EP0797730B1 - Verfahren zur beeinflussung der kraftstoffzumessung bei einer brennkraftmaschine - Google Patents

Verfahren zur beeinflussung der kraftstoffzumessung bei einer brennkraftmaschine Download PDF

Info

Publication number
EP0797730B1
EP0797730B1 EP95936442A EP95936442A EP0797730B1 EP 0797730 B1 EP0797730 B1 EP 0797730B1 EP 95936442 A EP95936442 A EP 95936442A EP 95936442 A EP95936442 A EP 95936442A EP 0797730 B1 EP0797730 B1 EP 0797730B1
Authority
EP
European Patent Office
Prior art keywords
signal
intake tract
wall
fuel
ftw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95936442A
Other languages
English (en)
French (fr)
Other versions
EP0797730A1 (de
Inventor
Axel Stuber
Lutz Reuschenbach
Hans Veil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0797730A1 publication Critical patent/EP0797730A1/de
Application granted granted Critical
Publication of EP0797730B1 publication Critical patent/EP0797730B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting

Definitions

  • the invention is based on a method and a device the fuel metering in an internal combustion engine according to the preamble of claims 1 and 12, respectively.
  • From DE 41 15 211 is an electronic control system for the fuel metering in an internal combustion engine is known.
  • determining of the transition compensation signal is a wall film quantity signal as well as a number of correction signals are taken into account.
  • a correction is derived from a heat flow signal.
  • the invention is based on an object, the known system continue to improve.
  • a desired one Air / fuel ratio in as many operating states as possible the internal combustion engine adhered to as precisely as possible become.
  • the invention has the advantage that it has an optimal carbon metering in dynamic operation of the internal combustion engine enables. This is according to the features of claim 1 or 12 achieved in that the formation of the correction signal a signal is taken into account for the fuel metering that is the heat flow through fuel evaporation represented in the intake stroke.
  • the parameter setting for fuel metering a compromise between different Operating states can be found, e.g. B. Ambient temperature high / low or high vehicle speed / medium Vehicle speed / status.
  • B. Ambient temperature high / low or high vehicle speed / medium Vehicle speed / status e.g. B. Ambient temperature high / low or high vehicle speed / medium Vehicle speed / status.
  • FIG. 1 shows a schematic representation of an internal combustion engine 100 and essential components for control or regulation of fuel metering.
  • an intake tract 102 becomes the internal combustion engine 100 Air / fuel mixture supplied and the exhaust gases are in emitted an exhaust duct 104.
  • intake tract 102 are - in Direction of flow of the intake air seen - an air flow meter or air mass meter 106, for example a hot film air mass meter, a temperature sensor 108 for detection the intake air temperature, a throttle valve 110 with a sensor 111 for detecting the opening angle of the throttle valve 110, a pressure sensor 112 for detecting the pressure attached in the intake tract 102 and at least one injection nozzle 114.
  • the air flow meter or air mass meter 106 and the pressure sensor 112 alternatively present.
  • An oxygen probe 116 is mounted in the exhaust duct 104.
  • the internal combustion engine 100 has to ignite the air / fuel mixture in the Cylinders, for example, four spark plugs 120.
  • 1 shows a sensor 122 for detecting the vehicle speed and an electric motor 124 shown one drives fans located in the engine compartment.
  • the output signals of the sensors described are one central control unit 126 transmitted. Acting in detail These are the following signals: A signal m from the air flow meter or air mass meter 106, a signal TAn of Temperature sensor 108 for detecting the intake air temperature, a signal a from the sensor 111 for detecting the opening angle the throttle valve 110, a signal PS of the pressure sensor 112 downstream of the throttle valve 110, a signal ⁇ of the Oxygen sensor 116, a signal n of the speed sensor 118, a signal TMot from the sensor 119 for detecting the temperature of the engine 100 and a signal v from the sensor 122 to record the vehicle speed.
  • the control unit 126 evaluates the sensor signals and controls the injection nozzle or the injection nozzles 114 and the spark plugs 120.
  • the control unit 126 also controls the electric motor 124 on.
  • the device for performing the method according to the invention is usually integrated in control unit 126.
  • the influence of Wall temperature of the intake tract 102 to that actually measured Fuel quantity taken into account when metering fuel become.
  • a sensor for detecting the wall temperature downstream of the injector or injectors 114 is not necessary in the method according to the invention. Instead - depending on the required accuracy - one or several factors influencing the wall temperature are taken into account.
  • a correction signal is generated fTW or kTW formed.
  • the correction signal fTW or kTW affects a transition compensation signal UK, the in turn affects a basic injection signal tp.
  • the Transition compensation signal UK has the property that it the accelerated amount of fuel increases when accelerating and in the event of a delay, the metered amount of fuel degraded.
  • the correction signal fTW or kTW can be determined according to the method according to the invention either directly from the corresponding influencing variables or via an intermediate variable TW which represents the wall temperature of the intake tract 102 and which is determined from the influencing variables.
  • the influencing variables are a heat flow QK caused by the fuel evaporation, a heat flow QAn between the air flowing through the intake tract 102 and the wall of the intake tract 102, a heat flow QMot between the engine block and the wall of the intake tract 102 and a heat flow QU between that on the outer wall of the intake tract 102 flowing past ambient air and the wall of the intake tract 102.
  • CW represents the specific heat and mW the mass of the Wall of the intake tract 102.
  • the influencing variables QK, QAn, QMot and QU become operational parameters and material parameters determined.
