EP0797730B1 - Procede de commande du dosage de carburant dans des moteurs a combustion interne - Google Patents

Procede de commande du dosage de carburant dans des moteurs a combustion interne Download PDF

Info

Publication number
EP0797730B1
EP0797730B1 EP95936442A EP95936442A EP0797730B1 EP 0797730 B1 EP0797730 B1 EP 0797730B1 EP 95936442 A EP95936442 A EP 95936442A EP 95936442 A EP95936442 A EP 95936442A EP 0797730 B1 EP0797730 B1 EP 0797730B1
Authority
EP
European Patent Office
Prior art keywords
signal
intake tract
wall
fuel
ftw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95936442A
Other languages
German (de)
English (en)
Other versions
EP0797730A1 (fr
Inventor
Axel Stuber
Lutz Reuschenbach
Hans Veil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0797730A1 publication Critical patent/EP0797730A1/fr
Application granted granted Critical
Publication of EP0797730B1 publication Critical patent/EP0797730B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting

Definitions

  • the invention is based on a method and a device the fuel metering in an internal combustion engine according to the preamble of claims 1 and 12, respectively.
  • From DE 41 15 211 is an electronic control system for the fuel metering in an internal combustion engine is known.
  • determining of the transition compensation signal is a wall film quantity signal as well as a number of correction signals are taken into account.
  • a correction is derived from a heat flow signal.
  • the invention is based on an object, the known system continue to improve.
  • a desired one Air / fuel ratio in as many operating states as possible the internal combustion engine adhered to as precisely as possible become.
  • the invention has the advantage that it has an optimal carbon metering in dynamic operation of the internal combustion engine enables. This is according to the features of claim 1 or 12 achieved in that the formation of the correction signal a signal is taken into account for the fuel metering that is the heat flow through fuel evaporation represented in the intake stroke.
  • the parameter setting for fuel metering a compromise between different Operating states can be found, e.g. B. Ambient temperature high / low or high vehicle speed / medium Vehicle speed / status.
  • B. Ambient temperature high / low or high vehicle speed / medium Vehicle speed / status e.g. B. Ambient temperature high / low or high vehicle speed / medium Vehicle speed / status.
  • FIG. 1 shows a schematic representation of an internal combustion engine 100 and essential components for control or regulation of fuel metering.
  • an intake tract 102 becomes the internal combustion engine 100 Air / fuel mixture supplied and the exhaust gases are in emitted an exhaust duct 104.
  • intake tract 102 are - in Direction of flow of the intake air seen - an air flow meter or air mass meter 106, for example a hot film air mass meter, a temperature sensor 108 for detection the intake air temperature, a throttle valve 110 with a sensor 111 for detecting the opening angle of the throttle valve 110, a pressure sensor 112 for detecting the pressure attached in the intake tract 102 and at least one injection nozzle 114.
  • the air flow meter or air mass meter 106 and the pressure sensor 112 alternatively present.
  • An oxygen probe 116 is mounted in the exhaust duct 104.
  • the internal combustion engine 100 has to ignite the air / fuel mixture in the Cylinders, for example, four spark plugs 120.
  • 1 shows a sensor 122 for detecting the vehicle speed and an electric motor 124 shown one drives fans located in the engine compartment.
  • the output signals of the sensors described are one central control unit 126 transmitted. Acting in detail These are the following signals: A signal m from the air flow meter or air mass meter 106, a signal TAn of Temperature sensor 108 for detecting the intake air temperature, a signal a from the sensor 111 for detecting the opening angle the throttle valve 110, a signal PS of the pressure sensor 112 downstream of the throttle valve 110, a signal ⁇ of the Oxygen sensor 116, a signal n of the speed sensor 118, a signal TMot from the sensor 119 for detecting the temperature of the engine 100 and a signal v from the sensor 122 to record the vehicle speed.
  • the control unit 126 evaluates the sensor signals and controls the injection nozzle or the injection nozzles 114 and the spark plugs 120.
  • the control unit 126 also controls the electric motor 124 on.
  • the device for performing the method according to the invention is usually integrated in control unit 126.
  • the influence of Wall temperature of the intake tract 102 to that actually measured Fuel quantity taken into account when metering fuel become.
  • a sensor for detecting the wall temperature downstream of the injector or injectors 114 is not necessary in the method according to the invention. Instead - depending on the required accuracy - one or several factors influencing the wall temperature are taken into account.
  • a correction signal is generated fTW or kTW formed.
  • the correction signal fTW or kTW affects a transition compensation signal UK, the in turn affects a basic injection signal tp.
  • the Transition compensation signal UK has the property that it the accelerated amount of fuel increases when accelerating and in the event of a delay, the metered amount of fuel degraded.
  • the correction signal fTW or kTW can be determined according to the method according to the invention either directly from the corresponding influencing variables or via an intermediate variable TW which represents the wall temperature of the intake tract 102 and which is determined from the influencing variables.
  • the influencing variables are a heat flow QK caused by the fuel evaporation, a heat flow QAn between the air flowing through the intake tract 102 and the wall of the intake tract 102, a heat flow QMot between the engine block and the wall of the intake tract 102 and a heat flow QU between that on the outer wall of the intake tract 102 flowing past ambient air and the wall of the intake tract 102.
  • CW represents the specific heat and mW the mass of the Wall of the intake tract 102.
  • the influencing variables QK, QAn, QMot and QU become operational parameters and material parameters determined.
