EP0815582B1 - Installation radiographique a microfoyer - Google Patents

Installation radiographique a microfoyer Download PDF

Info

Publication number
EP0815582B1
EP0815582B1 EP96907493A EP96907493A EP0815582B1 EP 0815582 B1 EP0815582 B1 EP 0815582B1 EP 96907493 A EP96907493 A EP 96907493A EP 96907493 A EP96907493 A EP 96907493A EP 0815582 B1 EP0815582 B1 EP 0815582B1
Authority
EP
European Patent Office
Prior art keywords
target
electron beam
layer
retarding
carrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96907493A
Other languages
German (de)
English (en)
Other versions
EP0815582A1 (fr
Inventor
Alfred Reinhold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RASCHER GMBH
Original Assignee
Medixtec Medizinische Gerate GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medixtec Medizinische Gerate GmbH filed Critical Medixtec Medizinische Gerate GmbH
Publication of EP0815582A1 publication Critical patent/EP0815582A1/fr
Application granted granted Critical
Publication of EP0815582B1 publication Critical patent/EP0815582B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K7/00Gamma- or X-ray microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/24Tubes wherein the point of impact of the cathode ray on the anode or anticathode is movable relative to the surface thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • H01J35/116Transmissive anodes

Definitions

  • the invention relates to a device according to the Preamble of claim 1.
  • a device is known from U.S. Patent 4,344,013 (Ledley).
  • Every point of the object at different angles, namely from different Producing the radiation source that would be irradiated each object point would result in the projection into the Shadows offset from each other in the image plane, and overall the result would be a washed out contour of the Object, according to its distance from the Image plane is shown enlarged.
  • the exposure time per x-ray is extended, when working with lower power x-rays would what the requirement for short exposure times in the range of tenths to hundredths of a second contradict to an unnecessarily high radiation exposure and Avoid blurring due to object movement.
  • the thermal focal spot on the target anode is smaller is, the lower the electrical Power absorbed by the small target area before it starts to melt. This behavior contradicts the demand for higher density of the target impacting electron beams for higher X-ray power output.
  • DE-OS, A, 33 07 019 (Scanray) is a microfocus X-ray device known where the electron beam Draw perpendicular to the target. As useful radiation the outgoing at an angle of 0 to 10 degrees X-ray related. However, it comes with a solid Target worked. A meltdown transmission target is not intended and not addressed.
  • the invention is therefore based on the object Capture the point in time at which the vertical incidence Electron beam has melted through the target and becomes one other target point must be directed.
  • the microfocus x-ray device 1 consists of a evacuated housing 11, 12 made of glass or non-ferromagnetic metal.
  • the tube 12 has one any, usually round cross-section.
  • By a rear end face 11 of the tube 12 protrude electrically Feed wires 13 for a hairpin-shaped cathode 14 ins Inside of tube 12.
  • the heated cathode 14 acts as an electron source, from whose radiation by means of a cap-shaped grating 15 a narrow divergent Electron beam 16 is hidden.
  • the beam 16 occurs through the central opening of a perforated disk anode 17 through and experiences a bundling into one virtual focal spot 18.
  • Beam 16 passes through the cross-sectional zone outside the tube 12 arranged deflection coil 19 and is in magnetic gap 20 a subsequent Focusing coil 21 bundled.
  • the focusing coil 21 forms as an electromagnetic lens, a reduced image of the virtual focal spot 18 as focal spot 22 on a Transmission target 23 from which is in the outlet opening 24 of the tube 12 is located.
  • the focusing coil 21 is generated an extremely small-area focal spot 22 in the Typical order of magnitude of 0.5 ... 100 ⁇ m.
  • the target 23 consists of a thin brake layer 32 made of a metal high atomic number in the periodic system of elements, such as Tungsten, gold, copper or molybdenum, and one weak X-ray absorbing but good heat conductor Carrier layer 33, preferably made of aluminum or Beryllium.
  • a thin brake layer 32 made of a metal high atomic number in the periodic system of elements, such as Tungsten, gold, copper or molybdenum, and one weak X-ray absorbing but good heat conductor Carrier layer 33, preferably made of aluminum or Beryllium.
  • a suction system 37 for maintaining the vacuum in the tube 12 and for withdrawing vaporous Traces of material from the burning cathode 14 causes at the same time keeping the interior of the tube 12 clean melted material particles from the focal spot hole 31 in target 23.
