EP0797730A1 - Procede de commande du dosage de carburant dans des moteurs a combustion interne - Google Patents

Procede de commande du dosage de carburant dans des moteurs a combustion interne

Info

Publication number
EP0797730A1
EP0797730A1 EP95936442A EP95936442A EP0797730A1 EP 0797730 A1 EP0797730 A1 EP 0797730A1 EP 95936442 A EP95936442 A EP 95936442A EP 95936442 A EP95936442 A EP 95936442A EP 0797730 A1 EP0797730 A1 EP 0797730A1
Authority
EP
European Patent Office
Prior art keywords
signal
intake tract
wall
heat flow
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95936442A
Other languages
German (de)
English (en)
Other versions
EP0797730B1 (fr
Inventor
Axel Stuber
Lutz Reuschenbach
Hans Veil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0797730A1 publication Critical patent/EP0797730A1/fr
Application granted granted Critical
Publication of EP0797730B1 publication Critical patent/EP0797730B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting

Definitions

  • the invention is based on a method for influencing the fuel metering in an internal combustion engine according to the preamble of claim 1.
  • An electronic control system for metering fuel in an internal combustion engine is known from DE 41 15 211.
  • a basic injection quantity signal is linked to a transition compensation signal, which brings about an adjustment of the metered fuel quantity in the event of acceleration and deceleration.
  • a wall film quantity signal and a number of correction signals are taken into account.
  • the invention has for its object to further improve the known system.
  • a desired air / fuel ratio should be adhered to as precisely as possible in as many operating states of the internal combustion engine as possible.
  • the invention has the advantage that it enables optimum fuel metering in dynamic operation of the internal combustion engine.
  • FIG. 1 shows a schematic illustration of an internal combustion engine with essential components for controlling the fuel metering
  • FIG. 2 shows a block diagram to illustrate how fuel metering is influenced by the method according to the invention
  • Figure 3 shows a variant of the block diagram shown in Figure 2 and
  • Figure 4 is a flow diagram of the method according to the invention.
  • FIG. 1 shows a schematic illustration of an internal combustion engine 100 and essential components for controlling or regulating the fuel metering.
  • An air / fuel mixture is supplied to the internal combustion engine 100 via an intake tract 102 and the exhaust gases are discharged into an exhaust gas duct 104.
  • an air flow meter or air mass meter 106 for example a hot film air mass meter, a temperature sensor 108 for detecting the intake air temperature, a throttle valve 110 with a sensor 111 for detecting the opening angle the throttle valve 110, a pressure sensor 112 for detecting the pressure in the intake tract 102 and at least one injection nozzle 114.
  • the air flow meter or air mass meter 106 and the pressure sensor 112 are alternatively available.
  • An oxygen probe 116 is attached in the exhaust gas duct 104.
  • a speed sensor 118 and a sensor 119 for detecting the temperature of the internal combustion engine are attached to the internal combustion engine 100.
  • the internal combustion engine 100 has to ignite the air / fuel mixture in the
  • Cylinders for example four spark plugs 120. Furthermore, a sensor 122 for detecting the vehicle speed and an electric motor 124 are shown in FIG. 1, which drives a fan arranged in the engine compartment.
  • the output signals of the sensors described are transmitted to a central control device 126.
  • these are the following signals: a signal m from the air flow meter or air mass meter 106, a signal TAn from the temperature sensor 108 for detecting the intake air temperature tur, a signal ⁇ of the sensor 111 for detecting the opening angle of the throttle valve 110, a signal PS of the pressure sensor 112 downstream of the throttle valve 110, a signal ⁇ of the oxygen sensor 116, a signal n of the speed sensor 118, a signal TMot of the sensor 119 for detecting the temperature of the internal combustion engine 100 and a signal v from the sensor 122 for detecting the vehicle speed.
  • the control unit 126 evaluates the sensor signals and controls the injection nozzle or the injection nozzles 114 and the spark plugs 120.
  • the control unit 126 also controls the electric motor 124.
  • the device for carrying out the method according to the invention is generally integrated in control unit 126.
  • the influence of the wall temperature of the intake tract 102 on the actually metered amount of fuel can be taken into account when metering the fuel.
