EP3213337A1 - Metallstrahlröntgenröhre - Google Patents
MetallstrahlröntgenröhreInfo
- Publication number
- EP3213337A1 EP3213337A1 EP15820839.7A EP15820839A EP3213337A1 EP 3213337 A1 EP3213337 A1 EP 3213337A1 EP 15820839 A EP15820839 A EP 15820839A EP 3213337 A1 EP3213337 A1 EP 3213337A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- metal
- cathode
- electron beam
- ray tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 32
- 239000002184 metal Substances 0.000 title claims abstract description 32
- 238000010894 electron beam technology Methods 0.000 claims abstract description 25
- 229910001338 liquidmetal Inorganic materials 0.000 claims abstract description 8
- 239000011358 absorbing material Substances 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 3
- 239000010405 anode material Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052729 chemical element Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000005461 Bremsstrahlung Effects 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/06—Cathodes
- H01J35/065—Field emission, photo emission or secondary emission cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/12—Cooling non-rotary anodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/06—Cathode assembly
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/06—Cathode assembly
- H01J2235/062—Cold cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/08—Targets (anodes) and X-ray converters
- H01J2235/081—Target material
- H01J2235/082—Fluids, e.g. liquids, gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2235/00—X-ray tubes
- H01J2235/08—Targets (anodes) and X-ray converters
- H01J2235/086—Target geometry
Definitions
- the invention relates to a metal-ray X-ray tube according to the preamble of claim 1.
- Object of the present invention is to provide a metal beam X-ray tube, which is less genröhren than conventional fixed or rotating anode tubes or previous Metallstrahlrönt ⁇ the problem of power density at the impact point of the electron beam hit on the anode component.
- the metal beam X-ray tube in a vacuum chamber in addition to a cathode component for extracting an electric ⁇ nenstrahls also a provision for extracting the extracting the electron beam from the cathode component.
- the metal-ray X-ray tube has an anode component formed with a liquid metal beam as a target for the emitted electron beam of the cathode component and a provision for accelerating the emitted from the cathode component electron beam within a vacuum path in the direction and target anode component.
- the metal beam X-ray tube according to the invention a thin jet of metal as an anode component through which the electrons impinging on the anode component Elect ⁇ Ronen beam are only partly braked.
- the metal beam X-ray tube according to the invention a knife cut ⁇ cathode as the cathode component with a pointing with a slight inclination downwards in the direction of liquid metal jet of the anode cathode component cutting edge.
- a metal-ray X-ray tube in which the fast, electrostatically or electrodynamically accelerated primary electrons in a first vacuum path are only partially decelerated in a thin, relatively electron-transparent target medium.
- a knife-edge cathode which, according to the invention, produces an electron flat jet with thickness matching the metal beam diameter so that a sufficiently large proportion of the electrons issuing from the cathode strike the metal beam.
- a metal-ray X-ray tube is obtained, which no longer has the disadvantages mentioned above.
- the light generation efficiency is increased in a particularly advantageous manner.
- To increase efficiency additionally contributes to a metal beam of the anode component, which is embedded in a second, relatively well electron-permeable and heat-absorbing material or dissolved therein.
- the dissolution can be carried out, for example, in the form of an alloy or a mixture.
- the metal beam can have the cylinder shape with a diameter in the order of magnitude of the electron beam diameter, for example 10 to 100 ⁇ m, which is easy to realize, yet with sufficient electron-permeability.
- the mixture or the alloy should have a low melting point in order to enable liquid jet formation.
- the improved energy absorption capacity of the anode material redu ⁇ decorates the necessary A nodenst rahl york
- the sole FIGURE shows a metal-ray X-ray tube 1, which has a vacuum space 2.
- a cathode component 3 is arranged in the vacuum space 2.
- the cathode component 3 is used for extracting an electron beam 4.
- a precaution 5 for extracting the extracting the electron beam 4 is provided by the Kathodenkompo ⁇ component.
- an anode component 7 formed with a liquid metal jet 6 is provided in the vacuum space 2.
- the metal stream 6 is the destination for the emitted electron beam 4 of the cathode component 3.
- a provision 8 is used for accelerating the emitted from the cathode component 3 electron beam 4, at least within a vacuum line 9 in the direction and with target Anodenkompo ⁇ component. 7
- the metal beam 6 is realized as far as thin metal beam, as the electrons of the electron beam 4 are only partially decelerated by the metal beam 6.
- the cathode component 3 has a cathode knife edge 10, so that the cathode component 3 can also be referred to as a knife edge cathode.
- the cathode knife blade 10 is aligned with a slight downward slope in the direction of liquid metal jet 6 of the anode component 7. After the anode component 7, there is a further vacuum gap 11 for the not yet completely decelerated electrons of the electron beam 4.
