬ densten Variationen im Verzweigungsgrad synthetisieren. Dies stellt einen Vorteil gegenüber herkömmlichen Zuchtungs- und Mutageneseverfahren dar, bei denen die Bereitstellung einer derartigen Vielfalt nur mit erheblichem Zeit- und Kostenauf¬ wand möglich ist. Stark verzweigtes Amylopektin hat eine be¬ sonders große Oberfläche und eignet sich dadurch als Copoly¬ mer in besonderem Maße. Ein starker Verzweigungsgrad führt außerdem zu einer Verbesserung der Wasserlöslichkeit des Amylopektins. Diese Eigenschaft ist für bestimmte technische Anwendungen sehr vorteilhaft.
Besonders geeignet für die Produktion von verändertem Amylo¬ pektin unter Ausnutzung der erfindungsgemäßen Nucleinsäure¬ moleküle die Debranching-Enzyme codieren ist Kartoffel. Die Anwendung der Erfindung ist jedoch nicht auf diese Pflanzen¬ spezies beschränkt. Für die Überexpression kann jede belie¬ bige andere Pflanzenspezies verwendet werden.
Die in den transgenen Pflanzen synthetisierte modifizierte Stärke kann mittels gängiger Methoden aus den Pflanzen oder aus den Pflanzenzellen isoliert und nach der Reinigung zur Herstellung von Nahrungsmitteln und industriellen Produkten verwendet werden.
Die erfindungsgemäßen Stärken können nach dem Fachmann be¬ kannten Verfahren modifiziert werden und eignen sich in un- modifizierter oder modifizierter Form für verschiedene Ver¬ wendungen im Nahrungsmittel- oder Nicht-Nahrungsmittelbe¬ reich.
Grundsätzlich läßt sich die Einsatzmöglichkeit der Stärke in zwei große Bereiche unterteilen. Der eine Bereich umfaßt die Hydrolyseprodukte der Stärke, hauptsächlich Glucose und Glu- canbausteine, die über enzymatische oder chemische Verfahren erhalten werden. Sie dienen als Ausgangsstoff für weitere chemische Modifikationen und Prozesse, wie Fermentation. Für eine Reduktion der Kosten kann hierbei die Einfachheit und kostengünstige Ausführung eines Hydrolyseverfahrens von Be¬ deutung sein. Gegenwärtig verläuft es im wesentlichen enzy- matisch unter Verwendung von Amyloglucosidase. Vorstellbar wäre eine Kosteneinsparung durch einen geringeren Einsatz von Enzymen. Eine Strukturveränderung der Stärke, z.B. Ober¬ flächenvergrößerung des Korns, leichtere Verdaulichkeit durch geringeren Verzweigungsgrad oder eine sterische Struk¬ tur, die die Zugänglichkeit für die eingesetzten Enzyme be¬ grenzt, könnte dies bewirken.
Der andere Bereich, in dem die Stärke wegen ihrer polymeren Struktur als sogenannte native Stärke verwendet wird, glie¬ dert sich in zwei weitere Einsatzgebiete:
1. Nahrungsmittelindustrie
Stärke ist ein klassischer Zusatzstoff für viele Nah¬ rungsmittel, bei denen sie im wesentlichen die Funktion des Bindens von wäßrigen Zusatzstoffen übernimmt bzw. eine Erhöhung der Viskosität oder aber eine erhöhte Gelbildung hervorruft. Wichtige Eigenschaftsmerkmale sind das Fließ- und Sorptionsverhalten, die Quell- und Verkleisterungstemperatur, die Viskosität und Dickungs¬ leistung, die Löslichkeit der Stärke, die Transparenz und Kleisterstruktur, die Hitze-, Scher- und Säuresta¬ bilität, die Neigung zur Retrogradation, die Fähigkeit zur Filmbildung, die Gefrier/Taustabilität, die Verdau¬ lichkeit sowie die Fähigkeit zur Komplexbildung mit z.B. anorganischen oder organischen Ionen.
2. Nicht-Nahrungmittelindustrie
In diesem großen Bereich kann die Stärke als Hilfsstoff für unterschiedliche Herstellungsprozesse bzw. als Zu¬ satzstoff in technischen Produkten eingesetzt . Bei der Verwendung der Stärke als Hilfsstoff ist hier insbeson¬ dere die Papier- und Pappeindustrie zu nennen. Die Stärke dient dabei in erster Linie zur Retardation (Zu¬ rückhaltung von Feststoffen) , der Abbindung von Füll¬ stoff- und Feinstoffteilchen, als Festigungsstoff und zur Entwässerung. Darüber hinaus werden die günstigen Eigenschaften der Stärke in bezug auf die Steifigkeit, die Härte, den Klang, den Griff, den Glanz, die Glätte, die Spaltfestigkeit sowie die Oberflächen ausgenutzt. 2.1 Papier- und Pappeindustrie
Innerhalb des Papierherstellungsprozesses sind vier An¬ wendungsbereiche, nämlich Oberfläche, Strich, Masse und Sprühen, zu unterscheiden.
Die Anforderungen an die Stärke in bezug auf die Ober¬ flächenbehandlung sind im wesentlichen ein hoher Weiße¬ grad, eine angepaßte Viskosität, eine hohe Viskositäts¬ stabilität, eine gute Filmbildung sowie eine geringe Staubbildung. Bei der Verwendung im Strich spielt der Feststoffgehalt, eine angepaßte Viskosität, ein hohes Bindevermögen sowie eine hohe Pigmentaffinität eine wichtige Rolle. Als Zusatz zur Masse ist eine rasche, gleichmäßige, verlustfreie Verteilung, eine hohe mecha¬ nische Stabilität und eine vollständige Zurückhaltung im Papierfließ von Bedeutung. Beim Einsatz der Stärke im Sprühbereich sind ebenfalls ein angepaßter Fest¬ stoffgehalt, hohe Viskosität sowie ein hohes Bindever¬ mögen von Bedeutung.
2.2 Klebstoffindustrie
Ein großer Einsatzbereich der Stärken besteht in der Klebstoffindustrie, wo man die Einsatzmoglichkeiten in vier Teilbereiche gliedert: die Verwendung als reinem Stärkeleim, die Verwendung bei mit speziellen Chemika¬ lien aufbereiteten Stärkeleimen, die Verwendung von Stärke als Zusatz zu synthetischen Harzen und Polymer¬ dispersionen sowie die Verwendung von Stärken als Streckmittel für synthetische Klebstoffe. 90 % der Klebstoffe auf Stärkebasis werden in den Bereichen Wellpappenherstellung, Herstellung von Papiersäcken, Beuteln und Tüten, Herstellung von Verbundmaterialien für Papier und Aluminium, Herstellung von Kartonagen und Wiederbefeuchtungsleim für Briefumschläge, Brief¬ marken usw. eingesetzt. 2.3 Textil- und Textilpflegemittelindustrie
Ein großes Einsatzfeld für die Stärken als Hilfmittel und Zusatzstoff ist der Bereich Herstellung von Tex¬ tilien und Textilpflegemitteln. Innerhalb der Textilin¬ dustrie sind die folgenden vier Einsatzbereiche zu un¬ terscheiden: Der Einsatz der Stärke als Schlichtmittel, d.h. als Hilfstoff zur Glättung und Stärkung des Klett¬ verhaltens zum Schutz gegen die beim Weben angreifenden Zugkräfte sowie zur Erhöhung der Abriebfestigkeit beim Weben, Stärke als Mittel zur Textilaufrüstung vor allem nach qualitätsverschlechternden Vorbehandlungen, wie Bleichen, Färben usw., Stärke als Verdickungsmittel bei der Herstellung von Farbpasten zur Verhinderung von Farbstoffdiffusionen sowie Stärke als Zusatz zu Ket- tungsmitteln für Nähgarne.
2.4 Baustoffindustrie
Der vierte Einsatzbereich ist die Verwendung der Stär¬ ken als Zusatz bei Baustoffen. Ein Beispiel ist die Herstellung von Gipskartonplatten, bei der die im Gips¬ brei vermischte Stärke mit dem Wasser verkleistert, an die Oberfläche der Gipsplatte diffundiert und dort den Karton an die Platte bindet. Weitere Einsatzbereiche sind die Beimischung zu Putz- und Mineralfasern. Bei Transportbeton werden Stärkeprodukte zur Verzögerung der Abbindung eingesetzt.
2.5 Bodenstabilisation
Ein weiterer Markt für die Stärke bietet sich bei der Herstellung von Mitteln zur Bodenstabilisation an, die bei künstlichen Erdbewegungen zum temporären Schutz der Bodenpartikel gegenüber Wasser eingesetzt werden. Kom¬ binationsprodukte aus der Stärke und Polymeremulsionen sind nach heutiger Kenntnis in ihrer Erosions- und ver- krustungsmindernden Wirkung den bisher eingesetzten Produkten gleichzusetzen, liegen preislich aber deut¬ lich unter diesen. 2.6 Einsatz bei Pflanzenschutz- und Düngemitteln
Ein Einsatzbereich liegt bei der Verwendung der Stärke in Pflanzenschutzmitteln zur Veränderung der spezifi¬ schen Eigenschaften der Präparate. So kann die Stärke zur Verbesserung der Benetzung von Pflanzenschutz- und Düngemitteln, zur dosierten Freigabe der Wirkstoffe, zur Umwandlung flüssiger, flüchtiger und/oder übelrie¬ chender Wirkstoffe in mikrokristalline, stabile, form¬ bare Substanzen, zur Mischung inkompatibler Verbindun¬ gen und zur Verlängerung der Wirkdauer durch Verminde¬ rung der Zersetzung eingesetzt werden.
2.7 Pharmaka, Medizin und Kosmetikindustrie
Ein weiteres Einsatzgebiet besteht im Bereich der Phar¬ maka, Medizin und Kosmetikindustrie. In der pharmazeu¬ tischen Industrie kann die Stärke als Bindemittel für Tabletten oder zur Bindemittelverdünnung in Kapseln eingesetzt werden. Weiterhin kann die Stärke als Ta- blettensprengmittel dienen, da sie nach dem Schlucken Flüssigkeit absorbieren und nach kurzer Zeit soweit quellen, daß der Wirkstoff freigesetzt wird. Medizini¬ sche Gleit- und Wundpuder basieren aus qualitativen Gründen auf Stärke . Im Bereich der Kosmetik werden Stärken beispielsweise als Träger von Puderzusatzstof¬ fen, wie Düften und Salicylsäure eingesetzt. Ein rela¬ tiv großer Anwendungsbereich für die Stärke liegt bei Zahnpasta.
2.8 Stärkezusatz zu Kohlen und Briketts
Einen Einsatzbereich bietet die Stärke als Zusatzstoff zu Kohle und Brikett. Kohle kann mit einem Stärkezusatz quantitativ hochwertig agglomeriert bzw. brikettiert werden, wodurch ein frühzeitiges Zerfallen der Briketts verhindert wird. Der Stärkezusatz liegt bei Grillkohle zwischen 4 und 6 %, bei kalorierter Kohle zwischen 0,1 und 0,5 %. Des weiteren gewinnen Stärken als Bindemit- tel an Bedeutung, da durch ihren Zusatz zu Kohle und Brikett der Ausstoß schädlicher Stoffe deutlich vermin¬ dert werden kann.
2.9 Erz- und Kohleschlammaufbereitung
Die Stärke kann ferner bei der Erz- und Kohleschlamm¬ aufbereitung als Flockungsmittel eingesetzt werden.
2.10 Gießereihilfsstoff
Ein weiterer Einsatzbereich besteht als Zusatz zu Gießereihilfsstoffen. Bei verschiedenen Gußverfahren werden Kerne benötigt, die aus Bindemittel-versetzten Sänden hergestellt werden. Als Bindemittel wird heute überwiegend Bentonit eingesetzt, das mit modifizierten Stärken, meist Quellstärken, versetzt ist. Zweck des Stärkezusatzes ist die Erhöhung der Fließfe¬ stigkeit sowie die Verbesserung der Bindefestigkeit. Darüber hinaus können die Quellstärken weitere produk¬ tionstechnische Anforderungen, wie im kalten Wasser dispergierbar, rehydratisierbar, gut in Sand mischbar und hohes Wasserbindungsvermögen, aufweisen.
2.11 Einsatz in der Kautschukindustrie
In der Kautschukindustrie kann die Stärke zur Verbesse¬ rung der technischen und optischen Qualität eingesetzt werden. Gründe sind dabei die Verbesserung des Oberflä¬ chenglanzes, die Verbesserung des Griffs und des Ausse¬ hens, dafür wird Stärke vor der Kaltvulkanisation auf die klebrigen gummierten Flächen von Kautschukstoffen gestreut, sowie die Verbesserung der Bedruckbarkeit des Kautschuks.
2.12 Herstellung von Lederersatzstoffen
Eine weitere Absatzmöglichkeit der modifizierten Stär¬ ken besteht bei der Herstellung von Lederersatzstoffen. 25
2.13 Stärke in synthetischen Polymeren
