EP0822608B1 - Electrolyte solide polymère et pile rechargeable au lithium contenant cet électrolyte - Google Patents

Electrolyte solide polymère et pile rechargeable au lithium contenant cet électrolyte Download PDF

Info

Publication number
EP0822608B1
EP0822608B1 EP97305697A EP97305697A EP0822608B1 EP 0822608 B1 EP0822608 B1 EP 0822608B1 EP 97305697 A EP97305697 A EP 97305697A EP 97305697 A EP97305697 A EP 97305697A EP 0822608 B1 EP0822608 B1 EP 0822608B1
Authority
EP
European Patent Office
Prior art keywords
solid electrolyte
polymeric solid
solvent
electrolyte
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97305697A
Other languages
German (de)
English (en)
Other versions
EP0822608A3 (fr
EP0822608A2 (fr
Inventor
Doo-Yeon Lee
Sang-Hyun Sung
Yasumasa Hirai
Seok-Gwang Doo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1019960046314A external-priority patent/KR19980027516A/ko
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of EP0822608A2 publication Critical patent/EP0822608A2/fr
Publication of EP0822608A3 publication Critical patent/EP0822608A3/fr
Application granted granted Critical
Publication of EP0822608B1 publication Critical patent/EP0822608B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polymeric solid electrolyte and a lithium secondary cell adopting the same, and more particularly, to a polymeric solid electrolyte having excellent ion conductivity, which can be processed easily due to its excellent mechanical property.
  • the invention further relates to a lithium secondary cell adopting such a polymeric solid electrolyte.
  • a secondary cell having high energy density, used as a driving source thereof is required.
  • secondary cells including the nickel-cadmium cell, the nickel-hydrogen cell, the lithium ion cell and so on.
  • the lithium ion cell has been the focus as a next generation power source due to its long lifetime and high capacity.
  • the Sony Energy Tech. Co. developed a lithium-carbon secondary cell having lithium anode obtained from lithium-cobalt oxide and carbon cathode.
  • the Moly Energy Co. commercialized a lithium-carbon secondary cell having lithium anode obtained from lithium nickel oxide and carbon cathode.
  • lithium cobalt oxide LiCoO 2
  • lithium nickel oxide LiNiO 2
  • lithium manganese oxide LiMn 2 O 4
  • cathode active material metallic lithium, lithium alloy or carbon is used.
  • liquid or solid electrolyte is used as an electrolyte.
  • many problems related to stability e.g., breakage of cell caused by evaporation, occur.
  • usage of a solid electrolyte instead of the liquid electrolyte has been proposed.
  • solid electrolyte does not leak electrolyte solution and is easily processed. Thus, research into the solid electrolyte has been actively performed. Interest in a polymeric solid electrolyte is particularly great.
  • the polymeric solid electrolyte is classified into a solid type without an organic electrolyte solution and a gel type including organic electrolyte solution.
  • a crosslinked polyether substance is included in the solid type.
  • the solid type electrolyte has a conductivity of about 10 -4 S/cm. However, in order to apply the electrolyte to a cell, a conductivity of 10 -3 S/cm or more is required. Thus, it is difficult in practice to use the solid type electrolyte due to its insufficient conductivity and poor mechanical property.
  • the gel type solid electrolyte is being focused as a material of the secondary cell, having high possibility to be practically used, due to its conductivity of 10 -3 S/cm or more and sufficient mechanical intensity.
  • Japanese Laid-open Patent Publication No. 4-306560 discloses a polymeric solid electrolyte including a copolymer of acrylonitrile and methyl acrylate or a copolymer of acrylonitrile and methyl methacrylate, support electrolyte salt and solvent such as propylene carbonate.
  • this kind of electrolyte has the following problems.
  • Japanese Laid-open Patent Publication No. 3-207752 discloses a polymeric solid electrolyte manufactured by irradiating ultraviolet rays onto a liquid composition including polyethylene glycol and/or dimethacrylate, support electrolyte salt and solvent.