  • QKE provides the amount of fuel metered per time This size is determined by the control unit 126 and is thus known.
  • hK represents the specific heat of vaporization of fuel and is a material constant that is known is.
  • x represents the portion of the wall of the intake tract 102 accumulating fuel, which subsequently cools the wall of the intake tract 102 by evaporation.
  • the Size x is in a map depending on the Speed n and the pressure PS stored in the intake tract 102.
  • ⁇ N (m) between the heat transfer coefficient the air flowing past and the wall of the intake tract 102 as a function of the air mass flow m.
  • the heat flow QU between that on the outside of the intake tract 102 flowing ambient air and the wall of the Intake tract 102 depends on the mass flow of air flowing past Ambient air and the temperature difference between the ambient air and the wall of the intake tract 102.
  • Air mass flow can start from the signal v for the vehicle speed and optionally from a signal for the Operating state of the electric motor 124, the fan in the engine compartment drives, be determined.
  • the temperature of the ambient air can with an ambient temperature sensor, not shown in Figure 1 or with the sensor 108 for the intake air temperature be determined.
  • TWNeu TWAlt + (dt / (cW * mW)) * (QK + QAn + QMot + QU)
  • Figure 2 shows a block diagram to illustrate how the fuel metering with the inventive method being affected.
  • a block 200 In one input of a block 200 is a load signal L and a signal n for the speed of the Brennkrfatmaschine 100 fed.
  • the load signal L can in a known manner based on one of the signals m, PS or ⁇ can be determined.
  • a basic injection signal tp is provided at the exit of block 200 .
  • the investigation of the basic injection signal tp from the signals L and n for load and speed is known from the prior art.
  • the output of block 200 is one with a first input Junction point 202 connected.
  • the second entrance of node 202 is with the output of a node 204 connected.
  • a first input of the connection point 204 is with the output of a block 206 connected for transition compensation.
  • the second entrance of the Junction 204 is at the output of a block 208 connected who carries out the inventive method.
  • Block 208 is typically a series of input signals fed. Which signals are involved in the individual acts depends on which of the influencing factors QK, QAn, QMot and QU should be taken into account. Representative for all input signals stands on block 208 directional double arrow.
  • Block 206 determines a transition compensation signal UK from these signals Influencing the basic injection signal tp and represents that UK signal ready at its output.
  • the UK signal is in the Link point 204 linked to a correction signal fTW, which is output by block 208. That through the Link generated in node 204 is in Junction point 202 with the basic injection signal tp to one Injection signal te linked.
  • the injection signal te is fed to a block 210, in which further corrections may be made be made, for example depending on the signal TMot for the temperature of the engine 100 or from Signal ⁇ of the oxygen sensor 116, and ultimately one Signal for controlling the injection nozzle or injectors 114 generated.
  • the inventive Procedure a correction signal fTW are generated, the Signal UK and thus also influences the basic injection signal tp, in other words, the correction signal affects fTW ultimately the fuel metering.
  • the investigation of the UK signal using block 206 is already known.
  • a corresponding method is for example in the DE 41 15 211 described.
  • FIG. 2 The block diagram shown in Figure 2 relates to one of several options, such as that with the invention Process generated correction signal fTW the fuel metering can influence.
  • An alternative is shown in Figure 3.
  • Figure 3 shows a variant of that shown in Figure 2 Block diagram.
  • Figure 3 is the influence of Signals UK by using the method according to the invention generated correction signal kTW shown. Further processing of the UK signal is analogous to Figure 2 and is in Figure 3 is not shown in detail. However, it does not apply the node 204 shown in Figure 2.
  • Block 300 determines from the Signals L and n for the load and for the speed of the Internal combustion engine 100, which is fed into its two inputs be a signal for the change in the fuel wall film in intake tract 102.
  • the signal generated in this way is in node 304 with a correction signal kTW linked by block 208 by means of the invention Procedure is generated.
  • the correction signal has kTW ultimately the same effect on the transition compensation signal UK as the correction signal described above fTW, that is, the fuel metering in both cases influenced in the same way. Because the correction signals fTW and kTW but in different ways on the UK signal act, the correction signals themselves are usually not identical.
  • the signal generated by node 304 is in the Input of block 302 fed, which after a from the DE 41 15 211 known method generates the signal UK.
  • FIG. 4 shows a flow diagram of the method according to the invention.
  • the signal TWAlt is on set the start value TWStart.
  • the next step 402 are all input variables required for the process read.
  • step 402 is followed by step 404.
  • step 404 becomes one or several of the influencing variables QK, QAn, QMot and QU were determined.
  • the equations described above come for the respective heat flows for use.
  • step 404 This is followed by step 406, in which the signal TWNew for the current wall temperature according to the already above equation is determined.
  • this equation contains one or more of the Influencing variables QK, QAn, QMot and QU, which are the individual heat flows represent.
  • Step 406 includes Step 408, in which the signal TWAlt for the previous one Wall temperature to the value TWNew of the current wall temperature is set.
  • Step 408 includes Step 410.
  • the signal TWNeu for the current wall temperature the correction signal fTW or kTW determined to influence the fuel metering.
  • the correction signal fTW or kTW becomes dependent, for example read from a characteristic curve by the signal TW.