  • QKE provides the amount of fuel metered per time This size is determined by the control unit 126 and is thus known.
  • hK represents the specific heat of vaporization of fuel and is a material constant that is known is.
  • x represents the portion of the wall of the intake tract 102 accumulating fuel, which subsequently cools the wall of the intake tract 102 by evaporation.
  • the Size x is in a map depending on the Speed n and the pressure PS stored in the intake tract 102.
  • ⁇ N (m) between the heat transfer coefficient the air flowing past and the wall of the intake tract 102 as a function of the air mass flow m.
  • the heat flow QU between that on the outside of the intake tract 102 flowing ambient air and the wall of the Intake tract 102 depends on the mass flow of air flowing past Ambient air and the temperature difference between the ambient air and the wall of the intake tract 102.
  • Air mass flow can start from the signal v for the vehicle speed and optionally from a signal for the Operating state of the electric motor 124, the fan in the engine compartment drives, be determined.
  • the temperature of the ambient air can with an ambient temperature sensor, not shown in Figure 1 or with the sensor 108 for the intake air temperature be determined.
  • TWNeu TWAlt + (dt / (cW * mW)) * (QK + QAn + QMot + QU)
  • Figure 2 shows a block diagram to illustrate how the fuel metering with the inventive method being affected.
  • a block 200 In one input of a block 200 is a load signal L and a signal n for the speed of the Brennkrfatmaschine 100 fed.
  • the load signal L can in a known manner based on one of the signals m, PS or ⁇ can be determined.
  • a basic injection signal tp is provided at the exit of block 200 .
  • the investigation of the basic injection signal tp from the signals L and n for load and speed is known from the prior art.
  • the output of block 200 is one with a first input Junction point 202 connected.
  • the second entrance of node 202 is with the output of a node 204 connected.
  • a first input of the connection point 204 is with the output of a block 206 connected for transition compensation.
  • the second entrance of the Junction 204 is at the output of a block 208 connected who carries out the inventive method.
  • Block 208 is typically a series of input signals fed. Which signals are involved in the individual acts depends on which of the influencing factors QK, QAn, QMot and QU should be taken into account. Representative for all input signals stands on block 208 directional double arrow.
  • Block 206 determines a transition compensation signal UK from these signals Influencing the basic injection signal tp and represents that UK signal ready at its output.
  • the UK signal is in the Link point 204 linked to a correction signal fTW, which is output by block 208. That through the Link generated in node 204 is in Junction point 202 with the basic injection signal tp to one Injection signal te linked.
  • the injection signal te is fed to a block 210, in which further corrections may be made be made, for example depending on the signal TMot for the temperature of the engine 100 or from Signal ⁇ of the oxygen sensor 116, and ultimately one Signal for controlling the injection nozzle or injectors 114 generated.
  • the inventive Procedure a correction signal fTW are generated, the Signal UK and thus also influences the basic injection signal tp, in other words, the correction signal affects fTW ultimately the fuel metering.
  • the investigation of the UK signal using block 206 is already known.
  • a corresponding method is for example in the DE 41 15 211 described.
  • FIG. 2 The block diagram shown in Figure 2 relates to one of several options, such as that with the invention Process generated correction signal fTW the fuel metering can influence.
  • An alternative is shown in Figure 3.
  • Figure 3 shows a variant of that shown in Figure 2 Block diagram.
  • Figure 3 is the influence of Signals UK by using the method according to the invention generated correction signal kTW shown. Further processing of the UK signal is analogous to Figure 2 and is in Figure 3 is not shown in detail. However, it does not apply the node 204 shown in Figure 2.
  • Block 300 determines from the Signals L and n for the load and for the speed of the Internal combustion engine 100, which is fed into its two inputs be a signal for the change in the fuel wall film in intake tract 102.
  • the signal generated in this way is in node 304 with a correction signal kTW linked by block 208 by means of the invention Procedure is generated.
  • the correction signal has kTW ultimately the same effect on the transition compensation signal UK as the correction signal described above fTW, that is, the fuel metering in both cases influenced in the same way. Because the correction signals fTW and kTW but in different ways on the UK signal act, the correction signals themselves are usually not identical.
  • the signal generated by node 304 is in the Input of block 302 fed, which after a from the DE 41 15 211 known method generates the signal UK.
  • FIG. 4 shows a flow diagram of the method according to the invention.
  • the signal TWAlt is on set the start value TWStart.
  • the next step 402 are all input variables required for the process read.
  • step 402 is followed by step 404.
  • step 404 becomes one or several of the influencing variables QK, QAn, QMot and QU were determined.
  • the equations described above come for the respective heat flows for use.
  • step 404 This is followed by step 406, in which the signal TWNew for the current wall temperature according to the already above equation is determined.
  • this equation contains one or more of the Influencing variables QK, QAn, QMot and QU, which are the individual heat flows represent.
  • Step 406 includes Step 408, in which the signal TWAlt for the previous one Wall temperature to the value TWNew of the current wall temperature is set.
  • Step 408 includes Step 410.
  • the signal TWNeu for the current wall temperature the correction signal fTW or kTW determined to influence the fuel metering.
  • the correction signal fTW or kTW becomes dependent, for example read from a characteristic curve by the signal TW.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Claims (12)

