EP1215388A2 - Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine - Google Patents

Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine Download PDF

Info

Publication number
EP1215388A2
EP1215388A2 EP01123016A EP01123016A EP1215388A2 EP 1215388 A2 EP1215388 A2 EP 1215388A2 EP 01123016 A EP01123016 A EP 01123016A EP 01123016 A EP01123016 A EP 01123016A EP 1215388 A2 EP1215388 A2 EP 1215388A2
Authority
EP
European Patent Office
Prior art keywords
signal
cylinder
control
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01123016A
Other languages
English (en)
French (fr)
Other versions
EP1215388B1 (de
EP1215388A3 (de
Inventor
Jens Damitz
Dirk Dr. Samuelsen
Ruediger Dr. Fehrmann
Matthias Schueler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1215388A2 publication Critical patent/EP1215388A2/de
Publication of EP1215388A3 publication Critical patent/EP1215388A3/de
Application granted granted Critical
Publication of EP1215388B1 publication Critical patent/EP1215388B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter

Definitions

  • the invention relates to a method and a device for controlling an internal combustion engine according to the General terms of the independent claims.
  • Such a method and such a device for Control of an internal combustion engine is, for example, off known from DE 195 27 218.
  • the aim of this procedure is to help the individual Equal amount of fuel allocated to cylinders. Differences in the metered amount of fuel between the individual cylinders are balanced.
  • exhaust emissions can be significantly reduced, whereby the power output of the internal combustion engine is not is affected.
  • Sensors are preferably used which have a signal provide that the oxygen concentration in the exhaust gas characterized, or a signal representing the pressure in the exhaust gas characterized.
  • the lambda values, ie the Oxygen concentrations, all cylinders equal. Both the injected and the manipulated variable can be used Amount of fuel as well as the amount of air supplied for example by means of an individual cylinder Exhaust gas recirculation is adjustable, can be used. in the The following is the procedure using the example of Fuel quantity described.
  • a particularly simple Signal processing consists in that the signal of the im Exhaust tract arranged sensor with at least two Filter media with different frequencies can be filtered is, based on the filtered signal at least two frequency-specific actual values, a setpoint and frequency-specific control deviations can be determined.
  • a particularly meaningful signal results when the Provision of the frequency-specific quantities the output signal of the sensor arranged in the exhaust tract by means of at least two bandpasses with adjustable Center frequencies can be filtered, the center frequencies are integer multiples of the camshaft frequency.
  • Realizations are of particular importance in the form of a computer program with program code means and in the form of a computer program product with program code means.
  • the computer program according to the invention has Program code means to complete all steps of the perform the inventive method if that Program on a computer, in particular a control device for an internal combustion engine of a motor vehicle becomes.
  • the invention is represented by an in program stored in the control unit, so that this control unit provided with the program in the same
  • the invention represents how the method for its Execution the program is suitable.
  • the invention Computer program product has program code means that are stored on a computer-readable medium in order to to carry out the method according to the invention if that Program product on a computer, especially one Control device for an internal combustion engine of a motor vehicle is performed.
  • the invention realized by a disk so that the inventive method can be carried out if that Program product or the data carrier in a control unit for an internal combustion engine, in particular of a motor vehicle is integrated.
  • a data carrier or as Computer program product can in particular be an electrical one Storage medium are used, for example Read-only memory (ROM), an EPROM or an electrical one Permanent storage such as a CD-ROM or DVD.
  • FIG. 1 shows a block diagram of the device according to the invention
  • Figure 2 is a detailed Representation
  • Figure 3 is a representation of the target and Actual value.
  • the invention but is not on self-igniting internal combustion engines limited. It can also be used in other types of Internal combustion engines are used. In this case replace corresponding components.
  • the Invention also in internal combustion engines with others Number of cylinders and / or in internal combustion engines without Exhaust gas turbochargers are used.
  • the internal combustion engine is 100 characterized. You will get air through a fresh air line 118, a compressor 115 and an intake line 110 fed. The exhaust gases from the internal combustion engine pass through an exhaust pipe 120 and a turbine 125 into one Exhaust pipe 128. Turbine 125 drives the compressor 115 via a shaft, not shown.
  • the internal combustion engine is a determining quantity Actuator 150 assigned. This is the Internal combustion engine supplied with fuel.
  • Sandra can Cylinder an individual amount of fuel metered become. This is shown in Figure 1 in that each Cylinder a quantity-determining control element 151 to 154 assigned.
  • the individual control elements 151 to 154 are generated by a control unit 160 with control signals applied.
  • the actuators 151 to 154 are concerned are, for example, solenoid valves or piezo actuators that control the fuel metering in the respective cylinder. It can be provided that one injector per cylinder, a distributor pump or another the injected Fuel quantity determining element affecting the cylinders alternately metering fuel is provided.
  • the control unit 160 also acts on another Actuator 155, which is the amount of fresh air that the Internal combustion engine is influenced. At a simplified embodiment, this actuator 155 also be omitted. Furthermore, the Control unit 160 the output signals of various sensors 170, which, for example, the environmental conditions such as Temperature and pressure values as well as the driver's request characterized.
  • control unit 170 processes signals from Sensors 180 that measure the exhaust gas composition or pressure and / or characterize the temperature in the exhaust gas.
  • This Sensor is preferably between the engine and the turbine 125 arranged.
  • the sensor 185 also after the turbine in the exhaust pipe be arranged.
  • the sensors 180 and 185 preferably detect a signal that characterized the oxygen concentration in the exhaust gas. Alternatively and / or additionally, it can also be provided that the pressure in the exhaust pipe upstream or downstream of the turbine is evaluated.
  • the fresh air is compressed by the compressor 115 and passes through the Intake line 110 in the internal combustion engine.
  • the Internal combustion engine is about the quantity-determining Actuator 150 metered fuel.
  • everyone will Cylinder depending on the control signal from the control unit 160 a cylinder-specific amount of fuel supplied.
  • the Exhaust gases reach the turbine via the exhaust pipe and drive These arrive and then pass through the exhaust pipe 128 in the environment.
  • the turbine 125 drives the compressor 115 via a shaft, not shown.
  • the control unit 160 calculates on the basis of the various input signals, especially the Driver request, the control signals to act on the Actuators 151 to 154.
  • an actuating device 155 provided the air supply to the internal combustion engine controls.
  • This can preferably be a Exhaust gas recirculation device act the amount of recirculated exhaust gas determined.
  • the determination of the control signals for the control elements 151 to 155 is shown in more detail in FIG. It is in particular the calculation of the fuel quantity QK shown. When calculating the amount of air can be followed accordingly.
  • the actuator 150 becomes the output signal QK of an addition point 202 acted upon.
  • the output signal QKF is applied to a quantity specification 210. This is due to the second input of addition point 2 Output signal QKL of a multiplexer 250 on.
  • the quantity specification 210 processes the output signal various sensors, such as one Accelerator pedal position sensor 170a and a speed sensor 170b. Furthermore, it can be provided that the Quantity specification 210 the output signal L of a sensor 180 processed.
