EP0815582B1 - Mikrofocus-röntgeneinrichtung - Google Patents
Mikrofocus-röntgeneinrichtung Download PDFInfo
- Publication number
- EP0815582B1 EP0815582B1 EP96907493A EP96907493A EP0815582B1 EP 0815582 B1 EP0815582 B1 EP 0815582B1 EP 96907493 A EP96907493 A EP 96907493A EP 96907493 A EP96907493 A EP 96907493A EP 0815582 B1 EP0815582 B1 EP 0815582B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- target
- electron beam
- layer
- retarding
- carrier layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010894 electron beam technology Methods 0.000 claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 13
- 230000000979 retarding effect Effects 0.000 claims abstract 11
- 239000007788 liquid Substances 0.000 claims abstract 2
- 230000005855 radiation Effects 0.000 claims description 19
- 238000005259 measurement Methods 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 238000004220 aggregation Methods 0.000 claims 1
- 230000002776 aggregation Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000013077 target material Substances 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 239000012876 carrier material Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000007688 edging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K7/00—Gamma- or X-ray microscopes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/24—Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/112—Non-rotating anodes
- H01J35/116—Transmissive anodes
Definitions
- the invention relates to a device according to the Preamble of claim 1.
- a device is known from U.S. Patent 4,344,013 (Ledley).
- Every point of the object at different angles, namely from different Producing the radiation source that would be irradiated each object point would result in the projection into the Shadows offset from each other in the image plane, and overall the result would be a washed out contour of the Object, according to its distance from the Image plane is shown enlarged.
- the exposure time per x-ray is extended, when working with lower power x-rays would what the requirement for short exposure times in the range of tenths to hundredths of a second contradict to an unnecessarily high radiation exposure and Avoid blurring due to object movement.
- the thermal focal spot on the target anode is smaller is, the lower the electrical Power absorbed by the small target area before it starts to melt. This behavior contradicts the demand for higher density of the target impacting electron beams for higher X-ray power output.
- DE-OS, A, 33 07 019 (Scanray) is a microfocus X-ray device known where the electron beam Draw perpendicular to the target. As useful radiation the outgoing at an angle of 0 to 10 degrees X-ray related. However, it comes with a solid Target worked. A meltdown transmission target is not intended and not addressed.
- the invention is therefore based on the object Capture the point in time at which the vertical incidence Electron beam has melted through the target and becomes one other target point must be directed.
- the microfocus x-ray device 1 consists of a evacuated housing 11, 12 made of glass or non-ferromagnetic metal.
- the tube 12 has one any, usually round cross-section.
- By a rear end face 11 of the tube 12 protrude electrically Feed wires 13 for a hairpin-shaped cathode 14 ins Inside of tube 12.
- the heated cathode 14 acts as an electron source, from whose radiation by means of a cap-shaped grating 15 a narrow divergent Electron beam 16 is hidden.
- the beam 16 occurs through the central opening of a perforated disk anode 17 through and experiences a bundling into one virtual focal spot 18.
- Beam 16 passes through the cross-sectional zone outside the tube 12 arranged deflection coil 19 and is in magnetic gap 20 a subsequent Focusing coil 21 bundled.
- the focusing coil 21 forms as an electromagnetic lens, a reduced image of the virtual focal spot 18 as focal spot 22 on a Transmission target 23 from which is in the outlet opening 24 of the tube 12 is located.
- the focusing coil 21 is generated an extremely small-area focal spot 22 in the Typical order of magnitude of 0.5 ... 100 ⁇ m.
- the target 23 consists of a thin brake layer 32 made of a metal high atomic number in the periodic system of elements, such as Tungsten, gold, copper or molybdenum, and one weak X-ray absorbing but good heat conductor Carrier layer 33, preferably made of aluminum or Beryllium.
- a thin brake layer 32 made of a metal high atomic number in the periodic system of elements, such as Tungsten, gold, copper or molybdenum, and one weak X-ray absorbing but good heat conductor Carrier layer 33, preferably made of aluminum or Beryllium.