  1. Procédé pour influencer le dosage du carburant d'un moteur à combustion interne (100), en formant un signal de correction (fTW, kTW) pour influencer le dosage du carburant,
    caractérisé en ce qu'
    en formant le signal de correction (fTW, kTW) on tient compte d'un signal (QK) qui représente le flux thermique par évaporation de carburant dans la tubulure d'aspiration (102).
  2. Procédé selon la revendication 1,
    caractérisé en ce qu'
    en formant les signaux de correction (fTW, kTW), on tient en outre compte d'un signal (QAn) qui est lié au flux thermique entre l'air traversant la tubulure d'aspiration (102) et la paroi de la tubulure d'aspiration (102).
  3. Procédé selon l'une quelconque des revendications 1 et 2,
    caractérisé en ce que
    pour former le signal de correction (fTW, kTW), on tient en outre compte d'un signal (QMot) qui est lié au flux thermique entre le bloc-moteur et la paroi de la tubulure d'aspiration (102).
  4. Procédé selon l'une quelconque des revendications 1, 2, 3,
    caractérisé en ce qu'
    en formant le signal de correction (fTW, kTW), on tient en outre compte d'un signal (QU) lié au flux thermique entre l'air passant par l'enceinte du moteur et la paroi de la tubulure d'aspiration (102).
  5. Procédé selon la revendication 1,
    caractérisé en ce que
    pour former les signaux de correction (fTW, kTW), on détermine un signal (TW) représentant la température de la paroi de la tubulure d'aspiration (102).
  6. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    le signal de correction (fTW) influence un signal (UK) pour l'enrichissement à l'accélération ou l'appauvrissement à la décélération.
  7. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    le signal de correction (kTW) influence un signal lié au film de matière sur la paroi de la tubulure d'aspiration et pour déterminer le signal (UK) pour l'enrichissement à l'accélération ou l'appauvrissement à la décélération.
  8. Procédé selon la revendication 1,
    caractérisé en ce que
    le signal (QK) lié au flux thermique par évaporation de carburant dans la tubulure d'aspiration (102), est déterminé à partir d'un signal (qKE) de la quantité de carburant dosée par unité de temps et d'un signal (x) de la fraction du carburant qui se dépose sur la paroi de la tubulure d'aspiration (102).
  9. Procédé selon la revendication 2,
    caractérisé en ce qu'
    on détermine le signal (QAn) lié au flux thermique entre l'air passant dans la tubulure d'aspiration (102) et la paroi de cette tubulure (102), à partir d'un signal (m) pour le débit massique d'air à travers la tubulure d'aspiration (102) et la différence d'un signal (TAn) pour la température de l'air aspiré et le signal (TW) pour la température de la paroi de la tubulure d'aspiration (102).
  10. Procédé selon la revendication 3,
    caractérisé en ce qu'
    on détermine le signal (QMot) lié au flux thermique entre le bloc-moteur et la paroi de la tubulure d'aspiration (102) à partir de la différence et d'un signal (TMot) de la température du moteur à combustion interne (100) et du signal (TW) de la température de paroi de la tubulure d'aspiration (102).
  11. Procédé selon la revendication 4,
    caractérisé en ce que
    le signal (QU) lié au flux thermique entre l'air traversant l'enceinte du moteur et la paroi de la tubulure d'aspiration (102) se détermine à partir d'un signal (v) de vitesse de circulation du véhicule, d'un signal (TAn) de la température ambiante ou de la température de l'air aspiré et en option d'un signal de l'état de fonctionnement du ventilateur dans l'enceinte du moteur.
  12. Dispositif pour influencer le dosage du carburant d'un moteur à combustion interne avec des moyens (208) formant un signal de correction (fTW, kTW) pour influencer le dosage du carburant,
    caractérisé en ce que
    pour la formation du signal de correction (fTW, kTW) les moyens (208) tiennent compte d'un signal (QK) représentant le flux thermique par évaporation de carburant dans la tubulure d'aspiration (102).
EP95936442A 1994-12-14 1995-11-15 Procede de commande du dosage de carburant dans des moteurs a combustion interne Expired - Lifetime EP0797730B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4444416A DE4444416A1 (de) 1994-12-14 1994-12-14 Verfahren zur Beeinflussung der Kraftstoffzumessung bei einer Brennkraftmaschine
DE4444416 1994-12-14
PCT/DE1995/001596 WO1996018811A1 (fr) 1994-12-14 1995-11-15 Procede de commande du dosage de carburant dans des moteurs a combustion interne