  • the output signal L of the sensor 180 corresponds the oxygen concentration in the exhaust tract.
  • the signal L of the sensor 180 also comes to a Filter device 230, which in turn has a first controller 241, a second controller 242, a third controller 243 and one fourth controller 244 is supplied with a signal that one Control deviation corresponds. Overall, the controllers 241 to 244 referred to as controller 240. The individual controllers in turn act on the multiplexer 250 Control signals, which then cyclically as signal QKL to Add addition point 202.
  • the Quantity specification 210 Based on the various sensor signals, the Quantity specification 210 an amount of fuel QKF to be injected, which is to be fed to the internal combustion engine. That amount of QKF corresponds to the amount required to meet the Provide driver with desired torque.
  • the quantity control 210 contains further functions, such as an idle controller or Interventions by other control units.
  • quantity specification 210 can already be a smooth running control, as known from the prior art. It is also possible that a non-cylinder individual Quantity specification also takes into account a lambda signal that the Characterized oxygen concentration in the exhaust gas.
  • Air volume error i.e. Deviations between the air volumes, which are fed to the individual cylinders are used by the Quantity specification 210 not taken into account.
  • different Lambda values of the individual cylinders lead to fluctuations of the lambda signal. These are recorded and used cylinder-specific regulation used.
  • the Filter device 230 calculates from the lambda signal L that with the sensor 180, a cylinder-specific one Control deviation between the cylinder-specific target and Actual value for the lambda signal.
  • This individual cylinder Control deviation is the respective controller, the cylinder is assigned. It can be provided that a controller is provided for each cylinder. Alternative is it is also possible that a controller successively the cylinder-specific control deviations processed. This is particularly the case when the invention as Control program is realized.
  • the multiplexer 250 holds these signals together to form a signal QKL that the Deviations of the individual lambda signals from a target value characterized.
  • This signal is designed so that at the actuation of the actuating device 150 Fuel quantity is metered that the lambda signal at assumes the same value for all cylinders.
  • a first alternative is the lambda probe arranged in front of the turbine. This has the advantage that no mixing of the individual cylinders Exhaust gas flows through the turbine have occurred. however are in this area by opening the exhaust valves strong pressure vibrations stimulated. Compensate for this partly due to the cylinder-specific lambda differences excited vibrations on the probe signal. This is based on that described below Mode of action. Becomes a higher one in a cylinder Injection quantity injected, the corresponding one decreases Residual oxygen content in the exhaust gas and thus the output voltage the lambda probe. At the same time results from the stronger Burning a higher pressure when opening the Outlet valve. By positive cross coupling between Pressure and probe signal increases the pressure rise Sensor signal and affects the actual oxygen change opposite. This makes the measurable signal amplitude clear smaller than expected based on the pure oxygen vibration would. Another disadvantage is that an additional probe is needed.
  • the lambda probe is behind the Turbine arranged.
  • the advantage here is that the Interference amplitude of those caused by the combustion Pressure fluctuations in the exhaust system is smaller. adversely however, the mixing of the individual cylinders affects Exhaust gas flows out through the turbine. This also reduces this arrangement of the probe the amplitude of the measured Oxygen vibrations.
  • the heating frequency is a particularly serious disturbance To call the lambda probe.
  • Their interference amplitude is approximately like this big, like that due to the cylinder-specific lambda differences caused vibrations. These vibrations can be compensated by fast signal preprocessing become.
  • the output signal of the sensor 180 arrives at a Prefilter 300 to a first filter 310 and a second Filter 320.
  • the output signal of the first filter 310 arrives at a first setpoint determination 312 and one first actual value determination 314.
  • the output signal of the second Filter 320 arrives at a second setpoint determination 322 and a second actual value determination 324.
  • the output signal NWS of the first setpoint determination 312 arrives with positive sign and the output signal NWI to the first actual value determination 314 with a negative sign a node 316.
  • node 318 becomes the output signal of node 316 with linked to a weighting factor FNW.
  • the weighted first Control deviation NWL arrives at an addition point 340 and thence to block 240.
  • the output signal KWS of the second setpoint determination 322 arrives with a positive sign and the output signal KWI the second actual value determination 324 with a negative sign to a node 326.
  • node 328 becomes the output signal of the node 326 linked to a weighting factor HFC.
  • the so weighted second control deviation KWL reaches the addition point 340
  • the weighting factor FNW and the weighting factor FKW become provided by the weighting target 330.
  • the control deviation is at the output of the addition point 340 L available, which forwarded to controller 240 becomes.
  • junction points 318 and 328 are a preferred embodiment of the invention. Alternatively, you can it can also be provided that the factors FNW and / or FKW otherwise, for example in filters 310 or 320, be taken into account or not taken into account.
  • a Internal combustion engine with 4 cylinders are only two Filters provided the signal components with camshaft and Filter out the crankshaft frequency.
  • further Frequency ranges are taken into account.
  • a filter is provided which the Frequencies up to and including half the ignition frequency filter out.
  • the filters are 310 and 320 um bandpass filters, whose center frequency at Filter 310 at the camshaft frequency and filter 320, is at the crankshaft frequency.
  • band passes there may be other band passes provided.
  • a bandpass the camshaft frequency and a bandpass with double Camshaft frequency that corresponds to the crankshaft frequency provided.
  • the output signal of the sensor 180 passes through the Prefilter 300 to the bandpasses 310 and 320.
  • This one Prefilter 300 is designed such that it is undesirable Filters out interference.
  • the prefilter is preferably 300 formed such that it vibrates the signal, the caused by the probe heating, does not let through.
  • the output signal is obtained by means of bandpasses 310 and 320 of the sensor 180 separated into spectral components. For each Spectral components determine the first, second and third Actual value determination and the first, second and third Setpoint determination frequency-specific setpoints and actual values. The setpoints and actual values are calculated for the individual spectral components are preferably different.
  • the probe signal for the individual frequencies separately.
  • the first actual value determination 314 and the second Actual value determination 324 a frequency-specific actual value. Accordingly, it can be provided that for each frequency first setpoint specification 312 and the second setpoint specification 320 calculates a frequency-specific setpoint. In the Junction points 316 and 326 then become the frequency-specific control deviation determined.
  • control deviations weighted or not weighted NWL and KWL are added in node 340 and the Regulator supplied.
  • the controller corresponds to that in FIG. 1 controller 240 shown.
  • a Pressure sensor can be used, the pressure in front or behind the turbine evaluates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Es werden eine Vorrichtung und ein Verfahren zur Steuerung einer Brennkraftmaschine beschrieben, bei dem jedem Zylinder der Brennkraftmaschine eine Regelabweichung und ein Regler zugeordnet ist, wobei jeder Regler ausgehend von der zugeordneten Regelabweichung einen zylinderspezifischen Ansteuersignal vorgibt. Ausgehend von einem Signal eines im Abgastrakt angeordneten Sensors werden zylinderspezifische Istwerte ermittelt und mit einem Sollwert verglichen. Ausgehend von dem Vergleich werden Ansteuersignale zur zylinderindividuellen Steuerung der Kraftstoff- und/oder Luftmenge vorgeben. <IMAGE>

