WO1996018811A1 - Verfahren zur beeinflussung der kraftstoffzumessung bei einer brennkraftmaschine - Google Patents
Verfahren zur beeinflussung der kraftstoffzumessung bei einer brennkraftmaschine Download PDFInfo
- Publication number
- WO1996018811A1 WO1996018811A1 PCT/DE1995/001596 DE9501596W WO9618811A1 WO 1996018811 A1 WO1996018811 A1 WO 1996018811A1 DE 9501596 W DE9501596 W DE 9501596W WO 9618811 A1 WO9618811 A1 WO 9618811A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- intake tract
- wall
- heat flow
- fuel
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/10—Introducing corrections for particular operating conditions for acceleration
- F02D41/107—Introducing corrections for particular operating conditions for acceleration and deceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/047—Taking into account fuel evaporation or wall wetting
Definitions
- the invention is based on a method for influencing the fuel metering in an internal combustion engine according to the preamble of claim 1.
- An electronic control system for metering fuel in an internal combustion engine is known from DE 41 15 211.
- a basic injection quantity signal is linked to a transition compensation signal, which brings about an adjustment of the metered fuel quantity in the event of acceleration and deceleration.
- a wall film quantity signal and a number of correction signals are taken into account.
- the invention has for its object to further improve the known system.
- a desired air / fuel ratio should be adhered to as precisely as possible in as many operating states of the internal combustion engine as possible.
- the invention has the advantage that it enables optimum fuel metering in dynamic operation of the internal combustion engine.
- FIG. 1 shows a schematic illustration of an internal combustion engine with essential components for controlling the fuel metering
- FIG. 2 shows a block diagram to illustrate how fuel metering is influenced by the method according to the invention
- Figure 3 shows a variant of the block diagram shown in Figure 2 and
- Figure 4 is a flow diagram of the method according to the invention.
- FIG. 1 shows a schematic illustration of an internal combustion engine 100 and essential components for controlling or regulating the fuel metering.
- An air / fuel mixture is supplied to the internal combustion engine 100 via an intake tract 102 and the exhaust gases are discharged into an exhaust gas duct 104.
- an air flow meter or air mass meter 106 for example a hot film air mass meter, a temperature sensor 108 for detecting the intake air temperature, a throttle valve 110 with a sensor 111 for detecting the opening angle the throttle valve 110, a pressure sensor 112 for detecting the pressure in the intake tract 102 and at least one injection nozzle 114.
- the air flow meter or air mass meter 106 and the pressure sensor 112 are alternatively available.
- An oxygen probe 116 is attached in the exhaust gas duct 104.
- a speed sensor 118 and a sensor 119 for detecting the temperature of the internal combustion engine are attached to the internal combustion engine 100.
- the internal combustion engine 100 has to ignite the air / fuel mixture in the
- Cylinders for example four spark plugs 120. Furthermore, a sensor 122 for detecting the vehicle speed and an electric motor 124 are shown in FIG. 1, which drives a fan arranged in the engine compartment.
- the output signals of the sensors described are transmitted to a central control device 126.
- these are the following signals: a signal m from the air flow meter or air mass meter 106, a signal TAn from the temperature sensor 108 for detecting the intake air temperature tur, a signal ⁇ of the sensor 111 for detecting the opening angle of the throttle valve 110, a signal PS of the pressure sensor 112 downstream of the throttle valve 110, a signal ⁇ of the oxygen sensor 116, a signal n of the speed sensor 118, a signal TMot of the sensor 119 for detecting the temperature of the internal combustion engine 100 and a signal v from the sensor 122 for detecting the vehicle speed.
- the control unit 126 evaluates the sensor signals and controls the injection nozzle or the injection nozzles 114 and the spark plugs 120.
- the control unit 126 also controls the electric motor 124.
- the device for carrying out the method according to the invention is generally integrated in control unit 126.
- the influence of the wall temperature of the intake tract 102 on the actually metered amount of fuel can be taken into account when metering the fuel.
- a sensor for detecting the wall temperature downstream of the injection valve or the injection valves 114 is not required in the method according to the invention. Instead, depending on the required accuracy, one or more factors influencing the wall temperature are taken into account.
- a correction signal fTW or kTW is formed.
- the correction signal fTW or kTW influences a transition compensation signal UK, which in turn influences a basic injection signal tp.
- the transition compensation signal UK has the property that it increases the metered amount of fuel in the event of acceleration and decreases the metered amount of fuel in the case of deceleration.