Description

Stand der Technik
Die Erfindung geht aus von einem Verfahren und einer Vorrichtung der Kraftstoffzumessung bei einer Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1 bzw. 12.
Aus der DE 41 15 211 ist ein elektronisches Steuersystem für die Kraftstoffzumessung bei einer Brennkraftmaschine bekannt. Beim bekannten System wird ein Grundeinspritzmengensignal mit einem Übergangskompensationssignal verknüpft, das eine Anpassung der zugemessenen Kraftstoffmenge in Beschleunigungs- und Verzögerungsfall bewirkt. Bei der Ermittlung des Übergangskompensationssignals wird u.a. ein Wandfilmmengensignal sowie eine Reihe von Korrektursignalen berücksichtigt.
Bei einer Kraftstoffzumessung gemäß der EP-A-44537 wird eine Korrektur von einem Wärmestromsignal abgeleitet.
Der Erfindung liegt eine Aufgabe zugrunde, das bekannte System weiter zu verbessern. Insbesondere soll ein gewünschtes Luft/Kraftstoff-Verhältnis in möglichst vielen Betriebszuständen der Brennkraftmaschine möglichst genau eingehalten werden.
Vorteile der Erfindung
Die Erfindung hat den Vorteil, daß sie eine optimale Karftstoffzumessung im dynamischen Betrieb der Brennkraftmaschine ermöglicht. Dies wird gemäß den Merkmalen des Anspruchs 1 bzw. 12 dadurch erreicht, daß bei der Bildung des Korrektursignals für die Kraftstoffzumessung ein Signal berücksichtigt wird, das den Wärmestrom durch Kraftstoffverdampfung im Ansaugtakt repräsentiert.
Gemäß Unteransprüchen können bei der Bildung des Korrektursignals zusätzlich noch ein oder mehrere der folgenden Signale berücksichtigt werden:
  • Ein Signal, das mit dem Wärmestrom zwischen dem Motorblock und der Wand des Ansaugtraktes zusammenhängt, und/oder
  • ein Signal, das mit dem Wärmestrom zwischen der durch den Motorraum strömenden Luft und der Wand des Ansaugtraktes zusammenhängt und/oder
  • ein Signal, das mit dem Wärmestrom zwischen der durch den Motorraum strömenden Luft und der Wand des Ansaugtraktes zusammenhängt.
Bei bisherigem Verfahren muß bei der Parametereinstellung für die Kraftstoffzumessung ein Kompromiß zwischen verschiedenen Betriebszuständen gefunden werden, z. B. Umgebungstemperatur hoch/niedrig oder hohe Fahrzeuggeschwindigkeit/mittlere Fahrzeuggeschwindigkeit/Stand. Durch Berücksichtigung dieser Einflüsse auf das Wandfilmverhalten kann für diese Zustände ein optimales Luft/Kraftstoffgemisch im Instationärbetrieb erreicht werden.
Zeichnung
Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsbeispiele erläutert.
Es zeigen
  • Figur 1 eine schematische Darstellung einer Brennkraftmaschine mit wesentlichen Komponenten zur Steuerung der Kraftstoffmessung,
  • Figur 2 ein Blockschaltbild zur Verdeutlichung, wie die Kraftstoffzumessung mit dem erfindungsgemäßen Verfahren beeinflußt wird,
  • Figur 3 eine Variante des in Figur 2 dargestellten Blockschaltbilds und
  • Figur 4 ein Flußdiagramm des erfindungsgemäßen Verfahrens.
  • Figur 1 zeigt eine schematische Darstellung einer Brennkraftmaschine 100 und wesentlicher Komponenten zur Steuerung bzw. Regelung der Kraftstoffzumessung. Über einen Ansaugtrakt 102 wird der Brennkraftmaschine 100 Luft/Kraftstoff-Gemisch zugeführt und die Abgase werden in einen Abgaskanal 104 abgegeben. Im Ansaugtrakt 102 sind - in Stromrichtung der angesaugten Luft gesehen - ein Luftmengenmesser oder Luftmassenmesser 106, beispielsweise ein Heißfilm-Luftmassenmesser, ein Temperatursensor 108 zur Erfassung der Ansauglufttemperatur, eine Drosselklappe 110 mit einem Sensor 111 zur Erfassung des Öffnungswinkels der Drosselklappe 110, ein Drucksensor 112 zur Erfassung des Drucks im Ansaugtrakt 102 und wenigstens eine Einspritzdüse 114 angebracht. In der Regel sind der Luftmengenmesser oder Luftmassenmesser 106 und der Drucksensor 112 alternativ vorhanden. Im Abgaskanal 104 ist eine Sauerstoffsonde 116 angebracht. An der Brennkraftmaschine 100 sind ein Drehzahlsensor 118 und ein Sensor 119 zur Erfassung der Temperatur der Brennkraftmaschine angebracht. Die Brennkraftmaschine 100 besitzt zur Zündung des Luft/Kraftstoff-Gemisches in den Zylindern beispielsweise vier Zündkerzen 120. Weiterhin sind in Figur 1 noch ein Sensor 122 zur Erfassung der Fahrzeuggeschwindigkeit und ein Elektromotor 124 dargestellt, der einen im Motorraum angeordneten Lüfter antreibt.
    Die Ausgangssignale der beschriebenen Sensoren werden einem zentralen Steuergerät 126 übermittelt. Im einzelnen handelt es sich dabei um folgende Signale: Ein Signal m des Luftmengenmessers oder Luftmassenmessers 106, ein Signal TAn des Temperatursensors 108 zur Erfassung der Ansauglufttemperatur, ein Signal a des Sensors 111 zur Erfassung des Öffnungswinkels der Drosselklappe 110, ein Signal PS des Drucksensors 112 stromab der Drosselklappe 110, ein Signal λ des Sauerstoffsensors 116, ein Signal n des Drehzahlsensors 118, ein Signal TMot des Sensors 119 zur Erfassung der Temperatur der Brennkraftmaschine 100 und ein Signal v des Sensors 122 zur Erfassung der Fahrzeuggeschwindigkeit. Das Steuergerät 126 wertet die Sensorsignale aus und steuert die Einspritzdüse bzw. die Einspritzdüsen 114 und die Zündkerzen 120 an. Weiterhin steuert das Steuergerät 126 den Elektromotor 124 an.