Description

Stand der Technik
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine gemäß den Oberbegriffen der unabhängigen Ansprüche.
Ein solches Verfahren und eine solche Vorrichtung zur Steuerung einer Brennkraftmaschine ist beispielsweise aus der DE 195 27 218 bekannt. Dort wird ein Verfahren und eine Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine beschrieben, bei dem jedem Zylinder der Brennkraftmaschine eine Regelabweichung und ein Regler zugeordnet ist. Jeder Regler gibt, ausgehend von der zugeordneten Regelabweichung, ein zylinderspezifisches Ansteuersignal vor.
Ziel dieser Vorgehensweise ist es, die den einzelnen Zylindern zugemessene Kraftstoffmenge gleichzustellen. Unterschiede bei der zugemessenen Kraftstoffmenge zwischen den einzelnen Zylindern werden ausgeglichen. Dabei kann der Fall eintreten, daß, obwohl allen Zylindern die gleiche Kraftstoffmenge zugemessen wird und/oder alle Zylinder das gleiche Drehmoment zum Gesamtdrehmoment beitragen, die einzelnen Zylinder unterschiedliche Luftmengen zugemessen bekommen. Dies hat zur Folge, daß bei einzelnen Zylindern erhöhte Abgasemissionen, insbesondere Partikelemissionen, auftreten. Diese erhöhten Emissionen können beim Stand der Technik nur dadurch verringert werden, in dem die gesamte Einspritzmenge und/oder der Mittelwert der zylinderindividuellen Kraftstoffmengen soweit reduziert wird, dass die Emissionen minimiert werden. Diese Mengenreduktion führt zu einer Verringerung der Leistung der Brennkraftmaschine.
Vorteile der Erfindung
Mittels des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Vorrichtung.
Dadurch, daß ausgehend von einem Signal eines im Abgastrakt angeordneten Sensors zylinderspezifische Istwerte ermittelt und mit einem Sollwert verglichen werden, und dass ausgehend von dem Vergleich Ansteuersignale zur zylinderindividuellen Steuerung der Kraftstoff- und/oder Luftmenge vorgebbar sind, können die Abgasemissionen deutlich reduziert werden, wobei die Leistungsabgabe der Brennkraftmaschine nicht beeinträchtigt wird.
Vorzugsweise werden Sensoren verwendet, die ein Signal bereitstellen, das die Sauerstoffkonzentration im Abgas charakterisiert, oder ein Signal, das den Druck im Abgas charakterisiert.
Bevorzugt werden die Lambdawerte, das heißt die Sauerstoffkonzentrationen, aller Zylinder gleichgestellt. Als Stellgröße kann dabei sowohl die eingespritzte Kraftstoffmenge als auch die zugeführte Luftmenge, die beispielsweise mittels einer zylinderindividuellen Abgasrückführung einstellbar ist, verwendet werden. Im folgenden wird die Vorgehensweise am Beispiel der Kraftstoffmenge beschrieben.
Besonders vorteilhaft ist es, wenn die Vorgehensweise mit einer Laufruheregelung gemäß dem Stand der Technik kombiniert wird.
Erfindungsgemäß wurde erkannt, dass eine besonders einfache Signalaufbereitung darin besteht, dass das Signal des im Abgastrakt angeordneten Sensors mit wenigstens zwei Filtermitteln mit unterschiedlichen Frequenzen filterbar ist, wobei ausgehend von dem gefilterten Signal wenigstens zwei frequenzspezifische Istwerte, ein Sollwert und frequenzspezifische Regelabweichungen bestimmbar sind.
Ein besonders aussagekräftiges Signal ergibt sich, wenn zur Bereitstellung der frequenzspezifischen Größen das Ausgangssignal des im Abgastrakt angeordneten Sensors mittels wenigstens zweier Bandpässe mit einstellbaren Mittenfrequenzen filterbar ist, wobei die Mittenfrequenzen bei ganzzahligen Vielfachen der Nockenwellenfrequenz liegen.
Von besonderer Bedeutung sind weiterhin die Realisierungen in Form eines Computerprogramms mit Programmcode-Mitteln und in Form eines Computerprogrammprodukts mit Programmcode-Mitteln. Das erfindungsgemäße Computerprogramm weist Programmcode-Mittel auf, um alle Schritte des erfindungsgemäßen Verfahrens durchzuführen, wenn das Programm auf einem Computer, insbesondere einem Steuergerät für eine Brennkraftmaschine eines Kraftfahrzeugs, ausgeführt wird. In diesem Fall wird also die Erfindung durch ein in dem Steuergerät abgespeichertes Programm realisiert, so dass dieses mit dem Programm versehene Steuergerät in gleicher Weise die Erfindung darstellt wie das Verfahren, zu dessen Ausführung das Programm geeignet ist. Das erfindungsgemäße Computerprogrammprodukt weist Programmcode-Mittel auf, die auf einem computerlesbaren Datenträger gespeichert sind, um das erfindungsgemäße Verfahren durchzuführen, wenn das Programmprodukt auf einem Computer, insbesondere einem Steuergerät für eine Brennkraftmaschine eines Kraftfahrzeugs ausgeführt wird. In diesem Fall wird also die Erfindung durch einen Datenträger realisiert, so dass das erfindungsgemäße Verfahren ausgeführt werden kann, wenn das Programmprodukt bzw. der Datenträger in ein Steuergerät für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs integriert wird. Als Datenträger bzw. als Computerprogrammprodukt kann insbesondere ein elektrisches Speichermedium zur Anwendung kommen, beispielsweise ein Read-Only-Memory (ROM), ein EPROM oder auch ein elektrischer Permanentspeicher wie beispielsweise eine CD-ROM oder DVD.
Vorteilhafte und zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Die erfindungsgemäße Vorgehensweise wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsform erläutert. Es zeigen Figur 1 ein Blockdiagramm der erfindungsgemäßen Vorrichtung, Figur 2 eine detaillierte Darstellung, Figur 3 eine Darstellung der Soll- und Istwertbildung.
