EP0815582B1 - Mikrofocus-röntgeneinrichtung - Google Patents

Mikrofocus-röntgeneinrichtung Download PDF

Info

Publication number
EP0815582B1
EP0815582B1 EP96907493A EP96907493A EP0815582B1 EP 0815582 B1 EP0815582 B1 EP 0815582B1 EP 96907493 A EP96907493 A EP 96907493A EP 96907493 A EP96907493 A EP 96907493A EP 0815582 B1 EP0815582 B1 EP 0815582B1
Authority
EP
European Patent Office
Prior art keywords
target
electron beam
layer
retarding
carrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96907493A
Other languages
English (en)
French (fr)
Other versions
EP0815582A1 (de
Inventor
Alfred Reinhold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RASCHER GMBH
Original Assignee
Medixtec Medizinische Gerate GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medixtec Medizinische Gerate GmbH filed Critical Medixtec Medizinische Gerate GmbH
Publication of EP0815582A1 publication Critical patent/EP0815582A1/de
Application granted granted Critical
Publication of EP0815582B1 publication Critical patent/EP0815582B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K7/00Gamma- or X-ray microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes

Definitions

  • the invention relates to a device according to the Preamble of claim 1.
  • a device is known from U.S. Patent 4,344,013 (Ledley).
  • Every point of the object at different angles, namely from different Producing the radiation source that would be irradiated each object point would result in the projection into the Shadows offset from each other in the image plane, and overall the result would be a washed out contour of the Object, according to its distance from the Image plane is shown enlarged.
  • the exposure time per x-ray is extended, when working with lower power x-rays would what the requirement for short exposure times in the range of tenths to hundredths of a second contradict to an unnecessarily high radiation exposure and Avoid blurring due to object movement.
  • the thermal focal spot on the target anode is smaller is, the lower the electrical Power absorbed by the small target area before it starts to melt. This behavior contradicts the demand for higher density of the target impacting electron beams for higher X-ray power output.
  • DE-OS, A, 33 07 019 (Scanray) is a microfocus X-ray device known where the electron beam Draw perpendicular to the target. As useful radiation the outgoing at an angle of 0 to 10 degrees X-ray related. However, it comes with a solid Target worked. A meltdown transmission target is not intended and not addressed.
  • the invention is therefore based on the object Capture the point in time at which the vertical incidence Electron beam has melted through the target and becomes one other target point must be directed.
  • the microfocus x-ray device 1 consists of a evacuated housing 11, 12 made of glass or non-ferromagnetic metal.
  • the tube 12 has one any, usually round cross-section.
  • By a rear end face 11 of the tube 12 protrude electrically Feed wires 13 for a hairpin-shaped cathode 14 ins Inside of tube 12.
  • the heated cathode 14 acts as an electron source, from whose radiation by means of a cap-shaped grating 15 a narrow divergent Electron beam 16 is hidden.
  • the beam 16 occurs through the central opening of a perforated disk anode 17 through and experiences a bundling into one virtual focal spot 18.
  • Beam 16 passes through the cross-sectional zone outside the tube 12 arranged deflection coil 19 and is in magnetic gap 20 a subsequent Focusing coil 21 bundled.
  • the focusing coil 21 forms as an electromagnetic lens, a reduced image of the virtual focal spot 18 as focal spot 22 on a Transmission target 23 from which is in the outlet opening 24 of the tube 12 is located.
  • the focusing coil 21 is generated an extremely small-area focal spot 22 in the Typical order of magnitude of 0.5 ... 100 ⁇ m.
  • the target 23 consists of a thin brake layer 32 made of a metal high atomic number in the periodic system of elements, such as Tungsten, gold, copper or molybdenum, and one weak X-ray absorbing but good heat conductor Carrier layer 33, preferably made of aluminum or Beryllium.
  • a thin brake layer 32 made of a metal high atomic number in the periodic system of elements, such as Tungsten, gold, copper or molybdenum, and one weak X-ray absorbing but good heat conductor Carrier layer 33, preferably made of aluminum or Beryllium.
  • a suction system 37 for maintaining the vacuum in the tube 12 and for withdrawing vaporous Traces of material from the burning cathode 14 causes at the same time keeping the interior of the tube 12 clean melted material particles from the focal spot hole 31 in target 23.
  • the particularly high yield of X-rays 25 results from the extremely small-area stimulated braking volume 40 ( Figure 4) in the transmission target 23.
  • the high Power density so the high area-specific physical stress with the microfocused Electron beam 16, leads to the burning in of a Focal spot hole 31 in the target 23, so that in Departure direction 28 of the X-rays 25 the remaining Target material and thus its radiation-weakening Self-absorption continuously reduced.
  • the brake layer 32 is targeted by the incident electron beam 16 melted, which is a regarding their physical state dynamically changing x-ray source represents.
  • the brake material as a thin layer 32, approximately from Tungsten, on a thick backing layer 33 made of good heat-conducting material, such as beryllium or aluminum, is stored, then it is hardly avoidable but also not critical that at the bottom of the hole 31 in the brake layer 32 finally from the microfused electron beam 16 also the backing layer behind in the beam direction 28 33 is melted. Then, however, the radiation must of the target 23 are ended at this point, that is in the Application of this X-ray device 1 ends the recording his; because the application of the carrier layer 33 with Electron beams 16 only lead to a very soft one X-ray radiation 25 and thus hardly in the image plane 29 usable diffuse silhouettes of the translucent sample 26.
  • the transmission target 23 must not be used again a spot is irradiated where a hole 31 has been branded because otherwise soon or even immediately the carrier layer 33 instead of the brake line 32 would be melted from brake material.
  • an offset control 34 is provided which is controlled by the The beam deflection described above by means of the deflection coil 19 out of the device axis 10 and / or by displacement of the target 23 relative to the device axis 10 ensures that just along a meandering or spiral arch successive focal spots 22 are caused. This ensures that only unused areas of the target 23 in succession are claimed and thus a destruction of the carrier layer 33 with triggers only a little more useful because it is too low in energy X-rays are avoided.
  • the target 23 is thus by the vertical exposure to electrons in the Transmitted light operation so loaded until an aggregate conversion in the molten phase.
  • a positioning motor 35 placed in the tube, shown in the drawing. Instead, the target 23 together with positioning motor 35 in principle also on the front the outlet opening 24 of the tube 12 held vacuum-tight his; or from an external arrangement of the positioning motor A rod attacks through the wall a rotating or sliding bracket 36 for the target in Inside the tube 12.
  • the relocation must of the target 23 always take place when the electron beam 16 the micro-hole 31 as deep in the brake layer 32 has burned in that it reaches the carrier layer 33.
  • a simple procedure for determining this point in time is after one in terms of performance assessable or easier to determine empirically short exposure time on the order of milli- or microseconds the focal spot generation on the target 23 for what the electron beam, as above already described, switched off, dimmed or off the target area can be pivoted out.
  • the process takes no account of the individual Condition of the micro hole 31. It may well be that the carrier layer 33 has already been irradiated in this method or that on the other hand, the micro-hole 31 is not yet Boundary between brake layer 32 and carrier layer 33 has reached.
  • a much more precise method for determining the point in time t a at which the brake layer 32 has melted and the electrons strike the carrier layer 33 is the measurement of the target current I shown in FIG. 3.
  • the target current I becomes measured as a function of the irradiation time t, then this has the course shown in Figure 3A.
  • the point in time t a is the point in time at which the electron beam has penetrated the braking layer 32 and the micro-hole 31 extends to the carrier layer 33.
  • the X-ray radiation arises within the braking volume 40 described.
  • the extent of the radiation source is thus determined by the size of the braking volume 40. Even if an electron beam diameter d going towards "zero" is assumed, a finite braking volume 40 remains due to the spreading of the electrons. Thus, a minimum radiation source size, which is essentially determined by E o and Z, cannot be fallen below in principle.
  • Target material doping 41 are introduced whose volumes are significantly smaller than that prescribed braking volume 40 of the electrons in one contiguous target material.
  • the usable X-rays are only generated in the target material high atomic number. That from the target material doping 41 in the base material low atomic number penetrated electrons do not contribute to the usable X-ray radiation, as well as that in addition to the doping 41 electrons penetrating directly into the carrier material do not contribute significantly to the usable radiation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • X-Ray Techniques (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Radiation-Therapy Devices (AREA)