  • the electrolyte has excellent plasticity and poor conductivity of 10 -4 S/cm or less, so that it is difficult to apply the electrolyte to a cell.
  • U.S. Patent No. 5,463,179 introduces a rigid functional group such as an alkyl group in a polymer matrix, resulting in a stable three-dimensional space within the polymer matrix.
  • a rigid functional group such as an alkyl group in a polymer matrix
  • the processing property thereof is not suitable even if the conductivity is remarkably increased.
  • a polymeric solid electrolyte which comprises a polymer matrix composed of a copolymer of polymerizable monomer represented by formula (1) and cross-linking agent represented by the formula (2).
  • R 1 is hydrogen or a methyl group
  • R 2 and R 3 are each independently selected from hydrogen, C 1 ⁇ C 6 alkyl group,-(R)N(R') 2 and -(R")OH
  • R 4 and R 5 are independently hydrogen or a methyl group
  • n is an integer of from 3 to 30, wherein R, R' and R" are C 1 ⁇ C 6 alkyl groups.
  • a lithium secondary cell adopting the polymeric solid electrolyte, providing improvement in the operating voltage, lifetime and energy density.
  • the solvent includes a non-aqueous solvent with high dielectric constant or the non-aqueous solvent (first solvent) and a second solvent having an amide group.
  • a polymeric solid electrolyte according to the present invention comprises a polymer matrix, a polymerization initiator and an electrolyte solution.
  • the polymer matrix is composed of a polymer formed by the copolymerization between a polymerizable monomer of formula (1) and a cross-linking agent of fomula (2).
  • the content of the polymerizable monomer is 10-15wt%, and the content of the cross-linking agent is 5-15wt%, based on the weight of the polymeric solid electrolyte.
  • a mixing ratio of the polymerizable monomer and the cross-linking agent is preferably 1:9 ⁇ 9:1 based on weight, which results in advantageous mechanical properties and conductivity.
  • the content of the polymerization initiator is 0.5 ⁇ 1.5wt%, and the content of the electrolyte solution is 68.5 ⁇ 84.5wt%, based on the weight of the polymeric solid electrolyte.
  • the electrolyte solution is composed of a solvent and an inorganic salt, and the content of the inorganic salt is 6 ⁇ 17wt% based on the total weight of the electrolyte solution.
  • the solvent a non-aqueous solvent is used independently, or a mixture of the non-aqueous solvent and a solvent containing an amide group is used.
  • Examples of the polymerizable monomer of formula (1) are acrylamide, N,N-dimethylacryl amide, N,N-diethylacrylamide, N-isopropylacrylamide, N,N-dimethylaminopropylacrylamide, and acryloyl morpholine. Among these, N-isopropylacryl amide and acryloyl morpholine are preferred.
  • cross-linking agent of formula (2) examples include polyethyleneglycol diacrylate and polyethyleneglycol dimethacrylate, wherein the number of the repeating unit of oxyethylene may be 1 ⁇ 30, preferably, 3 ⁇ 30.
  • n is 1 or 2
  • the plasticity slightly decreases.
  • the solvent of the electrolyte solution is a non-aqueous solvent, particulaly, capable of being dissociated due to its high dielectric constant and polarity.
  • a mixture of the non-aqueous solvent (first solvent) and a second solvent capable of being contained within a matrix due to its excellent affinity to the polymer matrix may be used.
  • the solvent is included so as to maintain the polymeric solid electrolyte in a gel state.
  • the content of the electrolyte solution includes the inorganic salt and the solvent is 68.5-84.5wt% based on the weight of the polymeric solid electrolyte.
  • the first solvent a solvent showing no phase separating phenomenon when mixed with the compound of formula (1) and (2) is preferred. Particularly, it is preferable to select one from propylene carbonate, ethylene carbonate, ⁇ -butyrolactone, 1,3-dioxolane, dimethoxyethane, dimethyl carbonate, diethyl carbonate, tetrahydrofuran (THF), dimethylsulfoxide and polyethyleneglycol dimethylether.
  • the second solvent a solvent having an amide group as in the polymerizable monomer of formula (1) is used.
  • the second solvent includes N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dimethylformamide and N,N-diethylformamide.