Im folgenden wird die erfindungsgemäße Vorgehensweise am Beispiel einer selbstzündenden Brennkraftmaschine mit Abgasturbolader und 4 Zylindern beschrieben. Die Erfindung ist aber nicht auf selbstzündende Brennkraftmaschinen beschränkt. Sie kann auch bei anderen Typen von Brennkraftmaschinen eingesetzt werden. In diesem Fall sind entsprechende Bauteile auszutauschen. Insbesondere kann die Erfindung auch bei Brennkraftmaschinen mit anderer Zylinderzahl und/oder bei Brennkraftmaschinen ohne Abgasturbolader eingesetzt werden.
In Figur 1 ist die Brennkraftmaschine mit 100 gekennzeichnet. Ihr wird Luft über eine Frischluftleitung 118, einen Verdichter 115 und eine Ansaugleitung 110 zugeführt. Die Abgase der Brennkraftmaschine gelangen über eine Abgasleitung 120 und eine Turbine 125 in eine Auspuffleitung 128. Die Turbine 125 treibt den Verdichter 115 über eine nicht dargestellte Welle an.
Der Brennkraftmaschine ist eine mengenbestimmende Stelleinrichtung 150 zugeordnet. Über dieses wird der Brennkraftmaschine Kraftstoff zugeführt. Dabei kann jedem Zylinder eine individuelle Kraftstoffmenge zugemessen werden. Dies ist in Figur 1 dadurch dargestellt, daß jedem Zylinder ein mengenbestimmendes Stellelement 151 bis 154 zugeordnet ist. Die einzelnen Stellelemente 151 bis 154 werden von einer Steuereinheit 160 mit Ansteuersignalen beaufschlagt. Bei den Stellelementen 151 bis 154 handelt es sich beispielsweise um Magnetventile oder Piezoaktoren, die die Kraftstoffzumessung in den jeweiligen Zylinder steuern. Dabei kann vorgesehen sein, daß pro Zylinder ein Injektor, eine Verteilerpumpe oder ein anderes die eingespritzte Kraftstoffmenge bestimmendes Element, die den Zylindern abwechselnd Kraftstoff zumißt, vorgesehen ist.
Die Steuereinheit 160 beaufschlagt ferner ein weiteres Stellglied 155, das die Frischluftmenge, die der Brennkraftmaschine zugeführt wird, beeinflußt. Bei einer vereinfachten Ausführungsform kann dieses Stellglied 155 auch weggelassen werden. Desweiteren verarbeitet die Steuereinheit 160 die Ausgangssignale verschiedener Sensoren 170, die beispielsweise die Umgebungsbedingungen wie z.B. Temperatur- und Druckwerte sowie den Fahrerwunsch charakterisiert.
Desweiteren verarbeitet die Steuereinheit 170 Signale von Sensoren 180, die die Abgaszusammensetzung oder den Druck und/oder die Temperatur im Abgas charakterisieren. Dieser Sensor ist vorzugsweise zwischen der Brennkraftmaschine und der Turbine 125 angeordnet. Alternativ oder ergänzend kann der Sensor 185 auch nach der Turbine in der Auspuffleitung angeordnet sein.
Die Sensoren 180 bzw. 185 erfassen bevorzugt ein Signal, das die Sauerstoffkonzentration im Abgas charakterisiert. Alternativ und/oder ergänzend kann auch vorgesehen sein, daß der Druck in der Abgasleitung vor oder hinter der Turbine ausgewertet wird.
Diese Einrichtung arbeitet nun wie folgt. Die Frischluft wird von dem Verdichter 115 verdichtet und gelangt über die Ansaugleitung 110 in die Brennkraftmaschine. Der Brennkraftmaschine wird über die mengenbestimmende Stelleinrichtung 150 Kraftstoff zugemessen. Dabei wird jedem Zylinder abhängig von dem Ansteuersignal der Steuereinheit 160 eine zylinderindividuelle Kraftstoffmenge zugeführt. Die Abgase gelangen über die Abgasleitung zur Turbine, treiben diese an und gelangen dann über die Auspuffleitung 128 in die Umgebung. Die Turbine 125 treibt dabei den Verdichter 115 über eine nicht dargestellte Welle an.
Die Steuereinheit 160 berechnet, ausgehend von den verschiedenen Eingangssignalen, insbesondere dem Fahrerwunsch, die Ansteuersignale zur Beaufschlagung der Stellelemente 151 bis 154. Bei einer bevorzugten Ausführungsform ist zusätzlich eine Stelleinrichtung 155 vorgesehen, die die Luftzufuhr zur Brennkraftmaschine steuert. Hierbei kann es sich vorzugsweise um eine Abgasrückführeinrichtung handeln, die die Menge an rückgeführtem Abgas bestimmt. Besonders bevorzugt ist eine Ausführungsform, bei der die dem einzelnen Zylinder zugeführte Luftmenge beeinflußt wird. Dies ist beispielsweise durch eine Ventilsteuerung der Ein- und Auslaßventile möglich.
Die Ermittlung der Ansteuersignale für die Stellelemente 151 bis 155 ist in Figur 2 detaillierter dargestellt. Dabei ist insbesondere die Berechnung der Kraftstoffmenge QK dargestellt. Bei der Berechnung der Luftmenge kann entsprechend vorgegangen werden.
Bereits in Figur 1 beschriebene Elemente sind mit entsprechenden Bezugszeichen bezeichnet. Das Stellelement 150 wird mit dem Ausgangssignal QK eines Additionspunktes 202 beaufschlagt. An dem ersten Eingang des Additionspunktes 202 liegt das Ausgangssignal QKF einer Mengenvorgabe 210 an. An dem zweiten Eingang des Additionspunkts 2 liegt das Ausgangssignal QKL eines Multiplexers 250 an.
Die Mengenvorgabe 210 verarbeitet das Ausgangssignal verschiedener Sensoren, wie beispielsweise eines Fahrpedalstellungsgebers 170a sowie eines Drehzahlgebers 170b. Desweiteren kann vorgesehen sein, daß die Mengenvorgabe 210 das Ausgangssignal L eines Sensors 180 verarbeitet. Das Ausgangssignal L des Sensors 180 entspricht der Sauerstoffkonzentration im Abgastrakt.
Das Signal L des Sensors 180 gelangt ferner zu einer Filtereinrichtung 230, die wiederum einen ersten Regler 241, einen zweiten Regler 242, einen dritten Regler 243 und einen vierten Regler 244 mit einem Signal beaufschlagt, das einer Regelabweichung entspricht. Insgesamt werden die Regler 241 bis 244 als Regler 240 bezeichnet. Die einzelnen Regler beaufschlagen wiederum den Multiplexer 250 mit Ansteuersignalen, die dann zyklisch als Signal QKL zum Additionspunkt 202 gelangen.
