EP0854564A2 - Convertisseur alternatif-continu avec un transformateur piézoélectrique - Google Patents

Convertisseur alternatif-continu avec un transformateur piézoélectrique Download PDF

Info

Publication number
EP0854564A2
EP0854564A2 EP98100639A EP98100639A EP0854564A2 EP 0854564 A2 EP0854564 A2 EP 0854564A2 EP 98100639 A EP98100639 A EP 98100639A EP 98100639 A EP98100639 A EP 98100639A EP 0854564 A2 EP0854564 A2 EP 0854564A2
Authority
EP
European Patent Office
Prior art keywords
transformer
piezoelectric transformer
converter
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98100639A
Other languages
German (de)
English (en)
Other versions
EP0854564B1 (fr
EP0854564A3 (fr
Inventor
Toshiyuki Zaitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of EP0854564A2 publication Critical patent/EP0854564A2/fr
Publication of EP0854564A3 publication Critical patent/EP0854564A3/fr
Application granted granted Critical
Publication of EP0854564B1 publication Critical patent/EP0854564B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters

Definitions

  • the present invention relates to an AC/DC converter for converting a commercially available AC power source to a desired DC output and, more particularly, to an AC/DC converter advantageously usable as an AC adapter for household electrical appliances including a notebook type personal computer.
  • An AC/DC converter for the above application is usually implemented by a switching regulator system and includes an electromagnetic transformer and a switching circuit operable at about 100 kHz by high frequency noise regulation (VCCI, FCC).
  • VCCI high frequency noise regulation
  • Japanese Patent Laid-Open Publication No. 6-245548 teaches an inverter circuit for outputting a high voltage adapted for the liquid crystal backlight of, e.g., a notebook type personal computer.
  • the inverter circuit taught in this document uses a piezoelectric transformer which is small size and light weight and has a high boosting ratio.
  • Japanese Patent Laid-Open Publication No. 7-39144 discloses a DC/DC converter using a piezoelectric transformer operable in a thickness-extentional vibration mode and resonating in a megahertz frequency band.
  • a conventional AC/DC converter uses an electromagnetic transformer for outputting a desired DC voltage.
  • the electromagnetic transformer is required to have its primary winding and secondary winding spaced by a prescribed distance for insulation from the safety standpoint. Such a distance for insulation obstructs the miniaturization of the transformer.
  • a piezoelectric transformer is formed of ceramics and therefore small size, incombustible, highly isolative, and high frequency, high power efficiency, boosting ratio, and high power density.
  • a piezoelectric transformer is implemented as an inverter circuit for outputting a high voltage adapted for a liquid crystal backlight or as a DC/DC converter.
  • a Rosen type piezoelectric transformer it is a common practice to use a Rosen type piezoelectric transformer.
  • This type of transformer outputs a current of only several milliamperes and is not applicable to an AC/DC converter required to output a current of several amperes.
  • the piezoelectric transformer operable in the thickness-extensional vibration mode and used as a DC/DC converter operates in the megahertz frequency band uses an electrolytic capacitor for a smoothing purpose.
  • This kind of transformer is not feasible for an AC/DC converter due to the electrolytic capacitor and because the AC/DC converter must operate in substantially the 100 kHz frequency band. For the above reasons, applying a piezoelectric transformer to an AC/DC converter which transforms a commercial AC power source to a DC output has not been considered.
  • An AC/DC converter of the present invention includes a piezoelectric transformer.
  • the piezoelectric transformer has its dimension and vibration mode selected such that the transformer is operate in the about 100 kHz frequency band.
  • the transformer has electrodes laminated in such a manner as to implement a great output current and a high efficiency.
  • FIG. 1 of the drawings an AC/DC converter embodying the present invention and using a piezoelectric transformer is shown in a perspective view.
  • Fig. 2 is a circuit diagram showing the AC/DC converter. Specific configurations of the piezoelectric transformer are shown in Figs. 3A and 3B.
  • power is fed to the AC/DC converter from a commercially available 50 Hz or 60 Hz, 100 V AC power source 14.
  • An input filter 15 is made up of a filter capacitor 1, a common choke coil 2, and a diode bridge 3 for rectification.
  • the input filter 15 and an input smoothing filter 4 convert the input power to a pulse voltage close to DC.
  • a switching section 16 is made up of FET (Field Effect Transistor) switches 5 and 6, a capacitor 7 for cutting a DC bias, and an inductor 8 for resonance.
  • the switching section 16 transforms the above pulse voltage to a high frequency (about 100 kHz) pulse wave.
  • the pulse wave is applied to the input side of a piezoelectric transformer 9.
  • the piezoelectric transformer 9 has a length determined such that the resonance frequency of the transformer 9 substantially coincides with the frequency (about 100 kHz) of the pulse wave.
  • the resonance frequency of a piezoelectric transformer is inversely proportional to the length of the transformer.
  • a transformed high frequency (about 100 kHz) AC voltage appears on the output side of the transformer 9.
  • a diode bridge 10, an output smoothing choke coil 11 and an output smoothing capacitor 12 constitute an output smoothing filter section 17.
  • the output smoothing filter section 17 rectifies and smooths the AC voltage output from the transformer 9, thereby producing a DC voltage.