Auf dem Kunststoffsektor zeichnen sich folgende Ein¬ satzgebiete ab: die Einbindung von Stärkefolgeprodukten in den Verarbeitungsprozess (Stärke ist nur Füllstoff, es besteht keine direkte Bindung zwischen synthetischem Polymer und Stärke) oder alternativ die Einbindung von Stärkefolgeprodukten in die Herstellung von Polymeren (Stärke und Polymer gehen eine feste Bindung ein) .
Die Verwendung der Stärke als reinem Füllstoff ist vergli¬ chen mit den anderen Stoffen wie Talkum nicht wettbewerbsfä¬ hig. Anders sieht es aus, wenn die spezifischen Stärkeeigen¬ schaften zum Tragen kommen und hierdurch das Eigen¬ schaftsprofil der Endprodukte deutlich verändert wird. Ein Beispiel hierfür ist die Anwendung von Stärkeprodukten bei der Verarbeitung von Thermoplasten, wie Polyäthylen. Hierbei werden die Stärke und das synthetische Polymer durch Koex- pression im Verhältnis von 1 : 1 zu einem 'master batch' kombiniert, aus dem mit granuliertem Polyäthylen unter An¬ wendung herkömmlicher Verfahrenstechniken diverse Produkte hergestellt werden. Durch die Einbindung von Stärke in Poly¬ äthylenfolien kann eine erhöhte Stoffdurchlässigkeit bei Hohlkörpern, eine verbesserte Wasserdampfdurchlässigkeit, ein verbessertes Antistatikverhalten, ein verbessertes Anti- blockverhalten sowie eine verbesserte Bedruckbarkeit mit wäßrigen Farben erreicht werden.
Eine andere Möglichkeit ist die Anwendung der Stärke in Po¬ lyurethanschäumen. Mit der Adaption der Stärkederivate sowie durch die verfahrenstechnische Optimierung ist es möglich, die Reaktion zwischen synthetischen Polymeren und den Hydro- xygruppen der Stärken gezielt zu steuern. Das Ergebnis sind Polyurethanfolien, die durch die Anwendung von Stärke fol¬ gende Eigenschaftsprofile erhalten: eine Verringerung des Wärmeausdehnungskoeffizienten, Verringerung des SchrumpfVer¬ haltens, Verbesserung des Druck/Spannungsverhaltens, Zunahme der Wasserdampfdurchlässigkeit ohne Veränderung der Wasser¬ aufnahme, Verringerung der Entflammbarkeit und der Aufriß- dichte, kein Abtropfen brennbarer Teile, Halogenfreiheit und verminderte Alterung. Nachteile, die gegenwärtig noch vor¬ handen sind, sind verringerte Druckfestigkeit sowie eine verringerte Schlagfestigkeit.
Die Produktentwicklung beschränkt sich inzwischen nicht mehr nur auf Folien. Auch feste Kunststoffprodukte, wie Töpfe, Platten und Schalen, sind mit einem Stärkegehalt von über 50 % herzustellen. Des weiteren sind Stärke/ Polymermischungen günstig zu beurteilen, da sie eine sehr viel höhere biologi¬ sche Abbaubarkeit aufweisen.
Außerordentliche Bedeutung haben weiterhin auf Grund ihres extremen Wasserbindungsvermögen Stärkepfropfpolymerisate ge¬ wonnen. Dies sind Produkte mit einem Rückgrat aus Stärke und einer nach dem Prinzip des Radikalkettenmechanismus auf¬ gepfropften Seitengitters eines synthetischen Monomers. Die heute verfügbaren Stärkepfropfpolymerisate zeichnen sich durch ein besseres Binde- und Rückhaltevermögen von bis zu 1000 g Wasser pro g Stärke bei hoher Viskosität aus. Die An¬ wendungsbereiche für diese Superabsorber haben sich in den letzten Jahren stark ausgeweitet und liegen im Hygienebe¬ reich mit Produkten Windeln und Unterlagen sowie im land¬ wirtschaftlichen Sektor, z.B. bei Saatgutpillierungen.
Entscheidend für den Einsatz der neuen, gentechnisch verän¬ derten Stärken sind zum einen die Struktur, Wassergehalt, Proteingehalt, Lipidgehalt, Fasergehalt,
Asche/Phosphatgehalt, Amylose/Amylopektinverhältnis, Molmas¬ senverteilung, Verzweigungsgrad, Korngröße und -form sowie Kristallinität, zum anderen auch die Eigenschaften, die in folgende Merkmale münden: Fließ- und Sorptionsverhalten, Verkleisterungstemperatur, Viskosität, Dickungsleistung, Löslichkeit, Kleisterstruktur und -transparenz, Hitze-, Scher- und Säurestabilität, Retrogradationsneigung, Gelbil¬ dung, Gefrier/Taustabilität, Komplexbildung, Jodbindung, Filmbildung, Klebekraft, Enzymstabilität, Verdaulichkeit und Reaktivität. Die Erzeugung modifizierter Stärken mittels gentechnischer Eingriffe in einer transgenen Pflanze kann zum einen die Eigenschaften der aus der Pflanze gewonnenen Stärke dahinge¬ hend verändern, daß weitere Modifikationen mittels chemi¬ scher oder physikalischer Verfahren nicht mehr notwendig er¬ scheinen. Zum anderen können die durch gentechnische Verfah¬ ren veränderte Stärken weiteren chemischen Modifikationen unterworfen werden, was zu weiteren Verbesserungen der Qua¬ lität für bestimmte der oben beschriebenen Einsatzgebiete führt. Diese chemischen Modifikationen sind grundsätzlich bekannt. Insbesondere handelt es sich dabei um Modifikatio¬ nen durch
- Hitzebehandlung,
- Säurebehandlung,
- Oxidation und
- Veresterungen,
welche zur Entstehung von Phosphat-, Nitrat-, Sulfat-, Xanthat-, Acetat- und Citratstärken führen. Weitere organi¬ sche Säuren können ebenfalls zur Veresterung eingesetzt wer¬ den:
- Erzeugung von Stärkeethern Stärke-Alkylether, O-Allylether, Hydroxylalkylether, O-Carboxylmethylether, N-haltige Stärkeether, P-haltige Stärkeether, S-haltige Stärkeether
- Erzeugung von vernetzten Stärken
- Erzeugung von Stärke-Pfropf-Polymerisaten
Ferner betrifft die Erfindung die Verwendung der erfindungs- gemäßen Nucleinsäuremoleküle zur Herstellung von Pflanzen, die eine Amylopektinstärke mit einem veränderten Verzwei¬ gungsgrad im Vergleich zu Wildtyp-Pflanzen synthetisieren. Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Nucleinsäuremoleküle oder Teile dieser Moleküle bzw. der reversen Komplemente dieser Moleküle zur Identifizierung und Isolierung homologer Mole¬ küle, die Proteine mit der enzymatischen Aktivität eines De¬ branching-Enzyms codieren oder Fragmente derartiger Pro¬ teine, aus Pflanzen oder anderen Organismen. Für die Defini¬ tion des Begriffs "Homologie" siehe oben.
Die erfindungsgemäßen Nucleinsäuremoleküle können prinzipi¬ ell ferner auch dazu verwendet werden, Pflanzen herzustel¬ len, bei denen die Aktivität des erfindungsgemäßen Debranching-Enzyms erhöht oder verringert ist und gleichzei¬ tig die Aktivitäten anderer, an der Stärkebiosynthese betei¬ ligter Enzyme verändert sind. Dabei sind alle Kombinationen und Permutationen denkbar. Beispielsweise können Nucleinsäu¬ remoleküle, die ein erfindungsgemäßes Protein codieren oder entsprechende antisense-Konstrukte, in Pflanzenzellen einge¬ bracht werden, bei denen bereits die Synthese endogener Debranching-Enzyme, GBSS I-, SSS I-, II- oder GBSS II-Pro- teine aufgrund eines antisense-Effektes oder einer Mutation inhibiert ist oder die Synthese des Verzweigungsenzyms inhi¬ biert ist (wie z.B. beschrieben in W092/14827 oder der ae- Mutante von Mais (Shannon und Garwood, in Whistler, BeMiller und Paschall, Starch: Chemistry and Technology, Academic Press, London, 2nd Edition (1984), 25-86)) .
Soll die Inhibierung der Synthese mehrerer Debranching- Enzyme in transformierten Pflanzen erreicht werden, so kön¬ nen DNA-Moleküle zur Transformation verwendet werden, die gleichzeitig mehrere, die entsprechenden Debranching-Enzyme codierenden Regionen in antisense-Orientierung unter der Kontrolle eines geeigneten Promotors enthalten. Hierbei kann alternativ jede Sequenz unter der Kontrolle eines eigenen Promotors stehen, oder die Sequenzen können als Fusion von einem gemeinsamen Promotor transkribiert werden. Letztere Alternative wird in der Regel vorzuziehen sein, da in diesem Fall die Synthese der entsprechenden Proteine in etwa glei¬ chem Maße inhibiert werden sollte.
Weiterhin ist die Konstruktion von Molekülen möglich, die neben Debranching-Enzyme codierenden Sequenzen, weitere DNA- Sequenzen enthalten, die andere an der Stärkesynthese oder -modifikation beteiligte Proteine codieren. Diese sind je¬ weils in antisense-Orientierung an einen geeigneten Promotor gekoppelt . Die Sequenzen können hierbei wiederum hinterein- andergeschaltet sein und von einem gemeinsamen Promotor transkribiert werden oder aber von getrennten Promotoren transkribiert werden. Für die Länge der einzelnen codieren¬ den Regionen, die in einem derartigen Konstrukt verwendet werden, gilt das, was oben bereits für die Herstellung von antisense-Konstrukten ausgeführt wurde. Eine obere Grenze für die Anzahl der in einem derartigen DNA-Molekül von einem Promotor aus transkribierten antisense-Fragmente gibt es nicht. Das entstehende Transkript sollte aber in der Regel eine Länge von nicht mehr als 20 kb, vorzugsweise von nicht mehr als 5 kb haben.
Codierende Regionen, die in derartigen DNA-Molekülen in Kom¬ bination mit anderen codierenden Regionen in antisense- Orientierung hinter einem geeigneten Promotor lokalisiert sind, können aus DNA-Sequenzen stammen, die für folgende Proteine codieren: Stärkekorn-gebundene (GBSS I und II) und lösliche Stärkesynthasen (z.B. SSS I und II) , Verzweigungs¬ enzyme, andere Debranching-Enzyme, Disproportionierungsen- zyme und Stärkephosphorylasen. Dies ist nur eine beispiel¬ hafte Aufzählung. Auch die Verwendung anderer DNA-Sequenzen im Rahmen einer derartigen Kombination ist denkbar. Mit Hilfe derartiger Konstrukte ist es möglich, in Pflanzen¬ zellen, die mit diesen transformiert wurde, die Synthese mehrerer Enzyme gleichzeitig zu inhibieren.
Weiterhin können die Konstrukte in klassische Mutanten ein¬ gebracht werden, die für ein oder mehrere Gene der Stärke¬ biosynthese defekt sind. Diese Defekte können sich z.B. auf folgende Proteine beziehen: Stärkekorn-gebundene (GBSS I und II) und lösliche Stärkesynthasen (z.B. SSS I und II) , Ver- zweigungsenzyme (BE I und II), Debranching-Enzyme, Dispro- portionierungsenzyme und Stärkephosphorylasen. Dies ist wie¬ derum nur eine beispielhafte Aufzählung.
Zur Vorbereitung der Einführung fremder Gene in höhere Pflanzen stehen eine große Anzahl von Clonierungsvektoren zur Verfügung, die ein Replikationssignal für E.coli und ein Markergen zur Selektion transformierter Bakterienzellen ent¬ halten. Beispiele für derartige Vektoren sind pBR322, pUC- Serien, M13mp-Serien, pACYC184 usw.. Die gewünschte Sequenz kann an einer passenden Restriktionsschnittstelle in den Vektor eingeführt werden. Das erhaltene Plasmid wird für die Transformation von E.coli-Zellen verwendet. Transformierte E.coli-Zellen werden in einem geeigneten Medium gezüchtet, anschließend geerntet und lysiert. Das Plasmid wird wieder¬ gewonnen. Als Analysemethode zur Charakterisierung der ge¬ wonnenen Plasmid-DNA werden im allgemeinen Restriktionsana¬ lysen, Gelelektrophoresen und weitere biochemisch-molekular¬ biologische Methoden eingesetzt. Nach jeder Manipulation kann die Plasmid DNA gespalten und gewonnene DNA-Fragmente mit anderen DNA-Sequenzen verknüpft werden. Jede Plasmid- DNA-Sequenz kann in den gleichen oder anderen Plasmiden clo- niert werden.