Description

Die Erfindung betrifft eine Einrichtung gemäß dem Oberbegriff des Anspruches 1. Eine derartige Einrichtung ist aus der US-PS 4 344 013 (Ledley) bekannt.
Die Verwendbarkeit sogenannter direkt- und vergrößerungsradiographischer Einrichtungen, insbesondere auf den Gebieten der Materialprüfung und der Medizin, ist in dem Beitrag "Entwicklung und Perspektiven der medizinischen Vergrößerungsradiographie" von G.Reuther, H.-L. Kronholz und K.B. Hüttenbrink in RADIOLOGE Bd.31 (1991) 403-406, näher beschrieben. Die Funktion solcher Einrichtungen beruht auf der strahlengeometrischen Gesetzmäßigkeit, nach welcher eine Strahlungsquelle nur dann zu kontrastreichen Schattenbildern hoher Ortsauflösung führt, wenn die abbildungswirksame Abstrahlfläche sehr klein im Vergleich zur bestrahlten Fläche des abzubildenden Objektes ist. Weil anderenfalls jeder Punkt des Objektes unter verschiedenen Winkeln, nämlich von verschiedenen Stellen der Strahlenquelle her, bestrahlt werden würde, ergäbe jeder Objekt-Punkt bei der Projektion in die Bildebene gegeneinander versetzte Schattenwürfe, und insgesamt wäre das Resultat eine verwaschene Kontur des Objektes, das nach Maßgabe seiner Entfernung von der Bildebene vergrößert dargestellt wird.
Trotz der damit erreichbaren Verbesserung der Auflösung haben sich Mikrofocus-Röntgeneinrichtungen in der Praxis, insbesondere der medizinischen Diagnostik, nicht so recht durchsetzen können. Das scheint vor allem darauf zurückzuführen zu sein, daß sie nur mit beschränkter Röntgenstrahlungs-Leistung arbeiten können. Denn die sehr enge Fokussierung des Elektronenstrahles auf das Bremstarget ergibt einen Brennfleck (Fokus) sehr kleinen Durchmessers mit dementsprechend sehr hoher Energiedichte. Diese große spezifische Belastung führt schnell dazu, daß das gewöhnlich unter einer Richtung von 10° bis 45° bestrahlte Target eine - für die Umwandlung der auftreffenden Elektronenstrahlenergie in abzugebende Röntgenstrahlenenergie - nachteilige Veränderung seiner Topographie mit baldiger Zuerstörung der Bremsschicht erfährt. Andererseits müßte die Belichtungszeit pro Röntgenaufnahme verlängert werden, wenn mit Röntgenstrahlen geringerer Leistung gearbeitet würde, was aber der Forderung nach kurzen Belichtungszeiten im Bereich von zehntel bis hundertstel Sekunden widerspräche, um eine unnötig hohe Strahlenbelastung und um Unschärfen aufgrund der Objekt-Bewegung zu vermeiden. Je kleiner allerdings der thermische Brennfleck auf der Target-Anode ist, desto niedriger wird auch die elektrische Leistung, die von der kleinen Targetfläche aufgenommen werden kann, ehe sie zu schmelzen beginnt. Dieses Verhalten widerspricht also der Forderung nach höherer Dichte der auf das Target aufprallenden Elektronenstrahlen für höhere Leistung der Röntgenstrahlung.
Aus der eingangs genannten US-PS 4 344 013 (Ledley) ist eine Mikrofocus-Röntgeneinrichtung bekannt, die bereits mit einem angeschmolzenen Target arbeitet. Bei dieser Einrichtung fällt der Elektronenstrahl auf ein schräggestelltes Target, so daß die erzeugte Röntgenstrahlung gleichfalls in einem Winkel vom Target abgestrahlt wird. Bei dieser Einrichtung ist jedoch nicht berücksichtigt worden, daß schon vor dem vollständigen Durchbrennen des Targets eine schnell fortschreitende Kraterbildung dazu führt, daß die optische Achse der abgestrahlten Röntgen-Nutzstrahlung eine Abschattung von dem aufquellenden Kraterrand erfährt, der die Röntgenstrahlung weitgehend absorbiert. Es ergibt sich ein diffuses Röntgenlicht, das nicht als von einer punktförmigen Quelle ausgehend angesehen werden kann. Deshalb hat sich eine derartige Einrichtung mit einer zum einfallenden Elektronenstrahl schrägen Stellung des Targets nicht bewährt.
Aus der DE-OS,A,33 07 019 (Scanray) ist eine Mikrofocus-Röntgeneinrichtung bekannt, bei der der Elektronenstrahl senkrecht auf das Target auffält. Als Nutzstrahlung wird die unter einem Winkel von 0 bis 10 Grad abgehende Röntgenstrahlung verwandt. Es wird jedoch mit einem festen Target gearbeitet. Ein Abschmelz-Transmissionstarget ist nicht vorgesehen und auch nicht angesprochen.