- a suction system 37 for maintaining the vacuum in the tube 12 and for withdrawing vaporous Traces of material from the burning cathode 14 causes at the same time keeping the interior of the tube 12 clean melted material particles from the focal spot hole 31 in target 23.
- the particularly high yield of X-rays 25 results from the extremely small-area stimulated braking volume 40 ( Figure 4) in the transmission target 23.
- the high Power density so the high area-specific physical stress with the microfocused Electron beam 16, leads to the burning in of a Focal spot hole 31 in the target 23, so that in Departure direction 28 of the X-rays 25 the remaining Target material and thus its radiation-weakening Self-absorption continuously reduced.
- the brake layer 32 is targeted by the incident electron beam 16 melted, which is a regarding their physical state dynamically changing x-ray source represents.
- the brake material as a thin layer 32, approximately from Tungsten, on a thick backing layer 33 made of good heat-conducting material, such as beryllium or aluminum, is stored, then it is hardly avoidable but also not critical that at the bottom of the hole 31 in the brake layer 32 finally from the microfused electron beam 16 also the backing layer behind in the beam direction 28 33 is melted. Then, however, the radiation must of the target 23 are ended at this point, that is in the Application of this X-ray device 1 ends the recording his; because the application of the carrier layer 33 with Electron beams 16 only lead to a very soft one X-ray radiation 25 and thus hardly in the image plane 29 usable diffuse silhouettes of the translucent sample 26.
- the transmission target 23 must not be used again a spot is irradiated where a hole 31 has been branded because otherwise soon or even immediately the carrier layer 33 instead of the brake line 32 would be melted from brake material.
- an offset control 34 is provided which is controlled by the The beam deflection described above by means of the deflection coil 19 out of the device axis 10 and / or by displacement of the target 23 relative to the device axis 10 ensures that just along a meandering or spiral arch successive focal spots 22 are caused. This ensures that only unused areas of the target 23 in succession are claimed and thus a destruction of the carrier layer 33 with triggers only a little more useful because it is too low in energy X-rays are avoided.
- the target 23 is thus by the vertical exposure to electrons in the Transmitted light operation so loaded until an aggregate conversion in the molten phase.
- a positioning motor 35 placed in the tube, shown in the drawing. Instead, the target 23 together with positioning motor 35 in principle also on the front the outlet opening 24 of the tube 12 held vacuum-tight his; or from an external arrangement of the positioning motor A rod attacks through the wall a rotating or sliding bracket 36 for the target in Inside the tube 12.
- the relocation must of the target 23 always take place when the electron beam 16 the micro-hole 31 as deep in the brake layer 32 has burned in that it reaches the carrier layer 33.
- a simple procedure for determining this point in time is after one in terms of performance assessable or easier to determine empirically short exposure time on the order of milli- or microseconds the focal spot generation on the target 23 for what the electron beam, as above already described, switched off, dimmed or off the target area can be pivoted out.
- the process takes no account of the individual Condition of the micro hole 31. It may well be that the carrier layer 33 has already been irradiated in this method or that on the other hand, the micro-hole 31 is not yet Boundary between brake layer 32 and carrier layer 33 has reached.
- a much more precise method for determining the point in time t a at which the brake layer 32 has melted and the electrons strike the carrier layer 33 is the measurement of the target current I shown in FIG. 3.
- the target current I becomes measured as a function of the irradiation time t, then this has the course shown in Figure 3A.
- the point in time t a is the point in time at which the electron beam has penetrated the braking layer 32 and the micro-hole 31 extends to the carrier layer 33.
- the X-ray radiation arises within the braking volume 40 described.
- the extent of the radiation source is thus determined by the size of the braking volume 40. Even if an electron beam diameter d going towards "zero" is assumed, a finite braking volume 40 remains due to the spreading of the electrons. Thus, a minimum radiation source size, which is essentially determined by E o and Z, cannot be fallen below in principle.
- Target material doping 41 are introduced whose volumes are significantly smaller than that prescribed braking volume 40 of the electrons in one contiguous target material.