Ausgehend von den verschiedenen Sensorsignalen bestimmt die Mengenvorgabe 210 eine einzuspritzende Kraftstoffmenge QKF, die der Brennkraftmaschine zuzuführen ist. Diese Menge QKF entspricht der Menge, die erforderlich ist, um das vom Fahrer gewünschte Drehmoment bereitzustellen. Dabei beinhaltet die Mengensteuerung 210 noch weitere Funktionen, wie beispielsweise einen Leerlaufregler oder Mengeneingriffe von weiteren Steuereinheiten. Desweiteren kann die Mengenvorgabe 210 bereits eine Laufruheregelung, wie sie aus dem Stand der Technik bekannt ist, umfassen. Ferner ist es möglich, daß eine nicht zylinderindividuelle Mengenvorgabe auch ein Lambda-Signal berücksichtigt, das die Sauerstoffkonzentration im Abgas charakterisiert.
Luftmengenfehler, d.h. Abweichungen zwischen den Luftmengen, die den einzelnen Zylindern zugeführt werden, werden von der Mengenvorgabe 210 nicht berücksichtigt. Unterschiedliche Lambda-Werte der einzelnen Zylinder führen zu Schwankungen des Lambda-Signals. Diese werden erfaßt und zur zylinderindividuellen Regelung verwendet. Die Filtereinrichtung 230 berechnet aus dem Lambda-Signal L, das mit dem Sensor 180 erfaßt wird, eine zylinderindividuelle Regelabweichung zwischen dem zylinderindividuellen Soll- und Istwert für das Lambda-Signal. Diese zylinderindividuelle Regelabweichung wird dem jeweiligen Regler, der dem Zylinder zugeordnet ist, zugeführt. Dabei kann vorgesehen sein, daß für jeden Zylinder ein Regler vorgesehen ist. Alternativ ist es auch möglich, daß ein Regler zeitlich nacheinander die zylinderindividuellen Regelabweichungen verarbeitet. Dies ist insbesondere dann der Fall, wenn die Erfindung als Steuerprogramm realisiert ist. Der Multiplexer 250 faßt diese Signale zusammen zu einem Signal QKL, das die Abweichungen der einzelnen Lambda-Signale von einem Sollwert charakterisiert. Dieses Signal ist so ausgebildet, daß bei der Ansteuerung der Stelleinrichtung 150 eine solche Kraftstoffmenge zugemessen wird, daß das Lambda-Signal bei allen Zylindern den gleichen Wert annimmt.
Mit Hilfe der zylinderindividuellen Lambda-Regelung können durch Eingriffe in die Luftmessung auch Luftmengenfehler kompensiert werden, die zwischen den einzelnen Zylindern auftreten, d.h. die Abgase aller Zylinder besitzen die gleiche Sauerstoffkonzentration. Im Vergleich zu üblichen Mengenausgleichsregelungen gemäß dem Stand der Technik können die Abgaswerte der Brennkraftmaschine deutlich verbessert werden. Dies ist insbesondere bei niederen Drehzahlen und großen Einspritzmengen von Vorteil. Schon kleine Abweichungen des Lambda-Werts, d.h. der Sauerstoffkonzentration im Abgas eines Zylinders in Richtung eines fetteren Gemisches, führen zu einem starken Anstieg der Rußemissionen in diesem Zylinder. Diese erhöhte Rußemission wird nicht durch die etwas geringere Rußentstehung in einem Zylinder mit entsprechend magerem Gemisch ausgeglichen. Mit einer zylinderindividuellen Lambda-Regelung kann somit bei gleichem Motormoment eine niedrigere Schwärzungszahl erzielt werden. Alternativ läßt sich bei gleicher Schwärzungszahl das abgegebene Moment erhöhen. Das beruht darauf, daß bei einem System ohne zylinderindividuelle Lambda-Regelung die Kraftstoffmenge und damit das abgegebene Moment so weit erniedrigt werden muß, daß die Rußmenge unterhalb eines bestimmten Wertes liegt.
Insbesondere Brennkraftmaschinen, die mit einem Turbolader, d.h. einem für Verdichter und einer Turbine ausgestattet sind, sind die Anforderungen an die Signalaufbereitung des Lambda-Signals besonders hoch, da die auszuwertende Signalamplitude bei einer Verwendung einer Lambda-Sonde nach der Turbine sehr klein ist.
Bei der Anordnung der Lambda-Sonde stehen zwei Alternativen zur Verfügung. Bei einer ersten Alternative ist die Lambda-Sonde vor der Turbine angeordnet. Dies bietet den Vorteil, daß noch keine Vermischung der zylinderindividuellen Abgasströme durch die Turbine stattgefunden hat. Jedoch werden in diesem Bereich durch das Öffnen der Auslaßventile starke Druckschwingungen angeregt. Diese kompensieren teilweise die durch die zylinderindividuellen Lambda-Unterschiede angeregten Schwingungen auf dem Sondensignal. Dies beruht auf der im folgenden beschriebenen Wirkungsweise. Wird in einem Zylinder eine höhere Einspritzmenge eingespritzt, so sinkt der dazugehörige Restsauerstoffgehalt im Abgas und damit die Ausgangsspannung der Lambda-Sonde. Gleichzeitig ergibt sich aus der stärkeren Verbrennung ein höherer Druck bei der Öffnung des Auslaßventils. Durch eine positive Querkopplung zwischen Druck und Sondensignal erhöht der Druckanstieg das Sensorsignal und wirkt der eigentlichen Sauerstoffänderung entgegen. Dadurch ist die meßbare Signalamplitude deutlich kleiner als anhand der reinen Sauerstoffschwingung erwartet würde. Nachteilig ist ferner, daß eine zusätzliche Sonde benötigt wird.
Bei der zweiten Alternative wird die Lambda-Sonde hinter der Turbine angeordnet. Vorteilhaft hierbei ist, daß die Störamplitude der durch die Verbrennung verursachten Druckschwingungen im Abgasstrang kleiner ist. Nachteilig wirkt sich jedoch die Vermischung der zylinderindividuellen Abgasströme durch die Turbine aus. Dies reduziert auch bei dieser Anordnung der Sonde die Amplitude der zu messenden Sauerstoffschwingungen.
Da sowohl beim Einsatz der Alternative 1 als auch bei der Alternative 2 das auszuwertende Signal eine deutlich kleinere Nutzamplitude aufweist als bei Brennkraftmaschinen ohne Turbolader, ist eine verbesserte Signalaufbereitung zur Störungsunterdrückung, insbesondere bei Brennkraftmaschinen mit Turbolader, von Vorteil.
Als besonders gravierende Störung ist die Heizfrequenz der Lambda-Sonde zu nennen. Deren Störamplitude ist etwa so groß, wie die durch die zylinderindividuellen Lambda-Unterschiede verursachten Schwingungen. Diese Schwingungen können durch eine schnelle Signalvorverarbeitung kompensiert werden.