Für die Einführung von DNA in eine pflanzliche Wirtszelle stehen eine Vielzahl von Techniken zur Verfügung. Diese Techniken umfassen die Transformation pflanzlicher Zellen mit T-DNA unter Verwendung von Agrobacterium tumefaciens oder Agrobacterium rhizogenes als Transformationsmittel, die Fusion von Protoplasten, die Injektion, die Elektroporation von DNA, die Einbringung von DNA mittels der biolistischen Methode sowie weitere Möglichkeiten.
Bei der Injektion und Elektroporation von DNA in Pflanzen¬ zellen werden an sich keine speziellen Anforderungen an die verwendeten Plasmide gestellt. Es können einfache Plasmide wie z.B. pUC-Derivate verwendet werden. Sollen aber aus der¬ artig transformierten Zellen ganze Pflanzen regeneriert wer- den, sollte vorteilhafterweise ein selektierbares Markergen anwesend sein.
Je nach Einführungsmethode gewünschter Gene in die Pflanzen¬ zelle können gegebenenfalls weitere DNA-Sequenzen erforder¬ lich sein. Werden z.B. für die Transformation der Pflanzen¬ zelle das Ti- oder Ri-Plasmid verwendet, so sollte minde¬ stens die rechte Begrenzung, vorteilhafterweise jedoch die rechte und linke Begrenzung der Ti- und Ri-Plasmid T-DNA als Flankenbereich mit den einzuführenden Genen verbunden wer¬ den.
Werden für die Transformation Agrobakterien verwendet, sollte die einzuführende DNA in spezielle Plasmide cloniert werden, und zwar entweder in einen intermediären Vektor oder in einen binären Vektor. Die intermediären Vektoren können aufgrund von Sequenzen, die homolog zu Sequenzen in der T- DNA sind, durch homologe Rekombination in das Ti- oder Ri- Plasmid der Agrobakterien integriert werden. Dieses enthält außerdem die für den Transfer der T-DNA notwendige vir-Re¬ gion. Intermediäre Vektoren können nicht in Agrobakterien replizieren. Mittels eines Helferplasmids kann der interme¬ diäre Vektor auf Agrobacterium tumefaciens übertragen werden (Konjugation) . Binäre Vektoren können sowohl in E.coli als auch in Agrobakterien replizieren. Sie enthalten ein Selek- tionsmarker-Gen und einen Linker oder Polylinker, welche von der rechten und linken T-DNA Grenzregion eingerahmt werden. Sie können direkt in die Agrobakterien transformiert werden (Holsters et al. Mol. Gen. Genet. 163 (1978) , 181-187) . Das als Wirtszelle dienende Agrobakterium sollte ein Plasmid, das eine vir-Region trägt, enthalten. Die vir-Region ist für den Transfer der T-DNA in die Pflanzenzelle notwendig. Zusätzliche T-DNA kann vorhanden sein. Das derartig trans¬ formierte Agrobakterium wird zur Transformation von Pflan¬ zenzellen verwendet.
Die Verwendung von T-DNA für die Transformation von Pflan¬ zenzellen ist intensiv untersucht und ausreichend in EP 120 516; Hoekema, In: The Binary Plant Vector System Offset- drukkerij Kanters B.V., Alblasserdam (1985) , Chapter V; Fraley et al. , Crit. Rev. Plant. Sei., 4, 1-46 und An et al. EMBO J. 4 (1985) , 277-287 beschrieben worden.
Für den Transfer der DNA in die Pflanzenzelle können Pflan- zen-Explantate zweckmäßigerweise mit Agrobacterium tumefaciens oder Agrobacterium rhizogenes kokultiviert wer¬ den. Aus dem infizierten Pflanzenmaterial (z.B. Blattstücke, Stengelsegmente, Wurzeln, aber auch Protoplasten oder Sus- pensions-kultivierte Pflanzenzellen) können dann in einem geeigneten Medium, welches Antibiotika oder Biozide zur Se¬ lektion transformierter Zellen enthalten kann, wieder ganze Pflanzen regeneriert werden. Die so erhaltenen Pflanzen kön¬ nen dann auf Anwesenheit der eingeführten DNA untersucht werden. Andere Möglichkeiten der Einführung fremder DNA un¬ ter Verwendung des biolistischen Verfahrens oder durch Pro- toplastentransformation sind bekannt (vgl. z.B. Willmitzer, L., 1993 Transgenic plants. In: Biotechnology, A Multi¬ Volume Comprehensive Treatise (H.J. Rehm, G. Reed, A. Pühler, P. Stadler, eds. ) , Vol. 2, 627-659, VCH Weinheim-New York-Basel-Cambridge) .
Während die Transformation dikotyler Pflanzen über Ti-Plas- mid-Vektorsysteme mit Hilfe von Agrobacterium tumefaciens wohl etabliert ist, weisen neuere Arbeiten darauf hin, daß auch monokotyle Pflanzen der Transformation mittels Agrobac¬ terium basierender Vektoren sehr wohl zugänglich sind (Chan et al., Plant Mol. Biol. 22 (1993) , 491-506; Hiei et al. , Plant J. 6 (1994) , 271-282, Deng et al. , Science in China 33 (1990) , 28-34; Wilmink et al, Plant Cell Reports 11 (1992) , 76-80; May et al. , Bio/Technology 13 (1995) , 486-492; Conner und Domisse; Int. J. Plant Sei. 153 (1992) , 550-555; Ritchie et al., Transgenic Res. 2 (1993) , 252-265) .
Alternative Systeme zur Transformation von monokotylen Pflanzen sind die Transformation mittels des biolistischen Ansatzes (Wan und Lemaux, Plant Physiol. 104 (1994) , 37-48; Vasil et al . , Bio/Technology 11 (1993), 1553-1558; Ritala et al., Plant Mol. Biol. 24 (1994) , 317-325; Spencer et al. , Theor. Appl. Genet. 79 (1990), 625-631) , die Protoplasten- transformation, die Elektroporation von partiell permeabili- sierten Zellen, die Einbringung von DNA mittels Glasfasern. Spezifisch die Transformation von Mais wird in der Literatur verschiedentlich beschrieben (vgl. z.B. WO95/06128, EP 0 513 849; EP 0 465 875; Fromm et al . , Biotechnology 8 (1990) , 833-844; Gordon-Kamm et al . , Plant Cell 2 (1990), 603-618; Koziel et al. , Biotechnology 11 (1993) , 194-200) . In EP 292 435 wird ein Verfahren beschrieben, mit Hilfe des¬ sen, ausgehend von einem schleimlosen, weichen (friable) granulösen Mais-Kallus, fertile Pflanzen erhalten werden können. Shillito et al . (Bio/Technology 7 (1989), 581) haben in diesem Zusammenhang beobachtet, daß es ferner für die Re- generierbarkeit zu fertilen Pflanzen notwendig ist, von Kal- lus-Suspensionskulturen auszugehen, aus denen eine sich tei¬ lende Protoplastenkultur, mit der Fähigkeit zu Pflanzen zu regenerieren, herstellbar ist. Nach einer in vitro Kultivie¬ rungszeit von 7 bis 8 Monaten erhalten Shillito et al . Pflanzen mit lebensfähigen Nachkommen, die jedoch Abnormali- täten in der Morphologie und der Reproduktivität aufweisen. Prioli und Sδndahl (Bio/Technology 7 (1989) , 589) beschrei¬ ben die Regeneration und die Gewinnung fertiler Pflanzen aus Mais-Protoplasten der Cateto Mais-Inzuchtlinie Cat 100-1. Die Autoren vermuten, daß die Protoplasten-Regeneration zu fertilen Pflanzen abhängig ist von einer Anzahl verschiede¬ ner Faktoren, wie z.B. von Genotyp, vom physiologischen Zu¬ stand der Donor-Zellen und von den Kultivierungsbedingungen. Auch die erfolgreiche Transformation anderer Getreidearten wurde bereits beschrieben, z.B. für Gerste (Wan und Lemaux, s.o.; Ritala et al . , s.o.) und für Weizen (Nehra et al . , Plant J. 5 (1994) , 285-297) .
Ist die eingeführte DNA einmal im Genom der Pflanzenzelle integriert, so ist sie dort in der Regel stabil und bleibt auch in den Nachkommen der ursprünglich transformierten Zelle erhalten. Sie enthält normalerweise einen Selektions- marker, der den transformierten Pflanzenzellen Resistenz ge¬ genüber einem Biozid oder einem Antibiotikum wie Kanamycin, G 418, Bleomycin, Hygromycin oder Phosphinotricin u.a. ver- mittelt. Der individuelle gewählte Marker sollte daher die Selektion transformierter Zellen gegenüber Zellen, denen die eingeführte DNA fehlt, gestatten.
Die transformierten Zellen wachsen innerhalb der Pflanze in der üblichen Weise (siehe auch McCormick et al. , Plant Cell Reports 5 (1986) , 81-84) . Die resultierenden Pflanzen können normal angezogen werden und mit Pflanzen, die die gleiche transformierte Erbanlage oder andere Erbanlagen besitzen, gekreuzt werden. Die daraus entstehenden hybriden Individuen haben die entsprechenden phänotypischen Eigenschaften. Von den Pflanzenzellen können Samen gewonnen werden. Es sollten zwei oder mehrere Generationen angezogen werden, um sicherzustellen, daß das phänotypische Merkmal stabil beibehalten und vererbt wird. Auch sollten Samen geerntet werden, um sicherzustellen, daß der entsprechende Phänotyp oder andere Eigenarten erhalten geblieben sind.
Die Beispiele erläutern die Erfindung.
In den Beispielen werden die folgenden Methoden verwendet:
1. Clonierungsverfahren
Zur Clonierung in E.coli wurde der Vektor pBluescript II SK (Stratagene) verwendet.
2. Bakterienstämme
Für den Bluescript-Vektor und für die pUSP-Konstrukte wurde der E.coli-Stamm DH5α (Bethesda Research Laborato¬ ries, Gaithersburgh, USA) verwendet. Für die in vivo excision wurde der E.coli-Stamm XLl-Blue verwendet.
3. Radioaktive Markierung von DNA-Fragmenten
Die radioaktive Markierung von DNA-Fragmenten wurde mit Hilfe eines DNA-Random Primer Labelling Kits der Firma Boehringer (Deutschland) nach den Angaben des Herstel¬ lers durchgeführt.
Beispiel 1
Clonierung einer cDNA, die ein neues Debranching-Enzym aus
Soianum tuberosum codiert
Zur Isolierung von cDNA-Molekülen, die ein neues Debranching-Enzym aus Soianum tuberosum codieren, wurde eine cDNA-Bibliothek ausgehend von polyA+-RNA aus Knollenmaterial in dem Vektor Lambda ZAPII (Stratagene) erstellt und in Pha- genköpfe verpackt. E. coli-Zellen des Stammes XLl-Blue wur¬ den anschließend mit den die cDNA-Fragmente enthaltenden Phagen infiziert (1 x 10 pfu) und auf Medium in Petrischa- len in einer Dichte von ca. 30.000 pro 75 cm2 ausplattiert. Nach ca. 8 stündiger Inkubation wurden Nitrozellulosemembra¬ nen auf den lysierten Bakterienrasen aufgelegt, die nach einer Minute abgenommen wurden. Die Filter wurden für 2 min in 0,5 M NaOH; 1,5 M NaCI, dann für 2 min in 0,5 M Tris/HCl pH 7,0 und anschließend für 2 min in 2 x SSC inkubiert. Nach Trocknung und Fixierung der DNA durch UV-Crosslinking wurden die Filter 3 h lang in Hybridisierungspuffer bei 48°C inku¬ biert, bevor radioaktiv markierte Probe zugesetzt wurde. Als Probe wurde eine cDNA-Sequenz aus Mais verwendet, die ein Debranching-Enzym codiert (siehe James et al. , Plant Cell 7 (1995), 417-429, Nucleotide 1150 - 2128)] Die Hybridisierung wurde bei 48°C durchgeführt in 2 x SSC, 10 x Dehnhardts-Lösung; 50 mM Na2HP04, pH 7,2; 0,2 % SDS; 5 mM EDTA und 250 μg/ml denaturierte Heringssperma-DNA. Hybridisierende Phagenclone wurden unter Anwendung von Standardverfahren vereinzelt und weiter gereinigt . Mit Hilfe der in-vivo-excision Methode wurden von positiven Phagenclo- nen E. coli-Clone gewonnen, die ein doppelsträngiges pBluescript-Plasmid mit der jeweiligen cDNA-Insertion ent¬ halten. Nach Überprüfung der Größe und des Restriktionsmu¬ sters der Insertion wurde von geeigneten Clonen Plasmid-DNA isoliert. Ein derart isoliertes Plasmid, Iso5, besaß eine Insertion von 2295 bp.
Beispiel 2
Sequenzanalyse der cDNA-Insertion des Plasmids Iso5