- the usable X-rays are only generated in the target material high atomic number. That from the target material doping 41 in the base material low atomic number penetrated electrons do not contribute to the usable X-ray radiation, as well as that in addition to the doping 41 electrons penetrating directly into the carrier material do not contribute significantly to the usable radiation.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- X-Ray Techniques (AREA)
- Radiation-Therapy Devices (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Description
- Fig. 1
- einen schematischen Längsschnitt durch eine Mikrofocus-Röntgeneinrichtung,
- Fig. 2
- einen Schnitt durch das Target in vergrößertem Maßstab,
- Fig. 3
- das Target nach Figur 2 mit einer Messung des Targetstroms,
- Fig. 3A
- den Verlauf des Targetstroms in Abhängigkeit von der Bestrahlungsdauer,
- Fig. 4
- ein Target mit einem eingezeichneten Bremsvolumen und
- Fig. 4A
- eine Trägerschicht mit Trägermaterial-Dotierungen.
- 1
- Mikrofocus-Röntgeneinrichtung
- 10
- Geräte- und Strahlachse
- 11
- Stirnfläche
- 12
- Röhre
- 13
- Speisedrähte
- 14
- Kathode
- 15
- Gitter
- 16
- Elektronenstrahl
- 17
- Lochscheibe
- 18
- virtueller Brennfleck
- 19
- Ablenkspule
- 20
- magnetischer Spalt
- 21
- Fokussierspule
- 22
- Brennfleck
- 23
- Transmissionstarget
- 24
- Austrittsöffnung
- 25
- Röntgenstrahlung
- 26
- Probe
- 28
- Strahlrichtung der Röntgenstrahlen
- 29
- Bildebene
- 31
- Mikroloch
- 32
- Bremsschicht
- 33
- Trägerschicht
- 34
- Versatzsteuerung
- 35
- Positioniermotor
- 36
- Dreh- oder schiebehalterung
- 37
- Absauganlage
- 40
- Bremsvolumen
- 41
- Dotierungen
Claims (2)
- Mikrofokus-Röntgeneinrichtung, wobei ein fokussierter Elektronenstrahl zur Erzeugung der Röntgenstrahlung senkrecht auf ein Bremsmaterial eines Targets (23) auftrifft, im Brennfleck (22) das Bremsmaterial durch die hohe thermische Beanspruchung mindestens in den flüssigen Aggregatzustand übergeht und die Lage des Brennflecks (22) auf dem Target (23) mit jeder Beaufschlagung gegenüber der vorherigen Lage versetzt ist, wobei das Bremsmaterial in einer Bremsschicht (32) auf einer Trägerschicht (33) angeordnet ist, die Bremsschicht (32) auf der zum Elektronenstrahl (16) hin orientierten Seite der Trägerschicht (33) angeordnet ist und eine Steuerung (34) vorgesehen ist, welche den Elektronenstrahl (16) spätestens beim Anschmelzen der Trägerschicht (33) abbricht, dadurch gekennzeichnet, daß die Steuerung (34) ein Targetstrommessgerät ist, das den Zeitpunkt (ta), an dem der Elektronenstrahl (16) die Trägerschicht (33) anschmilzt, durch Messung des Targetstroms (I) ermittelt.
- Röntgeneinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Bremsmaterial in Form von Dotierungen (41) in der Trägerschicht (33) angeordnet ist.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19509516A DE19509516C1 (de) | 1995-03-20 | 1995-03-20 | Mikrofokus-Röntgeneinrichtung |
DE19509516 | 1995-03-20 | ||
PCT/EP1996/001145 WO1996029723A1 (de) | 1995-03-20 | 1996-03-16 | Mikrofocus-röntgeneinrichtung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0815582A1 EP0815582A1 (de) | 1998-01-07 |
EP0815582B1 true EP0815582B1 (de) | 1999-09-22 |
Family
ID=7756825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96907493A Expired - Lifetime EP0815582B1 (de) | 1995-03-20 | 1996-03-16 | Mikrofocus-röntgeneinrichtung |
Country Status (6)
Country | Link |
---|---|
US (1) | US5857008A (de) |
EP (1) | EP0815582B1 (de) |
JP (1) | JP3150703B2 (de) |
AT (1) | ATE185021T1 (de) |
DE (2) | DE19509516C1 (de) |
WO (1) | WO1996029723A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003081631A1 (de) * | 2002-03-26 | 2003-10-02 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Roentgenstrahlquelle mit einer kleinen brennfleckgroesse |
DE102005053386A1 (de) * | 2005-11-07 | 2007-05-16 | Comet Gmbh | Nanofocus-Röntgenröhre |
DE10352334B4 (de) * | 2003-11-06 | 2010-07-29 | Comet Gmbh | Verfahren zur Regelung einer Mikrofokus-Röntgeneinrichtung |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2161843C2 (ru) * | 1999-02-17 | 2001-01-10 | Кванта Вижн, Инк. | Точечный высокоинтенсивный источник рентгеновского излучения |
GB9906886D0 (en) * | 1999-03-26 | 1999-05-19 | Bede Scient Instr Ltd | Method and apparatus for prolonging the life of an X-ray target |
JP2001035428A (ja) * | 1999-07-22 | 2001-02-09 | Shimadzu Corp | X線発生装置 |
JP3934836B2 (ja) | 1999-10-29 | 2007-06-20 | 浜松ホトニクス株式会社 | 非破壊検査装置 |
JP3934837B2 (ja) | 1999-10-29 | 2007-06-20 | 浜松ホトニクス株式会社 | 開放型x線発生装置 |
UA59495C2 (uk) | 2000-08-07 | 2003-09-15 | Мурадін Абубєкіровіч Кумахов | Рентгенівський вимірювально-випробувальний комплекс |
US7180981B2 (en) * | 2002-04-08 | 2007-02-20 | Nanodynamics-88, Inc. | High quantum energy efficiency X-ray tube and targets |
US7466799B2 (en) * | 2003-04-09 | 2008-12-16 | Varian Medical Systems, Inc. | X-ray tube having an internal radiation shield |
US6954515B2 (en) * | 2003-04-25 | 2005-10-11 | Varian Medical Systems, Inc., | Radiation sources and radiation scanning systems with improved uniformity of radiation intensity |
JP2005276760A (ja) * | 2004-03-26 | 2005-10-06 | Shimadzu Corp | X線発生装置 |
US7139365B1 (en) | 2004-12-28 | 2006-11-21 | Kla-Tencor Technologies Corporation | X-ray reflectivity system with variable spot |
DE202005017496U1 (de) * | 2005-11-07 | 2007-03-15 | Comet Gmbh | Target für eine Mikrofocus- oder Nanofocus-Röntgenröhre |
DE102006062452B4 (de) * | 2006-12-28 | 2008-11-06 | Comet Gmbh | Röntgenröhre und Verfahren zur Prüfung eines Targets einer Röntgenröhre |
FR2941064B1 (fr) * | 2009-01-13 | 2010-12-31 | Norbert Beyrard | Dispositif d'imagerie x ou infrarouge comprenant un limiteur de dose a vitesse de translation controlee |
DE102009033607A1 (de) | 2009-07-17 | 2011-01-20 | Siemens Aktiengesellschaft | Röntgenröhre und Anode für eine Röntgenröhre |
JP5687001B2 (ja) * | 2009-08-31 | 2015-03-18 | 浜松ホトニクス株式会社 | X線発生装置 |
US9271689B2 (en) * | 2010-01-20 | 2016-03-01 | General Electric Company | Apparatus for wide coverage computed tomography and method of constructing same |