    Die Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens ist in der Regel im Steuergerät 126 integriert. Mit Hilfe des erfindungsgemäßen Verfahrens kann der Einfluß der Wandtemperatur des Ansaugtrakts 102 auf die tatsächlich zugemessene Kraftstoffmenge bei der Kraftstoffzumessung berücksichtigt werden. Ein Sensor zur Erfassung der Wandtemperatur stromab des Einspritzventils bzw. der Einspritzventile 114 ist beim erfindungsgemäßen Verfahren nicht erforderlich. Statt dessen werden - je nach geforderter Genauigkeit - eine oder mehrere Einflußgrößen auf die Wandtemperatur berücksichtigt. Ausgehend von diesen Einflußgrößen wird ein Korrektursignal fTW bzw. kTW gebildet. Das Korrektursignal fTW bzw. kTW beeinflußt ein Übergangskompensationssignal UK, das seinerseits ein Grundeinspritzsignal tp beeinflußt. Das Übergangskompensationssignal UK hat die Eigenschaft, daß es im Beschleunigungsfall die zugemessene Kraftstoffmenge erhöht und im Verzögerungsfall die zugemessene Kraftstoffmenge erniedrigt.
    Das Korrektursignal fTW bzw. kTW kann gemäß dem erfindungsgemäßen Verfahren entweder direkt aus den entsprechenden Einflußgrößen ermittelt werden oder über eine Zwischengröße TW, die die Wandtemperatur des Ansaugtraktes 102 repräsentiert und die aus den Einflußgrößen ermittelt wird. Als Einflußgrößen kommen ein durch die Kraftstoffverdampfung verursachter Wärmestrom QK, ein Wärmestrom QAn zwischen der durch den Ansaugtrakt 102 strömenden Luft und der Wand des Ansaugtraktes 102, ein Wärmestrom QMot zwischen dem Motorblock und der Wand des Ansaugtraktes 102 und ein Wärmestrom QU zwischen der an der Außenwand des Ansaugtrakts 102 vorbeiströmenden Umgebungsluft und der Wand des Ansaugtrakts 102 in Betracht. Der Zusammenhang zwischen der Zwischengröße TW für die Wandtemperatur des Ansaugtrakts 102 und den Einflußgrößen QK, QAn, QMot und QU kann durch die folgende Differentialgleichung dargestellt werden: cW * mW * dTW/dt = QK + QAn + QMot + QU
    Dabei stellt cW die spezifische Wärme und mW die Masse der Wand des Ansaugtraktes 102 dar. Die Einflußgrößen QK, QAn, QMot und QU werden aus Betriebskenngrößen und Materialparametern ermittelt.
    Der durch die Kraftstoffverdampfung verursachte Wärmestrom QK wird gemäß der folgenden Gleichung ermittelt: QK = - qKE * hK * x
    Dabei stellt qKE die pro Zeit zugemessene Kraftstoffmenge dar. Diese Größe wird vom Steuergerät 126 festgelegt und ist somit bekannt. hK stellt die spezifische Verdampfungswärme des Kraftstoffs dar und ist eine Materialkonstante, die bekannt ist. x stellt den Anteil des sich an der Wand des Ansaugtrakts 102 anlagernden Kraftstoffs dar, der anschließend durch Verdampfung die Wand des Ansaugtrakts 102 kühlt. Die Größe x ist in einem Kennfeld in Abhängigkeit von der Drehzahl n und dem Druck PS im Ansaugtrakt 102 abgelegt.
    Der Wärmestrom QAn zwischen der durch den Ansaugtrakt 102 strömenden Luft und der Wand des Ansaugtraktes 102 wird gemäß folgender Gleichung ermittelt: QAn = αN(m) * (TAn - TW)
    Dabei stellt αN(m) den Wärmeübergangskoeffizienten zwischen der vorbeiströmenden Luf und der Wand des Ansaugtrakts 102 als Funktion des Luftmassenstroms m dar.
    Der Wärmestrom QMot zwischen dem Motorblock und der Wand des Ansaugtraktes 102 wird nach folgender Gleichung ermittelt: QMot = αMot * (TMot - TW) αMot bezeichnet den Wärmeübergangskoeffizienten zwischen dem Motorblock und der Wand des Ansaugtraktes 102 und ist eine Materialkonstante.
    Der Wärmestrom QU zwischen der an der Außenseite des Ansaugtrakts 102 vorbeiströmenden Umgebungsluft und der Wand des Ansaugtrakts 102 hängt vom Luftmassenstrom der vorbeiströmenden Umgebungsluft und der Temperaturdifferenz zwischen der Umgebungsluft und der Wand des Ansaugtraktes 102 ab. Der Luftmassenstrom kann ausgehend vom Signal v für die Fahrzeuggeschwindigkeit und optional von einem Signal für den Betriebszustand des Elektromotors 124, der den Lüfter im Motorraum antreibt, ermittelt werden. Die Temperatur der Umgebungsluft kann mit einem in Figur 1 nicht dargestellten Umgebungstemperatursensor oder mit dem Sensor 108 für die Ansauglufttemperatur ermittelt werden.
    Die oben angegebene Differentialgleichung kann gelöst werden, indem man die zeitliche Ableitung der Wandtemperatur des Ansaugtraktes 102 durch einen entsprechenen Differenzenquotienten ersetzt, das heißt der Ausdruck dTW/dt wird ersetzt durch den Ausdruck (TWNeu - TWAlt)/dt. Nach TWNeu umgeformt ergibt sich folgende Gleichung: TWNeu = TWAlt + (dt/(cW * mW)) * (QK + QAn + QMot + QU)
    Bei der Ermittlung des jeweils aktuellen Werts TWNeu für die Wandtemperatur wird anfangs ein Startwert TWStart für die Wandtemperatur vorgegeben und dann wird jeweils iterativ der aktuelle Wert TWNeu aus dem vorhergehenden Wert TWAlt ermittelt. Einzelheiten hierzu sind im Flußdiagramm der Figur 4 dargestellt und im dazugehörigen Text beschrieben.