Bei dem entsprechend Beispiel 1 isolierten Plasmids Iso5 wurde die Nucleotidsequenz der cDNA-Insertion durch Standardverfahren mittels der Didesoxymethode (Sanger et al., Proc. Natl. Acad. Sei. USA 74 (1977) , 5463-5467) be¬ stimmt. Die Insertion ist 2295 bp lang und die Nucleotidse¬ quenz von 2133 bp dieser Insertion sowie die abgeleitete Aminosäuresequenz ist in Seq ID No. 1 angegeben. Homologievergleiche ergaben, daß es sich bei dem codierten Protein um ein neues Debranching-Enzym aus Kartoffel han¬ delt.
Die unter Seq ID No. 1 angegebene Nucleotidsequenz repräsen¬ tiert eine partielle cDNA, die ein bisher unbekanntes De¬ branching-Enzym aus Kartoffel codiert. Mit Hilfe dieser Se¬ quenz ist es möglich mittels konventioneller Methoden eine vollständige cDNA-Sequenz oder eine genomische Sequenz aus geeigneten cDNA- oder genomischen Bibliotheken zu isolieren.
SEQUENZPROTOKOLL
(1) ALLGEMEINE ANGABEN:
(i) ANMELDER:
(A) NAME: PlantTec Biotechnologie GmbH Forschung & Entwicklung
(B) STRASSE: Hermannswerder 14 (C) ORT: Potsdam
(E) LAND: Deutschland
(F) POSTLEITZAHL: 14473
(G) TELEFON: +49 331 275670 (H) TELEFAX: +49 331 2756777
(ii) BEZEICHNUNG DER ERFINDUNG: Nucleinβaeuremolekuele, die Debranching-Enzyme aus Kartoffel codieren
(iii) ANZAHL DER SEQUENZEN: 2
(iv) COMPUTER-LESBARE FASSUNG:
(A) DATENTRÄGER: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPA)
(2) ANGABEN ZU SEQ ID NO: 1:
(i) SEQUENZKENNZEICHEN:
(A) LANGE: 2133 Basenpaare
(B) ART: Nucleotid
(C) STRANGFORM: Einzelsträng
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: cDNA zu mRNA (iii) HYPOTHETISCH: NEIN (iv) ANTISENSE: NEIN
(vi) URSPRÜNLICHE HERKUNFT:
(A) ORGANISMUS: Soianum tuberosum
(vii) UNMITTELBARE HERKUNFT:
(ix) MERKMAL:
(A) NAME/SCHLÜSSEL: CDS
(B) LAGE:2..1820
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:
G AAT TCG GCA CGA GGG CCA GAG GAT GAT TGT TGG CCC CCA ATG GCA 46
Asn Ser Ala Arg Gly Pro Glu Asp Asp Cys Trp Pro Pro Met Ala 1 5 10 15 CGC ATG GTA CCT TCT GCT TCT GAT CAG TTT GAT TGG GAA GGA GAT CTA 94
Gly Met Val Pro Ser Ala Ser Asp Gin Phe Asp Trp Glu Gly Asp Leu 20 25 30
TTA CTG AAG TTT CCA CAG AGA GAT CTT GTA ATC TAT GAA ATG CAT GTT 142 Leu Leu Lys Phe Pro Gin Arg Asp Leu Val Ile Tyr Glu Met His Val 35 40 45
CGT GGA TTT ACA AAT CAT GAG TCG AGT GAA ACA AAA TAT CCT GGT ACT 190 Arg Gly Phe Thr Asn His Glu Ser Ser Glu Thr Lys Tyr Pro Gly Thr 50 55 60
TAC CTT GGT GTT GTG GAG AAA CTT GAT CAC TTG AAG GAA CTT GGT GTC 238 Tyr Leu Gly Val Val Glu Lys Leu Asp His Leu Lys Glu Leu Gly Val 65 70 75
AAC TGT ATA GAG CTA ATG CCC TGT CAC GAG TTC AAT GAG CTG GAG TAC 286 Asn Cys Ile Glu Leu Met Pro Cys His Glu Phe Asn Glu Leu Glu Tyr 80 B5 90 95
TAT AGT TAT AAC TCT GTA TTG GGC GAC TAC AAG TTT AAC TTT TGG GGC 334 Tyr Ser Tyr Asn Ser Val Leu Gly Asp Tyr Lys Phe Asn Phe Trp Gly 100 105 110
TAT TCT ACT GTC AAT TTC TTT TCT CCA ATG GGA AGA TAC TCG TCT GCT 382 Tyr Ser Thr Val Asn Phe Phe Ser Pro Met Gly Arg Tyr Ser Ser Ala 115 120 125
GGT CTA AGT AAT TGC GGC CTC GGT GCA ATA AAC GAA TTT AAG TAT CTT 430 Gly Leu Ser Asn Cys Gly Leu Gly Ala Ile Asn Glu Phe Lys Tyr Leu 130 135 140
GTC AAG GAA GCA CAT AAA CGT GGA ATC GAG GTT ATC ATG GAT GTT GTT 478 Val Lys Glu Ala His Lys Arg Gly Ile Glu Val Ile Met Asp Val Val 145 150 155
TTC AAT CAC ACT GCT GAA GGA AAT GAA AAT GGT CCC ATA CTA TCA TTT 526 Phe Asn His Thr Ala Glu Gly Asn Glu Asn Gly Pro Ile Leu Ser Phe 160 165 170 175
AGA GGC ATT GAC AAC AGT GTG TTT TAT ACG CTA GCT CCT AAG GGT GAA 574 Arg Gly Ile Asp Asn Ser Val Phe Tyr Thr Leu Ala Pro Lys Gly Glu 180 185 190
TTT TAC AAC TAC TCA GGA TGT GGA AAT ACC TTC AAC TGT AAT AAT CCC 622 Phe Tyr Asn Tyr Ser Gly Cys Gly Asn Thr Phe Asn Cys Asn Asn Pro 195 200 205
ATT GTA CGT CAA TTT ATA GTG GAT TGC TTG AGA TAT TGG GTT ACC GAA 670 Ile Val Arg Gin Phe Ile Val Asp Cys Leu Arg Tyr Trp Val Thr Glu 210 215 220
ATG CAC GTA GAT GGC TTC CGC TTT GAT CTT GCT TCT ATC CTT ACA AGA 718 Met His Val Asp Gly Phe Arg Phe Asp Leu Ala Ser Ile Leu Thr Arg 225 230 235 AGT AGC AGC TCG TGG AAT GCT GTA AAT GTC TAT GGA AAT TCA ATT GAC 766
Ser Ser Ser Ser Trp Asn Ala Val Asn Val Tyr Gly Asn Ser Ile Asp 240 245 250 255
GGT GAC ATG ATC ACC ACA GGC ACT CCT CTC ACA AGC CCA CCA TTG ATT 814 Gly Aβp Met Ile Thr Thr Gly Thr Pro Leu Thr Ser Pro Pro Leu Ile 260 265 270
GAT ATG ATT AGC AAT GAT CCA ATA CTT AGT GGA GTA AAG CTT ATA GCT 862 Asp Met Ile Ser Asn Asp Pro Ile Leu Ser Gly Val Lys Leu Ile Ala 275 280 285
GAA GCA TGG GAT TGT GGA GGC CTT TAC CAA GTT GGC ATG TTT CCG CAC 910 Glu Ala Trp Asp Cys Gly Gly Leu Tyr Gin Val Gly Met Phe Pro His 290 295 300
TGG GGT ATC TGG TCG GAG TGG AAC GGA AAG TAC CGT GAC ATG GTA CGT 958 Trp Gly Ile Trp Ser Glu Trp Asn Gly Lys Tyr Arg Asp Met Val Arg 305 310 315
CAG TTC ATC AAA GGC ACT GAT GGG TTT TCT GGG GCT TTT GCT GAA TGC 1006 Gin Phe Ile Lys Gly Thr Aβp Gly Phe Ser Gly Ala Phe Ala Glu Cys 320 325 330 335
CTT TGT GGA AGC CCA AAT CTA TAC CAG AAA GGA GGA AGA AAA CCA TGG 1054 Leu Cys Gly Ser Pro Asn Leu Tyr Gin Lys Gly Gly Arg Lys Pro Trp 340 345 350
AAC AGT ATA AAT TTC GTG TGT GCC CAC GAT GGT TTT ACT TTG GCT GAT 1102 Asn Ser Ile Asn Phe Val Cys Ala His Asp Gly Phe Thr Leu Ala Aβp 355 360 365
TTA GTG ACA TAC AAC AAT AAA CAC AAT TTG GCA AAT GGA GAG GAC AAC 1150 Leu Val Thr Tyr Asn Asn Lys His Asn Leu Ala Asn Gly Glu Asp Asn 370 375 380
AAA GAT GGG GAG AAT CAC AAT AAT AGT TGG AAT TGT GGC GAG GAA GGA 1198 Lys Aβp Gly Glu Asn His Asn Asn Ser Trp Asn Cys Gly Glu Glu Gly 385 390 395
GAA TTT GCA AGT ATC TTT GTG AAG AAA TTG AGG AAA AGA CAA ATG CGG 1246 Glu Phe Ala Ser Ile Phe Val Lys Lys Leu Arg Lys Arg Gin Met Arg 400 405 410 415
AAC TTC TTC CTC TGC CTT ATG GTT TCC CAA GGT GTT CCC ATG ATA TAT 1294 Aβn Phe Phe Leu Cys Leu Met Val Ser Gin Gly Val Pro Met Ile Tyr 420 425 430
ATG GGT GAT GAA TAT GGT CAC ACT AAG GGA GGA AAC AAC AAC ACG TAT 1342 Met Gly Asp Glu Tyr Gly His Thr Lys Gly Gly Asn Asn Asn Thr Tyr 435 440 445
TGC CAT GAC AAT TAT ATT AAT TAC TTC CGT TGG GAT AAG AAG GAT GAA 1390 Cys His Asp Asn Tyr Ile Asn Tyr Phe Arg Trp Asp Lys Lys Asp Glu 450 455 460 TCT TCA TCT GAT TTT TTG AGA TTT TGC GGC CTC ATG ACC AAA TTC CGC 1438 Ser Ser Ser Asp Phe Leu Arg Phe Cys Gly Leu Met Thr Lys Phe Arg 465 470 475
CAT GAA TGT GAA TCA CTG GGA TTA GAT GGT TTC CCT ACA GCA GAA AGG 1486 His Glu Cys Glu Ser Leu Gly Leu Aβp Gly Phe Pro Thr Ala Glu Arg 480 485 490 495
CTG CAA TGG CAT GGT CAC ACT CCT AGA ACT CCA GAT TGG TCT GAA ACA 1534 Leu Gin Trp His Gly His Thr Pro Arg Thr Pro Asp Trp Ser Glu Thr 500 505 510
AGT CGA TTC GTT GCA TTT ACA CTG GTC GAC AAA GTG AAG GGA GAA CTA 1582 Ser Arg Phe Val Ala Phe Thr Leu Val Asp Lys Val Lys Gly Glu Leu 515 520 525
TAT ATT GCC TTT AAC GCC AGC CAT TTG CCT GTA ACG ATT ACA CTT CCA 1630 Tyr Ile Ala Phe Asn Ala Ser Hie Leu Pro Val Thr Ile Thr Leu Pro 530 535 540
GAA AAG CCT GGT TAT AGA TGG CAG CCG TTT GTG GAC ACA GGC AAA CCA 1678 Glu Lys Pro Gly Tyr Arg Trp Gin Pro Phe Val Asp Thr Gly Lys Pro 545 550 555
GCA CCA TTT GAC TTC CTG ACA GAC GAT GTT CCT GAG AGA GAG ACA GCA 1726 Ala Pro Phe Asp Phe Leu Thr Asp Asp Val Pro Glu Arg Glu Thr Ala 560 565 570 575
GCC AAA CAA TAT TCT CAT TTT CTG GAC GCG AAC CAG TAT CCG ATG CTC 1774 Ala Lys Gin Tyr Ser His Phe Leu Asp Ala Asn Gin Tyr Pro Met Leu 580 585 590
AGT TAT TCA TCC ATT ATT CTT TTA CTA TCA TCT GCT GAT GAT GCG T 1820 Ser Tyr Ser Ser Ile Ile Leu Leu Leu Ser Ser Ala Asp Asp Ala 595 600 605
AGTTTCATTC AACAAGCCAG GTGAGGTAAA GCAGCTTCAG ATTTTGTTAT ATGCAGTGAG 1880
GTGTTACTTT GTAAATAAAG TAAGAAACAG GACAGAACAG AACTGCAAAC AGATAGAACT 1940
GGTGAGGAAG AAGCTGATGA TTTATAAGAT ACACCTTGTA TTATAATTGT ATTTATATAA 2000
AATAAAAAAA AAAAACTAGT GAACTTGTCT GTGCGAAATA AAATGTATAG TTGATTTCAA 2060
AAAAAAAAAA AAAAAAAAAA AAAAAACTCG AGCTCTCTCT CTCTCTCTCT CTCTCTCTCT 2120
CTCTCTCTCT CTC 2133
(2) ANGABEN ZU SEQ ID NO: 2:
(i) SEQUENZKENNZEICHEN:
(A) LÄNGE: 606 Aminosäuren
(B) ART: Aminosäure (D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:
Asn Ser Ala Arg Gly Pro Glu Asp Asp Cys Trp Pro Pro Met Ala Gly 1 5 10 15
Met Val Pro Ser Ala Ser Aβp Gin Phe Asp Trp Glu Gly Asp Leu Leu 20 25 30
Leu Lyβ Phe Pro Gin Arg Asp Leu Val Ile Tyr Glu Met His Val Arg 35 40 45
Gly Phe Thr Asn His Glu Ser Ser Glu Thr Lyβ Tyr Pro Gly Thr Tyr 50 55 60
Leu Gly Val Val Glu Lys Leu Asp His Leu Lys Glu Leu Gly Val Asn 65 70 75 80
Cys Ile Glu Leu Met Pro Cyβ His Glu Phe Aβn Glu Leu Glu Tyr Tyr 85 90 95
Ser Tyr Aβn Ser Val Leu Gly Aβp Tyr Lyβ Phe Aβn Phe Trp Gly Tyr 100 105 110
Ser Thr Val Aβn Phe Phe Ser Pro Met Gly Arg Tyr Ser Ser Ala Gly 115 120 125
Leu Ser Asn Cys Gly Leu Gly Ala Ile Asn Glu Phe Lys Tyr Leu Val 130 135 140
Lys Glu Ala His Lys Arg Gly Ile Glu Val Ile Met Asp Val Val Phe 145 150 155 160
Aβn His Thr Ala Glu Gly Aβn Glu Aβn Gly Pro Ile Leu Ser Phe Arg 165 170 175
Gly Ile Asp Aβn Ser Val Phe Tyr Thr Leu Ala Pro Lyβ Gly Glu Phe 180 185 190
Tyr Aβn Tyr Ser Gly Cyβ Gly Aβn Thr Phe Aβn Cyβ Aβn Asn Pro Ile 195 200 205
Val Arg Gin Phe Ile Val Asp Cys Leu Arg Tyr Trp Val Thr Glu Met 210 215 220
Hie Val Aβp Gly Phe Arg Phe Aβp Leu Ala Ser Ile Leu Thr Arg Ser 225 230 235 240
Ser Ser Ser Trp Aβn Ala Val Asn Val Tyr Gly Asn Ser Ile Asp Gly 245 250 255
Asp Met Ile Thr Thr Gly Thr Pro Leu Thr Ser Pro Pro Leu Ile Aβp 260 265 270
Met Ile Ser Aβn Aβp Pro Ile Leu Ser Gly Val Lys Leu Ile Ala Glu 275 280 285
Ala Trp Asp Cys Gly Gly Leu Tyr Gin Val Gly Met Phe Pro His Trp 290 295 300 Gly Ile Trp Ser Glu Trp Asn Gly Lys Tyr Arg Asp Met Val Arg Gin 305 310 315 320
Phe Ile Lys Gly Thr Aβp Gly Phe Ser Gly Ala Phe Ala Glu Cyβ Leu 325 330 335
Cys Gly Ser Pro Aβn Leu Tyr Gin Lyβ Gly Gly Arg Lyβ Pro Trp Aβn 340 345 350
Ser Ile Aβn Phe Val Cyβ Ala Hiβ Aβp Gly Phe Thr Leu Ala Asp Leu 355 360 365
Val Thr Tyr Aβn Aβn Lyβ Hiβ Asn Leu Ala Aβn Gly Glu Asp Asn Lyβ 370 375 380
Asp Gly Glu Aβn Hiβ Asn Aβn Ser Trp Aβn Cyβ Gly Glu Glu Gly Glu 385 390 395 400
Phe Ala Ser Ile Phe Val Lyβ Lyβ Leu Arg Lyβ Arg Gin Met Arg Aβn 405 410 415
Phe Phe Leu Cyβ Leu Met Val Ser Gin Gly Val Pro Met Ile Tyr Met 420 425 430
Gly Aβp Glu Tyr Gly Hiβ Thr Lyβ Gly Gly Aβn Aβn Asn Thr Tyr Cyβ 435 440 445
His Aβp Aβn Tyr Ile Aβn Tyr Phe Arg Trp Aβp Lyβ Lys Asp Glu Ser 450 455 460
Ser Ser Aβp Phe Leu Arg Phe Cys Gly Leu Met Thr Lys Phe Arg His 465 470 475 480
Glu Cyβ Glu Ser Leu Gly Leu Asp Gly Phe Pro Thr Ala Glu Arg Leu 485 490 495
Gin Trp Hiβ Gly Hiβ Thr Pro Arg Thr Pro Aβp Trp Ser Glu Thr Ser 500 505 510
Arg Phe Val Ala Phe Thr Leu Val Asp Lys Val Lys Gly Glu Leu Tyr 515 520 525
Ile Ala Phe Aβn Ala Ser Hiβ Leu Pro Val Thr Ile Thr Leu Pro Glu 530 535 540
Lys Pro Gly Tyr Arg Trp Gin Pro Phe Val Asp Thr Gly Lyβ Pro Ala 545 550 555 560
Pro Phe Aβp Phe Leu Thr Aβp Aβp Val Pro Glu Arg Glu Thr Ala Ala 565 570 575
Lys Gin Tyr Ser His Phe Leu Asp Ala Asn Gin Tyr Pro Met Leu Ser 580 585 590
Tyr Ser Ser Ile Ile Leu Leu Leu Ser Ser Ala Asp Asp Ala 595 600 605