  • a sensor for detecting the wall temperature downstream of the injection valve or the injection valves 114 is not required in the method according to the invention. Instead, depending on the required accuracy, one or more factors influencing the wall temperature are taken into account.
  • a correction signal fTW or kTW is formed.
  • the correction signal fTW or kTW influences a transition compensation signal UK, which in turn influences a basic injection signal tp.
  • the transition compensation signal UK has the property that it increases the metered amount of fuel in the event of acceleration and decreases the metered amount of fuel in the case of deceleration.
  • the correction signal fTW or kTW can be determined according to the method according to the invention either directly from the corresponding influencing variables or via an intermediate variable TW which represents the wall temperature of the intake tract 102. tated and which is determined from the influencing variables.
  • the influencing variables are a heat flow QK caused by the fuel evaporation, a heat flow QAn between the air flowing through the intake tract 102 and the wall of the intake tract 102, a heat flow QMot between the engine block and the wall of the intake tract 102 and a heat flow QU between the ambient air flowing past the outer wall of the intake tract 102 and the wall of the intake tract 102.
  • the relationship between the intermediate variable TW for the wall temperature of the intake tract 102 and the influencing variables QK, QAn, QMot and QU can be represented by the following differential equation:
  • cW represents the specific heat and mW the mass of the wall of the intake tract 102.
  • the influencing variables QK, QAn, QMot and QU are determined from operating parameters and material parameters.
  • the heat flow QK caused by the fuel evaporation is determined according to the following equation:
  • QKE represents the amount of fuel metered per time. This variable is determined by control unit 126 and is therefore known.
  • hK represents the specific heat of vaporization of the fuel and is a material constant that is known.
  • x represents the proportion of the fuel which is deposited on the wall of the intake tract 102 and which subsequently cools the wall of the intake tract 102 by evaporation. The variable x is stored in a map as a function of the speed n and the pressure PS in the intake tract 102.
  • the heat flow QAn between the air flowing through the intake tract 102 and the wall of the intake tract 102 is determined according to the following equation:
  • CtN (m) represents the heat transfer coefficient between the air flowing past and the wall of the intake tract 102 as a function of the air mass flow m.
  • the heat flow QMot between the engine block and the wall of the intake tract 102 is determined using the following equation:
  • otMot denotes the heat transfer coefficient between the engine block and the wall of the intake tract 102 and is a material constant.
  • the heat flow QU between the ambient air flowing past the outside of the intake tract 102 and the wall of the intake tract 102 depends on the air mass flow of the passing ambient air and the temperature difference between the ambient air and the wall of the intake tract 102.
  • the air mass flow can be determined on the basis of the signal v for the vehicle speed and optionally on the basis of a signal for the operating state of the electric motor 124 which drives the fan in the engine compartment.
  • the temperature of the ambient air can be determined with an ambient temperature sensor (not shown in FIG. 1) or with the sensor 108 for the intake air temperature.
  • TWNeu TWAlt + (dt / (cW * mW)) * (QK + QAn + QMot + QU)
  • a start value TWStart for the wall temperature is initially specified and then the current value TWNew is determined iteratively from the previous value TWAlt. Details of this are shown in the flow diagram of FIG. 4 and described in the associated text.
  • FIG. 2 shows a block diagram to illustrate how the fuel metering is influenced by the method according to the invention.
  • a load signal L and a signal n for the speed of rotation of the fuel machine 100 are fed into one input of a block 200.
  • the load signal L can be determined in a known manner on the basis of one of the signals m, PS or ⁇ .
  • a basic injection signal tp is provided at the output of block 200. The determination of the basic injection signal tp from the signals L and n for load and speed is known from the prior art.
  • the output of block 200 is connected to a first input of a node 202.