    Figur 2 zeigt ein Blockschaltbild zur Verdeutlichung, wie die Kraftstoffzumessung mit dem erfindungsgemäßen Verfahren beeinflußt wird. In je einen Eingang eines Blocks 200 wird ein Lastsignal L und ein Signal n für die Drehzahl der Brennkrfatmaschine 100 eingespeist. Das Lastsignal L kann auf bekannte Art und Weise ausgehend von einem der Signale m, PS oder α ermittelt werden. Am Ausgang des Blocks 200 wird ein Grundeinspritzsingal tp bereitgestellt. Die Ermittlung des Grundeinspritzsignals tp aus den Signalen L und n für Last und Drehzahl ist aus dem Stand der Technik bekannt. Der Ausgang des Blocks 200 ist mit einem ersten Eingang eines Verknüpfungspunktes 202 verbunden. Der zweite Eingang des Verknüpfungspunktes 202 ist mit dem Ausgang eines Verknüpfungspunktes 204 verbunden. Ein erster Eingang des Verknüpfungspunktes 204 ist mit dem Ausgang eines Blocks 206 zur Übergangskompensation verbunden. Der zweite Eingang des Verknüpfungspunktes 204 ist mit dem Ausgang eines Blocks 208 verbunden, der das erfindungsgemäße Verfahren durchführt. In den Block 208 werden in der Regel eine Reihe von Eingangssignalen eingespeist. Um welche Signale es sich dabei im einzelnen handelt, hängt davon ab, welche der Einflußgrößen QK, QAn, QMot und QU berücksichtigt werden sollen. Stellvertretend für alle Eingangssignale steht der auf den Block 208 gerichtete Doppelpfeil.
    An den beiden Eingängen des Blocks 206 zur Übergangskompensation liegen die Signale L und n für die Last und die Drehzahl der Brennkraftmaschine 100 an. Der Block 206 ermittelt aus diesen Signalen ein Übergangskompensations-Signal UK zur Beeinflussung des Grundeinspritzsignals tp und stellt das Signal UK an seinem Ausgang bereit. Das Signal UK wird im Verknüpfungspunkt 204 mit einem Korrektursignal fTW verknüpft, das vom Block 208 ausgegeben wird. Das durch die Verknüpfung im Verknüpfungspunkt 204 erzeugte Signal wird im Verknüpfungspunkt 202 mit dem Grundeinspritzsingal tp zu einem Einspritzsignal te verknüpft. Das Einspritzsignal te wird einem Block 210 zugeführt, in dem ggf. weitere Korrekturen vorgenommen werden, beispielsweise abhängig vom Signal TMot für die Temperatur der Brennkraftmaschine 100 oder vom Signal λ des Sauerstoffsensors 116, und der letztendlich ein Signal zur Ansteuerung der Einspritzdüse bzw. der Einspritzdüsen 114 erzeugt.
    Wie in Figur 2 abgebildet, kann mit dem erfindungsgemäßen Verfahren ein Korrektursignal fTW erzeugt werden, das das Signal UK und somit auch das Grundeinspritzsignal tp beeinflußt, mit anderen Worten, das Korrektursignal fTW beeinflußt letztendlich die Kraftstoffzumessung. Die Ermittlung des Signals UK mittels des Blocks 206 ist bereits bekannt. Ein entsprechendes Verfahren ist beispielsweise in der DE 41 15 211 beschrieben.
    Das in Figur 2 dargestellte Blockschaltbild betrifft eine von mehreren Möglichkeiten, wie das mit dem erfindungsgemäßen Verfahren erzeugte Korrektursignal fTW die Kraftstoffzumessung beeinflussen kann. Eine alternative Möglichkeit ist in Figur 3 dargestellt.
    Figur 3 zeigt eine Variante des in Figur 2 dargestellten Blockschaltbilds. In Figur 3 ist die Beeinflussung des Signals UK durch ein mit dem erfindungsgemäßen Verfahren erzeugtes Korrektursignal kTW dargestellt. Die Weiterverarbeitung des Signals UK erfolgt analog zu Figur 2 und ist in Figur 3 nicht im einzelnen dargestellt. Allerdings entfällt der in Figur 2 dargestellte Verknüpfungspunkt 204. An die Stelle des Blocks 206 aus Figur 2 treten bei Figur 3 die Blöcke 300 und 302 und ein zwischen diese Blöcke geschalteter Verknüpfungspunkt 304. Der Block 300 ermittelt aus den Signalen L und n für die Last und für die Drehzahl der Brennkraftmaschine 100, die in seine beiden Eingänge eingespeist werden, ein Signal für die Änderung des Kraftstoff-Wandfilms im Ansaugtrakt 102. Das so erzeugte Signal wird im Verknüpfungspunkt 304 mit einem Korrektursignal kTW verknüpft, das vom Block 208 mittels des erfindungsgemäßen Verfahrens erzeugt wird. Das Korrektursignal kTW hat letztendlich die gleiche Wirkung auf das Übergangskompensations-Signal UK wie das obenbeschriebene Korrektursignal fTW, das heißt, die Kraftstoffzumessung wird in beiden Fällen in gleicher Weise beeinflußt. Da die Korrektursignale fTW und kTW aber auf verschiedene Arten auf das Signal UK einwirken, sind die Korrektursignale selbst in der Regel nicht identisch.
    Das vom Verknüpfungspunkt 304 erzeugte Signal wird in den Eingang des Blocks 302 eingespeist, der nach einem aus der DE 41 15 211 bekannten Verfahren das Signal UK erzeugt.
    Figur 4 zeigt ein Flußdiagramm des erfindungsgemäßen Verfahrens. In einem ersten Schritt 400 wird das Signal TWAlt auf den Startwert TWStart gesetzt. Im darauffolgenden Schritt 402 werden sämtliche für das Verfahren benötigte Eingangsgrößen eingelesen. Auf Schritt 402 folgt ein Schritt 404. In Schritt 404 werden je nach Ausführungsbeispiel eine oder mehrere der Einflußgrößen QK, QAn, QMot und QU ermittelt. Dabei kommen die weiter oben beschriebenen Gleichungen für die jeweiligen Wärmeströme zur Anwendung. An Schritt 404 schließt sich ein Schritt 406 an, in dem das Signal TWNeu für die aktuelle Wandtemperatur gemäß der bereits weiter oben genannten Gleichung ermittelt wird. Je nach Ausführungsbeispiel enthält diese Gleichung einen oder mehrere der Einflußgrößen QK, QAn, QMot und QU, die die einzelnen Wärmeströme repräsentieren. An Schritt 406 schließt sich ein Schritt 408 an, in dem das Signal TWAlt für die vorhergehende Wandtemperatur auf den Wert TWNeu der aktuellen Wandtemperatur gesetzt wird. An Schritt 408 schließt sich ein Schritt 410 an. Im Schritt 410 wird aus dem Signal TWNeu für die aktuelle Wandtemperatur das Korrektursignal fTW bzw. kTW zur Beeinflussung der Kraftstoffzumessung ermittelt. Dabei wird das Korrektursignal fTW bzw. kTW beispielsweise in Abhängigkeit vom Signal TW aus einer Kennlinie ausgelesen. Mit Schritt 410 ist der Durchlauf des Flußdiagramms beendet und beginnt von neuem bei Schritt 402.