  • the particularly high yield of X-rays 25 results from the extremely small-area stimulated braking volume 40 ( Figure 4) in the transmission target 23.
  • the high Power density so the high area-specific physical stress with the microfocused Electron beam 16, leads to the burning in of a Focal spot hole 31 in the target 23, so that in Departure direction 28 of the X-rays 25 the remaining Target material and thus its radiation-weakening Self-absorption continuously reduced.
  • the brake layer 32 is targeted by the incident electron beam 16 melted, which is a regarding their physical state dynamically changing x-ray source represents.
  • the brake material as a thin layer 32, approximately from Tungsten, on a thick backing layer 33 made of good heat-conducting material, such as beryllium or aluminum, is stored, then it is hardly avoidable but also not critical that at the bottom of the hole 31 in the brake layer 32 finally from the microfused electron beam 16 also the backing layer behind in the beam direction 28 33 is melted. Then, however, the radiation must of the target 23 are ended at this point, that is in the Application of this X-ray device 1 ends the recording his; because the application of the carrier layer 33 with Electron beams 16 only lead to a very soft one X-ray radiation 25 and thus hardly in the image plane 29 usable diffuse silhouettes of the translucent sample 26.
  • the transmission target 23 must not be used again a spot is irradiated where a hole 31 has been branded because otherwise soon or even immediately the carrier layer 33 instead of the brake line 32 would be melted from brake material.
  • an offset control 34 is provided which is controlled by the The beam deflection described above by means of the deflection coil 19 out of the device axis 10 and / or by displacement of the target 23 relative to the device axis 10 ensures that just along a meandering or spiral arch successive focal spots 22 are caused. This ensures that only unused areas of the target 23 in succession are claimed and thus a destruction of the carrier layer 33 with triggers only a little more useful because it is too low in energy X-rays are avoided.
  • the target 23 is thus by the vertical exposure to electrons in the Transmitted light operation so loaded until an aggregate conversion in the molten phase.
  • a positioning motor 35 placed in the tube, shown in the drawing. Instead, the target 23 together with positioning motor 35 in principle also on the front the outlet opening 24 of the tube 12 held vacuum-tight his; or from an external arrangement of the positioning motor A rod attacks through the wall a rotating or sliding bracket 36 for the target in Inside the tube 12.
  • the relocation must of the target 23 always take place when the electron beam 16 the micro-hole 31 as deep in the brake layer 32 has burned in that it reaches the carrier layer 33.
  • a simple procedure for determining this point in time is after one in terms of performance assessable or easier to determine empirically short exposure time on the order of milli- or microseconds the focal spot generation on the target 23 for what the electron beam, as above already described, switched off, dimmed or off the target area can be pivoted out.
  • the process takes no account of the individual Condition of the micro hole 31. It may well be that the carrier layer 33 has already been irradiated in this method or that on the other hand, the micro-hole 31 is not yet Boundary between brake layer 32 and carrier layer 33 has reached.
  • a much more precise method for determining the point in time t a at which the brake layer 32 has melted and the electrons strike the carrier layer 33 is the measurement of the target current I shown in FIG. 3.
  • the target current I becomes measured as a function of the irradiation time t, then this has the course shown in Figure 3A.
  • the point in time t a is the point in time at which the electron beam has penetrated the braking layer 32 and the micro-hole 31 extends to the carrier layer 33.
  • the X-ray radiation arises within the braking volume 40 described.
  • the extent of the radiation source is thus determined by the size of the braking volume 40. Even if an electron beam diameter d going towards "zero" is assumed, a finite braking volume 40 remains due to the spreading of the electrons. Thus, a minimum radiation source size, which is essentially determined by E o and Z, cannot be fallen below in principle.
  • Target material doping 41 are introduced whose volumes are significantly smaller than that prescribed braking volume 40 of the electrons in one contiguous target material.
  • the usable X-rays are only generated in the target material high atomic number. That from the target material doping 41 in the base material low atomic number penetrated electrons do not contribute to the usable X-ray radiation, as well as that in addition to the doping 41 electrons penetrating directly into the carrier material do not contribute significantly to the usable radiation.