- the vacuum system 11 serves to brake the approximately to the anode component 7 only partially braked Elect ⁇ Ronen at least to a stop.
- this comple ⁇ zend a Energy Weg forungsvorlotung 12th Not specifically recognizable in the figure is that the metal ⁇ beam 6 of the anode component 7 embedded at least in a single second, relatively well electron-permeable and heat-absorbing material 13 or dissolved therein.
- a knife-edge cathode is used, which is slightly inclined against any existing magnetic field lines.
- a chemical element of atomic number 30 to 92 is used, for example barium, lanthanum, cerium, bismuth, tungsten and so on and at least one heat-absorbing, relatively electron and X-ray transparent component, for example, a chemical element with atomic number ⁇ 20, for example lithium.
- the metal beam 6 is injected, for example by means of a Injek ⁇ tors in the electron beam 4, so as to form 14 bremsstrahlung and characteristic radiation in the interaction zone.
- the transmitted and scattered electrons are decelerated in an electrostatic collector by a counter-E field with energy recovery and collected at low speed.
- Light-melting metal alloys tend to have a high vapor pressure at elevated temperatures, favoring the deposition of conductive surface layers on, for example, insulators. It is therefore advantageous for a minimal, for interaction with the electric ⁇ nenstrahl 4 to guide the metal beam 6 necessary length through the discharge space and to then enter into a wall cooled condensation and collection container.
Landscapes
- X-Ray Techniques (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014226813.3A DE102014226813A1 (de) | 2014-12-22 | 2014-12-22 | Metallstrahlröntgenröhre |
PCT/EP2015/080504 WO2016102370A1 (de) | 2014-12-22 | 2015-12-18 | Metallstrahlröntgenröhre |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3213337A1 true EP3213337A1 (de) | 2017-09-06 |
EP3213337B1 EP3213337B1 (de) | 2020-10-07 |
Family
ID=55072621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15820839.7A Active EP3213337B1 (de) | 2014-12-22 | 2015-12-18 | Metallstrahlröntgenröhre |
Country Status (5)
Country | Link |
---|---|
US (1) | US10586673B2 (de) |
EP (1) | EP3213337B1 (de) |
CN (1) | CN107004552B (de) |
DE (1) | DE102014226813A1 (de) |
WO (1) | WO2016102370A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3214635A1 (de) * | 2016-03-01 | 2017-09-06 | Excillum AB | Flüssig-target-röntgenquelle mit strahlmischwerkzeug |
US10748736B2 (en) * | 2017-10-18 | 2020-08-18 | Kla-Tencor Corporation | Liquid metal rotating anode X-ray source for semiconductor metrology |
EP3671802A1 (de) | 2018-12-20 | 2020-06-24 | Excillum AB | Elektronenstrahlauffänger mit schrägem aufprallabschnitt |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL42763A0 (en) | 1972-09-18 | 1973-10-25 | Bendix Corp | A field emission x-ray tube |
US4953191A (en) * | 1989-07-24 | 1990-08-28 | The United States Of America As Represented By The United States Department Of Energy | High intensity x-ray source using liquid gallium target |
US5052034A (en) | 1989-10-30 | 1991-09-24 | Siemens Aktiengesellschaft | X-ray generator |
SE510133C2 (sv) * | 1996-04-25 | 1999-04-19 | Jettec Ab | Laser-plasma röntgenkälla utnyttjande vätskor som strålmål |
DE60143527D1 (de) * | 2000-07-28 | 2011-01-05 | Jettec Ab | Verfahren und vorrichtung zur erzeugung von röntgenstrahlung |
JP3866063B2 (ja) * | 2001-07-31 | 2007-01-10 | 独立行政法人科学技術振興機構 | X線発生方法及びその装置 |
DE102004015590B4 (de) | 2004-03-30 | 2008-10-09 | GE Homeland Protection, Inc., Newark | Anodenmodul für eine Flüssigmetallanoden-Röntgenquelle sowie Röntgenstrahler mit einem Anodenmodul |
DE102008026938A1 (de) * | 2008-06-05 | 2009-12-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Strahlungsquelle und Verfahren zum Erzeugen von Röntgenstrahlung |
US7929667B1 (en) * | 2008-10-02 | 2011-04-19 | Kla-Tencor Corporation | High brightness X-ray metrology |
EP2415065A1 (de) * | 2009-04-03 | 2012-02-08 | Excillum AB | Zuführung eines flüssigmetallziels bei der erzeugung von röntgenstrahlen |
CN105609396B (zh) * | 2010-12-22 | 2019-03-15 | 伊克斯拉姆公司 | 校直和聚焦x射线源内的电子束 |
US8879690B2 (en) * | 2010-12-28 | 2014-11-04 | Rigaku Corporation | X-ray generator |
DE102013209447A1 (de) | 2013-05-22 | 2014-11-27 | Siemens Aktiengesellschaft | Röntgenquelle und Verfahren zur Erzeugung von Röntgenstrahlung |