    Claims (12)

    1. Verfahren zur Beeinflussung der Kraftstoffzumessung bei einer Brennkraftmaschine (100), wobei ein Korrektursignal (fTW, kTW) zur Beeinflussung der Kraftstoffzumessung gebildet wird, dadurch gekennzeichnet, daß bei der Bildung des Korrektursignals (fTW, kTW) ein Signal (QK), das den Wärmestrom durch Kraftstoffverdampfung im Ansaugtrakt (102) repräsentiert, berücksichtigt wird.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei der Bildung des Korrektursignals (fTW, kTW) zusätzlich ein Signal (QAn) berücksichtigt wird, das mit dem Wärmestrom zwischen der durch den Ansaugtrakt (102) strömenden Luft und der Wand des Ansaugtraktes (102) zusammenhängt.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß bei der Bildung des Korrektursignals (fTW, kTW) zusätzlich ein Signal (QMot) berücksichtigt wird, das mit dem Wärmestrom zwischen dem Motorblock und der Wand des Ansaugtraktes (102) zusammenhängt.
    4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß bei der Bildung des Korrektursignals (fTW, kTW) zusätzlich ein Signal (Qu) berücksichtigt wird, das mit dem Wärmestrom zwischen der durch den Motorraum strömenden Luft und der Wand des Ansaugtraktes (102) zusammenhängt.
    5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei der Bildung des Korrektursignals (fTW, kTW) ein Signal (TW) ermittelt wird, das die Wandtemperatur des Ansaugtraktes (102) repräsentiert.
    6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Korrektursignal (fTW) ein Signal (UK) zur Beschleunigungsanreicherung oder zur Verzögerungsabmagerung beeinflußt.
    7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Korrektursignal (kTW) ein Signal beeinflußt, das mit dem Kraftstoff-Wandfilm im Ansaugtrakt zusammenhängt und zur Ermittlung des Signals (UK) zur Beschleunigungsanreicherung oder zur Verzögerungsabmagerung gebildet wird.
    8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Signal (QK), das mit dem Wärmestrom durch Kraftstoffverdampfung im Ansaugtrakt (102) zusammenhängt, ausgehend von einem Signal (qKE) für die pro Zeit zugemessene Kraftstoffmenge und einem Signal (x) für den Anteil des sich an der Wand des Ansaugtraktes (102) anlagernden Kraftstoffs ermittelbar ist.
    9. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Signal (QAn), das mit dem Wärmestrom zwischen der durch den Ansaugtrakt (102) strömenden Luft und der Wand des Ansaugtraktes (102) zusammenhängt, ausgehend von einem Signal (m) für den Luftmassenstrom durch den Ansaugtrakt (102) und der Differenz eines Signals (TAn) für die Ansauglufttemperatur und des Signals (TW) für die Wandtemperatur des Ansaugtraktes (102) ermittelbar ist.
    10. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Signal (QMot), das mit dem Wärmestrom zwischen dem Motorblock und der Wand des Ansaugtraktes (102) zusammenhängt, ausgehend von der Differenz eines Signals (TMot) für die Temperatur der Brennkraftmaschine (100) und des Signal (TW) für die Wandtemperatur des Ansaugtraktes (102) ermittelbar ist.
    11. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Signal (QU), das mit dem Wärmestrom zwischen der durch den Motorraum strömenden Luft und der Wand des Ansaugtraktes (102) zusammenhängt, ausgehend von einem Signal (v) für die Fahrzeuggeschwindigkeit, einem Signal (TAn) für die Umgebungstemperatur oder Ansauglufttemperatur und optional von einem Signal für den Betriebszustand eines Lüfters im Motorraum ermittelbar ist.
    12. Vorrichtung zur Beeinflussung der Kraftstoffzumessung bei einer Brennkraftmaschine mit Mitteln (208), die ein Korrektursignal (fTW, kTW) zur Beeinflussung der Kraftstoffzumessung bilden, dadurch gekennzeichnet, daß die Mittel (208) bei der Bildung des Korrektursignals (fTW, kTW) ein Signal (QK) berücksichtigen, das den Wärmestrom durch Kraftstoffverdampfung im Ansaugtrakt (102) repräsentiert.
    EP95936442A 1994-12-14 1995-11-15 Verfahren zur beeinflussung der kraftstoffzumessung bei einer brennkraftmaschine Expired - Lifetime EP0797730B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4444416A DE4444416A1 (de) 1994-12-14 1994-12-14 Verfahren zur Beeinflussung der Kraftstoffzumessung bei einer Brennkraftmaschine
    DE4444416 1994-12-14
    PCT/DE1995/001596 WO1996018811A1 (de) 1994-12-14 1995-11-15 Verfahren zur beeinflussung der kraftstoffzumessung bei einer brennkraftmaschine