Claims

P a t e n t a n s p r ü c h e
1. Nucleinsäuremolekül, das ein Protein mit der biologi¬ schen Aktivität eines Debranching-Enzyms aus Soianum tuberosum codiert, ausgewählt aus der Gruppe bestehend aus:
(a) Nucleinsäuremolekülen, die ein Protein codieren, das die unter SeqlD No. 2 angegebene Aminosäuresequenz aufweist;
(b) Nucleinsäuremolekülen, die die unter Seq ID No. 1 angegebene Nucleotidsequenz enthalten;
(c) Nucleinsäuremolekülen, die mit einem Nucleinsäuremo¬ lekül nach (a) oder (b) hybridisieren; und
(d) Nucleinsäuremolekülen, deren Nucleotidsequenz auf¬ grund der Degeneration des genetischen Codes von der Nucleotidsequenz eines Nucleinsäuremoleküls nach
(a) , (b) oder (c) abweicht.
2. Nucleinsäuremolekül nach Anspruch 1, das ein cDNA-Mole- kül ist.
3. Nucleinsäuremolekül von mindestens 15 bp Länge, das spe¬ zifisch mit einem Nucleinsäuremolekül nach Anspruch 1 oder 2 hybridisiert.
4. Nucleinsäuremolekül nach Anspruch 3, das spezifisch mit einem Transkript eines Nucleinsäuremoleküls nach An¬ spruch 1 oder 2 hybridisiert und dadurch dessen Transla¬ tion verhindert.
5. Vektor enthaltend ein Nucleinsäuremolekül nach Anspruch 1 oder 2.
6. Vektor nach Anspruch 5, wobei das Nucleinsäuremolekül in sense-Orientierung mit regulatorischen Elementen ver¬ knüpft ist, die die Transkription und Translation in prokaryontisehen oder eukaryontisehen Zellen ermögli¬ chen.
7. Wirtszelle, die mit einem Nucleinsäuremolekül nach An¬ spruch 1 oder 2 oder mit einem Vektor nach Anspruch 5 oder 6 genetisch modifiziert ist.
8. Verfahren zur Herstellung eines Proteins mit der biolo¬ gischen Aktivität eines Debranching-Enzyms aus Soianum tuberosum, bei dem Wirtszellen nach Anspruch 7 unter ge¬ eigneten Bedingungen kultiviert werden und das syntheti¬ sierte Protein aus der Kultur gewonnen wird.
9. Protein mit der biologischen Aktivität eines Debran¬ ching-Enzyms aus Soianum tuberosum, das codiert wird von einem Nucleinsäuremolekül nach Anspruch 1 oder 2.
10. Wirtszelle nach Anspruch 7, die eine transgene Pflanzen¬ zelle ist und wobei ein Nucleinsäuremolekül nach An¬ spruch 1 oder 2 stabil, im Genom integriert vorliegt und exprimiert wird.
11. Transgene Pflanze enthaltend transgene Pflanzenzellen nach Anspruch 10.
12. Transgene Pflanzenzelle nach Anspruch 11, die eine stär¬ kespeichernde Pflanze ist.
13. Transgene Pflanze nach Anspruch 12, die eine Getreide¬ pflanze ist.
14. Transgene Pflanze nach Anspruch 12, die eine Kartoffel¬ pflanze ist.
15. Transgene Pflanzenzelle, die im Vergleich zu nicht- transformierten Zellen eine Verringerung der Aktivität eines Proteins nach Anspruch 9 aufweist und die stabil in ihr Genom integriert ein rekombinantes Molekül auf¬ weist bestehend aus
(a) einem in pflanzlichen Zellen aktiven Promotor; und
(b) einer Nucleinsäuresequenz ausgewählt aus der Gruppe bestehend aus
(i) Nucleinsäuresequenzen, die mit dem unter (a) genannten Promotor derart verknüpft sind, daß sie bei Transkription zur Synthese einer antisense-RNA zu einem Nucleinsäuremolekül nach Anspruch 1 oder 2 führen;
(ii) Nucleinsäuresequenzen, die ein Ribozym codie¬ ren, das spezifisch Transkripte von Nuclein¬ säuremolekülen nach Anspruch 1 oder 2 spaltet; und
(iii) Nucleinsäuresequenzen, die mit dem unter (a) genannten Promotor derart verknüpft sind, daß sie bei Transkription zur Synthese einer sense-RNA für ein Protein nach Anspruch 9 füh¬ ren, deren Expression in pflanzlichen Zellen zu einem Cosuppressionseffekt führt.
16. Transgene Pflanzen enthaltend Pflanzenzellen nach An¬ spruch 15.
17. Transgene Pflanze nach Anspruch 16, die eine Kartoffel¬ pflanze ist.
18. Vermehrungsmaterial von Pflanzen nach einem der Ansprü¬ che 11 bis 14 oder nach Anspruch 16 oder 17 enthaltend Pflanzenzellen nach Anspruch 10 oder nach Anspruch 15.
EP97922969A 1996-05-06 1997-05-06 Nucleinsäuremoleküle, die debranching-enzyme aus kartoffel codieren Withdrawn EP0900277A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19618125 1996-05-06
DE19618125A DE19618125A1 (de) 1996-05-06 1996-05-06 Nucleinsäuremoleküle, die neue Debranching-Enzyme aus Kartoffel codieren
PCT/EP1997/002292 WO1997042328A1 (de) 1996-05-06 1997-05-06 Nucleinsäuremoleküle, die debranching-enzyme aus kartoffel codieren

Publications (1)

Publication Number Publication Date
EP0900277A1 true EP0900277A1 (de) 1999-03-10

Family

ID=7793465

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97922969A Withdrawn EP0900277A1 (de) 1996-05-06 1997-05-06 Nucleinsäuremoleküle, die debranching-enzyme aus kartoffel codieren

Country Status (8)