Der Erfindung liegt daher die Aufgabe zugrunde, genau den Zeitpunkt zu erfassen, an dem der senkrecht einfallende Elektronenstrahl das Target durchschmolzen hat und zu einer anderen Targetstelle gelenkt werden muß.
Diese Aufgabe ist nach der Erfindung dadurch gelöst, daß die gattungsgemäße Mikrofocus-Röntgeneinrichtung auch nach dem Kennzeichnungsteil des Anspruchs 1 ausgelegt ist.
In dem Unteranspruch wird eine Fortbildung der Erfindung beansprucht.
In den Zeichnungen ist ein Ausführungsbeispiel der Erfindung dargestellt. Es zeigen :
Fig. 1
einen schematischen Längsschnitt durch eine Mikrofocus-Röntgeneinrichtung,
Fig. 2
einen Schnitt durch das Target in vergrößertem Maßstab,
Fig. 3
das Target nach Figur 2 mit einer Messung des Targetstroms,
Fig. 3A
den Verlauf des Targetstroms in Abhängigkeit von der Bestrahlungsdauer,
Fig. 4
ein Target mit einem eingezeichneten Bremsvolumen und
Fig. 4A
eine Trägerschicht mit Trägermaterial-Dotierungen.
Die Mikrofocus-Röntgeneinrichtung 1 besteht aus einem evakuierten Gehäuse 11, 12 aus Glas oder nicht-ferromagnetischem Metall. Die Röhre 12 hat einen beliebigen, in der Regel runden Querschnitt. Durch eine rückwärtige Stirnfläche 11 der Röhre 12 ragen elektrische Speisedrähte 13 für eine haarnadelförmige Kathode 14 ins Innere der Röhre 12 hinein. Die erhitzte Kathode 14 wirkt als Elektronenquelle, aus deren Abstrahlung mittels eines kappenförmigen Gitters 15 ein schmaler divergierender Elektronenstrahl 16 ausgeblendet wird. Der Strahl 16 tritt durch die zentrale Öffnung einer Lochscheibenanode 17 hindurch und erfährt dabei eine Bündelung zu einem virtuellen Brennfleck 18. Der sich danach wieder aufweitende Strahl 16 durchläuft die Querschnittszone einer außerhalb der Röhre 12 angeordneten Ablenkspule 19 und wird im magnetischen Spalt 20 einer sich anschließenden Fokussierspule 21 gebündelt. Die Fokussierspule 21 bildet als elektromagnitische Linse ein verkleinertes Bild des virtuellen Brennflecks 18 als Brennfleck 22 auf einem Transmissionstarget 23 ab, das sich in der Austrittsöffnung 24 der Röhre 12 befindet. Die Fokussierspule 21 erzeugt einen extrem kleinflächigen Brennfleck 22 in der Größenordnung von typisch 0,5 ... 100 µm. Das Target 23 besteht aus einer dünnen Bremsschicht 32 aus einem Metall hoher Ordnungszahl im periodischen System der Elemente, wie Wolfram, Gold, Kupfer oder Molybdän, und einer schwach Röntgenstrahlen absorbierenden aber gut wärmeleitenden Trägerschicht 33, vorzugsweise aus Aluminium oder Beryllium. Infolge der Bremswirkung des Targetmaterials lösen die-auftreffenden Elektronen des Strahls 16 die Röntgenstrahlung 25 aus. Ein Teil der Röntgenstrahlung 25 durchdringt das Target 23 mit der Strahlrichtung 28, die mit der Strahlachse 10 des Elektronenstrahls 16 übereinstimmt und verläßt die Röhre 12 in Richtung auf eine Probe 26 als divergierender Röntgenstrahl 25. Aufgrund der geometrischen Strahlengesetzmäßigkeit wird die Struktur der Probe 26, insoweit sie für die Röntgenstrahlen 25 mehr oder minder undurchlässig ist, entsprechend vergrößert als Schattenriß auf einen in größerem Abstand hinter der Probe 26 parallel zum Transmissionstarget 23 und somit senkrecht zur Strahlrichtung 28 angeordneten Film in der Bildebene 29 projiziert.
Eine Absauganlage 37 zur Aufrechterhaltung des Vakuums in der Röhre 12 und zum Abziehen von dampfförmigen Materialspuren der verbrennenden Kathode 14 bewirkt zugleich ein Reinhalten des Innenraums der Röhre 12 von abgeschmolzenen Materialpartikeln aus dem Brennfleckloch 31 im Target 23.
Die besonders hohe Ausbeute an Röntgenstrahlen 25 ergibt sich aus dem extrem kleinflächig angeregten Bremsvolumen 40 (Figur 4) im Transmissionstarget 23. Die hohe Leistungsdichte, also die hohe flächenspezifische physikalische Beanspruchung mit dem mikrofokussierten Elektronenstrahl 16, führt zum Einbrennen eines Brennfleckloches 31 in das Target 23, so daß sich in Abgangsrichtung 28 der Röntgenstrahlen 25 das verbleibende Targetmaterial und damit dessen strahlenschwächende Eigenabsorption fortlaufend verringert. Die Bremsschicht 32 wird durch den auftreffenden Elektronenstrahl 16 gezielt abgeschmolzen, was hinsichtlich ihres Aggregatzustandes eine dynamisch sich verändernde Röntgenstrahlungsquelle darstellt.