  • the electrolyte solution is evenly distributed within the network structure of the polymer matrix and viscosity of the electrolyte solution is lowered, improving the ion conductivity of a support electrolyte salt being dissolved within the solvent.
  • a mixing ratio of the first solvent and the second solvent is 1:3-3:1 based on volume, more preferably, 1:1 based on volume. If the mixing ratio of the second solvent with respect to the first solvent is above this range, the mechanical strength of the electrolyte is markedly decreased, so that the electrolyte is fragile during the cell assembly. Meanwhile, if the mixing ratio thereof is below the range, the ion conductivity of the electrolyte decreases and the electrolyte hardens.
  • an ionic lithium salt is selected from lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium trifluoromethansulfonate (LiCF 3 SO 3 ) and lithium bistrifluoromethansulfonylamide (LiN(CF 3 SO 2 ) 2 ).
  • the content of the ionic inorganic salt is 6 ⁇ 17wt.% based on the weight of the electrolyte solution.
  • the contentration of the ionic inorganic salt with respect to the solvent is 0.5 ⁇ 1.5M.
  • the concentration of the ionic inorganic salt exceeds 1.5M, mobility of the lithium ions is decreased and the ion conductivity is sharply decreased.
  • the concentration of the ionic inorganic salt is less than 0.5M, the number of ions participating in the movement of the lithium ions is decreased, thereby decreasing the ion conductivity.
  • the polymeric solid electrolyte according to the present invention is obtained through the following steps.
  • a polymerizable monomer having an amide group as a side chain, and polyethyleneglycol diacrylate or dimethacrylate are mixed with a weight ratio of 1:9 ⁇ 9:1, and then an ionic inorganic salt and a solvent are added to the mixture to produce a polymeric solid electrolyte composition.
  • the polymeric electrolyte composition is coated on a support such as aluminum thin film and mylar film using a doctor blade or a bar coater, and then polymerization is performed to complete a polymeric solid electrolyte according to the present invention.
  • the polymerization initiator includes a photopolymerization or thermalpolymerization initiator.
  • a photopolymerization initiator there are 2-hydroxy-2-methyl-1-phenylpropane, 1-hydroxycyclohexylphenylketone, 1-(4-isoprophlphenyl)-2-hydroxy-2-methylpropane), benzyldimethylketal, benzoin, benzoinethylether.
  • the thermalpolymerization initiator there are azobisisobutyronitrile and benzoyl peroxide.
  • one active material for the lithium cathode selected from lithium manganese oxide, lithium nickel oxide and lithium cobalt oxide, and a conductive agent are added to the composition for the polymeric solid electrolyte including the polymerizable monomer of the formula (1), the cross-linking agent of the formula (2), the polymerization initiator, the electrolyte solution containing the inorganic salt and the solvent, and then mixed well to form a reaction mixture.
  • the heating is performed to form a composite cathode layer.
  • a mixture of carbon powder and the composition for the polymeric solid electrolyte is coated on a anode current collector and then heated to form a composite anode layer.
  • the overlapped layers are combined by a thermal process or applying a predetermined pressure, thereby completing a lithium secondary cell of the present invention.
  • N-isopropylacryl amide and polyethyleneglycol dimethacrylate were mixed with a weight ratio of 3:1, and then propylene carbonate including 1M LiBF 4 and benzoinethylether were added to the mixture, resulting in a polymeric electrolyte composition.
  • propylene carbonate including 1M LiBF 4 and benzoinethylether were added to the mixture, resulting in a polymeric electrolyte composition.
  • the substrate was subjected to ultraviolet rays for 30 minutes to obtain a gel type polymeric solid electrolyte.
  • a gel type polymeric solid electrolyte was obtained by the same method as that of Example 1, except N-acryloyl morpholine was used instead of N-isopropylacryl amide.
  • a gel type polymeric solid electrolyte was obtained by the same method as that of Example 1, except ⁇ -butyrolactone was used instead of propylene carbonate.