In Figur 3 ist die Regelabweichungsberechnung 230 detaillierter dargestellt. Bereits in Figur 2 beschriebene Elemente sind in Figur 3 mit entsprechenden Bezugszeichen bezeichnet. Das Ausgangssignal des Sensors 180 gelangt über eine Vorfilter 300 zu einem ersten Filter 310 und einem zweiten Filter 320. Das Ausgangssignal des ersten Filters 310 gelangt zu einer ersten Sollwertermittlung 312 und einer ersten Istwertermittlung 314. Das Ausgangssignal des zweiten Filters 320 gelangt zu einer zweiten Sollwertermittlung 322 und einer zweiten Istwertermittlung 324.
Das Ausgangssignal NWS der ersten Sollwertermittlung 312 gelangt mit positiven Vorzeichen und das Ausgangssignal NWI der ersten Istwertermittlung 314 mit negativen Vorzeichen zu einem Verknüpfungspunkt 316. Im folgenden Verknüpfungspunkt 318 wird das Ausgangssignal des Verknüpfungspunktes 316 mit einem Wichtungsfaktor FNW verknüpft. Die so gewichtete erste Regelabweichung NWL gelangt zu einem Additionspunkt 340 und von dort zum Block 240.
Das Ausgangssignal KWS der zweiten Sollwertermittlung 322 gelangt mit positiven Vorzeichen und das Ausgangssignal KWI der zweiten Istwertermittlung 324 mit negativen Vorzeichen zu einem Verknüpfungspunkt 326. Im folgenden Verknüpfungspunkt 328 wird das Ausgangssignal des Verknüpfungspunktes 326 mit einem Wichtungsfaktor FKW verknüpft. Die so gewichtete zweite Regelabweichung KWL gelangt zu dem Additionspunkt 340
Der Wichtungsfaktor FNW und der Wichtungsfaktor FKW werden von der Wichtungsvorgabe 330 bereitgestellt.
Am Ausgang des Additionspunktes 340 steht die Regelabweichung L zur Verfügung, die zum Regler 240 weitergeleitet wird.
Bei den Verknüpfungspunkten 318 und 328 handelt es sich um eine bevorzugte Ausgestaltung der Erfindung. Alternativ kann auch vorgesehen sein, daß die Faktoren FNW und/oder FKW andersweitig, beispielsweise in den Filtern 310 oder 320, berücksichtigt bzw. nicht berücksichtigt werden.
Bei der dargestellten Ausführungsform einer Brennkraftmaschine mit 4 Zylindern sind lediglich zwei Filter vorgesehen, die Signalanteile mit Nockenwellen- und Kurbelwellenfrequenz ausfiltern. Bei vorteilhaften Ausgestaltungen kann auch vorgesehen sein, daß weitere Frequenzbereiche berücksichtigt werden. Insbesondere kann auch vorgesehen sein, dass Filter vorgesehen ist, das die Frequenzen bis einschließlich der halben Zündfrequenz ausfiltern.
Bei der dargestellten Ausführungsform einer Brennkraftmaschine mit vier Zylindern handelt es sich bei den Filtern 310 und 320 um Bandpaßfilter, deren Mittenfrequenz beim Filter 310 bei der Nockenwellenfrequenz und beim Filter 320, bei der Kurbelwellenfrequenz liegt.
Bei anderen Zylinderzahlen sind gegebenenfalls andere Bandpässe vorzusehen. So sind beispielsweise bei einer Brennkraftmaschine mit vier oder fünf Zylindern ein Bandpaß mit der Nockenwellenfrequenz und ein Bandpaß mit der doppelten Nockenwellenfrequenz, die der Kurbelwellenfrequenz entspricht vorzusehen.
Bei einer Brennkraftmaschine mit 2*k Zylindern, wobei k eine natürliche Zahl ist, sind k Bandpässe vorzusehen, den Mittenfrequenzen bei einem ganzzahligen Vielfachen der Nockenwellenfrequenz liegen.
Das Ausgangssignal des Sensors 180 gelangt über den Vorfilter 300 zu den Bandpässen 310 und 320. Dieser Vorfilter 300 ist derart ausgebildet, dass er unerwünschte Störungen ausfiltert. Vorzugsweise ist der Vorfilter 300 derart ausgebildet, dass er Schwingungen des Signals, die durch die Sondenheizung verursacht werden, nicht durchlässt.
Mittels der Bandpässe 310 und 320 wird das Ausgangssignal des Sensors 180 in Spektralanteile getrennt. Für jeden Spektralanteil ermitteln die ersten, zweiten und dritten Istwertermittlung und die ersten, zweiten und dritten Sollwertermittlung frequenzspezifische Soll- und Istwerte. Die Berechnung der Soll- und Istwerte erfolgt für die einzelnen Spektralanteile vorzugsweise unterschiedlich.
Mittels der Bandpässe 310 und 320 wird das Sondensignal für die einzelnen Frequenzen getrennt. Für jede Frequenz berechnet die erste Istwertermittlung 314 und die zweite Istwertermittlung 324 einen frequenzspezifischen Istwert. Entsprechend kann vorgesehen sein, daß für jede Frequenz die erste Sollwertvorgabe 312 und die zweite Sollwertvorgabe 320 einen frequenzspezifischen Sollwert berechnet. In den Verknüpfungspunkten 316 und 326 wird dann die frequenzspezifische Regelabweichung ermittelt.
Besonders vorteilhaft ist, wenn diese frequenzspezifischen Regelabweichungen mittels frequenzspezifischen Wichtungsfaktoren NW und FKW frequenzspezifisch wichtbar sind. Besonders vorteilhaft ist es, wenn die Wichtungsfaktoren FNW und FKW so gewählt werden, daß die Regelkreisverstärkung für alle Frequenzen gleich eingestellt wird. Dadurch kann eine frequenzspezifische Anpassung der Reglerparameter erzielt werden.
Die so gewichteten bzw. nicht gewichteten Regelabweichungen NWL und KWL werden im Verknüpfungspunkt 340 addiert und dem Regler zugeführt. Der Regler entspricht dem in Figur 1 dargestellten Regler 240.
Besonders vorteilhaft bei dieser Vorgehensweise ist, daß die Regelbarkeit auch bei großen Unterschieden in der Phasenlage gegeben ist. Durch die frequenzspezifische Bildung der Regelabweichung ergibt sich eine erhöhte Robustheit des Reglers gegenüber Änderungen des Regelstreckenverhaltens, z.B. durch Veränderung im Bereich des Luftsystems, insbesondere im Bereich der Einlassventile, Fertigungstoleranzen oder Verschleiß.
Alternativ zur Auswertung des Lambda-Signals kann auch ein Drucksensor verwendet werden, der den Druck vor bzw. hinter der Turbine auswertet.