Claims (2)

  1. Dispositif radiologique à microfoyer, dans lequel un faisceau électronique focalisé pour la production des rayons X tombe sous incidence normale sur une matière de freinage d'une cible (23), dans la tache focale (22), la matière de freinage, par la haute charge thermique, passe au moins à l'état liquide, et la position de la tache focale (22) sur la cible (23) est, à chaque sollicitation, changée par rapport à la position précédente, la matière de freinage étant placée dans une couche de freinage (32) sur une couche support (33), la couche de freinage (32) étant placée sur la face de la couche support (33) orientée vers le faisceau électronique (16), et une commande (34) qui coupe le faisceau électronique (16) au plus tard au début de la fusion de la couche support (33) étant prévue, caractérisé par le fait que la commande (34) est un appareil de mesure du courant de cible qui détermine par mesure du courant de cible (I) l'instant (ta) où le faisceau électronique (16) commence à faire fondre la couche support (33).
  2. Dispositif radiologique selon la revendication 1, caractérisé par le fait que la matière de freinage est placée sous forme de dopages (41) dans la couche support (33).
EP96907493A 1995-03-20 1996-03-16 Installation radiographique a microfoyer Expired - Lifetime EP0815582B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19509516A DE19509516C1 (de) 1995-03-20 1995-03-20 Mikrofokus-Röntgeneinrichtung
DE19509516 1995-03-20
PCT/EP1996/001145 WO1996029723A1 (fr) 1995-03-20 1996-03-16 Installation radiographique a microfoyer

Publications (2)

Publication Number Publication Date
EP0815582A1 EP0815582A1 (fr) 1998-01-07
EP0815582B1 true EP0815582B1 (fr) 1999-09-22

Family

ID=7756825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96907493A Expired - Lifetime EP0815582B1 (fr) 1995-03-20 1996-03-16 Installation radiographique a microfoyer

Country Status (6)

Country Link
US (1) US5857008A (fr)
EP (1) EP0815582B1 (fr)
JP (1) JP3150703B2 (fr)
AT (1) ATE185021T1 (fr)
DE (2) DE19509516C1 (fr)
WO (1) WO1996029723A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081631A1 (fr) * 2002-03-26 2003-10-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Source de rayons x ayant un foyer de petite taille
DE102005053386A1 (de) * 2005-11-07 2007-05-16 Comet Gmbh Nanofocus-Röntgenröhre
DE10352334B4 (de) * 2003-11-06 2010-07-29 Comet Gmbh Verfahren zur Regelung einer Mikrofokus-Röntgeneinrichtung