  • Ethylene carbonate containing 1M LiPF 6 and N,N-dimethylacetamide were mixed with 1:1 volumetric ratio to prepare an electrolyte solution.
  • N-isopropylacrylamide and polyethyleneglycol dimethacrylate were added to the electrolyte solution with a weight ratio of 3:1, and then benzoylethylether was mixed thereinto.
  • the above composition was coated on a glass substrate and then the resultant was subjected to ultraviolet rays for about 30 minutes to be polymerized, resulting in a gel type polymeric solid electrolyte.
  • a gel type polymeric solid electrolyte was produced by the same method as that of Example 4 except N,N-dimethylformamide was used instead of N, N-dimethylacetamide.
  • a gel type polymeric solid electrolyte was produced by the same method as that of Example 4 except N,N-diethylacetamide was used instead of N, N-dimethylacetamide.
  • a gel type polymeric solid electrolyte was produced by the same method as that of Example 4 except N,N-diethylformamide was used instead of N, N-dimethylacetamide.
  • a gel type polymeric solid electrolyte was produced by the same method as that of Example 4 except the concentration of LiPF 6 was 0.5M.
  • a gel type polymeric solid electrolyte was produced by the same method as that of Example 4 except the concentration of LiPF 6 was 1.0M.
  • a gel type polymeric solid electrolyte was produced by the same method as that of Example 4 except the concentration of LiPF 6 was 1.5M.
  • a gel type polymeric solid electrolyte was produced by the same method as that of Example 4 except ethylene carbonate and N,N-dimethylacetamide were mixed with a volumetric ratio of 1:3.
  • a gel type polymeric solid electrolyte was produced by the same method as that of Example 4 except ethylene carbonate and N,N-dimethylacetamide was mixed with a volumetric ratio of 3:1.
  • a gel type polymeric solid electrolyte was produced by the same method as that of Example 4 except propylene carbonate was used instead of ethylene carbonate.
  • a gel type polymeric solid electrolyte was produced by the same method as that of Example 4 except 1M LiBF 4 was used instead of 1M LiPF 6 .
  • a gel type film having a diameter of 13mm was prepared from respective polymeric solid electrolytes obtained through Examples 1 to 14. After putting the film between two stainless steel disks, the ion conductivities were measured using an impedance analyzer adopting an alternating current impedance method.
  • a gel type film was wound around a stainless steel rod having a diameter of 5mm. Then, the film was unwound from the rod. This process was repeated about 10 times, and then the appearance of the film was visually checked.
  • the visual appearance of the film was evaluated into one of three levels: excellent, good or poor, wherein “excellent” represents a state in which no defects are visually detected in the gel type film, "good” represents a state in which very trivial defects are detected, which would not have an adverse effect in usage, and "poor” represents a state in which defects are visually detected.
  • a filter paper was attached to the gel type film for a predetermined time. Then, it was observed whether the electrolyte solution leaks or not.
  • Example 1 As shown in Table 1, the ion conductivities of the polymeric solid electrolyte according to Examples 1-14 were improved. Also, flexibility of the electrolytes manufactured in Examples 1-11 and 13-14 was good. However, in the case of Example 12, the flexibility of the electrolyte was decreased due to the formation of a hard polymer gel.
  • the polymeric solid electrolyte according to the present invention provides the following effects: 1) the organic electrolyte solution hardly leaks from the electrolyte; 2) the electrolyte can be easily processed due to its excellent mechanical properties such as flexibility and plasticity; 3) the electrolyte can be applied to a lithium secondary cell requiring excellent ion conductivity due to its high conductivity of 10 -3 S/cm or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Primary Cells (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Claims (17)

