EP0848764B1 - Procede de production electrochimique de sodium et de chlorure d'aluminium - Google Patents

Procede de production electrochimique de sodium et de chlorure d'aluminium Download PDF

Info

Publication number
EP0848764B1
EP0848764B1 EP96930164A EP96930164A EP0848764B1 EP 0848764 B1 EP0848764 B1 EP 0848764B1 EP 96930164 A EP96930164 A EP 96930164A EP 96930164 A EP96930164 A EP 96930164A EP 0848764 B1 EP0848764 B1 EP 0848764B1
Authority
EP
European Patent Office
Prior art keywords
sodium
aluminum
electrolyte
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96930164A
Other languages
German (de)
English (en)
Other versions
EP0848764A1 (fr
Inventor
Hermann Pütter
Günther Huber
Luise Spiske
Hans Stark
Dieter SCHLÄFER
Gerhard Pforr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0848764A1 publication Critical patent/EP0848764A1/fr
Application granted granted Critical
Publication of EP0848764B1 publication Critical patent/EP0848764B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof

Definitions

  • the present invention relates to a new method for electrochemical Manufacture of sodium and aluminum chloride.
  • the invention further relates to one for carrying out this method suitable electrolytic cell and a method for cleaning this cell.
  • Sodium is an important basic inorganic product, for example for the production of sodium amide and sodium alcoholates is used. It becomes technical after the Downs process obtained by electrolysis of molten table salt. This Process has a high energy consumption of over 10 kWh / kg Sodium (Büchner et al., Industrial Inorganic Chemistry, 2nd edition, Verlag Chemie, p. 228 f). Furthermore, the process the serious disadvantage that the electrolysis cells when turned off be destroyed by the solidification of the molten salt.
  • Aluminum chloride is mainly used as a catalyst, e.g. in Friedel-Crafts reactions. The production takes place in to a large extent through direct chlorination of molten aluminum. (Büchner et al., Industrial Inorganic Chemistry, 2nd edition, Verlag Chemie, p. 262). An essential part of the Energy in the form of electrical current for an electrolytic Production of chlorine and aluminum has been wasted free.
  • GB-A 2 056 757 describes a method for lowering the Melting points of alkali metal tetrachloroaluminates by addition of an alkali metal fluoride and the use of such mixtures as an electrolyte.
  • DE-A 37 18 920 relates to coupled electrochemical production an alkali metal and an alkali metal metal halide compound such as sodium tetrachloroaluminate. That so next to that However, alkali metal co-product is for production unattractive on a technical scale.
  • the formation of sodium tetrachloroaluminate from sodium chloride and aluminum chloride automatically follows the formation of the aluminum chloride on. According to the teaching of Scripture, a concentration of Aluminum chloride can be avoided to damage the separator between anode and cathode space and an increase in To avoid cell tension.
  • the object was to provide a method which more energy-efficient production of sodium allowed than that Downs procedure.
  • a technical Material that can be used on a scale. Both process products should occur in such high purity that further complex Cleaning steps are not necessary.
  • Another aspect of the task was to find a procedure that would allow the Multiple electrolysis processes in the same electrolytic cell to be able to perform. It was also part of the job, one for suitable electrolysis cell. Farther should use a procedure to purify the reaction Electrolysis cell can be found.
  • an electrochemical manufacturing method has been developed found by sodium and aluminum chloride, which is characterized is that in an electrolytic cell with aluminum as Anode and sodium as cathode by a sodium ion conductive solid electrolytes are separated from one another molten, mainly from sodium tetrachloroaluminate existing electrolytes in the anode compartment are electrolyzed, resulting Aluminum chloride evaporates from the electrolytic cell and Withdrawing sodium from the cathode compartment.
  • the process according to the invention is carried out in an electrolysis cell an aluminum anode operated.
  • This is a Sacrificial anode, which dissolves during the reaction, so that in the continuous operation aluminum must be added.
  • Aluminum can be in the form of plates, but preferably in the form of small pieces of metal that fill up with large ones Arrange gaps between the individual pieces like chips, Semolina or shredder parts.
  • the particle size can be in general 0.01 to 10 mm, preferably 0.1 to 2 mm. Commercially available Aluminum with a purity of approx. 99.3% or Aluminum scrap with a purity of 95% is considered.
  • the anode-side power supply is preferably via aluminum rods, the continuous operation of the cell from the outside without interruption of the procedure can be replaced.
  • the cathode is made of sodium, which at temperatures that necessary to liquefy the electrolyte, liquid is present. At the beginning of the electrolysis, sodium becomes advantageous brought liquid into the cathode compartment. Technically easier The sodium formed in the process according to the invention can be separated from the cathode compartment by an overflow.
  • the cathodic power supply can e.g. done over aluminum rods.
  • the anode and cathode compartments are through a sodium ion conductive solid electrolytes separated from each other.
  • ceramic materials such as NASICON® come into consideration Composition is given in EP-A 553 400.
  • sodium ions conductive glasses are suitable as well as zeolites and feldspar.
  • ⁇ "aluminum oxide is preferred.
  • the electrolyte for starting the reaction is preferably through Melt stoichiometric amounts of sodium chloride and Made of aluminum chloride. During the reaction changes the amount of electrolyte in continuous operation is not. While the reaction, aluminum chloride is evaporated from the anode compartment. The anode compartment is therefore above the electrolyte surface a derivative, e.g. in the form of a tube, connected by the the aluminum chloride can escape.
  • a derivative e.g. in the form of a tube, connected by the the aluminum chloride can escape.
  • the reaction temperature is generally at the liquefaction temperature of the electrolyte as the lower limit (approx. 150 ° C.) and 400 ° C., preferably 250 to 350 ° C.