Publications (2)

Publication Number Publication Date
EP0797730A1 EP0797730A1 (fr) 1997-10-01
EP0797730B1 true EP0797730B1 (fr) 1999-02-03

Family

ID=6535725

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95936442A Expired - Lifetime EP0797730B1 (fr) 1994-12-14 1995-11-15 Procede de commande du dosage de carburant dans des moteurs a combustion interne

Country Status (6)

Country Link
US (1) US6035831A (fr)
EP (1) EP0797730B1 (fr)
JP (1) JP3803375B2 (fr)
KR (1) KR100378457B1 (fr)
DE (2) DE4444416A1 (fr)
WO (1) WO1996018811A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636451B4 (de) * 1996-09-07 2010-06-10 Robert Bosch Gmbh Einrichtung zum Steuern der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge
EP1312783A1 (fr) * 2001-10-05 2003-05-21 Robert Bosch GmbH Procédé pour faire fonctionner un moteur à combustion interne
DE102006002738A1 (de) * 2006-01-20 2007-08-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP4418480B2 (ja) * 2007-04-24 2010-02-17 株式会社日立製作所 内燃機関の燃料制御装置
US8234038B2 (en) * 2007-11-27 2012-07-31 GM Global Technology Operations LLC Intake air temperature diagnostic system
WO2013190703A1 (fr) 2012-06-21 2013-12-27 L'oreal Composition cosmétique solide comprenant une huile d'hydrocarbure non volatile, des cires et une teneur élevée en huile de silicone phénylée non volatile
DE102016203436B4 (de) * 2016-03-02 2017-11-30 Continental Automotive Gmbh Verfahren und Vorrichtung zum Ermitteln eines Einspritzzeitpunkts zum Einspritzen eines Kraftstoffs
CA3188343A1 (fr) 2020-08-06 2022-02-10 Jeff ABERCROMBIE Composants electriques de dispositif de surveillance physiologique