US8831179B2 (en) * | 2011-04-21 | 2014-09-09 | Carl Zeiss X-ray Microscopy, Inc. | X-ray source with selective beam repositioning |
US20150117599A1 (en) | 2013-10-31 | 2015-04-30 | Sigray, Inc. | X-ray interferometric imaging system |
JP2013239317A (ja) * | 2012-05-15 | 2013-11-28 | Canon Inc | 放射線発生ターゲット、放射線発生装置および放射線撮影システム |
US20160020059A1 (en) * | 2012-07-11 | 2016-01-21 | Comet Holding Ag | Cooling arrangement for x-ray generator |
US9129715B2 (en) | 2012-09-05 | 2015-09-08 | SVXR, Inc. | High speed x-ray inspection microscope |
JP5763032B2 (ja) * | 2012-10-02 | 2015-08-12 | 双葉電子工業株式会社 | X線管 |
US9448190B2 (en) | 2014-06-06 | 2016-09-20 | Sigray, Inc. | High brightness X-ray absorption spectroscopy system |
US9570265B1 (en) | 2013-12-05 | 2017-02-14 | Sigray, Inc. | X-ray fluorescence system with high flux and high flux density |
US10295485B2 (en) | 2013-12-05 | 2019-05-21 | Sigray, Inc. | X-ray transmission spectrometer system |
US10297359B2 (en) | 2013-09-19 | 2019-05-21 | Sigray, Inc. | X-ray illumination system with multiple target microstructures |
US10269528B2 (en) | 2013-09-19 | 2019-04-23 | Sigray, Inc. | Diverging X-ray sources using linear accumulation |
US9449781B2 (en) | 2013-12-05 | 2016-09-20 | Sigray, Inc. | X-ray illuminators with high flux and high flux density |
US10304580B2 (en) | 2013-10-31 | 2019-05-28 | Sigray, Inc. | Talbot X-ray microscope |
USRE48612E1 (en) | 2013-10-31 | 2021-06-29 | Sigray, Inc. | X-ray interferometric imaging system |
US9594036B2 (en) | 2014-02-28 | 2017-03-14 | Sigray, Inc. | X-ray surface analysis and measurement apparatus |
US9823203B2 (en) | 2014-02-28 | 2017-11-21 | Sigray, Inc. | X-ray surface analysis and measurement apparatus |
KR102120400B1 (ko) * | 2014-03-26 | 2020-06-09 | 한국전자통신연구원 | 타깃 유닛 및 그를 구비하는 엑스 선 튜브 |
US10401309B2 (en) | 2014-05-15 | 2019-09-03 | Sigray, Inc. | X-ray techniques using structured illumination |
TWI629474B (zh) | 2014-05-23 | 2018-07-11 | 財團法人工業技術研究院 | X光光源以及x光成像的方法 |
US9748070B1 (en) | 2014-09-17 | 2017-08-29 | Bruker Jv Israel Ltd. | X-ray tube anode |
US10352880B2 (en) | 2015-04-29 | 2019-07-16 | Sigray, Inc. | Method and apparatus for x-ray microscopy |
US10295486B2 (en) | 2015-08-18 | 2019-05-21 | Sigray, Inc. | Detector for X-rays with high spatial and high spectral resolution |
US11282668B2 (en) * | 2016-03-31 | 2022-03-22 | Nano-X Imaging Ltd. | X-ray tube and a controller thereof |
US10247683B2 (en) | 2016-12-03 | 2019-04-02 | Sigray, Inc. | Material measurement techniques using multiple X-ray micro-beams |
WO2018175570A1 (en) | 2017-03-22 | 2018-09-27 | Sigray, Inc. | Method of performing x-ray spectroscopy and x-ray absorption spectrometer system |
US10578566B2 (en) | 2018-04-03 | 2020-03-03 | Sigray, Inc. | X-ray emission spectrometer system |
US10845491B2 (en) | 2018-06-04 | 2020-11-24 | Sigray, Inc. | Energy-resolving x-ray detection system |
GB2591630B (en) | 2018-07-26 | 2023-05-24 | Sigray Inc | High brightness x-ray reflection source |
US10656105B2 (en) | 2018-08-06 | 2020-05-19 | Sigray, Inc. | Talbot-lau x-ray source and interferometric system |
CN112638261A (zh) | 2018-09-04 | 2021-04-09 | 斯格瑞公司 | 利用滤波的x射线荧光的系统和方法 |
US11056308B2 (en) | 2018-09-07 | 2021-07-06 | Sigray, Inc. | System and method for depth-selectable x-ray analysis |
CN112912987B (zh) * | 2018-10-22 | 2022-05-31 | 佳能安内华股份有限公司 | X射线发生装置和x射线摄影系统 |