  • the electrical potential is generally 2 to 5 V, the cathodic current density 1 to 10 kA / m 2 .
  • the electrolyte can be pumped around during the reaction. This can be done by a pump, but blowing is preferred an inert gas such as argon. This gas feed supports this Evaporation of the aluminum chloride from the anode compartment.
  • the electrolysis cell the cell, which can be heated from the outside, analogous to a tube bundle circulation evaporator built up, i.e. a closed at the top Cylinder made of ⁇ "aluminum oxide, which is filled with sodium, contains an overflow, and via an aluminum rod to one Voltage source is switched as a cathode, protrudes into the anode compartment with solid aluminum parts and a liquid, essentially containing sodium tetrachloroaluminate Electrolyte is provided. The is attached to an aluminum rod Anode connected to a voltage source. A circulation pipe, in the inert gas is blown to circulate the electrolyte. Aluminum chloride is discharged through the discharge.
  • the cathode can be connected in parallel or a large anode compartment with several cathodes be provided, the cathode from both above and from can protrude into the anode compartment below.
  • the devices for dosing of sodium chloride and preferably aluminum powder are advantageous so arranged that the solids are directly in the electrolyte fall, i.e. they are preferably directly above the anode compartment arranged.
  • the problematic handling of the solidified electrolyte melt with residues of metallic sodium can be eliminated if the melt is gassed with SO 2 during cooling.
  • SO 2 is absorbed, the melt remains doughy between 150 and approx. 70 ° C, and it becomes liquid at lower temperatures. This means that it can be drained from the cell without any problems, which greatly simplifies repairs.
  • the liquid melt containing SO 2 can be filtered, which is particularly advantageous for the separation of potassium compounds.
  • the liquid SO 2 -containing melt can then be filled back into the electrolysis cell, where the SO 2 can be driven off while heating to about 165 ° C. in the presence of an excess of sodium chloride.
  • the solid electrolyte can be changed by periodically reversing the polarity of the cell clean from cationic contaminants such as potassium ions.
  • the electrochemical method for coupling production according to the invention of sodium and aluminum chloride only requires about 50% of that Amount of energy required to produce sodium using the Downs process is required.
  • the operating temperatures are significantly below those of the mentioned method (approx. 650 ° C), what the selection and Processing of the reaction cells considerably simplified. The Parking the electrolysis cells is possible without damage.
  • the products obtained according to the invention are highly pure.
  • Aluminum chloride falls in contrast to most commercial products colorless, which makes it particularly attractive for applications, in which the color of the end product is an essential feature.
  • the sodium yield is practically quantitative, the yield of aluminum chloride is well over 90%.
  • the solid electrolyte could also be damaged after long-term tests cannot be determined.
  • the process can also be used for the production of sodium and other metal halides which are volatile under the reaction conditions, for example SiCl 4 , GeCl 4 , TiCl 4 .
  • the anode and electrolytes must each have the corresponding metal.
  • the electrolysis cell used to carry out the process consisted of a standing tube (with an inner diameter of 50 mm and a length of 400 mm) made of borosilicate glass, in which the anode current supply in the form of a hollow cylinder made of aluminum was tightly clamped.
  • the sodium ion-conducting solid electrolyte made of ⁇ "aluminum oxide (25 mm outer diameter, 210 mm length) was flanged at the lower end together with the cathode power supply.
  • the upper part of the tube was provided with connectors which were used for filling with electrolyte, aluminum and sodium chloride and for discharge the AlCl 3 vapors were used.
  • the cell was heated with hot air.
  • the anode was introduced in the form of a bed of aluminum shredder.
  • the cathode was liquid sodium, which was introduced at the start of the reaction.
  • the sodium formed in the reaction ran on in free overflow
  • the AlCl 3 vapors were precipitated in an air-cooled desublimator, and the external circulation with inert gas supply was used to circulate the melt.
  • the electrolytic cell was heated to 280 ° C.
  • 85 g of sodium were melted at 150 ° C. and added to the cathode compartment until it was filled to the overflow.
  • 485 g of AlCl 3 and 215 g of NaCl were introduced as a solid and stirred under argon.
  • the mixture formed a homogeneous liquid phase which was filled into the anode compartment.
  • 150 g of aluminum with a grain size of 0.4 to 1.5 mm were introduced into the anode compartment.
  • the liquid electrolyte was kept in circulation by means of argon gas at the bottom of the circulation line. A current of 30 A was impressed, the cell voltage was determined to be 3.5 V.
  • the current density was 2200 A / m 2 with a surface area of 137 cm 2 (at 30 A). 15 minutes after switching on the power, the rise of AlCl 3 vapors was observed for the first time, which was reflected in the de-sublimator. At intervals of 15 minutes, 16.4 g of NaCl were metered in as a solid. The AlCl 3 development stopped immediately after the NaCl addition for a few minutes, at the same time a reduction in the cell voltage was observed. The cell voltage varied between 3.5 and 3.8 V in the NaCl dosing interval. The electrolysis current was reversed for 90 seconds every 30 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un procédé de production électrochimique de sodium et de chlorure d'aluminium. Dans une cellule d'électrolyse dotée d'une anode d'aluminium et d'une cathode de sodium, qui sont séparées par un électrolyte solide conduisant les ions de sodium, on électrolyse dans la zone de l'anode un électrolyte fondu contenant principalement du tétrachloroaluminate de sodium. Le chlorure d'aluminium ainsi produit est évaporé à l'extérieur de la cellule d'électrolyse et le sodium est retiré de la zone de la cathode.