  1. Electrolyte solide polymère comprenant une matrice polymère composée d'un copolymère de monomère polymérisable représenté par la formule (1) et d'un agent de réticulation représenté par la formule (2).
    un amorceur de polymérisation:
    une solution d'électrolyte contenant un sel inorganique et un solvant:
    Figure 00250001
    Figure 00250002
    dans lesquelles R1 est un atome d'hydrogène ou un groupe méthyle, et R2 et R3 sont, indépendamment l'un de l'autre, choisis parmi un atome d'hydrogène, un groupe alkyle en C1 à C6, -(R)N(R')2 et -(R'')OH, et R4 et R5 sont, indépendamment l'un de l'autre, un atome d'hydrogène ou un groupe méthyle, n est un nombre entier de 3 à 30, dans lequel R, R' et R'' sont des groupes alkyle en C1 à C6.
  2. Electrolyte solide polymère selon la revendication 1, dans lequel un rapport de mélange du monomère polymérisable représenté par la formule (1) et d'un agent de réticulation représenté par la formule (2) est de 1:9 à 9:1 en poids.
  3. Electrolyte solide polymère selon la revendication 1 ou 2, dans lequel le monomère polymérisable représenté par la formule (1) est au moins un monomère choisi parmi l'acrylamide, le N,N-diméthylacrylamide, le N,N-diéthylacrylamide, le N-isopropylacrylamide, le N,N-diméthylaminopropylacrylamide et l'acryloylmorpholine.
  4. Electrolyte solide polymère selon- l'une quelconque des revendications 1 à 3, dans lequel l'agent de réticulation est le diacrylate de polyéthylèneglycol ou le diméthacrylate de polyéthylèneglycol.
  5. Electrolyte solide polymère selon l'une quelconque des revendications 1 à 4, dans lequel le solvant est un solvant non aqueux.
  6. Electrolyte solide polymère selon l'une quelconque des revendications 1 à 4, dans lequel le solvant est un mélange de solvant non aqueux et d'un solvant ayant un groupe amide.
  7. Electrolyte solide polymère selon la revendication 5 ou 6, dans lequel le solvant non aqueux est au moins un solvant choisi parmi le carbonate de propylène, le carbonate d'éthylène, la γ-butyrolacétone, le 1,3-dioxolane, le diméthoxyéthane, le carbonate de diméthyle, le carbonate de diéthyle, le tétrahydrofuranne (THF), le diméthysulfoxyde et l'éther diméthylique de polyéthylèneglycol.
  8. Electrolyte solide polymère selon la revendication 6, dans lequel le solvant ayant le groupe amide est au moins un solvant choisi parmi le N,N-diméthylacétamide, le N,N-diéthylacétamide, le N,N-diméthylformamide et le N,N-diéthylformamide.
  9. Electrolyte solide polymère selon l'une quelconque des revendications 6 à 8, dans lequel le rapport de mélange du solvant non aqueux et du solvant ayant le groupe amide est de 1:3 à 3:1 en volume.
  10. Electrolyte solide polymère selon la revendication 9, dans lequel le rapport de mélange du solvant non aqueux et du solvant ayant le groupe amide est de 1:1 en volume.
  11. Electrolyte solide polymère selon l'une quelconque des revendications 1 à 10, dans lequel le sel inorganique est au moins un sel choisi parmi le perchlorate de lithium (LiClO4), le tétrafluoroborate de lithium (LiBF4), l'hexafluorophosphate de lithium (LiPF6), le trifluorométhanesulfonate de lithium (LiCF3SO3) et le bistrifluorométhanesulfonylamide de lithium (LiN(CF3SO2)2.
  12. Electrolyte solide polymère selon l'une quelconque des revendications 1 à 11, dans lequel la teneur en monomère polymérisable représenté par la formule (1) est de 10 à 15% par rapport au poids de l'électrolyte solide polymère.
  13. Electrolyte solide polymère selon l'une quelconque des revendications 1 à 12, dans lequel la teneur en agent de réticulation représenté par la formule (2) est de 5 à 15% en poids par rapport au poids de l'électrolyte solide polymère.
  14. Electrolyte solide polymère selon l'une quelconque des revendications 1 à 13, dans lequel la teneur de l'amorceur de polymérisation est de 0,5 à 1,5% en poids par rapport au poids de l'électrolyte solide polymère.
  15. Electrolyte solide polymère selon l'une quelconque des revendications 1 à 14, dans lequel la teneur de la solution d'électrolyte est de 68,5 à 84,5% en poids par rapport au poids de l'électrolyte solide polymère.
  16. Electrolyte solide polymère selon l'une quelconque des revendications 1 à 15, dans lequel la teneur en sel inorganique retenu par le polymère de monomère de formule (1) est de 6 à 17% en poids par rapport au poids de la solution d'électrolyte.
  17. Accumulateur au lithium contenant l'électrolyte solide polymère selon l'une quelconque des revendications 1 à 16.
EP97305697A 1996-07-30 1997-07-29 Electrolyte solide polymère et pile rechargeable au lithium contenant cet électrolyte Expired - Lifetime EP0822608B1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR9631528 1996-07-30
KR19960031528 1996-07-30
KR1019960046314A KR19980027516A (ko) 1996-10-16 1996-10-16 고분자 고체 전해질 및 이를 채용한 리튬 2차전지
KR9646314 1996-10-16
KR1019970030817A KR100261252B1 (ko) 1996-07-30 1997-07-03 고분자 고체 전해질 및 이를 채용하고 있는 리튬 2차전지
KR9730817 1997-07-03