Country Link
US (2) US6255563B1 (de)
EP (1) EP0900277A1 (de)
JP (1) JP2000509286A (de)
AU (1) AU724164B2 (de)
CA (1) CA2253234A1 (de)
DE (1) DE19618125A1 (de)
HU (1) HUP9902317A3 (de)
WO (1) WO1997042328A1 (de)

Families Citing this family (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9716185D0 (en) * 1997-07-31 1997-10-08 Innes John Centre Starch debranching enzymes
GB9718863D0 (en) * 1997-09-06 1997-11-12 Nat Starch Chem Invest Improvements in or relating to stability of plant starches
DE19820608A1 (de) * 1998-05-08 1999-11-11 Hoechst Schering Agrevo Gmbh Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind
DE19836098A1 (de) 1998-07-31 2000-02-03 Hoechst Schering Agrevo Gmbh Pflanzen, die eine modifizierte Stärke synthetisieren, Verfahren zur Herstellung der Pflanzen, ihre Verwendung sowie die modifizierte Stärke
DE19937643A1 (de) * 1999-08-12 2001-02-22 Aventis Cropscience Gmbh Transgene Zellen und Pflanzen mit veränderter Aktivität des GBSSI- und des BE-Proteins
AUPR882701A0 (en) * 2001-11-12 2001-12-06 Biogemma Novel isoamylase and associated methods and products
CL2007003744A1 (es) * 2006-12-22 2008-07-11 Bayer Cropscience Ag Composicion que comprende un derivado 2-piridilmetilbenzamida y un compuesto insecticida; y metodo para controlar de forma curativa o preventiva hongos fitopatogenos de cultivos e insectos.
CL2007003743A1 (es) * 2006-12-22 2008-07-11 Bayer Cropscience Ag Composicion que comprende fenamidona y un compuesto insecticida; y metodo para controlar de forma curativa o preventiva hongos fitopatogenos de cultivos e insectos.
US20100167926A1 (en) 2007-03-12 2010-07-01 Bayer Cropscience Ag 3-substituted phenoxyphenylamidines and use thereof as fungicides
EP2136627B1 (de) 2007-03-12 2015-05-13 Bayer Intellectual Property GmbH Dihalogenphenoxyphenylamidine und deren verwendung als fungizide
EP1969934A1 (de) 2007-03-12 2008-09-17 Bayer CropScience AG 4-Cycloalkyl-oder 4-arylsubstituierte Phenoxyphenylamidine und deren Verwendung als Fungizide
EP1969929A1 (de) 2007-03-12 2008-09-17 Bayer CropScience AG Substituierte Phenylamidine und deren Verwendung als Fungizide
EP1969930A1 (de) 2007-03-12 2008-09-17 Bayer CropScience AG Phenoxyphenylamidine und deren Verwendung als Fungizide
WO2008110281A2 (de) * 2007-03-12 2008-09-18 Bayer Cropscience Ag 3,4-disubstituierte phenoxyphenylamidine und deren verwendung als fungizide
EP1969931A1 (de) * 2007-03-12 2008-09-17 Bayer CropScience Aktiengesellschaft Fluoalkylphenylamidine und deren Verwendung als Fungizide
JP2010524869A (ja) * 2007-04-19 2010-07-22 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト チアジアゾリルオキシフェニルアミジンおよび殺菌剤としてのこれらの使用
DE102007045919B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045922A1 (de) 2007-09-26 2009-04-02 Bayer Cropscience Ag Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045953B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften
DE102007045920B4 (de) 2007-09-26 2018-07-05 Bayer Intellectual Property Gmbh Synergistische Wirkstoffkombinationen
DE102007045956A1 (de) 2007-09-26 2009-04-09 Bayer Cropscience Ag Wirkstoffkombination mit insektiziden und akariziden Eigenschaften
BRPI0818691A2 (pt) * 2007-10-02 2014-09-30 Bayer Cropscience Ag Métodos para melhorar o crescimento vegetal.
EP2090168A1 (de) 2008-02-12 2009-08-19 Bayer CropScience AG Methode zur Verbesserung des Pflanzenwachstums
EP2072506A1 (de) 2007-12-21 2009-06-24 Bayer CropScience AG Thiazolyloxyphenylamidine oder Thiadiazolyloxyphenylamidine und deren Verwendung als Fungizide
EP2113172A1 (de) * 2008-04-28 2009-11-04 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2168434A1 (de) 2008-08-02 2010-03-31 Bayer CropScience AG Verwendung von Azolen zur Steigerung der Resistenz von Pflanzen oder Pflanzenteilen gegenüber abiotischem Stress
US20110190365A1 (en) 2008-08-14 2011-08-04 Bayer Crop Science Ag Insecticidal 4-phenyl-1H-pyrazoles
DE102008041695A1 (de) 2008-08-29 2010-03-04 Bayer Cropscience Ag Methoden zur Verbesserung des Pflanzenwachstums
EP2201838A1 (de) 2008-12-05 2010-06-30 Bayer CropScience AG Wirkstoff-Nützlings-Kombinationen mit insektiziden und akariziden Eigenschaften
EP2198709A1 (de) 2008-12-19 2010-06-23 Bayer CropScience AG Verfahren zur Bekämpfung resistenter tierischer Schädlinge
US9763451B2 (en) 2008-12-29 2017-09-19 Bayer Intellectual Property Gmbh Method for improved use of the production potential of genetically modified plants
EP2223602A1 (de) 2009-02-23 2010-09-01 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials genetisch modifizierter Pflanzen
EP2204094A1 (de) 2008-12-29 2010-07-07 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
EP2039770A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2039772A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2039771A2 (de) 2009-01-06 2009-03-25 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
BRPI1006916A8 (pt) 2009-01-19 2016-05-03 Bayer Cropscience Ag Dionas cíclicas e seu uso como inseticidas, acaricidas e/ou fungicidas
EP2227951A1 (de) 2009-01-23 2010-09-15 Bayer CropScience AG Verwendung von Enaminocarbonylverbindungen zur Bekämpfung von durch Insekten übertragenen Viren
BRPI1004930B1 (pt) 2009-01-28 2017-10-17 Bayer Intellectual Property Gmbh Compounds, fungicidal composition and method for controlling phytopathogenic fungi of crops.
AR075126A1 (es) * 2009-01-29 2011-03-09 Bayer Cropscience Ag Metodo para el mejor uso del potencial de produccion de plantas transgenicas
CN102317259B (zh) 2009-02-17 2015-12-02 拜尔农科股份公司 杀真菌n-(苯基环烷基)羧酰胺,n-(苄基环烷基)羧酰胺和硫代羧酰胺衍生物
EP2218717A1 (de) 2009-02-17 2010-08-18 Bayer CropScience AG Fungizide N-((HET)Arylethyl)Thiocarboxamid-Derivative
TW201031331A (en) 2009-02-19 2010-09-01 Bayer Cropscience Ag Pesticide composition comprising a tetrazolyloxime derivative and a fungicide or an insecticide active substance
DE102009001469A1 (de) 2009-03-11 2009-09-24 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001681A1 (de) 2009-03-20 2010-09-23 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001730A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001728A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
DE102009001732A1 (de) 2009-03-23 2010-09-30 Bayer Cropscience Ag Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
EP2410847A1 (de) 2009-03-25 2012-02-01 Bayer CropScience AG Wirkstoffkombinationen mit insektiziden und akariziden eigenschaften
CN102448305B (zh) 2009-03-25 2015-04-01 拜尔农作物科学股份公司 具有杀昆虫和杀螨虫特性的活性成分结合物
JP2012521371A (ja) 2009-03-25 2012-09-13 バイエル・クロップサイエンス・アーゲー 殺虫特性および殺ダニ特性を有する活性化合物の組合せ
WO2010108507A2 (de) 2009-03-25 2010-09-30 Bayer Cropscience Ag Synergistische wirkstoffkombinationen
EP2232995A1 (de) 2009-03-25 2010-09-29 Bayer CropScience AG Verfahren zur verbesserten Nutzung des Produktionspotentials transgener Pflanzen
CN102361555B (zh) 2009-03-25 2014-05-28 拜尔农作物科学股份公司 具有杀昆虫和杀螨特性的活性化合物结合物
EP2239331A1 (de) 2009-04-07 2010-10-13 Bayer CropScience AG Verfahren zur verbesserten Verwendung des Herstellungspotentials von transgenen Pflanzen
JP5771189B2 (ja) 2009-05-06 2015-08-26 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH シクロペンタンジオン化合物、ならびにこの殺虫剤、殺ダニ剤および/または抗真菌剤としての使用
EP2251331A1 (de) 2009-05-15 2010-11-17 Bayer CropScience AG Fungizide Pyrazolcarboxamid-Derivate
AR076839A1 (es) 2009-05-15 2011-07-13 Bayer Cropscience Ag Derivados fungicidas de pirazol carboxamidas
EP2255626A1 (de) 2009-05-27 2010-12-01 Bayer CropScience AG Verwendung von Succinat Dehydrogenase Inhibitoren zur Steigerung der Resistenz von Pflanzen oder Pflanzenteilen gegenüber abiotischem Stress
PL2437595T3 (pl) * 2009-06-02 2019-05-31 Bayer Cropscience Ag Zastosowanie fluopyramu do zwalczania Sclerotinia ssp.
MX2012000566A (es) 2009-07-16 2012-03-06 Bayer Cropscience Ag Combinaciones sinergicas de principios activos con feniltriazoles.
WO2011015524A2 (en) 2009-08-03 2011-02-10 Bayer Cropscience Ag Fungicide heterocycles derivatives
EP2292094A1 (de) 2009-09-02 2011-03-09 Bayer CropScience AG Wirkstoffkombinationen
EP2343280A1 (de) 2009-12-10 2011-07-13 Bayer CropScience AG Fungizid-Chinolinderivate
CN102725270B (zh) 2009-12-28 2015-10-07 拜尔农科股份公司 杀真菌剂肟基-杂环衍生物
JP5782657B2 (ja) 2009-12-28 2015-09-24 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 殺菌剤ヒドロキシモイル−テトラゾール誘導体
US8796463B2 (en) 2009-12-28 2014-08-05 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
CN102811617A (zh) 2010-01-22 2012-12-05 拜耳知识产权有限责任公司 杀螨和/或杀虫活性物质结合物
ES2523503T3 (es) 2010-03-04 2014-11-26 Bayer Intellectual Property Gmbh 2-Amidobencimidazoles sustituidos con fluoroalquilo y su uso para el aumento de la tolerancia al estrés en plantas
WO2011124554A2 (de) 2010-04-06 2011-10-13 Bayer Cropscience Ag Verwendung der 4-phenylbuttersäure und/oder ihrer salze zur steigerung der stresstoleranz in pflanzen
CN102933083B (zh) 2010-04-09 2015-08-12 拜耳知识产权有限责任公司 (1-氰基环丙基)苯基次膦酸或其酯的衍生物和/或其盐提高植物对非生物胁迫耐受性的用途
WO2011134911A2 (en) 2010-04-28 2011-11-03 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
JP2013525400A (ja) 2010-04-28 2013-06-20 バイエル・クロップサイエンス・アーゲー 殺菌剤ヒドロキシモイル−複素環誘導体
EP2563784A1 (de) 2010-04-28 2013-03-06 Bayer CropScience AG Fungizide hydroximoyl-heterozyklusderivate
UA110703C2 (uk) 2010-06-03 2016-02-10 Байєр Кропсайнс Аг Фунгіцидні похідні n-[(тризаміщений силіл)метил]-карбоксаміду
JP5730992B2 (ja) 2010-06-03 2015-06-10 バイエル・クロップサイエンス・アーゲーBayer Cropscience Ag N−[(ヘタ)アリールエチル)]ピラゾール(チオ)カルボキサミド類及びそれらのヘテロ置換された類似体
CN102918028B (zh) 2010-06-03 2016-04-27 拜尔农科股份公司 N-[(杂)芳基烷基]吡唑(硫代)羧酰胺及其杂取代的类似物
CN103119169B (zh) 2010-06-09 2018-11-20 拜尔作物科学公司 植物基因组改造中常用的在核苷酸序列上修饰植物基因组的方法和工具
AU2011264074B2 (en) 2010-06-09 2015-01-22 Bayer Cropscience Nv Methods and means to modify a plant genome at a nucleotide sequence commonly used in plant genome engineering
AR082286A1 (es) 2010-07-20 2012-11-28 Bayer Cropscience Ag Benzocicloalquenos como agentes antifungicos
AU2011298423B2 (en) 2010-09-03 2015-11-05 Bayer Intellectual Property Gmbh Substituted fused pyrimidinones and dihydropyrimidinones
EP2460406A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Verwendung von Fluopyram zum Steuern von Nematoden in nematodresistentem Pflanzen
WO2012038480A2 (en) 2010-09-22 2012-03-29 Bayer Cropscience Ag Use of biological or chemical control agents for controlling insects and nematodes in resistant crops
EP2624699B1 (de) 2010-10-07 2018-11-21 Bayer CropScience Aktiengesellschaft Fungizide zusammensetzung mit einem tetrazolyloximderivat und einem thiazolylpiperidinderivat
US9545105B2 (en) 2010-10-21 2017-01-17 Bayer Intellectual Property Gmbh 1-(heterocyclic carbonyl) piperidines
MX2013004278A (es) 2010-10-21 2013-06-05 Bayer Ip Gmbh N-bencil carboxamidas heterociclicas.
JP2013542215A (ja) 2010-11-02 2013-11-21 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー N−ヘタリールメチルピラゾリルカルボキサミド類
JP2013543858A (ja) 2010-11-15 2013-12-09 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー 5−ハロゲノピラゾール(チオ)カルボキサミド類
US9206137B2 (en) 2010-11-15 2015-12-08 Bayer Intellectual Property Gmbh N-Aryl pyrazole(thio)carboxamides
MX2013005407A (es) 2010-11-15 2013-07-03 Bayer Ip Gmbh 5-halopirazolcarboxamidas.
EP2460407A1 (de) 2010-12-01 2012-06-06 Bayer CropScience AG Wirkstoffkombinationen umfassend Pyridylethylbenzamide und weitere Wirkstoffe
KR20130123416A (ko) 2010-12-01 2013-11-12 바이엘 인텔렉쳐 프로퍼티 게엠베하 작물에서 선충류를 구제하고 수확량을 증가시키기 위한 플루오피람의 용도
EP2474542A1 (de) 2010-12-29 2012-07-11 Bayer CropScience AG Fungizide Hydroximoyl-Tetrazol-Derivate
JP2014502611A (ja) 2010-12-29 2014-02-03 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー 殺菌剤ヒドロキシモイル−テトラゾール誘導体
EP2471363A1 (de) 2010-12-30 2012-07-04 Bayer CropScience AG Verwendung von Aryl-, Heteroaryl- und Benzylsulfonamidocarbonsäuren, -carbonsäureestern, -carbonsäureamiden und -carbonitrilen oder deren Salze zur Steigerung der Stresstoleranz in Pflanzen
EP2494867A1 (de) 2011-03-01 2012-09-05 Bayer CropScience AG Halogen-substituierte Verbindungen in Kombination mit Fungiziden
WO2012120105A1 (en) 2011-03-10 2012-09-13 Bayer Cropscience Ag Use of lipochito-oligosaccharide compounds for safeguarding seed safety of treated seeds
US20140005230A1 (en) 2011-03-14 2014-01-02 Juergen Benting Fungicide hydroximoyl-tetrazole derivatives
EP2694494A1 (de) 2011-04-08 2014-02-12 Bayer Intellectual Property GmbH Hydroximoyl-tetrazol-derivate als fungizide
AR085568A1 (es) 2011-04-15 2013-10-09 Bayer Cropscience Ag 5-(biciclo[4.1.0]hept-3-en-2-il)-penta-2,4-dienos y 5-(biciclo[4.1.0]hept-3-en-2-il)-pent-2-en-4-inos sustituidos como principios activos contra el estres abiotico de las plantas
AR090010A1 (es) 2011-04-15 2014-10-15 Bayer Cropscience Ag 5-(ciclohex-2-en-1-il)-penta-2,4-dienos y 5-(ciclohex-2-en-1-il)-pent-2-en-4-inos sustituidos como principios activos contra el estres abiotico de las plantas, usos y metodos de tratamiento
EP2511255A1 (de) 2011-04-15 2012-10-17 Bayer CropScience AG Substituierte Prop-2-in-1-ol- und Prop-2-en-1-ol-Derivate
AR085585A1 (es) 2011-04-15 2013-10-09 Bayer Cropscience Ag Vinil- y alquinilciclohexanoles sustituidos como principios activos contra estres abiotico de plantas
US20140038823A1 (en) 2011-04-22 2014-02-06 Peter Dahmen Active compound combinations comprising a (thio)carboxamide derivative and a fungidical compound
ES2657825T3 (es) 2011-06-06 2018-03-07 Bayer Cropscience Nv Métodos y medios para modificar el genoma de una planta en un sitio preseleccionado
BR112014000267A2 (pt) 2011-07-04 2016-09-20 Bayer Ip Gmbh utilização de isoquinolinonas, isoquinolinedionas, isoquinolinetrionas e dihidroisoquinolinonas substituídas ou, em cada caso, sais das mesmas como agentes ativos contra o stress abiótico em plantas