Claims (10)

  1. Procédé de production électrochimique de sodium et de chlorure d'aluminium, caractérisé en ce que, dans une cellule d'électrolyse avec de l'aluminium comme anode et du sodium comme cathode, qui sont mutuellement séparés par un électrolyte solide conducteur d'ions sodium, on électrolyse dans la chambre anodique un électrolyte fondu, contenant essentiellement du tétrachloroaluminate de sodium, on évapore du chlorure d'aluminium obtenu à partir de la cellule d'électrolyse et on soutire de la chambre cathodique du sodium.
  2. Procédé suivant la revendication 1, caractérisé en ce qu'on effectue l'électrolyse à 250 jusqu'à 350°C.
  3. Procédé suivant l'une des revendications 1 et 2, caractérisé en ce que, comme électrolyte solide conducteur d'ions sodium, on utilise de l'oxyde d'aluminium β".
  4. Procédé suivant l'une des revendications 1 à 3, caractérisé en ce qu'on pompe en circulation l'électrolyte liquide par injection d'un gaz inerte dans la chambre anodique.
  5. Procédé suivant l'une des revendications 1 à 4, caractérisé en ce qu'on met le procédé en service continu par addition d'aluminium et de chlorure de sodium d'une manière correspondant à l'évacuation de sodium et de chlorure d'aluminium.
  6. Procédé suivant l'une des revendications 1 à 5, caractérisé en ce qu'on réalise la chambre cathodique sous une forme cylindrique et en ce qu'on soutire du sodium de celle-ci par un trop-plein, d'une manière correspondant à la quantité formée pendant l'électrolyse.
  7. Procédé suivant l'une des revendications à 6, caractérisé en ce que des impuretés de fer dans l'électrolyte sont éliminées de celui-ci par séparation cathodique à partir d'un courant latéral de l'électrolyte liquide sur des électrodes de fer.
  8. Procédé d'épuration d'une cellule d'électrolyse présentant de l'aluminium comme anode et du sodium comme cathode, qui sont séparés mutuellement par un électrolyte solide conducteur d'ions sodium, et un électrolyte dans la chambre anodique qui est constitué essentiellement de tétrachloroaluminate de sodium, caractérisé en ce qu'on soumet l'électrolyte liquide à un traitement par du gaz SO2 dans la chambre anodique et on décharge le liquide ainsi obtenu hors de la chambre anodique.
  9. Cellule d'électrolyse pour mettre en oeuvre un procédé suivant la revendication 1, qui comporte une anode d'aluminium, une cathode de sodium, un électrolyte solide conducteur d'ions sodium pour séparer la chambre anodique et la chambre cathodique, un électrolyte liquide, contenant essentiellement du tétrachloroaluminate de sodium, et un dispositif pour l'évacuation de chlorure d'aluminium libéré pendant l'électrolyse.
  10. Cellule d'électrolyse suivant la revendication 9, qui présente un dispositif de dosage de chlorure de sodium et de grenaille d'aluminium dans l'électrolyte.
EP96930164A 1995-09-08 1996-09-04 Procede de production electrochimique de sodium et de chlorure d'aluminium Expired - Lifetime EP0848764B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19533214A DE19533214A1 (de) 1995-09-08 1995-09-08 Verfahren zur elektrochemischen Herstellung von Natrium und Aluminiumchlorid
DE19533214 1995-09-08
PCT/EP1996/003892 WO1997009467A1 (fr) 1995-09-08 1996-09-04 Procede de production electrochimique de sodium et de chlorure d'aluminium