Wenn das Bremsmaterial als dünne Schicht 32, etwa aus Wolfram, auf einer dagegen dicken Trägerschicht 33 aus gut wärmeleitendem Material, wie Beryllium oder Aluminium, gelagert ist, dann ist es kaum vermeidbar aber auch unkritisch, daß am Boden des Loches 31 in der Bremsschicht 32 schließlich vom mikrofckussierten Elektronenstrahl 16 auch die in Strahlrichtung 28 dahinterliegende Trägerschicht 33 angeschmolzen wird. Dann allerdings muß die Bestrahlung des Targets 23 an dieser Stelle beendet werden, also in der Anwendung dieser Röntgeneinrichtung 1 die Aufnahme beendet sein; denn die Beaufschlagung der Trägerschicht 33 mit Elektronenstrahlen 16 führt nur noch zu einer sehr weichen Röntgenstrahlung 25 und damit in der Bildebene 29 zu kaum verwertbaren diffusen Schattenbildern der zu durchleuchtenden Probe 26.
Für das nächste aufzunehmende Röntgenschattenbild erfolgt wiederum die sehr kurzzeitige Bestrahlung des Transmissionstargets 23 mit einem mikrofokussierten Elektronenstrahl 16, wofür wiederum die Kathode 14 nur kurzzeitig betrieben und/oder der Strahl 16 über eine verschwenkbare, in der Zeichnung nicht dargestellte, Blende nur kurzzeitig freigegeben oder der Strahl 16 über eine entsprechende Ansteuerung der Ablenkspule 19 kurzzeitig aus einer funktionslosen Warterichtung in die Geräte- und Wirkachse 10 der Strahlrichtung 28 verschwenkt wird. Allerdings darf beim Transmissionstarget 23 nicht wieder eine Stelle bestrahlt werden, an der zuvor schon ein Loch 31 eingebrannt worden ist, weil sonst alsbald oder sogar unmittelbar die Trägerschicht 33 anstatt der Bremsschnicht 32 aus Bremsmaterial angeschmolzen werden würde. Deshalb ist eine Versatzsteuerung 34 vorgesehen, die durch die vorbeschriebene Strahlablenkung mittels der Ablenkspule 19 aus der Geräteachse 10 heraus und/oder durch Verlagerung des Targets 23 relativ zur Geräteachse 10 dafür sorgt, daß nur entlang eines mäandrisch oder spiralbogenförmig verlaufenden Weges aufeinanderfolgende Brennflecke 22 hervorgerufen werden. Dadurch ist sichergestellt, daß nur unverbrauchte Bereiche des Targets 23 nacheinander beansprucht werden und so eine Zerstörung der Trägerschicht 33 mit Auslösen nur wenig nützlicher da zu energiearmer Röntgenstrahlung vermieden wird. Das Target 23 wird also durch die senkrechte Beaufschlagung mit Elektronen im Durchlichtbetrieb so belastet, bis eine Aggregatumwandlung in die schmelzflüssige Phase einsetzt.
Zur Veranschaulichung der Verlagerung des Targets 23 relativ zur Röhre 12 bzw. ihrer Achse 10 ist in der Zeichnung ein Positioniermotor 35 in die Röhre hineinverlegt, zeichnerisch dargestellt. Stattdessen kann das Target 23 samt Positioniermotor 35 grundsätzlich auch stirnseitig vor der Austrittsöffnung 24 der Röhre 12 vakuumdicht gehaltert sein; oder von einer externen Anordnung des Positioniermotors 35 her greift durch die Wandung hindurch ein Gestänge an einer Dreh- oder Schiebehalterung 36 für das Target im Inneren der Röhre 12 an.
Wie vorstehend dargelegt worden ist, muß die Verlagerung des Targets 23 immer dann erfolgen, wenn der Elektronenstrahl 16 das Mikro-Loch 31 so tief in die Bremsschicht 32 eingebrannt hat, daß es die Trägerschicht 33 erreicht.
Ein einfaches Verfahren zur Bestimmung dieses Zeitpunktes besteht darin, nach einer hinsichtlich der Leistung abschätzbaren oder leichter noch empirisch bestimmbaren kurzen Bestrahlungszeit in der Größenordnung von Milli- oder Mikrosekunden die Brennfleckerzeugung auf dem Target 23 zu beenden, wofür der Elektronenstrahl, wie vorstehend bereits beschrieben, abgeschaltet, abgeblendet oder aus dem Targetbereich herausgeschwenkt werden kann. Dieses Verfahren nimmt jedoch keine Rücksicht auf den individuellen Zustand des Mikro.Lochs 31. Es kann also durchaus sein, daß bei diesem Verfahren die Trägerschicht 33 bereits bestrahlt wird oder daß andererseits der Mikro-Loch 31 noch nicht die Grenze zwischen Bremsschicht 32 und Trägerschicht 33 erreicht hat.