-
2014
- 2014-12-22 DE DE102014226813.3A patent/DE102014226813A1/de not_active Withdrawn
-
2015
- 2015-12-18 CN CN201580070208.3A patent/CN107004552B/zh active Active
- 2015-12-18 US US15/538,431 patent/US10586673B2/en active Active
- 2015-12-18 WO PCT/EP2015/080504 patent/WO2016102370A1/de active Application Filing
- 2015-12-18 EP EP15820839.7A patent/EP3213337B1/de active Active
Also Published As
Publication number | Publication date |
---|---|
WO2016102370A1 (de) | 2016-06-30 |
DE102014226813A1 (de) | 2016-06-23 |
EP3213337B1 (de) | 2020-10-07 |
US10586673B2 (en) | 2020-03-10 |
CN107004552A (zh) | 2017-08-01 |
US20170345611A1 (en) | 2017-11-30 |
CN107004552B (zh) | 2018-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0815582B1 (de) | Mikrofocus-röntgeneinrichtung | |
DE69125591T2 (de) | Röntgen-röhre | |
EP1783809A2 (de) | Nanofocus-Röntgenröhre | |
DE102013209447A1 (de) | Röntgenquelle und Verfahren zur Erzeugung von Röntgenstrahlung | |
DE102006024435A1 (de) | Röntgenstrahler | |
DE19544203A1 (de) | Röntgenröhre, insbesondere Mikrofokusröntgenröhre | |
EP3213337B1 (de) | Metallstrahlröntgenröhre | |
DE1190112B (de) | Vorrichtung zur Erzeugung eines Elektronenstrahlbuendels hoher Stromstaerke und Verfahren zum Erhitzen und Schmelzen mittels einer solchen Vorrichtung | |
WO2005096341A1 (de) | Anodenmodul für eine flüssigmetallanoden-röntgenquelle sowie röntgenstrahler mit einem anodenmodul | |
DE2813964A1 (de) | Gammastrahlen-bestrahlungskopf | |
WO2015052039A1 (de) | Röntgenquelle und verfahren zur erzeugung von röntgenstrahlung | |
DE1919451B2 (de) | Elektronenstrahlkanone zur erzeugung eines elektronenstrahls hoher leistung | |
EP3629361A1 (de) | Röntgenanode, röntgenstrahler und verfahren zur herstellung einer röntgenanode | |
DE102012103974A1 (de) | Vorrichtung und Verfahren zur Erzeugung zumindest eines Röntgenstrahlen abgebenden Brennflecks | |
DE2341503A1 (de) | Elektronenstrahlroehre | |
DE102014226814B4 (de) | Metallstrahlröntgenröhre | |
DE102014112275B4 (de) | Röntgenröhre mit Anodenelektrode | |
WO2010012403A2 (de) | Röntgentarget und ein verfahren zur erzeugung von röntgenstrahlen | |
DE69621894T2 (de) | Röntgenröhre und Barrierevorrichtung dafür | |
EP2885807B1 (de) | Vorrichtung mit anode zur erzeugung von röntgenstrahlung | |
DE2523360A1 (de) | Gasentladungselektronenstrahlerzeugungssystem zum erzeugen eines elektronenstrahls mit hilfe einer glimmentladung | |
EP2883236A1 (de) | Vorrichtung zur erzeugung von röntgenstrahlung | |
DE1764062A1 (de) | Hochvakuumpumpe | |
EP2549520B1 (de) | Teilchenstrahlgenerator mit verbessertem Vakuum | |
AT260382B (de) | Axialsymmetrisches Elektronenstrahlerzeugungssystem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170602 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS HEALTHCARE GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200605 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1322042 Country of ref document: AT Kind code of ref document: T Effective date: 20201015 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015013632 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210107 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210208 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210108 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210107 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210207 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015013632 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201231 |
|
26N | No opposition filed |
Effective date: 20210708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201218 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201218 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1322042 Country of ref document: AT Kind code of ref document: T Effective date: 20201218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210207 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231214 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502015013632 Country of ref document: DE Owner name: SIEMENS HEALTHINEERS AG, DE Free format text: FORMER OWNER: SIEMENS HEALTHCARE GMBH, MUENCHEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240219 Year of fee payment: 9 Ref country code: GB Payment date: 20240102 Year of fee payment: 9 |