Publications (2)

Publication Number Publication Date
EP0848764A1 EP0848764A1 (fr) 1998-06-24
EP0848764B1 true EP0848764B1 (fr) 1999-04-14

Family

ID=7771607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96930164A Expired - Lifetime EP0848764B1 (fr) 1995-09-08 1996-09-04 Procede de production electrochimique de sodium et de chlorure d'aluminium

Country Status (10)

Country Link
US (2) US6235183B1 (fr)
EP (1) EP0848764B1 (fr)
JP (1) JP3892041B2 (fr)
KR (1) KR100463017B1 (fr)
CN (1) CN1066209C (fr)
CA (1) CA2228561C (fr)
DE (2) DE19533214A1 (fr)
ES (1) ES2129988T3 (fr)
WO (1) WO1997009467A1 (fr)
ZA (1) ZA967536B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2810996A1 (fr) * 2000-03-28 2002-01-04 Du Pont Procede d'electrolyse

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2844044A1 (fr) * 2011-08-19 2013-02-28 Jernkontoret Procede de recuperation de metaux et appareil d'electrolyse pour mettre en oeuvre ce procede
EP2800726B1 (fr) * 2012-01-04 2018-10-17 Keki Hormusji Gharda Procédé de fabrication d'aluminium à partir du bauxite ou de son résidu
EP2870277B1 (fr) * 2012-07-03 2021-04-14 Enlighten Innovations Inc. Appareil et procédé de production de métal dans une cellule électrolytique de nasicon
JP2015529745A (ja) 2012-07-27 2015-10-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se アルカリ金属の製造方法
CN104282955A (zh) * 2013-07-09 2015-01-14 中国科学院上海硅酸盐研究所 制备可熔融电解质的方法及其装置
US10704152B2 (en) * 2018-01-11 2020-07-07 Consolidated Nuclear Security, LLC Methods and systems for producing a metal chloride or the like
CN110699707A (zh) * 2019-11-11 2020-01-17 曹大平 常温电解铝工艺
US11545723B2 (en) 2019-11-26 2023-01-03 National Technology & Engineering Solutions Of Sandia, Llc Sodium electrochemical interfaces with NaSICON-type ceramics

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1200103A (en) * 1967-03-31 1970-07-29 Ici Ltd Manufacture of alkali metals
US3811916A (en) * 1971-09-07 1974-05-21 Aluminum Co Of America Method for carbon impregnation of alumina
US3743263A (en) * 1971-12-27 1973-07-03 Union Carbide Corp Apparatus for refining molten aluminum
US4203819A (en) * 1978-01-26 1980-05-20 E. I. Du Pont De Nemours And Company Electrolytic cell with flow detection means
GB8613798D0 (en) * 1986-06-06 1986-07-09 Lilliwyte Sa Electrolyte
US4865695A (en) * 1988-09-12 1989-09-12 Westinghouse Electric Corp. Preparation of complexes of zirconium and hafnium tetrachlorides with phosphorus oxychloride
US5336378A (en) * 1989-02-15 1994-08-09 Japan Energy Corporation Method and apparatus for producing a high-purity titanium
US5147618A (en) * 1991-05-21 1992-09-15 Freeport-Mcmoran Inc. Process for recovery of gold from refractory gold ores using sulfurous acid as the leaching agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2810996A1 (fr) * 2000-03-28 2002-01-04 Du Pont Procede d'electrolyse