CN103717076B (zh) 2011-08-10 2016-04-13 拜耳知识产权股份有限公司 含有特定特特拉姆酸衍生物的活性化合物组合物
US20140206726A1 (en) 2011-08-22 2014-07-24 Juergen Benting Fungicide hydroximoyl-tetrazole derivatives
MX348003B (es) 2011-08-22 2017-03-08 Bayer Cropscience Nv Metodos y medios para modificar un genoma vegetal.
EP2561759A1 (de) 2011-08-26 2013-02-27 Bayer Cropscience AG Fluoralkyl-substituierte 2-amidobenzimidazole und ihre Wirkung auf das Pflanzenwachstum
BR112014005262A2 (pt) 2011-09-09 2017-04-04 Bayer Ip Gmbh método para aprimorar um vegetal e utilização de um composto de fórmula (i) ou (ii)
CN103874681B (zh) 2011-09-12 2017-01-18 拜耳知识产权有限责任公司 杀真菌性4‑取代的‑3‑{苯基[(杂环基甲氧基)亚氨基]甲基}‑1,2,4‑噁二唑‑5(4h)‑酮衍生物
MX362112B (es) 2011-09-16 2019-01-07 Bayer Ip Gmbh Uso de fenilpirazolin-3-carboxilatos para mejorar el rendimiento de las plantas.
JP6138797B2 (ja) 2011-09-16 2017-05-31 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH 植物収量を向上させるためのアシルスルホンアミド類の使用
BR112014006208B1 (pt) 2011-09-16 2018-10-23 Bayer Intellectual Property Gmbh método de indução de respostas reguladoras do crescimento nas plantas aumentando o rendimento de plantas úteis ou plantas de cultura e composição de aumento do rendimento da planta compreendendo isoxadifen-etilo ou isoxadifeno e combinação de fungicidas
US9226505B2 (en) 2011-09-23 2016-01-05 Bayer Intellectual Property Gmbh 4-substituted 1-phenylpyrazole-3-carboxylic acid derivatives as agents against abiotic plant stress
JP6255344B2 (ja) 2011-10-04 2017-12-27 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH サッカロピンデヒドロゲナーゼ遺伝子を阻害することによって真菌類及び卵菌類を防除するためのRNAi
WO2013050324A1 (de) 2011-10-06 2013-04-11 Bayer Intellectual Property Gmbh Abiotischen pflanzenstress-reduzierende kombination enthaltend 4- phenylbuttersäure (4-pba) oder eines ihrer salze (komponente (a)) und eine oder mehrere ausgewählte weitere agronomisch wirksame verbindungen (komponente(n) (b)
US9617286B2 (en) 2011-11-21 2017-04-11 Bayer Intellectual Property Gmbh Fungicide N-[(trisubstitutedsilyl)methyl]-carboxamide derivatives
JP2015504442A (ja) 2011-11-30 2015-02-12 バイエル・インテレクチユアル・プロパテイー・ゲー・エム・ベー・ハー 殺菌性n−ビシクロアルキルおよびn−トリシクロアルキル(チオ)カルボキサミド誘導体
US9414595B2 (en) 2011-12-19 2016-08-16 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
TWI558701B (zh) 2011-12-29 2016-11-21 拜耳知識產權公司 殺真菌之3-[(1,3-噻唑-4-基甲氧基亞胺)(苯基)甲基]-2-經取代之-1,2,4-二唑-5(2h)-酮衍生物
TWI557120B (zh) 2011-12-29 2016-11-11 拜耳知識產權公司 殺真菌之3-[(吡啶-2-基甲氧基亞胺)(苯基)甲基]-2-經取代之-1,2,4-二唑-5(2h)-酮衍生物
NZ722692A (en) 2012-02-22 2018-02-23 Bayer Ip Gmbh Use of succinate dehydrogenase inhibitors (sdhis) for controlling wood diseases in grape
PE20190346A1 (es) 2012-02-27 2019-03-07 Bayer Ip Gmbh Combinaciones de compuestos activos
WO2013139949A1 (en) 2012-03-23 2013-09-26 Bayer Intellectual Property Gmbh Compositions comprising a strigolactame compound for enhanced plant growth and yield
CN104245687B (zh) 2012-04-12 2016-12-14 拜尔农科股份公司 作为杀真菌剂的n-酰基-2-(环)烷基吡咯烷和哌啶
WO2013156559A1 (en) 2012-04-20 2013-10-24 Bayer Cropscience Ag N-cycloalkyl-n-[(heterocyclylphenyl)methylene]-(thio)carboxamide derivatives
EP2838363A1 (de) 2012-04-20 2015-02-25 Bayer Cropscience AG N-cycloalkyl-n-[(trisubstituiertes silylphenyl)methylen]-(thio)carboxamidderivate
CN104245940A (zh) 2012-04-23 2014-12-24 拜尔作物科学公司 植物中的靶向基因组工程
MX2014013489A (es) 2012-05-09 2015-02-12 Bayer Cropscience Ag 5-halogenopirazolindanil carboxamidas.
EP2662361A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Indanyl-Carboxamide
CN104768934B (zh) 2012-05-09 2017-11-28 拜耳农作物科学股份公司 吡唑茚满基甲酰胺
EP2662363A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Biphenyl-Carboxamide
EP2662364A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Tetrahydronaphthyl-Carboxamide
EP2662362A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG Pyrazol-Indanyl-Carboxamide
EP2662360A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Indanyl-Carboxamide
EP2662370A1 (de) 2012-05-09 2013-11-13 Bayer CropScience AG 5-Halogenpyrazol-Benzofuranyl-Carboxamide
AR091104A1 (es) 2012-05-22 2015-01-14 Bayer Cropscience Ag Combinaciones de compuestos activos que comprenden un derivado lipo-quitooligosacarido y un compuesto nematicida, insecticida o fungicida
WO2014009322A1 (en) 2012-07-11 2014-01-16 Bayer Cropscience Ag Use of fungicidal combinations for increasing the tolerance of a plant towards abiotic stress
JP2015532650A (ja) 2012-09-05 2015-11-12 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 非生物的植物ストレスに対する活性物質としての置換された2−アミドベンズイミダゾール類、2−アミドベンゾオキサゾール類および2−アミドベンゾチアゾール類またはそれらの塩の使用
AU2013333846B2 (en) 2012-10-19 2017-04-20 Bayer Cropscience Ag Method for enhancing tolerance to abiotic stress in plants using carboxamide or thiocarboxamide derivatives
US20150259294A1 (en) 2012-10-19 2015-09-17 Bayer Cropscience Ag Method of plant growth promotion using carboxamide derivatives
JP6153619B2 (ja) 2012-10-19 2017-06-28 バイエル・クロップサイエンス・アクチェンゲゼルシャフト カルボキサミド誘導体を含む活性化合物の組み合わせ
EP2908641B1 (de) 2012-10-19 2018-01-10 Bayer Cropscience AG Verfahren zur behandlung von pflanzen gegen fungizidresistente pilze unter verwendung von carboxamid- oder thiocarboxamidderivaten
WO2014079957A1 (de) 2012-11-23 2014-05-30 Bayer Cropscience Ag Selektive inhibition der ethylensignaltransduktion
EP2735231A1 (de) 2012-11-23 2014-05-28 Bayer CropScience AG Wirkstoffkombinationen
EP2925137A1 (de) 2012-11-30 2015-10-07 Bayer CropScience AG Binäre fungizid- oder pestizidmischung
US9510596B2 (en) 2012-11-30 2016-12-06 Bayer Cropscience Ag Binary pesticidal and fungicidal mixtures
BR112015012055B1 (pt) 2012-11-30 2021-01-12 Bayer Cropscience Ag composição fungicida ternária, seu processo de preparação, método para controlar um ou mais microrganismos nocivos, semente resistente a microrganismos nocivos e seu método de tratamento
EA030236B1 (ru) 2012-11-30 2018-07-31 Байер Кропсайенс Акциенгезельшафт Тройные фунгицидные и пестицидные смеси
WO2014083088A2 (en) 2012-11-30 2014-06-05 Bayer Cropscience Ag Binary fungicidal mixtures
EP2740356A1 (de) 2012-12-05 2014-06-11 Bayer CropScience AG Substituierte (2Z)-5(1-Hydroxycyclohexyl)pent-2-en-4-insäure-Derivate
BR112015012926A2 (pt) 2012-12-05 2017-07-11 Bayer Cropscience Ag uso de 1-(aril etinil)-, 1-(heteroaril etinil)-, 1-(heterociclil etinil)- substituído e 1-(cicloalquenil etinil)-ciclohexanóis como agentes ativos contra o estresse abiótico da planta
EP2740720A1 (de) 2012-12-05 2014-06-11 Bayer CropScience AG Substituierte bicyclische- und tricyclische Pent-2-en-4-insäure -Derivate und ihre Verwendung zur Steigerung der Stresstoleranz in Pflanzen
AR093909A1 (es) 2012-12-12 2015-06-24 Bayer Cropscience Ag Uso de ingredientes activos para controlar nematodos en cultivos resistentes a nematodos
AR093996A1 (es) 2012-12-18 2015-07-01 Bayer Cropscience Ag Combinaciones bactericidas y fungicidas binarias
BR112015014307A2 (pt) 2012-12-19 2017-07-11 Bayer Cropscience Ag difluorometil-nicotínico- tetrahidronaftil carboxamidas
CN105705490A (zh) 2013-03-07 2016-06-22 拜耳作物科学股份公司 杀真菌的3-{苯基[(杂环基甲氧基)亚氨基]甲基}-杂环衍生物
WO2014161821A1 (en) 2013-04-02 2014-10-09 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
JP6397482B2 (ja) 2013-04-12 2018-09-26 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 新規トリアゾール誘導体
US9550752B2 (en) 2013-04-12 2017-01-24 Bayer Cropscience Aktiengesellschaft Triazolinthione derivatives
CN105555135B (zh) 2013-04-19 2018-06-15 拜耳作物科学股份公司 涉及邻苯二甲酰胺衍生物应用的用于改善对转基因植物生产潜能的利用的方法
JP2016519687A (ja) 2013-04-19 2016-07-07 バイエル・クロップサイエンス・アクチェンゲゼルシャフト バイナリー殺虫または農薬混合物
TW201507722A (zh) 2013-04-30 2015-03-01 Bayer Cropscience Ag 做為殺線蟲劑及殺體內寄生蟲劑的n-(2-鹵素-2-苯乙基)-羧醯胺類
WO2014177514A1 (en) 2013-04-30 2014-11-06 Bayer Cropscience Ag Nematicidal n-substituted phenethylcarboxamides
US9770022B2 (en) 2013-06-26 2017-09-26 Bayer Cropscience Ag N-cycloalkyl-N-[(bicyclylphenyl)methylene]-(thio)carboxamide derivatives
AU2014289341A1 (en) 2013-07-09 2016-01-28 Bayer Cropscience Aktiengesellschaft Use of selected pyridone carboxamides or salts thereof as active substances against abiotic plant stress
TW201607929A (zh) 2013-12-05 2016-03-01 拜耳作物科學公司 N-環烷基-n-{[2-(1-經取代環烷基)苯基]亞甲基}-(硫代)甲醯胺衍生物
UA120701C2 (uk) 2013-12-05 2020-01-27 Байєр Кропсайєнс Акцієнгезелльшафт N-циклоалкіл-n-{[2-(1-заміщений циклоалкіл)феніл]метилен}-(тіо)карбоксамідні похідні
AR101214A1 (es) 2014-07-22 2016-11-30 Bayer Cropscience Ag Ciano-cicloalquilpenta-2,4-dienos, ciano-cicloalquilpent-2-en-4-inas, ciano-heterociclilpenta-2,4-dienos y ciano-heterociclilpent-2-en-4-inas sustituidos como principios activos contra el estrés abiótico de plantas
AR103024A1 (es) 2014-12-18 2017-04-12 Bayer Cropscience Ag Piridoncarboxamidas seleccionadas o sus sales como sustancias activas contra estrés abiótico de las plantas
CN107531676A (zh) 2015-04-13 2018-01-02 拜耳作物科学股份公司 N‑环烷基‑n‑(双杂环基亚乙基)‑(硫代)羧酰胺衍生物
WO2016205749A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Novel crispr enzymes and systems
WO2018019676A1 (en) 2016-07-29 2018-02-01 Bayer Cropscience Aktiengesellschaft Active compound combinations and methods to protect the propagation material of plants
US20190281828A1 (en) 2016-09-22 2019-09-19 Bayer Cropscience Aktiengesellschaft Novel triazole derivatives
BR112019005668A2 (pt) 2016-09-22 2019-06-04 Bayer Ag novos derivados de triazol
US20190225974A1 (en) 2016-09-23 2019-07-25 BASF Agricultural Solutions Seed US LLC Targeted genome optimization in plants
CN109890204A (zh) 2016-10-26 2019-06-14 拜耳作物科学股份公司 Pyraziflumid用于在种子处理应用中控制核盘菌属种的用途
WO2018104392A1 (en) 2016-12-08 2018-06-14 Bayer Cropscience Aktiengesellschaft Use of insecticides for controlling wireworms
EP3332645A1 (de) 2016-12-12 2018-06-13 Bayer Cropscience AG Verwendung substituierter pyrimidindione oder jeweils deren salze als wirkstoffe gegen abiotischen pflanzenstress
WO2018108627A1 (de) 2016-12-12 2018-06-21 Bayer Cropscience Aktiengesellschaft Verwendung substituierter indolinylmethylsulfonamide oder deren salze zur steigerung der stresstoleranz in pflanzen
WO2018204777A2 (en) 2017-05-05 2018-11-08 The Broad Institute, Inc. Methods for identification and modification of lncrna associated with target genotypes and phenotypes
WO2019025153A1 (de) 2017-07-31 2019-02-07 Bayer Cropscience Aktiengesellschaft Verwendung von substituierten n-sulfonyl-n'-aryldiaminoalkanen und n-sulfonyl-n'-heteroaryldiaminoalkanen oder deren salzen zur steigerung der stresstoleranz in pflanzen
EP3684397A4 (de) 2017-09-21 2021-08-18 The Broad Institute, Inc. Systeme, verfahren und zusammensetzungen zur gezielten nukleinsäureeditierung
US10968257B2 (en) 2018-04-03 2021-04-06 The Broad Institute, Inc. Target recognition motifs and uses thereof
CN112513033A (zh) 2018-06-04 2021-03-16 拜耳公司 除草活性的双环苯甲酰基吡唑
CA3124110A1 (en) 2018-12-17 2020-06-25 The Broad Institute, Inc. Crispr-associated transposase systems and methods of use thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454161A (en) 1981-02-07 1984-06-12 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Process for the production of branching enzyme, and a method for improving the qualities of food products therewith
DE4013144A1 (de) 1990-04-20 1991-10-24 Inst Genbiologische Forschung Neue plasmide, enthaltend dna-sequenzen, die veraenderungen der karbohydrat- und proteinkonzentration und der karbohydrat- und proteinzusammensetzung in kartoffelknollen hervorrufen, sowie zellen einer kartoffelpflanze, enthaltend diese plasmide
US5349123A (en) * 1990-12-21 1994-09-20 Calgene, Inc. Glycogen biosynthetic enzymes in plants
IE913215A1 (en) 1990-09-13 1992-02-25 Gist Brocades Nv Transgenic plants having a modified carbohydrate content
SE467358B (sv) 1990-12-21 1992-07-06 Amylogene Hb Genteknisk foeraendring av potatis foer bildning av staerkelse av amylopektintyp
DE4104782B4 (de) 1991-02-13 2006-05-11 Bayer Cropscience Gmbh Neue Plasmide, enthaltend DNA-Sequenzen, die Veränderungen der Karbohydratkonzentration und Karbohydratzusammensetzung in Pflanzen hervorrufen, sowie Pflanzen und Pflanzenzellen enthaltend dieses Plasmide
EP0529894A1 (de) 1991-08-16 1993-03-03 A.E. Staley Manufacturing Company Als Fettersatz erzweigte und fragmentierte ausgefällte Amylopektin-Stärke
US5331108A (en) 1992-01-31 1994-07-19 Wisconsin Alumni Research Foundation Mutant maize variety containing the glt1-1 allele
WO1995004826A1 (en) * 1993-08-09 1995-02-16 Institut Für Genbiologische Forschung Berlin Gmbh Debranching enzymes and dna sequences coding them, suitable for changing the degree of branching of amylopectin starch in plants
DE4327165A1 (de) 1993-08-09 1995-02-16 Inst Genbiologische Forschung Debranching-Enzyme und deren kodierende DNA-Sequenzen, geeignet zur Veränderung des Verzweigungsgrades von Amylopektin - Stärke in Pflanzen
DE4330960C2 (de) 1993-09-09 2002-06-20 Aventis Cropscience Gmbh Kombination von DNA-Sequenzen, die in Pflanzenzellen und Pflanzen die Bildung hochgradig amylosehaltiger Stärke ermöglichen, Verfahren zur Herstellung dieser Pflanzen und die daraus erhaltbare modifizierte Stärke
CA2173453C (en) 1993-10-05 2001-02-13 Patricia A. Bower Cloned pullulanase
CA2186399C (en) 1994-03-25 2001-09-04 David Cooke Method for producing altered starch from potato plants
US5750876A (en) * 1994-07-28 1998-05-12 Monsanto Company Isoamylase gene, compositions containing it, and methods of using isoamylases
DE4447387A1 (de) * 1994-12-22 1996-06-27 Inst Genbiologische Forschung Debranching-Enzyme aus Pflanzen und DNA-Sequenzen kodierend diese Enzyme