- the correction signal fTW or kTW can be determined according to the method according to the invention either directly from the corresponding influencing variables or via an intermediate variable TW which represents the wall temperature of the intake tract 102. tated and which is determined from the influencing variables.
- the influencing variables are a heat flow QK caused by the fuel evaporation, a heat flow QAn between the air flowing through the intake tract 102 and the wall of the intake tract 102, a heat flow QMot between the engine block and the wall of the intake tract 102 and a heat flow QU between the ambient air flowing past the outer wall of the intake tract 102 and the wall of the intake tract 102.
- the relationship between the intermediate variable TW for the wall temperature of the intake tract 102 and the influencing variables QK, QAn, QMot and QU can be represented by the following differential equation:
- cW represents the specific heat and mW the mass of the wall of the intake tract 102.
- the influencing variables QK, QAn, QMot and QU are determined from operating parameters and material parameters.
- the heat flow QK caused by the fuel evaporation is determined according to the following equation:
- QKE represents the amount of fuel metered per time. This variable is determined by control unit 126 and is therefore known.
- hK represents the specific heat of vaporization of the fuel and is a material constant that is known.
- x represents the proportion of the fuel which is deposited on the wall of the intake tract 102 and which subsequently cools the wall of the intake tract 102 by evaporation. The variable x is stored in a map as a function of the speed n and the pressure PS in the intake tract 102.
- the heat flow QAn between the air flowing through the intake tract 102 and the wall of the intake tract 102 is determined according to the following equation:
- CtN (m) represents the heat transfer coefficient between the air flowing past and the wall of the intake tract 102 as a function of the air mass flow m.
- the heat flow QMot between the engine block and the wall of the intake tract 102 is determined using the following equation:
- otMot denotes the heat transfer coefficient between the engine block and the wall of the intake tract 102 and is a material constant.
- the heat flow QU between the ambient air flowing past the outside of the intake tract 102 and the wall of the intake tract 102 depends on the air mass flow of the passing ambient air and the temperature difference between the ambient air and the wall of the intake tract 102.
- the air mass flow can be determined on the basis of the signal v for the vehicle speed and optionally on the basis of a signal for the operating state of the electric motor 124 which drives the fan in the engine compartment.
- the temperature of the ambient air can be determined with an ambient temperature sensor (not shown in FIG. 1) or with the sensor 108 for the intake air temperature.
- TWNeu TWAlt + (dt / (cW * mW)) * (QK + QAn + QMot + QU)
- a start value TWStart for the wall temperature is initially specified and then the current value TWNew is determined iteratively from the previous value TWAlt. Details of this are shown in the flow diagram of FIG. 4 and described in the associated text.
- FIG. 2 shows a block diagram to illustrate how the fuel metering is influenced by the method according to the invention.
- a load signal L and a signal n for the speed of rotation of the fuel machine 100 are fed into one input of a block 200.
- the load signal L can be determined in a known manner on the basis of one of the signals m, PS or ⁇ .
- a basic injection signal tp is provided at the output of block 200. The determination of the basic injection signal tp from the signals L and n for load and speed is known from the prior art.
- the output of block 200 is connected to a first input of a node 202.
- the second input of the node 202 is connected to the output of a node 204.
- a first input of node 204 is connected to the output of a block 206 for transition compensation.
- the second input of node 204 is connected to the output of a block 208 which carries out the method according to the invention.
- a series of input signals are typically fed into block 208. Which signals are involved depends on which of the influencing variables QK, QAn, QMot and QU are to be taken into account. Adjusting the double arrow pointing to block 208 stands for all input signals.
- the signals L and n for the load and the speed of the internal combustion engine 100 are present at the two inputs of the block 206 for the transition compensation. From these signals, block 206 determines a transition compensation signal UK for influencing the basic injection signal tp and provides the signal UK at its output.
- the signal UK is linked in node 204 with a correction signal fTW, which is output by block 208.
- the signal generated by the link in node 204 is linked in node 202 with the basic injection signal tp to form an injection signal te.
- the injection signal te is fed to a block 210, in which further corrections are possibly made, for example depending on the signal TMot for the temperature of the internal combustion engine 100 or on the signal ⁇ of the oxygen sensor 116, and which in the end is a signal for actuating the injection nozzle or of the injection nozzles 114.
- the method according to the invention can be used to generate a correction signal fTW, which influences the signal UK and thus also the basic injection signal tp, in other words, the correction signal fTW ultimately influences the fuel metering.
- the determination of the UK signal by means of block 206 is already known. A corresponding method is described for example in DE 41 15 211.