Publications (3)

Publication Number Publication Date
EP0822608A2 EP0822608A2 (fr) 1998-02-04
EP0822608A3 EP0822608A3 (fr) 1999-08-04
EP0822608B1 true EP0822608B1 (fr) 2001-11-28

Family

ID=27349376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97305697A Expired - Lifetime EP0822608B1 (fr) 1996-07-30 1997-07-29 Electrolyte solide polymère et pile rechargeable au lithium contenant cet électrolyte

Country Status (5)

Country Link
US (1) US5952126A (fr)
EP (1) EP0822608B1 (fr)
JP (1) JPH10116516A (fr)
KR (1) KR100261252B1 (fr)
DE (1) DE69708547T2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023028514A1 (fr) * 2021-08-24 2023-03-02 Global Graphene Group, Inc. Électrolytes à l'état solide hybride inorganiques-polymériques résistant aux flammes et batteries au lithium les contenant

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406817B2 (en) * 1998-07-01 2002-06-18 Ube Industries, Ltd. Crosslinked polymer, electrolyte using the polymer, and nonaqueous secondary battery using the electrolyte
JP3951039B2 (ja) * 1998-09-22 2007-08-01 第一工業製薬株式会社 固体電解質及びその製造方法
US6395431B1 (en) * 1998-10-28 2002-05-28 Valence Technology, Inc. Electrolytes having improved stability comprising an N,N-dialkylamide additive
AUPQ237199A0 (en) * 1999-08-23 1999-09-16 Rtm Research And Development Pty. Ltd. Fast lithiumion conducting doped plastic crystals
AUPQ389599A0 (en) * 1999-11-05 1999-12-02 Ilion Technology Corporation Polyelectrolyte gel
JP4911813B2 (ja) * 2000-10-03 2012-04-04 サンスター技研株式会社 固体電解質用架橋性組成物、ポリマー固体電解質リチウムイオン2次電池及びポリマー固体電解質リチウムイオン2次電池の製造法
WO2001047055A1 (fr) * 1999-12-20 2001-06-28 Sunstar Giken Kabushiki Kaisha Cellule secondaire aux ions de lithium a electrolyte polymere solide
US6406815B1 (en) 2000-02-11 2002-06-18 Delphi Technologies, Inc. Compact lithium ion battery and method of manufacturing
JP4412808B2 (ja) 2000-05-12 2010-02-10 パナソニック株式会社 リチウムポリマー二次電池
EP1170816A2 (fr) * 2000-07-06 2002-01-09 Japan Storage Battery Company Limited Batterie secondaire à électrolyte nonaqueux et procédé de fabrication
AU2002246813A1 (en) 2000-12-29 2002-07-16 The University Of Oklahoma Conductive polyamine-based electrolyte
JP3858594B2 (ja) 2001-01-05 2006-12-13 セイコーエプソン株式会社 液晶パネルのコントラストランク分けシステム及び方法
JP4887589B2 (ja) * 2001-09-13 2012-02-29 三菱化学株式会社 非水系電解液二次電池
KR100395817B1 (ko) * 2001-10-26 2003-08-27 삼성에스디아이 주식회사 고온 방치 특성이 개선된 리튬 전지 및 그 제조방법
US6706823B2 (en) 2001-12-31 2004-03-16 Bridgestone Corporation Conductive gels
JP4843905B2 (ja) * 2004-03-24 2011-12-21 住友ベークライト株式会社 高分子固体電解質の製造方法
US9653748B2 (en) * 2005-04-14 2017-05-16 Enerdel, Inc. Apparatus and method for securing battery cell packs
JP5052769B2 (ja) * 2005-07-15 2012-10-17 株式会社日立製作所 イオン伝導性側鎖型ポリマー電解質、その前駆体およびリチウム二次電池
TWI387144B (zh) 2006-09-28 2013-02-21 Sanyo Electric Co 聚合物電解質二次電池
WO2009061451A1 (fr) * 2007-11-07 2009-05-14 Enerdel, Inc. Ensemble de batterie avec dispositif de régulation de température
EP2235082B1 (fr) 2007-12-28 2014-05-14 Bridgestone Corporation Interpolymères contenant des motifs monomères isobutylène et diène
US9287557B2 (en) * 2011-01-07 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing nonaqueous electrolyte secondary battery
DE102011106873A1 (de) 2011-07-07 2013-01-10 Schott Ag Durchführungen, insbesondere für Batterien, mittels Ultraschallschweißen und Verfahren zum Einbringen der Durchführung in ein Gehäuse
DE102011103975A1 (de) 2011-06-10 2012-12-13 Schott Ag Durchführungsbauteil
US11462789B2 (en) 2011-02-18 2022-10-04 Schott Ag Base body for feeding through of a conductor, and a housing component of a housing, in particular a battery housing comprising said base body
DE102011012430A1 (de) 2011-02-25 2012-08-30 Schott Ag Durchführung
EP2675765B1 (fr) 2011-02-18 2019-11-06 Schott AG Passage destiné en particulier à des batteries et procédé pour intégrer ce passage dans un boîtier par soudage par ultrasons