    Publications (2)

    Publication Number Publication Date
    EP0797730A1 EP0797730A1 (de) 1997-10-01
    EP0797730B1 true EP0797730B1 (de) 1999-02-03

    Family

    ID=6535725

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95936442A Expired - Lifetime EP0797730B1 (de) 1994-12-14 1995-11-15 Verfahren zur beeinflussung der kraftstoffzumessung bei einer brennkraftmaschine

    Country Status (6)

    Country Link
    US (1) US6035831A (de)
    EP (1) EP0797730B1 (de)
    JP (1) JP3803375B2 (de)
    KR (1) KR100378457B1 (de)
    DE (2) DE4444416A1 (de)
    WO (1) WO1996018811A1 (de)

    Families Citing this family (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19636451B4 (de) * 1996-09-07 2010-06-10 Robert Bosch Gmbh Einrichtung zum Steuern der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge
    EP1312783A1 (de) * 2001-10-05 2003-05-21 Robert Bosch GmbH Verfahren zum Betreiben einer Brennkraftmaschine
    DE102006002738A1 (de) * 2006-01-20 2007-08-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
    JP4418480B2 (ja) * 2007-04-24 2010-02-17 株式会社日立製作所 内燃機関の燃料制御装置
    US8234038B2 (en) * 2007-11-27 2012-07-31 GM Global Technology Operations LLC Intake air temperature diagnostic system
    WO2013190703A1 (en) 2012-06-21 2013-12-27 L'oreal Cosmetic solid composition comprise a non volatile hydrocarbonated oil, waxes and a high content from non volatile phenylated silicone oil
    DE102016203436B4 (de) * 2016-03-02 2017-11-30 Continental Automotive Gmbh Verfahren und Vorrichtung zum Ermitteln eines Einspritzzeitpunkts zum Einspritzen eines Kraftstoffs
    EP4192335A1 (de) 2020-08-06 2023-06-14 Irhythm Technologies, Inc. Elektrische komponenten für physiologische überwachungsvorrichtung