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2161843C2 (ru) 1999-02-17 2001-01-10 Кванта Вижн, Инк. Точечный высокоинтенсивный источник рентгеновского излучения
GB9906886D0 (en) * 1999-03-26 1999-05-19 Bede Scient Instr Ltd Method and apparatus for prolonging the life of an X-ray target
JP2001035428A (ja) * 1999-07-22 2001-02-09 Shimadzu Corp X線発生装置
JP3934837B2 (ja) 1999-10-29 2007-06-20 浜松ホトニクス株式会社 開放型x線発生装置
JP3934836B2 (ja) 1999-10-29 2007-06-20 浜松ホトニクス株式会社 非破壊検査装置
UA59495C2 (uk) * 2000-08-07 2003-09-15 Мурадін Абубєкіровіч Кумахов Рентгенівський вимірювально-випробувальний комплекс
US7180981B2 (en) * 2002-04-08 2007-02-20 Nanodynamics-88, Inc. High quantum energy efficiency X-ray tube and targets
US7466799B2 (en) * 2003-04-09 2008-12-16 Varian Medical Systems, Inc. X-ray tube having an internal radiation shield
US6954515B2 (en) * 2003-04-25 2005-10-11 Varian Medical Systems, Inc., Radiation sources and radiation scanning systems with improved uniformity of radiation intensity
JP2005276760A (ja) * 2004-03-26 2005-10-06 Shimadzu Corp X線発生装置
US7139365B1 (en) 2004-12-28 2006-11-21 Kla-Tencor Technologies Corporation X-ray reflectivity system with variable spot
DE202005017496U1 (de) * 2005-11-07 2007-03-15 Comet Gmbh Target für eine Mikrofocus- oder Nanofocus-Röntgenröhre
DE102006062452B4 (de) * 2006-12-28 2008-11-06 Comet Gmbh Röntgenröhre und Verfahren zur Prüfung eines Targets einer Röntgenröhre
FR2941064B1 (fr) * 2009-01-13 2010-12-31 Norbert Beyrard Dispositif d'imagerie x ou infrarouge comprenant un limiteur de dose a vitesse de translation controlee
DE102009033607A1 (de) 2009-07-17 2011-01-20 Siemens Aktiengesellschaft Röntgenröhre und Anode für eine Röntgenröhre
JP5687001B2 (ja) * 2009-08-31 2015-03-18 浜松ホトニクス株式会社 X線発生装置
US9271689B2 (en) * 2010-01-20 2016-03-01 General Electric Company Apparatus for wide coverage computed tomography and method of constructing same
US8831179B2 (en) * 2011-04-21 2014-09-09 Carl Zeiss X-ray Microscopy, Inc. X-ray source with selective beam repositioning
US20150117599A1 (en) 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
JP2013239317A (ja) * 2012-05-15 2013-11-28 Canon Inc 放射線発生ターゲット、放射線発生装置および放射線撮影システム
US20160020059A1 (en) * 2012-07-11 2016-01-21 Comet Holding Ag Cooling arrangement for x-ray generator
US9129715B2 (en) 2012-09-05 2015-09-08 SVXR, Inc. High speed x-ray inspection microscope
JP5763032B2 (ja) * 2012-10-02 2015-08-12 双葉電子工業株式会社 X線管
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US9449781B2 (en) 2013-12-05 2016-09-20 Sigray, Inc. X-ray illuminators with high flux and high flux density
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US9448190B2 (en) 2014-06-06 2016-09-20 Sigray, Inc. High brightness X-ray absorption spectroscopy system
US9570265B1 (en) 2013-12-05 2017-02-14 Sigray, Inc. X-ray fluorescence system with high flux and high flux density
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US9594036B2 (en) 2014-02-28 2017-03-14 Sigray, Inc. X-ray surface analysis and measurement apparatus
US9823203B2 (en) 2014-02-28 2017-11-21 Sigray, Inc. X-ray surface analysis and measurement apparatus
KR102120400B1 (ko) * 2014-03-26 2020-06-09 한국전자통신연구원 타깃 유닛 및 그를 구비하는 엑스 선 튜브
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
TWI629474B (zh) 2014-05-23 2018-07-11 財團法人工業技術研究院 X光光源以及x光成像的方法
US9748070B1 (en) 2014-09-17 2017-08-29 Bruker Jv Israel Ltd. X-ray tube anode
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
US11282668B2 (en) * 2016-03-31 2022-03-22 Nano-X Imaging Ltd. X-ray tube and a controller thereof
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
WO2018175570A1 (fr) 2017-03-22 2018-09-27 Sigray, Inc. Procédé de réalisation d'une spectroscopie des rayons x et système de spectromètre d'absorption de rayons x
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
GB2591630B (en) 2018-07-26 2023-05-24 Sigray Inc High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
DE112019004433T5 (de) 2018-09-04 2021-05-20 Sigray, Inc. System und verfahren für röntgenstrahlfluoreszenz mit filterung
CN112823280A (zh) 2018-09-07 2021-05-18 斯格瑞公司 用于深度可选x射线分析的系统和方法
JP6695011B1 (ja) * 2018-10-22 2020-05-20 キヤノンアネルバ株式会社 X線発生装置及びx線撮影システム
US11467107B2 (en) * 2018-10-25 2022-10-11 Horiba, Ltd. X-ray analysis apparatus and x-ray generation unit
US11302508B2 (en) 2018-11-08 2022-04-12 Bruker Technologies Ltd. X-ray tube
WO2021011209A1 (fr) 2019-07-15 2021-01-21 Sigray, Inc. Source de rayons x avec anode tournante à pression atmosphérique

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE243171C (fr) *
FR2333344A1 (fr) * 1975-11-28 1977-06-24 Radiologie Cie Gle Tube radiogene a cathode chaude avec anode en bout et appareil comportant un tel tube
US4344013A (en) * 1979-10-23 1982-08-10 Ledley Robert S Microfocus X-ray tube
DE3307019A1 (de) * 1983-02-28 1984-08-30 Scanray Scandinavian X-Ray Deutschland GmbH, 3050 Wunstorf Roentgenroehre mit mikrofokus
DE3401749A1 (de) * 1984-01-19 1985-08-01 Siemens AG, 1000 Berlin und 8000 München Roentgendiagnostikeinrichtung mit einer roentgenroehre
US4896341A (en) * 1984-11-08 1990-01-23 Hampshire Instruments, Inc. Long life X-ray source target
EP0319912A3 (fr) * 1987-12-07 1990-05-09 Nanodynamics, Incorporated Procédé et dispositif pour analyser des matériaux avec des rayons X
JPH07119837B2 (ja) * 1990-05-30 1995-12-20 株式会社日立製作所 Ct装置及び透過装置並びにx線発生装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081631A1 (fr) * 2002-03-26 2003-10-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Source de rayons x ayant un foyer de petite taille
DE10352334B4 (de) * 2003-11-06 2010-07-29 Comet Gmbh Verfahren zur Regelung einer Mikrofokus-Röntgeneinrichtung
DE102005053386A1 (de) * 2005-11-07 2007-05-16 Comet Gmbh Nanofocus-Röntgenröhre