Ein wesentlich genaueres Verfahren zur Bestimmung des Zeitpunktes ta, an dem die Bremsschicht 32 durchgeschmolzen ist und die Elektronen auf die Trägerschicht 33 auftreffen, ist die in Figur 3 wiedergegebene Messung des Targetstromes I. Wird, wie in Figur 3 dargestellt ist, der Targetstrom I als Funktion der Bestrahlungszeit t gemessen, dann hat dieser den in Figur 3A dargestellten Verlauf. Im Zeitpunkt ta erfolgt eine sprunghafte Erhöhung des Targetstromes. Der Zeitpunkt ta ist derjenige Zeitpunkt, an dem der Elektronenstrahl die Bremsschicht 32 durchstoßen hat und das Mikro-Loch 31 bis auf die Trägerschicht 33 reicht. Durch Messung des Targetstroms I kann also sehr leicht durch die Steuerung ein Befehl für die Umlenkung des Elektronenstrahls 16 gewonnen werden. Hierbei werden automatisch sämtliche lokalen Besonderheiten von Bremsschicht 32 und Trägerschicht 33 berücksichtigt.
Dringt ein in einem Hochspannungsfeld beschleunigtes Elektron in die Oberfläche von Materie ein, so erfährt es in Wechselwirkung mit der Materie eine Folge elastischer Stöße, bei denen es jeweils einen Teil seiner kinetischen Energie verliert, die sich in Strahlung umwandelt. Ein Teil dieser Strahlung besteht aus Röntgenstrahlung. Während der Folge der elastischen Stöße durchläuft das Elektron innerhalb des Targetmaterials ein Bremsvolumen 40 (Figur 4), dessen Ausdehnung in erster Linie durch die Ordnungszahl Z des Targetmaterials, die Energie Eo der Elektronen und durch den Elektronenstrahldurchmesser d bestimmt ist.
Die Röntgenstrahlung entsteht innerhalb des beschriebenen Bremsvolumens 40. Die Ausdehnung der Strahlenquelle ist somit bestimmt durch die Größe des Bremsvolumens 40. Selbst dann, wenn ein gegen "Null" gehender Elektronenstrahldurchmesser d angenommen wird, bleibt infolge der Ausbreitung der Elektronen ein endliches Bremsvolumen 40 bestehen. Somit kann eine, im wesentlichen durch Eo und Z bestimmte minimale Strahlenquellengröße grundsätzlich nicht unterschritten werden.
Soll nun eine weitere Verkleinerung der Strahlenquelle erreicht werden, so müssen in das Trägermaterial Targetmaterial-Dotierungen 41 (Figur 4A) eingebracht werden deren Volumina jeweils deutlich kleiner sind als das vorbeschriebene Bremsvolumen 40 der Elektronen in einem zusammenhängenden Targetmaterial.
Die nutzbare Röntgenstrahlung entsteht nur im Targetmaterial hoher Ordnungszahl. Die aus den Targetmaterial-Dotierungen 41 in das Trägermaterial geringer Ordnungszahl eingedrungenen Elektronen tragen nicht zur nutzbaren Röntgenstrahlung bei, wie auch die neben den Dotierungen 41 direkt in das Trägermaterial eindringenden Elektronen nicht wesentlich zur nutzbaren Strahlung beitragen.
Da in den kleinen Dotierungsvolumina gemäß Figur 4A bei gleicher Elektronenstrahldichte somit weniger Röntgenphotonen pro Zeit entstehen als in dem größeren Bremsvolumina 40 in einer Bremsschicht 32 (Figur 2), muß die Elektronenstrahldichte (Strom) erhöht werden. Das führt zwar zum schnelleren Abschmelzen der Targetmaterial-Dotierungen 41 und deren Trägermaterialumgebung, jedoch kann auch die während des Schmelzvorganges entstehende Röntgenstrahlung genutzt werden. Für die nächste Röntgenaufnahme wird der Elektronenstrahl 16 in bekannter Weise auf eine noch unbenutzte Dotierungsstelle 41 gelenkt, usw.. Die Dotierungen 41 können zum Beispiel in einem definierten Raster angeordnet sein.
Bezugszeichenliste
1
Mikrofocus-Röntgeneinrichtung
10
Geräte- und Strahlachse
11
Stirnfläche
12
Röhre
13
Speisedrähte
14
Kathode
15
Gitter
16
Elektronenstrahl
17
Lochscheibe
18
virtueller Brennfleck
19
Ablenkspule
20
magnetischer Spalt
21
Fokussierspule
22
Brennfleck
23
Transmissionstarget
24
Austrittsöffnung
25
Röntgenstrahlung
26
Probe
28
Strahlrichtung der Röntgenstrahlen
29
Bildebene
31
Mikroloch
32
Bremsschicht
33
Trägerschicht
34
Versatzsteuerung
35
Positioniermotor
36
Dreh- oder schiebehalterung
37
Absauganlage
40
Bremsvolumen
41
Dotierungen