  • the DC voltage is fed to a load resistor 13.
  • the piezoelectric transformer 9 has an input section and an output section each being implemented by a group of electrodes 18.
  • Each group of electrodes 18 are laminated in the lengthwise. direction of the transformer 9 and connected in parallel with each other. Portions between the electrodes 18 are polarized in the lengthwise direction, as indicated by arrows in Fig. 3A.
  • This type of transformer 9 is excited in a longitudinal vibration mode.
  • Fig. 3B shows an alternative configuration of the transformer 9. As shown, each group of electrodes 18 are laminated in the thicknesswise direction of the transformer 9 and connected in parallel with each other. At each of the input section and output section, portions between the electrodes 18 are polarized in the thicknesswise direction of the transformer 9, as indicated by arrows in Fig. 3B.
  • a portion between the input section and the output section is polarized in the lengthwise direction of the transformer 9.
  • This type of transformer 9 is excited in a transverse vibration mode. With any of the configurations shown in Figs. 3A and 3B, the transformer 9 can output a great current with a relatively low resonance frequency (about 100 kHz).
  • a controller causes gate voltages VG1 and VG2 to be alternately input to the gate electrodes of the FETs 5 and 6, respectively, at the intervals of a dead time DT.
  • the FETs 5 and 6 turn on alternatively.
  • the transformer 9 completes the charge or the discharge of its input capacity C d1 in response to the peak value Ip of a current i Lr flowing through the resonance inductor 8.
  • An AC output voltage Vd appearing on the output electrode of the transformer 9 is determined by the voltage gain of the transformer 9.
  • the voltage gain of the transformer 9 varies with the variation of the switching frequency or the resistance of the load resistor 13 due to the resonance characteristic of the transformer 9. Therefore, the size of an AC voltage Vd output from the transformer 9 can be controlled by, e.g., varying the switching frequency.
  • Fig. 5 shows a DC output voltage characteristic and a power transform efficiency characteristic determined when the AC input voltage was about 100 V, the maximum DC output voltage was about 6 V, and the switching frequency was varied between 100 kHz and 115 kHz. As shown, the DC output voltage is variable over a range of from about 2 V to about 6V. Also, a power conversion efficiency of about 50 % to about 80 % is achievable.
  • Fig. 6 shows an alternative embodiment of the present invention which includes control means for maintaining the DC output voltage constant without regard to the variation of a load.
  • the DC voltage output from the output smoothing filter 11 is input to an error amplifier 19.
  • the error amplifier 19 amplifies a voltage representative of a difference between the input DC voltage and a preselected voltage and delivers the amplified voltage to a voltage/frequency (V/F) converter 20.
  • the V/F converter 20 outputs a signal whose frequency corresponds to the input voltage and feeds it to a driver 21.
  • the driver 21 controls the switching frequency of the switching 16 on the basis of the frequency of the input signal.
  • Fig. 7 shows that when the load current varies between 0.2 A and 1.2 A, the DC output voltage can be maintained constant at about 6 V if the switching frequency is varied between 115 kHz and 107 kHz. Also, a power transform efficiency as high as about 70 % can be maintained.
  • Fig. 8 shows the second embodiment of the present invention while Fig. 10 shows an AC adapter implemented by the embodiment.
  • the input smoothing capacitor 4 (generally aluminum electrolytic capacitor) is implemented as a small capacity capacitor or is omitted.
  • the output smoothing capacitor 12 is implemented by a large capacity capacitor, e.g., an electric double layer capacitor 22. With this configuration, the embodiment reduces ripples.
  • the electric double layer capacitor 22 can be provided with a card-like structure as thin as 1 mm to 2 mm, further miniaturizing the AC/DC converter.
  • Fig. 9 is a circuit diagram showing the third embodiment of the present invention.
  • a capacitor 7 is removed and instead an inductor 8 is inserted in eries with the piezoelectric transformer.
  • This circuit is good when the value of cd1 is large to reduce the current Is.
  • the circuit operation is almost the same as that shown in Fig. 2.
  • piezoelectric transformer operable in the longitudinal vibration mode use may be made of a piezoelectric transformer operable in any other suitable mode, e.g., a slip mode.
  • a switching regulator type AC/DC converter for transforming a commercial AC power source to a DC power source includes a transformer implemented by a piezoelectric transformer formed of ceramics which is incombustible and highly isolative. This, coupled with the fact that a piezoelectric transformer can have its input electrodes and output electrodes spaced by several millimeters due to its inherent structure, eliminates the need for a barrier gap, spacer or noninflammable tape essential with a conventional electromagnetic transformer. The transformer is therefore extremely small size and contributes to the miniaturization of the entire converter.
  • the piezoelectric transformer is caused to operate in the longitudinal vibration mode which maximizes the length. This allows the operation frequency to be lowered while further reducing the overall size of the transformer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
EP98100639A 1997-01-16 1998-01-15 Convertisseur alternatif-continu avec un transformateur piézoélectrique Expired - Lifetime EP0854564B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1780697 1997-01-16
JP1780697 1997-01-16
JP17806/97 1997-01-16