Also Published As

Publication number Publication date
DE59601679D1 (de) 1999-05-20
DE19533214A1 (de) 1997-03-13
JP3892041B2 (ja) 2007-03-14
KR19990044498A (ko) 1999-06-25
CA2228561C (fr) 2007-06-12
CA2228561A1 (fr) 1997-03-13
CN1066209C (zh) 2001-05-23
ES2129988T3 (es) 1999-06-16
US6402910B1 (en) 2002-06-11
WO1997009467A1 (fr) 1997-03-13
US6235183B1 (en) 2001-05-22
CN1196098A (zh) 1998-10-14
EP0848764A1 (fr) 1998-06-24
JPH11512149A (ja) 1999-10-19
ZA967536B (en) 1998-03-06
KR100463017B1 (ko) 2005-02-28

Similar Documents

Publication Publication Date Title
DE975587C (de) Verfahren und Anordnung zur Herstellung von Titan in einer Elektrolysezelle
DE1101773B (de) Verfahren zur kontinuierlichen Gewinnung von reinem duktilem, grobkristallinem Titan durch Schmelzflusselektrolyse
EP1041177B1 (fr) Procédé de production électrochimique de lithium
EP0848764B1 (fr) Procede de production electrochimique de sodium et de chlorure d'aluminium
DE2805374A1 (de) Verfahren zur gewinnung von aluminium durch schmelzflusselektrolyse
DE2251262C2 (de) Verfahren zur kontinuierlichen Aluminiumherstellung durch Elektrolyse von Aluminiumchlorid
DE112021004433T5 (de) Herstellungsverfahren von recyceltem Aluminium, Herstellungsvorrichtung, Herstellungssystem, recyceltes Aluminium und Aluminiumwerkstück
DE600555C (de) Verfahren zum elektrolytischen Raffinieren von Aluminium
EP1059366B1 (fr) Cellule d'électrolyse pour la production d'un métal alcalin
WO2014016247A1 (fr) Procédé de préparation d'un métal alcalin
DE3000210A1 (de) Elektrolytisches reinigen von metallen
CH493637A (de) Verfahren zur Herstellung von Aluminium oder Aluminium-Legierungen
DE2725213C3 (fr)
DE1152550B (de) Verfahren und Zelle zur Herstellung von Aluminium hoher Reinheit durch Schmelzflusselektrolyse
AT242965B (de) Verfahren zur Raffination unreinen Siliziums bzw. Germaniums
US20140027300A1 (en) Process for preparing an alkali metal
AT203225B (de) Halbkontinuierliches elektrolytisches Verfahren zur Herstellung von hochschmelzenden, reaktionsfähigen Metallen der IV., V. Gruppe des periodischen Systems
DE4004575C2 (fr)
DE1139985B (de) Verfahren zur kontinuierlichen Herstellung von reinem, duktilem Titan durch Schmelzflusselektrolyse
DE477425C (de) Verfahren zur elektrolytischen Gewinnung von reinem Aluminium aus Rohaluminium, Legierungen und sonstigem Aluminiumgut
DE2721038A1 (de) Verfahren zur elektrolytischen herstellung von aluminium
DE1045667B (de) Verfahren zur Herstellung von Titan durch Schmelzflusselektrolyse
DE1205709B (de) Verfahren und Vorrichtung zur kontinuierlichen unmittelbaren Erzeugung von Reinaluminium durch Schmelzflusselektrolyse
DE1072393B (de) Verfahren zur Herstellung von Titan durch Schmelzflußelektrolyse
DE1533460A1 (de) Verfahren zur Herstellung von reinem Mangan

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980804

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59601679

Country of ref document: DE

Date of ref document: 19990520

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990514

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2129988

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080903

Year of fee payment: 13

Ref country code: IT

Payment date: 20080926

Year of fee payment: 13

Ref country code: FR

Payment date: 20080915

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080910

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080919

Year of fee payment: 13

Ref country code: CH

Payment date: 20081002

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081021

Year of fee payment: 13

Ref country code: BE

Payment date: 20080922

Year of fee payment: 13

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20090930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090904

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090904

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090905