Claims (2)

  1. Mikrofokus-Röntgeneinrichtung, wobei ein fokussierter Elektronenstrahl zur Erzeugung der Röntgenstrahlung senkrecht auf ein Bremsmaterial eines Targets (23) auftrifft, im Brennfleck (22) das Bremsmaterial durch die hohe thermische Beanspruchung mindestens in den flüssigen Aggregatzustand übergeht und die Lage des Brennflecks (22) auf dem Target (23) mit jeder Beaufschlagung gegenüber der vorherigen Lage versetzt ist, wobei das Bremsmaterial in einer Bremsschicht (32) auf einer Trägerschicht (33) angeordnet ist, die Bremsschicht (32) auf der zum Elektronenstrahl (16) hin orientierten Seite der Trägerschicht (33) angeordnet ist und eine Steuerung (34) vorgesehen ist, welche den Elektronenstrahl (16) spätestens beim Anschmelzen der Trägerschicht (33) abbricht, dadurch gekennzeichnet, daß die Steuerung (34) ein Targetstrommessgerät ist, das den Zeitpunkt (ta), an dem der Elektronenstrahl (16) die Trägerschicht (33) anschmilzt, durch Messung des Targetstroms (I) ermittelt.
  2. Röntgeneinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Bremsmaterial in Form von Dotierungen (41) in der Trägerschicht (33) angeordnet ist.
EP96907493A 1995-03-20 1996-03-16 Mikrofocus-röntgeneinrichtung Expired - Lifetime EP0815582B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19509516A DE19509516C1 (de) 1995-03-20 1995-03-20 Mikrofokus-Röntgeneinrichtung
DE19509516 1995-03-20
PCT/EP1996/001145 WO1996029723A1 (de) 1995-03-20 1996-03-16 Mikrofocus-röntgeneinrichtung

Publications (2)

Publication Number Publication Date
EP0815582A1 EP0815582A1 (de) 1998-01-07
EP0815582B1 true EP0815582B1 (de) 1999-09-22

Family

ID=7756825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96907493A Expired - Lifetime EP0815582B1 (de) 1995-03-20 1996-03-16 Mikrofocus-röntgeneinrichtung

Country Status (6)

Country Link
US (1) US5857008A (de)
EP (1) EP0815582B1 (de)
JP (1) JP3150703B2 (de)
AT (1) ATE185021T1 (de)
DE (2) DE19509516C1 (de)
WO (1) WO1996029723A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081631A1 (de) * 2002-03-26 2003-10-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Roentgenstrahlquelle mit einer kleinen brennfleckgroesse
DE102005053386A1 (de) * 2005-11-07 2007-05-16 Comet Gmbh Nanofocus-Röntgenröhre
DE10352334B4 (de) * 2003-11-06 2010-07-29 Comet Gmbh Verfahren zur Regelung einer Mikrofokus-Röntgeneinrichtung