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9742328A1 *

Also Published As

Publication number Publication date
AU2891797A (en) 1997-11-26
US6670525B2 (en) 2003-12-30
US6255563B1 (en) 2001-07-03
AU724164B2 (en) 2000-09-14
CA2253234A1 (en) 1997-11-13
JP2000509286A (ja) 2000-07-25
WO1997042328A1 (de) 1997-11-13
HUP9902317A3 (en) 2002-01-28
US20030167527A1 (en) 2003-09-04
HUP9902317A2 (hu) 1999-10-28
DE19618125A1 (de) 1997-11-13

Similar Documents

Publication Publication Date Title
EP0900277A1 (de) Nucleinsäuremoleküle, die debranching-enzyme aus kartoffel codieren
EP0791066B1 (de) Dna-moleküle codierend enzyme, die an der stärkesynthese beteiligt sind, vektoren, bakterien, transgene pflanzenzellen und pflanzen enthaltend diese moleküle
WO1997032985A1 (de) Nucleinsäuremoleküle, codierend debranching-enzyme aus mais
EP1088082B1 (de) Nucleinsäuremoleküle codierend enzyme aus weizen, die an der stärkesynthese beteiligt sind
US6686514B2 (en) Nucleic acid molecules encoding starch phosphorylase from maize
EP0874908B1 (de) Nucleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
EP1200615B8 (de) Nukleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
EP0813605A1 (de) Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung
WO1997044472A1 (de) Nucleinsäuremoleküle codierend lösliche stärkesynthasen aus mais
EP1100931A2 (de) NUKLEINSÄUREMOLEKÜLE KODIEREND FÜR EINE $g(a)-GLUKOSIDASE, PFLANZEN, DIE EINE MODIFIZIERTE STÄRKE SYNTHETISIEREN, VERFAHREN ZUR HERSTELLUNG DER PFLANZEN, IHRE VERWENDUNG SOWIE DIE MODIFIZIERTE STÄRKE
WO2000008185A1 (de) Nukleinsäuremoleküle kodierend für beta-amylase, pflanzen, die eine modifizierte stärke synthetisieren, herstellungsverfahren und verwendungen
EP1095152A2 (de) Nucleinsäuremoleküle codierend enzyme aus weizen, die an der stärkesynthese beteiligt sind
EP0851934A1 (de) Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zu ihrer herstellung sowie modifizierte stärke
EP1100937A1 (de) Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zur herstellung der pflanzen, ihre verwendung sowie die modifizierte stärke
DE19653176A1 (de) Neue Nucleinsäuremoleküle aus Mais und ihre Verwendung zur Herstellung einer modifizierten Stärke
EP1203087A2 (de) Transgene pflanzenzellen und pflanzen mit veränderter aktivität des gbssi- und des be-proteins
DE19636917A1 (de) Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind
DE19621588A1 (de) Nucleinsäuremoleküle codierend Enzyme aus Weizen, die an der Stärkesynthese beteiligt sind

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981016

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL PT SE

17Q First examination report despatched

Effective date: 20030602

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20031021