Publications (3)

Publication Number Publication Date
EP0854564A2 true EP0854564A2 (fr) 1998-07-22
EP0854564A3 EP0854564A3 (fr) 1999-09-22
EP0854564B1 EP0854564B1 (fr) 2008-03-19

Family

ID=11953981

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98100639A Expired - Lifetime EP0854564B1 (fr) 1997-01-16 1998-01-15 Convertisseur alternatif-continu avec un transformateur piézoélectrique

Country Status (5)

Country Link
US (1) US5969954A (fr)
EP (1) EP0854564B1 (fr)
KR (1) KR19980070528A (fr)
DE (1) DE69839253T2 (fr)
TW (1) TW356618B (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008565A (en) * 1997-04-18 1999-12-28 Nec Corporation Laminated piezoelectric transformer
WO2001054208A2 (fr) * 2000-01-20 2001-07-26 Koninklijke Philips Electronics N.V. Transformateur piezo-electrique et ensemble comprenant ce transformateur
WO2001091276A1 (fr) * 2000-05-20 2001-11-29 Roediger Josef Bloc d'alimentation miniature
EP1171946A1 (fr) * 1999-03-23 2002-01-16 Advanced Energy Industries, Inc. Systeme informatique alimente par courant continu en mode de commutation de haute frequence
EP1367707A2 (fr) * 1999-07-02 2003-12-03 Advanced Energy Industries, Inc. Système de contrôle de fourniture de puissance à des composants informatiques
WO2017001184A1 (fr) * 2015-06-30 2017-01-05 Danmarks Tekniske Universitet Convertisseur de puissance résonant comprenant une commande de temps mort adaptative
EP3229359A1 (fr) * 2016-04-06 2017-10-11 Neumüller Elektronik GmbH Convertisseur résonance et dispositif de puissance pourvu d'un tel convertisseur