  • the second input of the node 202 is connected to the output of a node 204.
  • a first input of node 204 is connected to the output of a block 206 for transition compensation.
  • the second input of node 204 is connected to the output of a block 208 which carries out the method according to the invention.
  • a series of input signals are typically fed into block 208. Which signals are involved depends on which of the influencing variables QK, QAn, QMot and QU are to be taken into account. Adjusting the double arrow pointing to block 208 stands for all input signals.
  • the signals L and n for the load and the speed of the internal combustion engine 100 are present at the two inputs of the block 206 for the transition compensation. From these signals, block 206 determines a transition compensation signal UK for influencing the basic injection signal tp and provides the signal UK at its output.
  • the signal UK is linked in node 204 with a correction signal fTW, which is output by block 208.
  • the signal generated by the link in node 204 is linked in node 202 with the basic injection signal tp to form an injection signal te.
  • the injection signal te is fed to a block 210, in which further corrections are possibly made, for example depending on the signal TMot for the temperature of the internal combustion engine 100 or on the signal ⁇ of the oxygen sensor 116, and which in the end is a signal for actuating the injection nozzle or of the injection nozzles 114.
  • the method according to the invention can be used to generate a correction signal fTW, which influences the signal UK and thus also the basic injection signal tp, in other words, the correction signal fTW ultimately influences the fuel metering.
  • the determination of the UK signal by means of block 206 is already known. A corresponding method is described for example in DE 41 15 211.
  • FIG. 2 relates to one of several possibilities of how the correction signal fTW generated with the method according to the invention can influence the fuel metering.
  • An alternative possibility is shown in FIG. 3.
  • Figure 3 shows a variant of the block diagram shown in Figure 2.
  • FIG. 3 shows the influencing of the UK signal by a correction signal kTW generated by the method according to the invention.
  • the signal UK is further processed analogously to FIG. 2 and is not shown in detail in FIG. 3.
  • the link point 204 shown in FIG. 2 is omitted.
  • blocks 300 and 302 and a link point 304 connected between these blocks replace block 206 in FIG. 2.
  • Block 300 determines from signals L and n for the load and for the speed of the internal combustion engine 100, which are fed into its two inputs, a signal for the change in the fuel wall film in the intake tract 102.
  • the signal generated in this way is linked at node 304 with a correction signal kTW which is generated by block 208 using the method according to the invention.
  • the correction signal kTW ultimately has the same effect on the transition compensation signal UK as the above-described correction signal fTW, that is to say the fuel metering is influenced in the same way in both cases.
  • the correction signals fTW and kTW act on the signal UK in different ways, the correction signals themselves are generally not identical.
  • the signal generated by node 304 is fed into the input of block 302, which generates signal UK using a method known from DE 41 15 211.
  • FIG. 4 shows a flow chart of the method according to the invention.
  • the signal TWAlt is set to the start value TWStart.
  • all input variables required for the method are read in.
  • step 402 is followed by step 404.
  • step 404 determines one or more of the influencing variables QK, QAn, QMot and QU.
  • the equations described above are used for the respective heat flows.
  • step 404 is followed by step 406, in which the signal TWNew for the current wall temperature is determined in accordance with the equation already mentioned above.
  • this equation contains one or more of the influencing variables QK, QAn, QMot and QU, which represent the individual heat flows.
  • Step 406 includes
  • Step 408 in which the signal TWAlt for the previous wall temperature is set to the value TWNew of the current wall temperature.
  • Step 408 is followed by step 410.
  • step 410 the correction signal fTW or kTW for influencing the fuel metering is determined for the current wall temperature from the signal TWNew.
  • the correction signal fTW or kTW is read out from a characteristic curve, for example, as a function of the signal TW.
  • the flow of the flow chart is ended at step 410 and begins again at step 402.