- FIG. 2 relates to one of several possibilities of how the correction signal fTW generated with the method according to the invention can influence the fuel metering.
- An alternative possibility is shown in FIG. 3.
- Figure 3 shows a variant of the block diagram shown in Figure 2.
- FIG. 3 shows the influencing of the UK signal by a correction signal kTW generated by the method according to the invention.
- the signal UK is further processed analogously to FIG. 2 and is not shown in detail in FIG. 3.
- the link point 204 shown in FIG. 2 is omitted.
- blocks 300 and 302 and a link point 304 connected between these blocks replace block 206 in FIG. 2.
- Block 300 determines from signals L and n for the load and for the speed of the internal combustion engine 100, which are fed into its two inputs, a signal for the change in the fuel wall film in the intake tract 102.
- the signal generated in this way is linked at node 304 with a correction signal kTW which is generated by block 208 using the method according to the invention.
- the correction signal kTW ultimately has the same effect on the transition compensation signal UK as the above-described correction signal fTW, that is to say the fuel metering is influenced in the same way in both cases.
- the correction signals fTW and kTW act on the signal UK in different ways, the correction signals themselves are generally not identical.
- the signal generated by node 304 is fed into the input of block 302, which generates signal UK using a method known from DE 41 15 211.
- FIG. 4 shows a flow chart of the method according to the invention.
- the signal TWAlt is set to the start value TWStart.
- all input variables required for the method are read in.
- step 402 is followed by step 404.
- step 404 determines one or more of the influencing variables QK, QAn, QMot and QU.
- the equations described above are used for the respective heat flows.
- step 404 is followed by step 406, in which the signal TWNew for the current wall temperature is determined in accordance with the equation already mentioned above.
- this equation contains one or more of the influencing variables QK, QAn, QMot and QU, which represent the individual heat flows.
- Step 406 includes
- Step 408 in which the signal TWAlt for the previous wall temperature is set to the value TWNew of the current wall temperature.
- Step 408 is followed by step 410.
- step 410 the correction signal fTW or kTW for influencing the fuel metering is determined for the current wall temperature from the signal TWNew.
- the correction signal fTW or kTW is read out from a characteristic curve, for example, as a function of the signal TW.
- the flow of the flow chart is ended at step 410 and begins again at step 402.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE59505057T DE59505057D1 (de) | 1994-12-14 | 1995-11-15 | Verfahren zur beeinflussung der kraftstoffzumessung bei einer brennkraftmaschine |
EP95936442A EP0797730B1 (de) | 1994-12-14 | 1995-11-15 | Verfahren zur beeinflussung der kraftstoffzumessung bei einer brennkraftmaschine |
JP51801796A JP3803375B2 (ja) | 1994-12-14 | 1995-11-15 | 内燃機関の燃料調量制御方法 |
US08/860,036 US6035831A (en) | 1994-12-14 | 1995-11-15 | Fuel dosage control process for internal combustion engines |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4444416.8 | 1994-12-14 | ||
DE4444416A DE4444416A1 (de) | 1994-12-14 | 1994-12-14 | Verfahren zur Beeinflussung der Kraftstoffzumessung bei einer Brennkraftmaschine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996018811A1 true WO1996018811A1 (de) | 1996-06-20 |
Family
ID=6535725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1995/001596 WO1996018811A1 (de) | 1994-12-14 | 1995-11-15 | Verfahren zur beeinflussung der kraftstoffzumessung bei einer brennkraftmaschine |
Country Status (6)
Country | Link |
---|---|
US (1) | US6035831A (de) |
EP (1) | EP0797730B1 (de) |
JP (1) | JP3803375B2 (de) |
KR (1) | KR100378457B1 (de) |