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7269034B2 (en) 1997-01-24 2007-09-11 Synqor, Inc. High efficiency power converter
US6246153B1 (en) * 1998-07-16 2001-06-12 Face International Corp. Positive feedback resonant transducer circuit
JP2000050696A (ja) * 1998-08-03 2000-02-18 Sawafuji Electric Co Ltd 発動発電機用自動電圧調整装置
JP3375893B2 (ja) * 1998-08-28 2003-02-10 長野日本無線株式会社 スイッチング電源用ドライブ回路
JP3061043B2 (ja) * 1998-12-11 2000-07-10 日本電気株式会社 電源回路
DE10002326C2 (de) * 2000-01-20 2003-09-25 Infineon Technologies Ag Schaltnetzteil
US6342753B1 (en) * 2000-09-25 2002-01-29 Rockwell Technologies, Llc Piezoelectric transformer and operating method
US6476542B2 (en) 2000-12-20 2002-11-05 Cts Corporation Piezoelectric transformer with dual-phase input drive
EP1220435A3 (fr) * 2000-12-21 2003-07-09 Alcatel Alimentation à découpage
DE10135629B4 (de) 2001-07-20 2005-04-21 Infineon Technologies Ag Schaltungsanordnung und insbesondere Schaltnetzteil
JP3719178B2 (ja) * 2001-09-13 2005-11-24 ソニー株式会社 水素ガス製造充填装置及び電気化学装置
CN1428758A (zh) * 2001-11-14 2003-07-09 松下电器产业株式会社 压电变压器的驱动电路及驱动方法、背光装置、液晶显示装置
US20040014453A1 (en) * 2002-07-22 2004-01-22 Cashiola James P. Name your price system and process for facilitating online acquisition of telecommunications services
US7653963B2 (en) 2002-11-12 2010-02-02 Black & Decker Inc. AC/DC hand portable wet/dry vacuum having improved portability and convenience
US6894460B2 (en) * 2003-01-09 2005-05-17 The Boeing Company High efficiency passive piezo energy harvesting apparatus
EP2433537A1 (fr) 2003-07-10 2012-03-28 Black & Decker Inc. Aspirateur
KR100631812B1 (ko) 2004-01-07 2006-10-09 제이케이정밀전자 주식회사 강압용 압전변압기 및 이를 이용한 어댑터
JP2006191746A (ja) * 2005-01-06 2006-07-20 Sony Corp スイッチング電源回路
KR100649508B1 (ko) * 2005-02-02 2006-11-27 권오영 하이브리드 전원시스템
US7510150B2 (en) * 2005-09-28 2009-03-31 The Boeing Company Energy recovery apparatus and method
US7463499B2 (en) 2005-10-31 2008-12-09 Avago Technologies General Ip (Singapore) Pte Ltd. AC-DC power converter
US7746677B2 (en) 2006-03-09 2010-06-29 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. AC-DC converter circuit and power supply
KR100887177B1 (ko) * 2007-04-09 2009-03-09 이상범 전기 난로용 전력 공급 장치
ES2308938B1 (es) * 2007-06-20 2010-01-08 Indiba, S.A. "circuito para dispositivos de radiofrecuencia aplicables a los tejidos vivos y dispositivo que lo contiene".
US7973520B2 (en) * 2007-08-01 2011-07-05 Samsung Electronics Co., Ltd. Piezoelectric transformer type high-voltage power apparatus and image forming apparatus
US8549742B2 (en) * 2007-12-19 2013-10-08 Canon Kabushiki Kaisha High-voltage power supply device and image forming apparatus having same
US8008836B2 (en) * 2008-12-23 2011-08-30 Newlighting Electronics Co. Ltd. Piezoelectric phase shifter