JP7270637B2 (ja) * | 2018-10-25 | 2023-05-10 | 株式会社堀場製作所 | X線分析装置及びx線発生ユニット |
US11302508B2 (en) | 2018-11-08 | 2022-04-12 | Bruker Technologies Ltd. | X-ray tube |
WO2021011209A1 (en) | 2019-07-15 | 2021-01-21 | Sigray, Inc. | X-ray source with rotating anode at atmospheric pressure |
JP7337312B1 (ja) | 2022-03-31 | 2023-09-01 | キヤノンアネルバ株式会社 | X線発生装置、x線撮像装置、および、x線発生装置の調整方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE243171C (de) * | ||||
FR2333344A1 (fr) * | 1975-11-28 | 1977-06-24 | Radiologie Cie Gle | Tube radiogene a cathode chaude avec anode en bout et appareil comportant un tel tube |
US4344013A (en) * | 1979-10-23 | 1982-08-10 | Ledley Robert S | Microfocus X-ray tube |
DE3307019A1 (de) * | 1983-02-28 | 1984-08-30 | Scanray Scandinavian X-Ray Deutschland GmbH, 3050 Wunstorf | Roentgenroehre mit mikrofokus |
DE3401749A1 (de) * | 1984-01-19 | 1985-08-01 | Siemens AG, 1000 Berlin und 8000 München | Roentgendiagnostikeinrichtung mit einer roentgenroehre |
US4896341A (en) * | 1984-11-08 | 1990-01-23 | Hampshire Instruments, Inc. | Long life X-ray source target |
EP0319912A3 (de) * | 1987-12-07 | 1990-05-09 | Nanodynamics, Incorporated | Verfahren und Vorrichtung zum Analysieren von Materialien mittels Röntgenstrahlen |
JPH07119837B2 (ja) * | 1990-05-30 | 1995-12-20 | 株式会社日立製作所 | Ct装置及び透過装置並びにx線発生装置 |
-
1995
- 1995-03-20 DE DE19509516A patent/DE19509516C1/de not_active Expired - Fee Related
-
1996
- 1996-03-16 AT AT96907493T patent/ATE185021T1/de not_active IP Right Cessation
- 1996-03-16 US US08/913,714 patent/US5857008A/en not_active Expired - Fee Related
- 1996-03-16 WO PCT/EP1996/001145 patent/WO1996029723A1/de active IP Right Grant
- 1996-03-16 EP EP96907493A patent/EP0815582B1/de not_active Expired - Lifetime
- 1996-03-16 DE DE59603163T patent/DE59603163D1/de not_active Expired - Fee Related
- 1996-03-16 JP JP52806796A patent/JP3150703B2/ja not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003081631A1 (de) * | 2002-03-26 | 2003-10-02 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Roentgenstrahlquelle mit einer kleinen brennfleckgroesse |
DE10352334B4 (de) * | 2003-11-06 | 2010-07-29 | Comet Gmbh | Verfahren zur Regelung einer Mikrofokus-Röntgeneinrichtung |
DE102005053386A1 (de) * | 2005-11-07 | 2007-05-16 | Comet Gmbh | Nanofocus-Röntgenröhre |
Also Published As
Publication number | Publication date |
---|---|
JPH10503618A (ja) | 1998-03-31 |
JP3150703B2 (ja) | 2001-03-26 |
US5857008A (en) | 1999-01-05 |
EP0815582A1 (de) | 1998-01-07 |
WO1996029723A1 (de) | 1996-09-26 |
DE59603163D1 (de) | 1999-10-28 |
DE19509516C1 (de) | 1996-09-26 |
ATE185021T1 (de) | 1999-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0815582B1 (de) | Mikrofocus-röntgeneinrichtung | |
EP0584871B1 (de) | Röntgenröhre mit einer Transmissionsanode | |
EP1946088B1 (de) | Vorrichtung zur röntgen-tomosynthese | |
DE69129117T2 (de) | Vorrichtung zur steuerung von strahlung und ihre verwendungen | |
DE69125591T2 (de) | Röntgen-röhre | |
DE69124547T2 (de) | Röntgenanalysegerät, insbesondere Computertomograph | |
DE19544203A1 (de) | Röntgenröhre, insbesondere Mikrofokusröntgenröhre | |
EP1883093B1 (de) | Computertomograph | |
DE102004018765A1 (de) | Stationäres Computertomographiesystem mit kompakter Röntgenquellen-Baueinheit | |
DE3330806C2 (de) | ||
DE102008007413A1 (de) | Röntgentarget | |