DE (2) | DE4444416A1 (de) |
WO (1) | WO1996018811A1 (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19636451B4 (de) * | 1996-09-07 | 2010-06-10 | Robert Bosch Gmbh | Einrichtung zum Steuern der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge |
EP1312783A1 (de) * | 2001-10-05 | 2003-05-21 | Robert Bosch GmbH | Verfahren zum Betreiben einer Brennkraftmaschine |
DE102006002738A1 (de) * | 2006-01-20 | 2007-08-02 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine |
JP4418480B2 (ja) * | 2007-04-24 | 2010-02-17 | 株式会社日立製作所 | 内燃機関の燃料制御装置 |
US8234038B2 (en) * | 2007-11-27 | 2012-07-31 | GM Global Technology Operations LLC | Intake air temperature diagnostic system |
WO2013190703A1 (en) | 2012-06-21 | 2013-12-27 | L'oreal | Cosmetic solid composition comprise a non volatile hydrocarbonated oil, waxes and a high content from non volatile phenylated silicone oil |
DE102016203436B4 (de) * | 2016-03-02 | 2017-11-30 | Continental Automotive Gmbh | Verfahren und Vorrichtung zum Ermitteln eines Einspritzzeitpunkts zum Einspritzen eines Kraftstoffs |
KR20230047456A (ko) | 2020-08-06 | 2023-04-07 | 아이리듬 테크놀로지스, 아이엔씨 | 생리학적 모니터링 장치를 위한 전기 부품 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0044537A1 (de) * | 1980-07-18 | 1982-01-27 | Nippondenso Co., Ltd. | Verfahren zur Steuerung der Kraftstoffinjektion in einer Brennkraftmaschine |
US4495925A (en) * | 1981-11-19 | 1985-01-29 | Honda Giken Kogyo Kabushiki Kaisha | Device for intake air temperature-dependent correction of air/fuel ratio for internal combustion engines |
JPS60192846A (ja) * | 1984-03-15 | 1985-10-01 | Nissan Motor Co Ltd | 内燃機関の燃料供給装置 |
JPS61265334A (ja) * | 1985-05-17 | 1986-11-25 | Toyota Motor Corp | 内燃機関の空燃比制御方法 |
DE4121396A1 (de) * | 1991-06-28 | 1993-01-07 | Bosch Gmbh Robert | Kraftstoffeinspritzverfahren und -vorrichtung |
DE4442679A1 (de) * | 1993-11-30 | 1995-06-08 | Honda Motor Co Ltd | Kraftstoffeinspritzmengen-Steuersystem für Verbrennungsmotoren und dabei benutzte Bestimmungseinrichtung für die Ansaugkanal-Wandtemperatur |
US5427070A (en) * | 1994-05-04 | 1995-06-27 | Chrysler Corporation | Method of averaging coolant temperature for an internal combustion engine |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4115211C2 (de) * | 1991-05-10 | 2003-04-30 | Bosch Gmbh Robert | Verfahren zum Steuern der Kraftstoffzumessung bei einer Brennkraftmaschine |
JPH07208249A (ja) * | 1994-01-12 | 1995-08-08 | Honda Motor Co Ltd | 内燃エンジンの制御装置 |
DE4415994A1 (de) * | 1994-05-06 | 1995-11-09 | Bosch Gmbh Robert | Steuersystem für eine Brennkraftmaschine |
JP3562026B2 (ja) * | 1995-05-18 | 2004-09-08 | 日産自動車株式会社 | エンジンの空燃比制御装置 |
US5584277A (en) * | 1995-09-26 | 1996-12-17 | Chrysler Corporation | Fuel delivery system with wall wetting history and transient control |
-
1994
- 1994-12-14 DE DE4444416A patent/DE4444416A1/de not_active Withdrawn
-
1995
- 1995-11-15 KR KR1019970703927A patent/KR100378457B1/ko not_active IP Right Cessation
- 1995-11-15 DE DE59505057T patent/DE59505057D1/de not_active Expired - Lifetime
- 1995-11-15 EP EP95936442A patent/EP0797730B1/de not_active Expired - Lifetime
- 1995-11-15 US US08/860,036 patent/US6035831A/en not_active Expired - Fee Related
- 1995-11-15 JP JP51801796A patent/JP3803375B2/ja not_active Expired - Fee Related
- 1995-11-15 WO PCT/DE1995/001596 patent/WO1996018811A1/de active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0044537A1 (de) * | 1980-07-18 | 1982-01-27 | Nippondenso Co., Ltd. | Verfahren zur Steuerung der Kraftstoffinjektion in einer Brennkraftmaschine |
US4495925A (en) * | 1981-11-19 | 1985-01-29 | Honda Giken Kogyo Kabushiki Kaisha | Device for intake air temperature-dependent correction of air/fuel ratio for internal combustion engines |
JPS60192846A (ja) * | 1984-03-15 | 1985-10-01 | Nissan Motor Co Ltd | 内燃機関の燃料供給装置 |
JPS61265334A (ja) * | 1985-05-17 | 1986-11-25 | Toyota Motor Corp | 内燃機関の空燃比制御方法 |