JP5317884B2 (ja) * 2009-05-22 2013-10-16 金威貿易有限公司 圧電式電源変換器
TWI422282B (zh) * 2009-07-24 2014-01-01 Midas Wei Trading Co Ltd A lighting device for driving a light emitting diode using an insulated piezoelectric transformer
US8368290B2 (en) 2010-05-18 2013-02-05 Georgia Tech Research Corporation Rectifier-free piezoelectric energy harverster and battery charger
US8587972B2 (en) * 2011-01-21 2013-11-19 Qi Deng Apparatus and system for transformer frequency control
WO2013019905A1 (fr) * 2011-08-01 2013-02-07 Knowles Gareth J Circuits de transformateur piézoélectrique intrinsèques, adaptatifs et autonomes
JP6008521B2 (ja) * 2012-03-09 2016-10-19 キヤノン株式会社 電源装置及び画像形成装置
KR101372019B1 (ko) 2012-12-18 2014-03-25 한국항공우주연구원 압전 변압기 제어 장치 및 방법
US10199950B1 (en) 2013-07-02 2019-02-05 Vlt, Inc. Power distribution architecture with series-connected bus converter
CN106063100B (zh) * 2014-01-06 2019-06-25 皇家飞利浦有限公司 用于在高外部磁场中供应电力的电源和方法
JP7003445B2 (ja) * 2017-05-19 2022-02-04 オムロン株式会社 非接触給電装置
JP6399244B1 (ja) * 2017-06-02 2018-10-03 オムロン株式会社 非接触給電装置及び異常停止方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700936A (en) * 1969-09-30 1972-10-24 Denki Onkyo Co Ltd High voltage generating apparatus
JPS5879778A (ja) * 1981-11-05 1983-05-13 Nec Corp 圧電磁器トランスフイルタ
US4392074A (en) * 1980-09-19 1983-07-05 Siemens Aktiengesellschaft Trigger device and piezo-ignition coupler with galvanic decoupling
DE3300669A1 (de) * 1982-11-30 1984-05-30 LGZ Landis & Gyr Zug AG, Zug Transformatorlose stromversorgungsschaltung
JPS61152165A (ja) * 1984-12-26 1986-07-10 Hitachi Ltd 圧電トランス使用直流高圧発生装置
JPS63200579A (ja) * 1987-02-16 1988-08-18 Ngk Spark Plug Co Ltd 圧電トランス
JPH03285572A (ja) * 1990-03-30 1991-12-16 Nec Corp スイッチング電源回路
JPH05160460A (ja) * 1991-12-05 1993-06-25 Fujitsu Ltd 圧電トランス
US5241236A (en) * 1991-04-02 1993-08-31 Nec Corporation Piezoelectric ceramic transformer being driven with thickness extensional vibration
JPH0847094A (ja) * 1994-07-26 1996-02-16 Nec Corp 圧電磁器トランスとその駆動方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548189A (en) * 1992-03-26 1996-08-20 Linear Technology Corp. Fluorescent-lamp excitation circuit using a piezoelectric acoustic transformer and methods for using same
JP2591423B2 (ja) * 1992-07-17 1997-03-19 日本電気株式会社 電力用圧電トランスコンバータ
JPH06245548A (ja) * 1993-02-22 1994-09-02 Daishinku Co インバータ回路
JP2518527B2 (ja) * 1993-07-20 1996-07-24 日本電気株式会社 圧電トランスコンバ―タ
DE4334592C1 (de) * 1993-10-11 1994-07-21 Siemens Ag Hochfrequenz-Generator
JP2606667B2 (ja) * 1994-07-22 1997-05-07 日本電気株式会社 圧電磁器トランス及びその駆動方法
JP2751842B2 (ja) * 1994-10-05 1998-05-18 日本電気株式会社 圧電トランスの駆動回路および駆動方法
JP2730506B2 (ja) * 1995-02-27 1998-03-25 日本電気株式会社 圧電トランスを用いたdc/dcコンバータ
JP3119154B2 (ja) * 1995-07-06 2000-12-18 日立金属株式会社 圧電トランス及びそれを用いた電力変換装置
JP2778554B2 (ja) * 1995-10-12 1998-07-23 日本電気株式会社 圧電トランス駆動回路