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2161843C2 (ru) 1999-02-17 2001-01-10 Кванта Вижн, Инк. Точечный высокоинтенсивный источник рентгеновского излучения
GB9906886D0 (en) * 1999-03-26 1999-05-19 Bede Scient Instr Ltd Method and apparatus for prolonging the life of an X-ray target
JP2001035428A (ja) * 1999-07-22 2001-02-09 Shimadzu Corp X線発生装置
JP3934837B2 (ja) 1999-10-29 2007-06-20 浜松ホトニクス株式会社 開放型x線発生装置
JP3934836B2 (ja) 1999-10-29 2007-06-20 浜松ホトニクス株式会社 非破壊検査装置
UA59495C2 (uk) * 2000-08-07 2003-09-15 Мурадін Абубєкіровіч Кумахов Рентгенівський вимірювально-випробувальний комплекс
US7180981B2 (en) * 2002-04-08 2007-02-20 Nanodynamics-88, Inc. High quantum energy efficiency X-ray tube and targets
US7466799B2 (en) * 2003-04-09 2008-12-16 Varian Medical Systems, Inc. X-ray tube having an internal radiation shield
US6954515B2 (en) * 2003-04-25 2005-10-11 Varian Medical Systems, Inc., Radiation sources and radiation scanning systems with improved uniformity of radiation intensity
JP2005276760A (ja) * 2004-03-26 2005-10-06 Shimadzu Corp X線発生装置
US7139365B1 (en) 2004-12-28 2006-11-21 Kla-Tencor Technologies Corporation X-ray reflectivity system with variable spot
DE202005017496U1 (de) * 2005-11-07 2007-03-15 Comet Gmbh Target für eine Mikrofocus- oder Nanofocus-Röntgenröhre
DE102006062452B4 (de) * 2006-12-28 2008-11-06 Comet Gmbh Röntgenröhre und Verfahren zur Prüfung eines Targets einer Röntgenröhre
FR2941064B1 (fr) * 2009-01-13 2010-12-31 Norbert Beyrard Dispositif d'imagerie x ou infrarouge comprenant un limiteur de dose a vitesse de translation controlee
DE102009033607A1 (de) 2009-07-17 2011-01-20 Siemens Aktiengesellschaft Röntgenröhre und Anode für eine Röntgenröhre
JP5687001B2 (ja) * 2009-08-31 2015-03-18 浜松ホトニクス株式会社 X線発生装置
US9271689B2 (en) * 2010-01-20 2016-03-01 General Electric Company Apparatus for wide coverage computed tomography and method of constructing same
US8831179B2 (en) * 2011-04-21 2014-09-09 Carl Zeiss X-ray Microscopy, Inc. X-ray source with selective beam repositioning
US20150117599A1 (en) 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
JP2013239317A (ja) * 2012-05-15 2013-11-28 Canon Inc 放射線発生ターゲット、放射線発生装置および放射線撮影システム
US20160020059A1 (en) * 2012-07-11 2016-01-21 Comet Holding Ag Cooling arrangement for x-ray generator
US9129715B2 (en) 2012-09-05 2015-09-08 SVXR, Inc. High speed x-ray inspection microscope
JP5763032B2 (ja) * 2012-10-02 2015-08-12 双葉電子工業株式会社 X線管
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US9449781B2 (en) 2013-12-05 2016-09-20 Sigray, Inc. X-ray illuminators with high flux and high flux density
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US9448190B2 (en) 2014-06-06 2016-09-20 Sigray, Inc. High brightness X-ray absorption spectroscopy system
US9570265B1 (en) 2013-12-05 2017-02-14 Sigray, Inc. X-ray fluorescence system with high flux and high flux density
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US9594036B2 (en) 2014-02-28 2017-03-14 Sigray, Inc. X-ray surface analysis and measurement apparatus
US9823203B2 (en) 2014-02-28 2017-11-21 Sigray, Inc. X-ray surface analysis and measurement apparatus
KR102120400B1 (ko) * 2014-03-26 2020-06-09 한국전자통신연구원 타깃 유닛 및 그를 구비하는 엑스 선 튜브
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
TWI629474B (zh) 2014-05-23 2018-07-11 財團法人工業技術研究院 X光光源以及x光成像的方法
US9748070B1 (en) 2014-09-17 2017-08-29 Bruker Jv Israel Ltd. X-ray tube anode
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
US11282668B2 (en) * 2016-03-31 2022-03-22 Nano-X Imaging Ltd. X-ray tube and a controller thereof
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
WO2018175570A1 (en) 2017-03-22 2018-09-27 Sigray, Inc. Method of performing x-ray spectroscopy and x-ray absorption spectrometer system
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
GB2591630B (en) 2018-07-26 2023-05-24 Sigray Inc High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
DE112019004433T5 (de) 2018-09-04 2021-05-20 Sigray, Inc. System und verfahren für röntgenstrahlfluoreszenz mit filterung
CN112823280A (zh) 2018-09-07 2021-05-18 斯格瑞公司 用于深度可选x射线分析的系统和方法
JP6695011B1 (ja) * 2018-10-22 2020-05-20 キヤノンアネルバ株式会社 X線発生装置及びx線撮影システム
US11467107B2 (en) * 2018-10-25 2022-10-11 Horiba, Ltd. X-ray analysis apparatus and x-ray generation unit
US11302508B2 (en) 2018-11-08 2022-04-12 Bruker Technologies Ltd. X-ray tube
WO2021011209A1 (en) 2019-07-15 2021-01-21 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE243171C (de) *
FR2333344A1 (fr) * 1975-11-28 1977-06-24 Radiologie Cie Gle Tube radiogene a cathode chaude avec anode en bout et appareil comportant un tel tube
US4344013A (en) * 1979-10-23 1982-08-10 Ledley Robert S Microfocus X-ray tube
DE3307019A1 (de) * 1983-02-28 1984-08-30 Scanray Scandinavian X-Ray Deutschland GmbH, 3050 Wunstorf Roentgenroehre mit mikrofokus
DE3401749A1 (de) * 1984-01-19 1985-08-01 Siemens AG, 1000 Berlin und 8000 München Roentgendiagnostikeinrichtung mit einer roentgenroehre
US4896341A (en) * 1984-11-08 1990-01-23 Hampshire Instruments, Inc. Long life X-ray source target
EP0319912A3 (de) * 1987-12-07 1990-05-09 Nanodynamics, Incorporated Verfahren und Vorrichtung zum Analysieren von Materialien mittels Röntgenstrahlen
JPH07119837B2 (ja) * 1990-05-30 1995-12-20 株式会社日立製作所 Ct装置及び透過装置並びにx線発生装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081631A1 (de) * 2002-03-26 2003-10-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Roentgenstrahlquelle mit einer kleinen brennfleckgroesse
DE10352334B4 (de) * 2003-11-06 2010-07-29 Comet Gmbh Verfahren zur Regelung einer Mikrofokus-Röntgeneinrichtung
DE102005053386A1 (de) * 2005-11-07 2007-05-16 Comet Gmbh Nanofocus-Röntgenröhre