US10224521B2 (en) 2011-02-18 2019-03-05 Schott Ag Feed-through
DE102011103976A1 (de) 2011-06-10 2012-12-13 Schott Ag Durchführung
DE102012005220A1 (de) 2011-04-01 2012-10-04 Schott Ag Batteriedurchführung
DE112012002421A5 (de) 2011-06-10 2014-03-20 Schott Ag Duchführung
DE102014016600A1 (de) 2014-11-11 2016-05-12 Schott Ag Durchführung
CN110100324B (zh) 2016-12-20 2023-01-10 肖特股份有限公司 用于馈通导体的基体以及壳体的、尤其具有这种基体的电池壳体的壳体部件
CN109980274A (zh) * 2017-12-28 2019-07-05 财团法人工业技术研究院 电解质、电解质用组合物及包含其的锂电池
EP3785312A4 (fr) 2018-04-27 2021-12-15 Dow Global Technologies Llc Systèmes de solvant destinés à être utilisés dans la production de batterie au lithium-ion
CN108767322B (zh) * 2018-05-22 2021-01-15 浙江锋锂新能源科技有限公司 一种全固态电池芯的制备方法
DE102018220118A1 (de) 2018-11-23 2020-05-28 Schott Ag Durchführung
WO2020104571A1 (fr) 2018-11-23 2020-05-28 Schott Ag Traversée électrique d'électrodes verre-métal
CN111211330A (zh) * 2020-02-20 2020-05-29 青岛科技大学 可弯曲锂离子电池及其制备方法
DE102020107224A1 (de) 2020-03-17 2021-09-23 Schott Ag Elektrische Einrichtung
CN111574734B (zh) * 2020-06-03 2022-10-04 南京邮电大学 一种可自愈固态电解质薄膜及其制备方法和应用
US11817555B2 (en) * 2020-09-18 2023-11-14 Korea Institute Of Energy Research Composition for polymer electrolyte, polymer electrolyte comprising the same, and method for manufacturing polymer electrolyte
KR20230134521A (ko) * 2021-01-22 2023-09-21 글로벌 그래핀 그룹, 인크. 난연성 준-고체 및 고체 상태 전해질, 리튬 전지 및제조 방법
US11949109B2 (en) * 2021-03-12 2024-04-02 Honeycomb Battery Company Flame-resistant electrodes lithium containing quasi-solid or solid-state electrolytes and manufacturing method
US11881580B2 (en) * 2021-03-19 2024-01-23 Global Graphene Group, Inc. Flame-resistant bipolar electrodes, bipolar lithium batteries, and manufacturing method
DE202021103495U1 (de) 2021-06-30 2022-10-07 Schott Ag Elektrische Einrichtung, insbesondere Mikrobatterie
DE102021133391A1 (de) 2021-12-16 2023-06-22 Schott Ag Gehäuseteil für eine elektrische Speichereinrichtung und elektrische Speichereinrichtung
KR102401576B1 (ko) * 2021-12-17 2022-05-25 (주)노루페인트 이차전지의 전극용 바인더 수지 및 리튬 이차전지
CN114512716B (zh) * 2022-01-20 2023-02-21 中南大学 一种凝胶电解质及其前驱电解液的制备和应用
CN114914533A (zh) * 2022-05-10 2022-08-16 广东聚圣科技有限公司 一种凝胶聚合物复合电解质、二次锂电池及制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1279307C (fr) * 1984-05-07 1991-01-22 Hiroshi Itoh Materiau composite extra-moleculaire
GB8727071D0 (en) * 1987-11-19 1987-12-23 Dobrowski S A Solid polyacrylamide electrolyte
GB8804072D0 (en) * 1988-02-22 1988-03-23 Dobrowski S A Solid polyacrylamide electrolyte
US5152903A (en) * 1988-12-19 1992-10-06 American Cyanamid Company Cross-linked cationic polymeric microparticles
JPH0725838B2 (ja) * 1989-05-15 1995-03-22 富士写真フイルム株式会社 高分子固体電解質
JPH0725839B2 (ja) * 1989-05-15 1995-03-22 富士写真フイルム株式会社 高分子固体電解質
JPH03238704A (ja) * 1990-02-16 1991-10-24 Toyo Ink Mfg Co Ltd 高分子固体電解質
DE4190481C2 (de) * 1990-03-16 1997-05-28 Ricoh Kk Fester Elektrolyt, Verfahren zu dessen Herstellung und dessen Verwendung
CA2052317C (fr) * 1990-09-28 1995-09-26 Norio Takami Batterie secondaire a electrolyte non aqueux
GB2257151A (en) * 1991-06-24 1993-01-06 Clinic Aid Ltd Skin-contacting device containing conductive adhesive
JP3379541B2 (ja) * 1992-07-06 2003-02-24 宇部興産株式会社 二次電池
US5401599A (en) * 1992-10-02 1995-03-28 Seiko Instruments Inc. Non-aqueous electrolyte secondary battery and method of producing the same
US5296318A (en) * 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
US5463179A (en) * 1993-12-06 1995-10-31 Chaloner-Gill; Benjamin Solid electrolyte obtained by the polymerization of diacrylate monomer having a rigid alkane segment
JPH08182659A (ja) * 1994-12-28 1996-07-16 Sekisui Plastics Co Ltd 刺激電極用導電性高分子ゲル、そのゲルパッドおよびそれを用いた生体用電極