EP1783809A2 (de) | Nanofocus-Röntgenröhre | |
EP0292055B1 (de) | Strahlenquelle zur Erzeugung einer im wesentlichen monochromatischen Röntgenstrahlung | |
DE102010009276A1 (de) | Röntgenröhre sowie System zur Herstellung von Röntgenbildern für die zahnmedizinische oder kieferorthopädische Diagnostik | |
DE102010060484A1 (de) | System und Verfahren zum Fokussieren und Regeln/Steuern eines Strahls in einer indirekt geheizten Kathode | |
EP3742469A1 (de) | Röntgenanode, röntgenstrahler und verfahren zur herstellung einer röntgenanode | |
DE102012103974A1 (de) | Vorrichtung und Verfahren zur Erzeugung zumindest eines Röntgenstrahlen abgebenden Brennflecks | |
DE60033374T2 (de) | Röntgenmikroskop mit einer röntgenstrahlungsquelle für weiche röntgenstrahlungen | |
EP2301042B1 (de) | Röntgentarget und ein verfahren zur erzeugung von röntgenstrahlen | |
EP3213337A1 (de) | Metallstrahlröntgenröhre | |
DE102005018342B4 (de) | Vorrichtung und Verfahren zur Erzeugung von Röntgenstrahlung | |
EP2979293A1 (de) | Röntgenquelle und bildgebendes system | |
DE102006032606A1 (de) | Erzeugung von elektromagnetischer Strahlung, insbesondere Röntgenstrahlung | |
EP0141041B1 (de) | Röntgenlithographiegerät | |
DE19805290C2 (de) | Monochromatische Röntgenstrahlenquelle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970818 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19981116 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI NL |
|
REF | Corresponds to: |
Ref document number: 185021 Country of ref document: AT Date of ref document: 19991015 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59603163 Country of ref document: DE Date of ref document: 19991028 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19991207 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: MEDIXTEC GMBH MEDIZINISCHE GERAETE TRANSFER- MEDIX Ref country code: CH Ref legal event code: NV Representative=s name: BOVARD AG PATENTANWAELTE |
|
NLS | Nl: assignments of ep-patents |
Owner name: MEDIXTEC GMBH |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: RASCHER GMBH |
|
BECA | Be: change of holder's address |
Free format text: 20020416 *MEDIXTEC G.M.B.H.:NEUE WEILHERMER STRASSE 24, D-73230 KIRCHHEIM-TECK |
|
BECH | Be: change of holder |
Free format text: 20020416 *MEDIXTEC G.M.B.H. |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20080314 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20080318 Year of fee payment: 13 Ref country code: GB Payment date: 20080320 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20080314 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080314 Year of fee payment: 13 Ref country code: DE Payment date: 20080321 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080328 Year of fee payment: 13 Ref country code: BE Payment date: 20080430 Year of fee payment: 13 |
|
BERE | Be: lapsed |
Owner name: *MEDIXTEC G.M.B.H. Effective date: 20090331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090316 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090316 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20091001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20091130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091001 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090316 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091123 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090316 |