Also Published As

Publication number Publication date
EP0815582A1 (de) 1998-01-07
JP3150703B2 (ja) 2001-03-26
ATE185021T1 (de) 1999-10-15
US5857008A (en) 1999-01-05
DE59603163D1 (de) 1999-10-28
WO1996029723A1 (de) 1996-09-26
JPH10503618A (ja) 1998-03-31
DE19509516C1 (de) 1996-09-26

Similar Documents

Publication Publication Date Title
EP0815582B1 (de) Mikrofocus-röntgeneinrichtung
EP0584871B1 (de) Röntgenröhre mit einer Transmissionsanode
EP1946088B1 (de) Vorrichtung zur röntgen-tomosynthese
DE19544203A1 (de) Röntgenröhre, insbesondere Mikrofokusröntgenröhre
EP1883093B1 (de) Computertomograph
DE102004018765A1 (de) Stationäres Computertomographiesystem mit kompakter Röntgenquellen-Baueinheit
DE3330806C2 (de)
DE102008007413A1 (de) Röntgentarget
EP1783809A2 (de) Nanofocus-Röntgenröhre
EP0292055B1 (de) Strahlenquelle zur Erzeugung einer im wesentlichen monochromatischen Röntgenstrahlung
DE102010009276A1 (de) Röntgenröhre sowie System zur Herstellung von Röntgenbildern für die zahnmedizinische oder kieferorthopädische Diagnostik
DE102010060484A1 (de) System und Verfahren zum Fokussieren und Regeln/Steuern eines Strahls in einer indirekt geheizten Kathode
EP3742469A1 (de) Röntgenanode, röntgenstrahler und verfahren zur herstellung einer röntgenanode
DE60033374T2 (de) Röntgenmikroskop mit einer röntgenstrahlungsquelle für weiche röntgenstrahlungen
DE102012103974A1 (de) Vorrichtung und Verfahren zur Erzeugung zumindest eines Röntgenstrahlen abgebenden Brennflecks
EP2301042B1 (de) Röntgentarget und ein verfahren zur erzeugung von röntgenstrahlen
EP3213337A1 (de) Metallstrahlröntgenröhre
DE102005018342B4 (de) Vorrichtung und Verfahren zur Erzeugung von Röntgenstrahlung
EP2979293A1 (de) Röntgenquelle und bildgebendes system
DE102006032606A1 (de) Erzeugung von elektromagnetischer Strahlung, insbesondere Röntgenstrahlung
EP0141041B1 (de) Röntgenlithographiegerät
DE19805290C2 (de) Monochromatische Röntgenstrahlenquelle
DE1912838A1 (de) Strahlungsquelle von Roentgenstrahlen hoher Intensitaet und guter Ausrichtung
US20100158196A1 (en) Radiation beam blocker with non-cylindrical through-hole causing reduced geometric unsharpness in radiographic image, and method for the preparation thereof
Freeman Radiation patterns from electron beam fusion targets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981116

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 185021

Country of ref document: AT

Date of ref document: 19991015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59603163

Country of ref document: DE

Date of ref document: 19991028

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991207

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MEDIXTEC GMBH MEDIZINISCHE GERAETE TRANSFER- MEDIX

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

NLS Nl: assignments of ep-patents

Owner name: MEDIXTEC GMBH

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: RASCHER GMBH

BECA Be: change of holder's address

Free format text: 20020416 *MEDIXTEC G.M.B.H.:NEUE WEILHERMER STRASSE 24, D-73230 KIRCHHEIM-TECK

BECH Be: change of holder

Free format text: 20020416 *MEDIXTEC G.M.B.H.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080314

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080318

Year of fee payment: 13

Ref country code: GB

Payment date: 20080320

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080314

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080314

Year of fee payment: 13

Ref country code: DE

Payment date: 20080321

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080328

Year of fee payment: 13

Ref country code: BE

Payment date: 20080430

Year of fee payment: 13

BERE Be: lapsed

Owner name: *MEDIXTEC G.M.B.H.

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090316

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090316

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090316