Abstract

Selon un procédé de commande du dosage de carburant dans des moteurs à combustion interne, notamment en régime non établi, un signal de correction (fTW, kTW) est généré pour commander le dosage de carburant. A cet effet, au moins un des signaux suivants est pris en considération: un signal (QK) relatif au flux de chaleur généré par le carburant évaporé dans le conduit d'aspiration (102); un signal (QAn) relatif au flux de chaleur entre l'air qui s'écoule à travers le conduit d'aspiration (102) et la paroi du conduit d'aspiration (102); un signal (QMot) relatif au flux de chaleur entre le bloc-moteur et la paroi du conduit d'aspiration (102); un signal (QU) relatif au flux de chaleur entre l'air qui s'écoule dans la chambre du moteur et la paroi du conduit d'aspiration (102). Un signal (TW) représentant la température de la paroi du conduit d'aspiration (102) peut être déterminé lors de la formation du signal de correction (fTW, kTW).
EP95936442A 1994-12-14 1995-11-15 Procede de commande du dosage de carburant dans des moteurs a combustion interne Expired - Lifetime EP0797730B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4444416 1994-12-14
DE4444416A DE4444416A1 (de) 1994-12-14 1994-12-14 Verfahren zur Beeinflussung der Kraftstoffzumessung bei einer Brennkraftmaschine
PCT/DE1995/001596 WO1996018811A1 (fr) 1994-12-14 1995-11-15 Procede de commande du dosage de carburant dans des moteurs a combustion interne

Publications (2)

Publication Number Publication Date
EP0797730A1 true EP0797730A1 (fr) 1997-10-01
EP0797730B1 EP0797730B1 (fr) 1999-02-03

Family

ID=6535725

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95936442A Expired - Lifetime EP0797730B1 (fr) 1994-12-14 1995-11-15 Procede de commande du dosage de carburant dans des moteurs a combustion interne

Country Status (6)

Country Link
US (1) US6035831A (fr)
EP (1) EP0797730B1 (fr)
JP (1) JP3803375B2 (fr)
KR (1) KR100378457B1 (fr)
DE (2) DE4444416A1 (fr)
WO (1) WO1996018811A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190703A1 (fr) 2012-06-21 2013-12-27 L'oreal Composition cosmétique solide comprenant une huile d'hydrocarbure non volatile, des cires et une teneur élevée en huile de silicone phénylée non volatile

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636451B4 (de) * 1996-09-07 2010-06-10 Robert Bosch Gmbh Einrichtung zum Steuern der einer Brennkraftmaschine zuzuführenden Kraftstoffmenge
EP1312783A1 (fr) * 2001-10-05 2003-05-21 Robert Bosch GmbH Procédé pour faire fonctionner un moteur à combustion interne
DE102006002738A1 (de) * 2006-01-20 2007-08-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP4418480B2 (ja) * 2007-04-24 2010-02-17 株式会社日立製作所 内燃機関の燃料制御装置
US8234038B2 (en) * 2007-11-27 2012-07-31 GM Global Technology Operations LLC Intake air temperature diagnostic system
DE102016203436B4 (de) * 2016-03-02 2017-11-30 Continental Automotive Gmbh Verfahren und Vorrichtung zum Ermitteln eines Einspritzzeitpunkts zum Einspritzen eines Kraftstoffs
US11337632B2 (en) 2020-08-06 2022-05-24 Irhythm Technologies, Inc. Electrical components for physiological monitoring device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454847A (en) * 1980-07-18 1984-06-19 Nippondenso Co., Ltd. Method for controlling the air-fuel ratio in an internal combustion engine
JPS5888435A (ja) * 1981-11-19 1983-05-26 Honda Motor Co Ltd 吸気温度による補正機能を有する内燃エンジンの空燃比補正装置
JPS60192846A (ja) * 1984-03-15 1985-10-01 Nissan Motor Co Ltd 内燃機関の燃料供給装置
JPS61265334A (ja) * 1985-05-17 1986-11-25 Toyota Motor Corp 内燃機関の空燃比制御方法
DE4115211C2 (de) * 1991-05-10 2003-04-30 Bosch Gmbh Robert Verfahren zum Steuern der Kraftstoffzumessung bei einer Brennkraftmaschine
DE4121396A1 (de) * 1991-06-28 1993-01-07 Bosch Gmbh Robert Kraftstoffeinspritzverfahren und -vorrichtung
DE4442679C2 (de) * 1993-11-30 2001-06-07 Honda Motor Co Ltd Kraftstoffeinspritzmengen-Steuersystem für einen Verbrennungsmotor
JPH07208249A (ja) * 1994-01-12 1995-08-08 Honda Motor Co Ltd 内燃エンジンの制御装置
US5427070A (en) * 1994-05-04 1995-06-27 Chrysler Corporation Method of averaging coolant temperature for an internal combustion engine
DE4415994A1 (de) * 1994-05-06 1995-11-09 Bosch Gmbh Robert Steuersystem für eine Brennkraftmaschine
JP3562026B2 (ja) * 1995-05-18 2004-09-08 日産自動車株式会社 エンジンの空燃比制御装置
US5584277A (en) * 1995-09-26 1996-12-17 Chrysler Corporation Fuel delivery system with wall wetting history and transient control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9618811A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190703A1 (fr) 2012-06-21 2013-12-27 L'oreal Composition cosmétique solide comprenant une huile d'hydrocarbure non volatile, des cires et une teneur élevée en huile de silicone phénylée non volatile