Claims (10)

1. Verfahren zur Steuerung einer Brennkraftmaschine, bei dem jedem Zylinder der Brennkraftmaschine eine Regelabweichung und ein Regler zugeordnet ist, wobei jeder Regler ausgehend von der zugeordneten Regelabweichung ein zylinderspezifisches Ansteuersignal vorgibt, dadurch gekennzeichnet, daß ausgehend von einem Signal eines im Abgastrakt angeordneten Sensors zylinderspezifische Istwerte ermittelt und mit einem Sollwert verglichen werden, und dass ausgehend von dem Vergleich Ansteuersignale zur zylinderindividuellen Steuerung der Kraftstoff- und/oder Luftmenge vorgebbar sind.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Signal des im Abgastrakt angeordneten Sensors mit wenigstens zwei Filtermitteln mit unterschiedlichen Frequenzen filterbar ist, wobei ausgehend von dem gefilterten Signal wenigstens zwei frequenzspezifische Istwerte, ein Sollwert und frequenzspezifische Regelabweichungen bestimmbar sind.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß zur Bereitstellung der frequenzspezifischen Größen das Ausgangssignal des im Abgastrakt angeordneten Sensors mittels wenigstens zweier Bandpässe mit einstellbaren Mittenfrequenzen filterbar ist.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Mittenfrequenzen bei ganzzahligen Vielfachen der Nockenwellenfrequenz liegen.
5. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß für jede Frequenz die Istwerte und/oder die Sollwerte unterschiedlich vorgebbar sind.
6. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß für jede Frequenz die Regelabweichungen unterschiedlich wichtbar sind.
7. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der im Abgastrakt angeordneten Sensors ein Signal, das die Sauerstoffkonzentration im Abgas charakterisiert, oder ein Signal, das den Druck im Abgas charakterisiert, liefert.
8. Vorrichtung zur Steuerung einer Brennkraftmaschine, bei dem jedem Zylinder der Brennkraftmaschine eine Regelabweichung und ein Regler zugeordnet ist, wobei jeder Regler ausgehend von der zugeordneten Regelabweichung ein zylinderspezifisches Ansteuersignal vorgibt, dadurch gekennzeichnet, daß Mittel vorgesehen sind, die ausgehend von einem Signal eines im Abgastrakt angeordneten Sensors zylinderspezifische Istwerte ermitteln und mit einem Sollwert vergleichen, und die ausgehend von dem Vergleich Ansteuersignale zur zylinderindividuellen Steuerung der Kraftstoff- und/oder Luftmenge vorgeben.
9. Computerprogramm mit Programmcode-Mitteln, um alle Schritte von jedem beliebigen der Ansprüche 1 bis 11 durchzuführen, wenn das Programm auf einem Computer, insbesondere einem Steuergerät für eine Brennkraftmaschine, ausgeführt wird.
10. Computerprogrammprodukt mit Programmcode-Mitteln, die auf einem computerlesbaren Datenträger gespeichert sind, um das Verfahren nach jedem beliebigen der Ansprüche 1 bis 11 durchzuführen, wenn das Programmprodukt auf einem Computer, insbesondere einem Steuergerät für eine Brennkraftmaschine, ausgeführt wird.
EP01123016A 2000-12-16 2001-09-26 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine Expired - Lifetime EP1215388B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10062895 2000-12-16
DE10062895A DE10062895A1 (de) 2000-12-16 2000-12-16 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Publications (3)

Publication Number Publication Date
EP1215388A2 true EP1215388A2 (de) 2002-06-19
EP1215388A3 EP1215388A3 (de) 2003-05-28
EP1215388B1 EP1215388B1 (de) 2005-08-17

Family

ID=7667521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01123016A Expired - Lifetime EP1215388B1 (de) 2000-12-16 2001-09-26 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Country Status (4)