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700936A (en) * 1969-09-30 1972-10-24 Denki Onkyo Co Ltd High voltage generating apparatus
US4392074A (en) * 1980-09-19 1983-07-05 Siemens Aktiengesellschaft Trigger device and piezo-ignition coupler with galvanic decoupling
JPS5879778A (ja) * 1981-11-05 1983-05-13 Nec Corp 圧電磁器トランスフイルタ
DE3300669A1 (de) * 1982-11-30 1984-05-30 LGZ Landis & Gyr Zug AG, Zug Transformatorlose stromversorgungsschaltung
JPS61152165A (ja) * 1984-12-26 1986-07-10 Hitachi Ltd 圧電トランス使用直流高圧発生装置
JPS63200579A (ja) * 1987-02-16 1988-08-18 Ngk Spark Plug Co Ltd 圧電トランス
JPH03285572A (ja) * 1990-03-30 1991-12-16 Nec Corp スイッチング電源回路
US5241236A (en) * 1991-04-02 1993-08-31 Nec Corporation Piezoelectric ceramic transformer being driven with thickness extensional vibration
JPH05160460A (ja) * 1991-12-05 1993-06-25 Fujitsu Ltd 圧電トランス
JPH0847094A (ja) * 1994-07-26 1996-02-16 Nec Corp 圧電磁器トランスとその駆動方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 10, no. 352 (E-458), 27 November 1986 (1986-11-27) & JP 61 152165 A (HITACHI LTD), 10 July 1986 (1986-07-10) *
PATENT ABSTRACTS OF JAPAN vol. 12, no. 486 (E-695), 19 December 1988 (1988-12-19) & JP 63 200579 A (NKG SPARK PLUG) *
PATENT ABSTRACTS OF JAPAN vol. 16, no. 116 (E-1181), 24 March 1992 (1992-03-24) & JP 03 285572 A (NEC CORP.), 16 December 1991 (1991-12-16) *
PATENT ABSTRACTS OF JAPAN vol. 17, no. 559 (E-1445), 7 October 1993 (1993-10-07) & JP 05 160460 A (FUJITSU LTD), 25 June 1993 (1993-06-25) *
PATENT ABSTRACTS OF JAPAN vol. 7, no. 174 (E-190), 2 August 1983 (1983-08-02) & JP 58 079778 A (NIPPON DENKI), 13 May 1983 (1983-05-13) *
PATENT ABSTRACTS OF JAPAN vol. 96, no. 6, 28 June 1996 (1996-06-28) & JP 08 047094 A (NEC CORP), 16 February 1996 (1996-02-16) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008565A (en) * 1997-04-18 1999-12-28 Nec Corporation Laminated piezoelectric transformer
EP1171946A1 (fr) * 1999-03-23 2002-01-16 Advanced Energy Industries, Inc. Systeme informatique alimente par courant continu en mode de commutation de haute frequence
US6961251B2 (en) 1999-03-23 2005-11-01 Advanced Energy Industries, Inc. Waveform independent high frequency power system
EP1171946A4 (fr) * 1999-03-23 2004-07-21 Advanced Energy Ind Inc Systeme informatique alimente par courant continu en mode de commutation de haute frequence
US7110266B1 (en) 1999-07-02 2006-09-19 Advanced Energy Industries, Inc. Multiple element rectification circuit
EP1367707A2 (fr) * 1999-07-02 2003-12-03 Advanced Energy Industries, Inc. Système de contrôle de fourniture de puissance à des composants informatiques
EP1367707A3 (fr) * 1999-07-02 2004-02-25 Advanced Energy Industries, Inc. Système de contrôle de fourniture de puissance à des composants informatiques
WO2001054208A3 (fr) * 2000-01-20 2001-12-27 Koninkl Philips Electronics Nv Transformateur piezo-electrique et ensemble comprenant ce transformateur
WO2001054208A2 (fr) * 2000-01-20 2001-07-26 Koninklijke Philips Electronics N.V. Transformateur piezo-electrique et ensemble comprenant ce transformateur
WO2001091276A1 (fr) * 2000-05-20 2001-11-29 Roediger Josef Bloc d'alimentation miniature
WO2017001184A1 (fr) * 2015-06-30 2017-01-05 Danmarks Tekniske Universitet Convertisseur de puissance résonant comprenant une commande de temps mort adaptative
EP3229359A1 (fr) * 2016-04-06 2017-10-11 Neumüller Elektronik GmbH Convertisseur résonance et dispositif de puissance pourvu d'un tel convertisseur
WO2017174713A1 (fr) * 2016-04-06 2017-10-12 Neumüller Elektronik GmbH Convertisseur et dispositif d'alimentation doté d'un tel convertisseur