Also Published As

Publication number Publication date
KR100378457B1 (ko) 2003-07-18
US6035831A (en) 2000-03-14
JP3803375B2 (ja) 2006-08-02
JPH10510345A (ja) 1998-10-06
DE4444416A1 (de) 1996-06-20
WO1996018811A1 (fr) 1996-06-20
KR980700508A (ko) 1998-03-30
DE59505057D1 (de) 1999-03-18
EP0797730B1 (fr) 1999-02-03

Similar Documents

Publication Publication Date Title
EP1147309B1 (fr) Dispositif pour supprimer le cognement dans un moteur a combustion interne
EP0084037B2 (fr) Dispositif de commande de la pression d'alimentation d'un moteur a combustion suralimente
EP0894958B1 (fr) Dispositif de détection de défaut pour un moteur à combustion interne et procédé d' actionnement d' un moteur à combustion interne
WO2006069853A1 (fr) Procede de fonctionnement d'un moteur a combustion interne
DE4343353C2 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE10145038A1 (de) Verfahren und Vorrichtung zum Betreiben wenigstens eines Laders eines Verbrennungsmotors
DE4330368A1 (de) Verfahren und Vorrichtung zur Steuerung der Antriebsleistung eines Fahrzeugs
WO2002020964A1 (fr) Procede pour actionner un moteur a combustion interne et dispositif correspondant
DE102004004490A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit mindestens zwei Abgasturboladern
DE4404668A1 (de) Verfahren und Vorrichtung zur Steuerung der Leistung einer Brennkraftmaschine
DE4401828B4 (de) Verfahren und Vorrichtung zur Vorhersage eines zukünftigen Lastsignals im Zusammenhang mit der Steuerung einer Brennkraftmaschine
EP1725915B1 (fr) Systeme de commande de processus
DE4344960A1 (de) System zur Regelung der Aufladung einer Brennkraftmaschine
EP0885353B1 (fr) Procede et dispositif de commande ou de regulation de la puissance d'un moteur a combustion interne pouvant etre suralimente
EP1215388A2 (fr) Méthode et système de commande d'un moteur à combustion interne
EP1091106A2 (fr) Méthode d'évaluation de la contre-pression des gaz d'échappement au niveau de la turbine
WO1996018811A1 (fr) Procede de commande du dosage de carburant dans des moteurs a combustion interne
EP0976922B1 (fr) Méthode d'ajustement de couple moteur
WO2011076551A1 (fr) Procédé et dispositif pour réaliser un diagnostic à bord
DE4322270B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19753996A1 (de) Verfahren zum Dämpfen von Ruckelschwingungen oder Lastschlägen bei einer Brennkraftmaschine
DE4220286C2 (de) Verfahren zur Funktionsüberprüfung eines Stellelements in einem Fahrzeug
EP0728922B1 (fr) Régulation de débit de masse d'air avec constante d'intégration adaptée pour moteur à combustion interne turbocompressée
EP1103711B1 (fr) Méthode et dispositif pour la commande du couple d'un moteur diesel
EP0985812B1 (fr) Optimalisation de la quantité d'air frais dans la charge d'un moteur à combustion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19971114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 59505057

Country of ref document: DE

Date of ref document: 19990318

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20081124

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081121

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091128

Year of fee payment: 15

Ref country code: FR

Payment date: 20091202

Year of fee payment: 15

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091116

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140124

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59505057

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602