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454847A (en) * 1980-07-18 1984-06-19 Nippondenso Co., Ltd. Method for controlling the air-fuel ratio in an internal combustion engine
JPS5888435A (ja) * 1981-11-19 1983-05-26 Honda Motor Co Ltd 吸気温度による補正機能を有する内燃エンジンの空燃比補正装置
JPS60192846A (ja) * 1984-03-15 1985-10-01 Nissan Motor Co Ltd 内燃機関の燃料供給装置
JPS61265334A (ja) * 1985-05-17 1986-11-25 Toyota Motor Corp 内燃機関の空燃比制御方法
DE4115211C2 (de) * 1991-05-10 2003-04-30 Bosch Gmbh Robert Verfahren zum Steuern der Kraftstoffzumessung bei einer Brennkraftmaschine
DE4121396A1 (de) * 1991-06-28 1993-01-07 Bosch Gmbh Robert Kraftstoffeinspritzverfahren und -vorrichtung
DE4442679C2 (de) * 1993-11-30 2001-06-07 Honda Motor Co Ltd Kraftstoffeinspritzmengen-Steuersystem für einen Verbrennungsmotor
JPH07208249A (ja) * 1994-01-12 1995-08-08 Honda Motor Co Ltd 内燃エンジンの制御装置
US5427070A (en) * 1994-05-04 1995-06-27 Chrysler Corporation Method of averaging coolant temperature for an internal combustion engine
DE4415994A1 (de) * 1994-05-06 1995-11-09 Bosch Gmbh Robert Steuersystem für eine Brennkraftmaschine
JP3562026B2 (ja) * 1995-05-18 2004-09-08 日産自動車株式会社 エンジンの空燃比制御装置
US5584277A (en) * 1995-09-26 1996-12-17 Chrysler Corporation Fuel delivery system with wall wetting history and transient control

Also Published As

Publication number Publication date
JP3803375B2 (ja) 2006-08-02
JPH10510345A (ja) 1998-10-06
WO1996018811A1 (fr) 1996-06-20
DE4444416A1 (de) 1996-06-20
KR980700508A (ko) 1998-03-30
US6035831A (en) 2000-03-14
KR100378457B1 (ko) 2003-07-18
DE59505057D1 (de) 1999-03-18
EP0797730A1 (fr) 1997-10-01

Similar Documents

Publication Publication Date Title
DE4426020B4 (de) Verfahren und Vorrichtung zur Überwachung der Funktionsfähigkeit eines Katalysators im Abgaskanal einer Brennkraftmaschine
DE4415377B4 (de) Kraftstoffsteuersystem für mit gasförmigem Kraftstoff betriebene Verbrennungsmotoren
DE19545221B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4401828B4 (de) Verfahren und Vorrichtung zur Vorhersage eines zukünftigen Lastsignals im Zusammenhang mit der Steuerung einer Brennkraftmaschine
EP1087114A1 (fr) Méthode pour la commande de la régénération d'un filtre à particules
DE3422866A1 (de) Verfahren und vorrichtung zur steuerung eines hitzdraht-luftmengenmessers fuer brennkraftmaschinen
EP0796425B1 (fr) Procede de formation d'un signal relatif a la temperature de l'air aspire par un moteur a combustion interne
DE4344960A1 (de) System zur Regelung der Aufladung einer Brennkraftmaschine
EP0797730B1 (fr) Procede de commande du dosage de carburant dans des moteurs a combustion interne
DE3438176A1 (de) Einrichtung zur regelung des ladedrucks einer brennkraftmaschine
EP0976922B1 (fr) Méthode d'ajustement de couple moteur
EP1015747A1 (fr) Procede et dispositif pour reguler un flux de gaz par l'intermediaire d'un papillon dans un moteur a combustion interne
WO2011076551A1 (fr) Procédé et dispositif pour réaliser un diagnostic à bord
DE4322270B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4322319A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4220286C2 (de) Verfahren zur Funktionsüberprüfung eines Stellelements in einem Fahrzeug
DE19753996A1 (de) Verfahren zum Dämpfen von Ruckelschwingungen oder Lastschlägen bei einer Brennkraftmaschine
DE4339692C2 (de) Verfahren und Vorrichtung zur Ermittlung der Abgastemperatur mit einer Lambdasonde
DE4211810B4 (de) Einrichtung zur temperaturabhängigen Steuerung einer Brennkraftmaschine
DE19547644A1 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in eine Brennkraftmaschine
DE102006022383B4 (de) Verfahren zur Signalauswertung eines Partikelsensors
DE112006001041B4 (de) Vorrichtung zur Steuerung einer Brennkraftmaschine
DE3914784A1 (de) Vefahren und anordnung zur erfassung des umgebungsluftdrucks bei brennkraftmaschinen
DE19957200A1 (de) Verfahren und Vorrichtung zur Regelung eines Drehmomentes von Dieselmotoren
DE4334720B4 (de) Verfahren und Vorrichtung zur Steuerung einer Verstelleinrichtung bei Fahrzeugen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19971114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 59505057

Country of ref document: DE

Date of ref document: 19990318

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20081124

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081121

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091128

Year of fee payment: 15

Ref country code: FR

Payment date: 20091202

Year of fee payment: 15

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091116

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140124

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59505057

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602