Country Link
US (1) US6675787B2 (de)
EP (1) EP1215388B1 (de)
JP (1) JP2002213284A (de)
DE (2) DE10062895A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7203591B2 (en) 2004-06-25 2007-04-10 Robert Bosch Gmbh Method for controlling an internal combustion engine
FR2892464A1 (fr) * 2005-10-24 2007-04-27 Bosch Gmbh Robert Procede et dispositif de commande d'un moteur a combustion interne
WO2009124327A1 (de) * 2008-04-07 2009-10-15 Ge Jenbacher Gmbh & Co Ohg Brennkraftmaschine
DE102008042633A1 (de) 2008-10-06 2010-04-08 Robert Bosch Gmbh Verfahren zur Überwachung eines Kraftstoff-Luftverhältnisses in Zylindern eines Dieselmotors
DE102007030562B4 (de) 2007-06-30 2018-03-15 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7143500B2 (en) 2001-06-25 2006-12-05 Micron Technology, Inc. Method to prevent damage to probe card
EP1422407B1 (de) * 2001-08-29 2012-02-22 Niigata Power Systems Co., Ltd. Motor, vorrichtung und verfahren zur steuerung der motorabgastemperatur
DE10206906C1 (de) * 2002-02-19 2003-11-06 Siemens Ag Verfahren zur Steuerung einer durch Pienoinjektor eingespritzten Kraftstoffmenge
DE10234091A1 (de) * 2002-07-26 2004-02-05 Robert Bosch Gmbh Verfahren zur Überwachung von wenigstens zwei elektromagnetischen Ventilen einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
JP4205030B2 (ja) * 2003-10-06 2009-01-07 本田技研工業株式会社 内燃機関の空燃比制御装置
DE10358108A1 (de) * 2003-12-12 2005-07-14 Daimlerchrysler Ag Verfahren und Vorrichtung zur zylinderindividuellen Bestimmung und Regelung der Kraftstoffeinspritzmenge
DE102004026176B3 (de) * 2004-05-28 2005-08-25 Siemens Ag Verfahren zum Erfassen eines zylinderindividuellen Luft/Kraftstoff-Verhältnisses bei einer Brennkraftmaschine
DE102004046083B4 (de) * 2004-09-23 2016-03-17 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US7089922B2 (en) * 2004-12-23 2006-08-15 Cummins, Incorporated Apparatus, system, and method for minimizing NOx in exhaust gasses
DE102007051553A1 (de) 2007-10-29 2009-04-30 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102008001670B4 (de) * 2008-05-08 2022-03-31 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102009045723A1 (de) 2009-10-15 2011-04-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP5263327B2 (ja) * 2011-04-05 2013-08-14 トヨタ自動車株式会社 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
DE102020107132A1 (de) 2020-03-16 2021-09-16 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur thermodynamischen Optimierung mittels Nutzung von zylinderindividuellen Einspritzmustern in Kraftfahrzeugen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19527218A1 (de) 1994-12-23 1996-06-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929746A1 (de) * 1989-09-07 1991-03-14 Bosch Gmbh Robert Verfahren und einrichtung zum steuern und regeln einer selbstzuendenden brennkraftmaschine
JP3315724B2 (ja) * 1992-08-07 2002-08-19 トヨタ自動車株式会社 失火検出装置
JP3162553B2 (ja) * 1993-09-13 2001-05-08 本田技研工業株式会社 内燃機関の空燃比フィードバック制御装置
JP3683357B2 (ja) * 1996-08-08 2005-08-17 本田技研工業株式会社 内燃機関の気筒別空燃比推定装置
DE19734072C2 (de) * 1997-08-06 2001-12-13 Iq Mobil Electronics Gmbh Lambda-Regelung für Einspritzanlagen mit adaptivem Filter
DE19733958A1 (de) * 1997-08-06 1999-02-11 Bosch Gmbh Robert Verfahren und Vorrichtung zur Korrektur von Toleranzen eines Geberrades
DE19846393A1 (de) * 1998-10-08 2000-04-13 Bayerische Motoren Werke Ag Zylinderselektive Regelung des Luft-Kraftstoff-Verhältnisses
DE19903721C1 (de) * 1999-01-30 2000-07-13 Daimler Chrysler Ag Betriebsverfahren für eine Brennkraftmaschine mit Lambdawertregelung und Brennkraftmaschine
US6382198B1 (en) * 2000-02-04 2002-05-07 Delphi Technologies, Inc. Individual cylinder air/fuel ratio control based on a single exhaust gas sensor
US6314952B1 (en) * 2000-03-23 2001-11-13 General Motors Corporation Individual cylinder fuel control method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19527218A1 (de) 1994-12-23 1996-06-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7203591B2 (en) 2004-06-25 2007-04-10 Robert Bosch Gmbh Method for controlling an internal combustion engine
DE102004030759B4 (de) * 2004-06-25 2015-12-17 Robert Bosch Gmbh Verfahren zur Steuerung einer Brennkraftmaschine
FR2892464A1 (fr) * 2005-10-24 2007-04-27 Bosch Gmbh Robert Procede et dispositif de commande d'un moteur a combustion interne
DE102007030562B4 (de) 2007-06-30 2018-03-15 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
WO2009124327A1 (de) * 2008-04-07 2009-10-15 Ge Jenbacher Gmbh & Co Ohg Brennkraftmaschine
DE102008042633A1 (de) 2008-10-06 2010-04-08 Robert Bosch Gmbh Verfahren zur Überwachung eines Kraftstoff-Luftverhältnisses in Zylindern eines Dieselmotors

Also Published As

Publication number Publication date
US6675787B2 (en) 2004-01-13
DE50107109D1 (de) 2005-09-22
DE10062895A1 (de) 2002-06-27
US20020096157A1 (en) 2002-07-25
JP2002213284A (ja) 2002-07-31
EP1215388B1 (de) 2005-08-17
EP1215388A3 (de) 2003-05-28

Similar Documents

Publication Publication Date Title
EP1215388B1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102008000315B4 (de) Abnormalitätsdiagnosesystem und Steuersystem für eine Brennkraftmaschine
DE69822375T2 (de) Kraftstoffeinspritzregelsystem für einen Dieselmotor
DE10312387B4 (de) Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine
DE102004004490A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit mindestens zwei Abgasturboladern
DE4207541B4 (de) System zur Steuerung einer Brennkraftmaschine
DE102006020675A1 (de) Verfahren zur Lambda- und Momentenregelung einer Verbrennungskraftmaschine sowie Programmalgorithmus
DE3721911C2 (de) Ansaugvolumenfühleinrichtung für eine Brennkraftmaschine
WO2010009964A1 (de) Verfahren und vorrichtung zur dynamiküberwachung einer breitband-lambdasonde
DE102012204112B4 (de) Maschinensteuerungssystem mit stellgliedsteuerung
DE102004004291B3 (de) Verfahren zum Anpassen des Erfassens eines Messsignals einer Abgassonde
DE112007000409B4 (de) Verfahren zum Steuern von Turbinenauslasstemperaturen in einem Dieselmotor
DE3311029A1 (de) Verfahren und vorrichtung zur regelung der leerlaufdrehzahl einer brennkraftmaschine
WO1989012737A1 (en) A method and device for lambda control with several probes
DE102006000973A1 (de) Verfahren zur zylinderindividuellen Restgasbestimmung bei einem Verbrennungsmotor
EP1398483A2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine mit verminderterter Schadstoffemission
DE10256241A1 (de) Verfahren und Vorrichtung zur Steuerung einer eine Abgasrückführung aufweisenden Brennkraftmaschine
DE19818836B4 (de) Kraftstoffeinspritz-Steuervorrichtung für einen Zylindereinspritz-Verbrennungsmotor
DE102009032659A1 (de) Kombinierte Rauchbegrenzung
DE10358988B3 (de) Vorrichtung zum Steuern einer Brennkraftmaschine
DE102011004068B3 (de) Verfahren und Steuervorrichtung zum Gleichstellen mehrerer Zylinder einer Brennkraftmaschine
DE10133555A1 (de) Verfahren zum zylinderindividuellen Abgleich der Einspritzmenge bei Brennkraftmaschinen
DE10048926B4 (de) Verfahren, Computerprogramm und Steuer- und/oder Regeleinrichtung zum Betreiben einer Brennkraftmaschine
DE102008018013B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102012204061B4 (de) Maschinensteuerungssystem für Stellgliedsteuerung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031128

AKX Designation fees paid

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 20040406

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50107109

Country of ref document: DE

Date of ref document: 20050922

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050926

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051205

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060518

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051017

REG Reference to a national code

Ref country code: FR

Ref legal event code: D3

Effective date: 20121226

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20121226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130920

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130920

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130924

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131121

Year of fee payment: 13

Ref country code: FR

Payment date: 20130918

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107109

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140927

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107109

Country of ref document: DE

Effective date: 20150401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140926

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930