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4454847A (en) * 1980-07-18 1984-06-19 Nippondenso Co., Ltd. Method for controlling the air-fuel ratio in an internal combustion engine
    JPS5888435A (ja) * 1981-11-19 1983-05-26 Honda Motor Co Ltd 吸気温度による補正機能を有する内燃エンジンの空燃比補正装置
    JPS60192846A (ja) * 1984-03-15 1985-10-01 Nissan Motor Co Ltd 内燃機関の燃料供給装置
    JPS61265334A (ja) * 1985-05-17 1986-11-25 Toyota Motor Corp 内燃機関の空燃比制御方法
    DE4115211C2 (de) * 1991-05-10 2003-04-30 Bosch Gmbh Robert Verfahren zum Steuern der Kraftstoffzumessung bei einer Brennkraftmaschine
    DE4121396A1 (de) * 1991-06-28 1993-01-07 Bosch Gmbh Robert Kraftstoffeinspritzverfahren und -vorrichtung
    DE4442679C2 (de) * 1993-11-30 2001-06-07 Honda Motor Co Ltd Kraftstoffeinspritzmengen-Steuersystem für einen Verbrennungsmotor
    JPH07208249A (ja) * 1994-01-12 1995-08-08 Honda Motor Co Ltd 内燃エンジンの制御装置
    US5427070A (en) * 1994-05-04 1995-06-27 Chrysler Corporation Method of averaging coolant temperature for an internal combustion engine
    DE4415994A1 (de) * 1994-05-06 1995-11-09 Bosch Gmbh Robert Steuersystem für eine Brennkraftmaschine
    JP3562026B2 (ja) * 1995-05-18 2004-09-08 日産自動車株式会社 エンジンの空燃比制御装置
    US5584277A (en) * 1995-09-26 1996-12-17 Chrysler Corporation Fuel delivery system with wall wetting history and transient control

    Also Published As

    Publication number Publication date
    KR980700508A (ko) 1998-03-30
    JPH10510345A (ja) 1998-10-06
    KR100378457B1 (ko) 2003-07-18
    EP0797730A1 (de) 1997-10-01
    US6035831A (en) 2000-03-14
    DE4444416A1 (de) 1996-06-20
    DE59505057D1 (de) 1999-03-18
    WO1996018811A1 (de) 1996-06-20
    JP3803375B2 (ja) 2006-08-02

    Similar Documents

    Publication Publication Date Title
    DE4426020B4 (de) Verfahren und Vorrichtung zur Überwachung der Funktionsfähigkeit eines Katalysators im Abgaskanal einer Brennkraftmaschine
    DE4415377B4 (de) Kraftstoffsteuersystem für mit gasförmigem Kraftstoff betriebene Verbrennungsmotoren
    DE19545221B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
    DE4401828B4 (de) Verfahren und Vorrichtung zur Vorhersage eines zukünftigen Lastsignals im Zusammenhang mit der Steuerung einer Brennkraftmaschine
    EP1087114A1 (de) Verfahren zur Steuerung einer Regeneration eines Partikelfilters
    EP0796425B1 (de) Verfahren zur bildung eines signals bezüglich der temperatur der von einer brennkraftmaschine angesaugten luft
    DE4344960A1 (de) System zur Regelung der Aufladung einer Brennkraftmaschine
    EP0797730B1 (de) Verfahren zur beeinflussung der kraftstoffzumessung bei einer brennkraftmaschine
    DE4424811A1 (de) Verfahren zur Bildung eines simulierten Signals bezüglich einer Temperatur im Abgassystem einer Brennkraftmaschine
    DE3438176A1 (de) Einrichtung zur regelung des ladedrucks einer brennkraftmaschine
    EP0976922B1 (de) Verfahren zur Drehmomenteinstellung
    WO1999014475A1 (de) Verfahren und eine vorrichtung zur steuerung eines gasflusses über ein drosselventil in einem verbrennungsmotor
    WO2011076551A1 (de) Verfahren und vorrichtung zur durchführung einer onboard-diagnose
    DE4322270B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
    DE4322319A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
    DE4220286C2 (de) Verfahren zur Funktionsüberprüfung eines Stellelements in einem Fahrzeug
    DE19753996A1 (de) Verfahren zum Dämpfen von Ruckelschwingungen oder Lastschlägen bei einer Brennkraftmaschine
    DE4339692C2 (de) Verfahren und Vorrichtung zur Ermittlung der Abgastemperatur mit einer Lambdasonde
    DE102006022383B4 (de) Verfahren zur Signalauswertung eines Partikelsensors
    DE4211810B4 (de) Einrichtung zur temperaturabhängigen Steuerung einer Brennkraftmaschine
    DE19547644A1 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in eine Brennkraftmaschine
    DE112006001041B4 (de) Vorrichtung zur Steuerung einer Brennkraftmaschine
    DE3914784A1 (de) Vefahren und anordnung zur erfassung des umgebungsluftdrucks bei brennkraftmaschinen
    DE19957200A1 (de) Verfahren und Vorrichtung zur Regelung eines Drehmomentes von Dieselmotoren
    DE4334720B4 (de) Verfahren und Vorrichtung zur Steuerung einer Verstelleinrichtung bei Fahrzeugen

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19970714

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT SE

    17Q First examination report despatched

    Effective date: 19971114

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT SE

    REF Corresponds to:

    Ref document number: 59505057

    Country of ref document: DE

    Date of ref document: 19990318

    ITF It: translation for a ep patent filed

    Owner name: STUDIO JAUMANN P. & C. S.N.C.

    ET Fr: translation filed
    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990408

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20081124

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20081121

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20091128

    Year of fee payment: 15

    Ref country code: FR

    Payment date: 20091202

    Year of fee payment: 15

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20091115

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091115

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091116

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20110801

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20101115

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20140124

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59505057

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150602