DE4121396A1 (de) * | 1991-06-28 | 1993-01-07 | Bosch Gmbh Robert | Kraftstoffeinspritzverfahren und -vorrichtung |
DE4442679A1 (de) * | 1993-11-30 | 1995-06-08 | Honda Motor Co Ltd | Kraftstoffeinspritzmengen-Steuersystem für Verbrennungsmotoren und dabei benutzte Bestimmungseinrichtung für die Ansaugkanal-Wandtemperatur |
US5427070A (en) * | 1994-05-04 | 1995-06-27 | Chrysler Corporation | Method of averaging coolant temperature for an internal combustion engine |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 10, no. 40 (M - 454) 18 February 1986 (1986-02-18) * |
PATENT ABSTRACTS OF JAPAN vol. 11, no. 123 (M - 581) 17 April 1987 (1987-04-17) * |
Also Published As
Publication number | Publication date |
---|---|
JP3803375B2 (ja) | 2006-08-02 |
JPH10510345A (ja) | 1998-10-06 |
KR100378457B1 (ko) | 2003-07-18 |
DE59505057D1 (de) | 1999-03-18 |
EP0797730B1 (de) | 1999-02-03 |
US6035831A (en) | 2000-03-14 |
EP0797730A1 (de) | 1997-10-01 |
KR980700508A (ko) | 1998-03-30 |
DE4444416A1 (de) | 1996-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1147309B1 (de) | Vorrichtung zum unterdrücken von motorklopfen einer brennkraftmaschine | |
EP0084037B2 (de) | Einrichtung zum steueren des ladedrucks bei einer mit aufladung betriebenen brennkraftmaschine | |
EP0894958B1 (de) | Fehlererkennungseinrichtung für Brennkraftmaschinen und ein Verfahren zum Betreiben einer Brennkraftmaschine | |
WO2006069853A1 (de) | Verfahren zum betreiben einer brennkraftmaschine | |
DE4343353C2 (de) | Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine | |
DE10145038A1 (de) | Verfahren und Vorrichtung zum Betreiben wenigstens eines Laders eines Verbrennungsmotors | |
DE4330368A1 (de) | Verfahren und Vorrichtung zur Steuerung der Antriebsleistung eines Fahrzeugs | |
WO2002020964A1 (de) | Verfahren zum betreiben einer brennkraftmaschine und entsprechende vorrichtung | |
DE102004004490A1 (de) | Verfahren zum Betreiben einer Brennkraftmaschine mit mindestens zwei Abgasturboladern | |
DE4404668A1 (de) | Verfahren und Vorrichtung zur Steuerung der Leistung einer Brennkraftmaschine | |
DE4401828B4 (de) | Verfahren und Vorrichtung zur Vorhersage eines zukünftigen Lastsignals im Zusammenhang mit der Steuerung einer Brennkraftmaschine | |
EP1725915B1 (de) | Prozesssteuersystem | |
DE4344960A1 (de) | System zur Regelung der Aufladung einer Brennkraftmaschine | |
EP0885353B1 (de) | Verfahren und anordnung zum steuern oder regeln der leistung einer aufladbaren brennkraftmaschine | |
EP1215388A2 (de) | Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine | |
EP1091106A2 (de) | Verfahren zur Bestimmung eines Abgasgegendruckes an einer Turbine | |
EP0797730A1 (de) | Verfahren zur beeinflussung der kraftstoffzumessung bei einer brennkraftmaschine | |
EP0976922B1 (de) | Verfahren zur Drehmomenteinstellung | |
WO2011076551A1 (de) | Verfahren und vorrichtung zur durchführung einer onboard-diagnose | |
DE19753996A1 (de) | Verfahren zum Dämpfen von Ruckelschwingungen oder Lastschlägen bei einer Brennkraftmaschine | |
DE4220286C2 (de) | Verfahren zur Funktionsüberprüfung eines Stellelements in einem Fahrzeug | |
EP0728922B1 (de) | Luftmassenregler für eine turboaufgeladene Brennkraftmaschine mit angepasstem I-Anteil | |
EP1103711B1 (de) | Verfahren und Vorrichtung zur Regelung eines Drehmomentes von Dieselmotoren | |
EP0985812B1 (de) | Optimierung des Frischluftfüllungsverhaltens einer Brennkraftmaschine | |
DE10025495B4 (de) | Verfahren zum Betrieb einer Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1995936442 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 08860036 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019970703927 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1995936442 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1019970703927 Country of ref document: KR |
|
WWG | Wipo information: grant in national office |
Ref document number: 1995936442 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1019970703927 Country of ref document: KR |