Also Published As

Publication number Publication date
EP0815582A1 (fr) 1998-01-07
JP3150703B2 (ja) 2001-03-26
ATE185021T1 (de) 1999-10-15
US5857008A (en) 1999-01-05
DE59603163D1 (de) 1999-10-28
WO1996029723A1 (fr) 1996-09-26
JPH10503618A (ja) 1998-03-31
DE19509516C1 (de) 1996-09-26

Similar Documents

Publication Publication Date Title
EP0815582B1 (fr) Installation radiographique a microfoyer
EP0584871B1 (fr) Tube à rayons X ayant une anode en mode de transmission
EP1946088B1 (fr) Dispositif de tomosynthese aux rayons x
DE19544203A1 (de) Röntgenröhre, insbesondere Mikrofokusröntgenröhre
EP1883093B1 (fr) Tomodensitomètre
DE102004018765A1 (de) Stationäres Computertomographiesystem mit kompakter Röntgenquellen-Baueinheit
DE3330806C2 (fr)
DE102008007413A1 (de) Röntgentarget
EP1783809A2 (fr) Tube à rayons X aux foyer nanometrique
EP0292055B1 (fr) Source de rayonnement pour la génération de rayons X essentiellement monochromatiques
DE102010009276A1 (de) Röntgenröhre sowie System zur Herstellung von Röntgenbildern für die zahnmedizinische oder kieferorthopädische Diagnostik
DE102010060484A1 (de) System und Verfahren zum Fokussieren und Regeln/Steuern eines Strahls in einer indirekt geheizten Kathode
EP3742469A1 (fr) Anode à rayons x, émetteur de rayons x et procédé de fabrication d'une anode à rayons x
DE60033374T2 (de) Röntgenmikroskop mit einer röntgenstrahlungsquelle für weiche röntgenstrahlungen
DE102012103974A1 (de) Vorrichtung und Verfahren zur Erzeugung zumindest eines Röntgenstrahlen abgebenden Brennflecks
EP2301042B1 (fr) Cible radiographique et procédé de production de rayons x
EP3213337A1 (fr) Tube à rayons x à faisceau métallique
DE102005018342B4 (de) Vorrichtung und Verfahren zur Erzeugung von Röntgenstrahlung
EP2979293A1 (fr) Source de rayons x et système d'imagerie
DE102006032606A1 (de) Erzeugung von elektromagnetischer Strahlung, insbesondere Röntgenstrahlung
EP0141041B1 (fr) Appareil de lithographie par rayons X
DE19805290C2 (de) Monochromatische Röntgenstrahlenquelle
DE1912838A1 (de) Strahlungsquelle von Roentgenstrahlen hoher Intensitaet und guter Ausrichtung
US20100158196A1 (en) Radiation beam blocker with non-cylindrical through-hole causing reduced geometric unsharpness in radiographic image, and method for the preparation thereof
Freeman Radiation patterns from electron beam fusion targets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981116

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 185021

Country of ref document: AT

Date of ref document: 19991015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59603163

Country of ref document: DE

Date of ref document: 19991028

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991207

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MEDIXTEC GMBH MEDIZINISCHE GERAETE TRANSFER- MEDIX

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

NLS Nl: assignments of ep-patents

Owner name: MEDIXTEC GMBH

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: RASCHER GMBH

BECA Be: change of holder's address

Free format text: 20020416 *MEDIXTEC G.M.B.H.:NEUE WEILHERMER STRASSE 24, D-73230 KIRCHHEIM-TECK

BECH Be: change of holder

Free format text: 20020416 *MEDIXTEC G.M.B.H.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080314

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080318

Year of fee payment: 13

Ref country code: GB

Payment date: 20080320

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080314

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080314

Year of fee payment: 13

Ref country code: DE

Payment date: 20080321

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080328

Year of fee payment: 13

Ref country code: BE

Payment date: 20080430

Year of fee payment: 13

BERE Be: lapsed

Owner name: *MEDIXTEC G.M.B.H.

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090316

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090316

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090316