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023028514A1 (fr) * 2021-08-24 2023-03-02 Global Graphene Group, Inc. Électrolytes à l'état solide hybride inorganiques-polymériques résistant aux flammes et batteries au lithium les contenant

Also Published As

Publication number Publication date
JPH10116516A (ja) 1998-05-06
KR980012680A (ko) 1998-04-30
US5952126A (en) 1999-09-14
EP0822608A3 (fr) 1999-08-04
EP0822608A2 (fr) 1998-02-04
DE69708547T2 (de) 2002-05-08
KR100261252B1 (ko) 2000-07-01
DE69708547D1 (de) 2002-01-10

Similar Documents

Publication Publication Date Title
EP0822608B1 (fr) Electrolyte solide polymère et pile rechargeable au lithium contenant cet électrolyte
US5965300A (en) Polymer solid electrolyte, method for manufacturing polymer solid electrolyte, and lithium secondary cell adopting polymer solid electrolyte
US6096234A (en) Cross-linked polymer solid electrolyte, method of manufacturing cross-linked solid polymer electrolyte, composite solid electrolyte, and thin solid cell employing composite solid electrolyte
US6573009B1 (en) Electrolyte containing a crosslinked compound having ether linkages and a high-molecular compound
US6949318B2 (en) Polymeric gel electrolyte and lithium battery employing the same
US7468226B2 (en) Porous film type solvent-free polymer electrolyte filled with oligomer/prepolymer electrolyte and secondary battery employing the same
US6235433B1 (en) High molecular gel electrolyte and secondary battery using the same
EP0986122A2 (fr) Electrolyte polymère et polymère, procédé de fabrication et batterie l'utilisant
Kim et al. Highly conductive polymer electrolytes supported by microporous membrane
KR100429828B1 (ko) 고분자고체전해질형성용조성물및이로부터형성된고분자고체전해질을채용하고있는리튬2차전지
KR20000000779A (ko) 자외선 경화형 고분자 겔 전해질
JP2002237332A (ja) ポリマー電池用不織布複合化ゲル状電解質
KR100400215B1 (ko) 고분자 매트릭스, 이를 포함하고 있는 고분자 고체 전해질 및이 고분자 고체 전해질을 채용하고 있는 리튬 2차전지
JP2001093575A (ja) ポリマー電池用ゲル電解質
KR19990001015A (ko) 고분자 고체 전해질용 조성물 및 이를 이용한 고분자 고체 전해질의 제조방법
CN117013058B (zh) 基于金属-有机框架的固态电解质及其制备方法与应用
KR100592232B1 (ko) 고분자 전해질 및 이를 채용하고 있는 리튬 이온 폴리머 전지
JPH05178949A (ja) イオン伝導性高分子化合物
KR100378349B1 (ko) 고분자 고체 전해질 및 이를 채용하고 있는 리튬 2차전지
KELCHTERMANS Advancement of solid-state batteries through the understanding of cathode-solid electrolyte interactions
KR100434549B1 (ko) 콤포지트전극용조성물및이를이용한콤포지트전극의제조방법
JP2001223027A (ja) ポリマー電池用ゲル状電解質
KR19980027516A (ko) 고분자 고체 전해질 및 이를 채용한 리튬 2차전지
KR100434550B1 (ko) 콤포지트전극용조성물
JPH11185816A (ja) 高分子ゲル電解質及び二次電池

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970820

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AKX Designation fees paid

Free format text: DE FR GB IT

17Q First examination report despatched

Effective date: 20000914

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 69708547

Country of ref document: DE

Date of ref document: 20020110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080814

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080728

Year of fee payment: 12

Ref country code: FR

Payment date: 20080718

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080806

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090729