Also Published As

Publication number Publication date
EP0854564B1 (fr) 2008-03-19
EP0854564A3 (fr) 1999-09-22
KR19980070528A (ko) 1998-10-26
US5969954A (en) 1999-10-19
TW356618B (en) 1999-04-21
DE69839253T2 (de) 2009-04-30
DE69839253D1 (de) 2008-04-30

Similar Documents

Publication Publication Date Title
US5969954A (en) AC/DC converter with a piezoelectric transformer
KR100241210B1 (ko) 압전변압기 및 그것을 사용한 전력변환장치
US5705879A (en) Discharge tube driving device and piezoelectric transformer therefor
US6549436B1 (en) Integrated magnetic converter circuit and method with improved filtering
EP1234371B1 (fr) Convertisseur d'alimentation electrique commute a transformateur piezo-electrique
JPH10262369A (ja) 圧電トランスを用いたac/dcコンバータ
JP2002017090A (ja) 圧電トランスの駆動方法および駆動装置
JPH0869890A (ja) 積層一体型圧電トランス及びそれを用いた放電管の駆動装置
JP3522218B2 (ja) スイッチング電源
JP3037903B2 (ja) 圧電トランス式電力変換装置及びその駆動方法
JP2001275343A (ja) 圧電トランス、圧電トランスの駆動回路、圧電トランスの駆動方法及び、圧電トランスを用いた冷陰極管駆動装置
JPH10285923A (ja) 電源装置及び電源装置における電圧制御方法
JP6865985B1 (ja) 共振絶縁形dc−dcコンバータ
WO2022153911A1 (fr) Circuit d'alimentation électrique à résonance
JP2000102246A (ja) 圧電トランスを用いたac−dcコンバータ回路
JP2738354B2 (ja) 広入力圧電トランスコンバータ
KR200216665Y1 (ko) 고효율의 스위칭모드 전원공급기
JP2607073Y2 (ja) 直流−直流変換電源回路
JP3580492B2 (ja) 積層型圧電トランス及びそれを用いた電力変換装置
JPH10174436A (ja) 圧電素子駆動回路
JPH09148645A (ja) 圧電トランス式電力変換器
Carazo Piezoelectric converters for DC/DC and AC/DC applications
JP2002281756A (ja) スイッチングコンバータ回路
JPH08340680A (ja) 電力変換装置
JP2000341939A (ja) 圧電トランスコンバータ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 6H 02M 3/28 A, 6H 01L 41/107 B

17P Request for examination filed

Effective date: 19990819

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20061116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69839253

Country of ref document: DE

Date of ref document: 20080430

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090108

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090114

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090113

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100115

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100115