EP0797730A1 - Fuel dosage control process for internal combustion engines - Google Patents

Fuel dosage control process for internal combustion engines

Info

Publication number
EP0797730A1
EP0797730A1 EP95936442A EP95936442A EP0797730A1 EP 0797730 A1 EP0797730 A1 EP 0797730A1 EP 95936442 A EP95936442 A EP 95936442A EP 95936442 A EP95936442 A EP 95936442A EP 0797730 A1 EP0797730 A1 EP 0797730A1
Authority
EP
European Patent Office
Prior art keywords
signal
intake tract
wall
heat flow
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95936442A
Other languages
German (de)
French (fr)
Other versions
EP0797730B1 (en
Inventor
Axel Stuber
Lutz Reuschenbach
Hans Veil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0797730A1 publication Critical patent/EP0797730A1/en
Application granted granted Critical
Publication of EP0797730B1 publication Critical patent/EP0797730B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting

Definitions

  • the invention is based on a method for influencing the fuel metering in an internal combustion engine according to the preamble of claim 1.
  • An electronic control system for metering fuel in an internal combustion engine is known from DE 41 15 211.
  • a basic injection quantity signal is linked to a transition compensation signal, which brings about an adjustment of the metered fuel quantity in the event of acceleration and deceleration.
  • a wall film quantity signal and a number of correction signals are taken into account.
  • the invention has for its object to further improve the known system.
  • a desired air / fuel ratio should be adhered to as precisely as possible in as many operating states of the internal combustion engine as possible.
  • the invention has the advantage that it enables optimum fuel metering in dynamic operation of the internal combustion engine.
  • FIG. 1 shows a schematic illustration of an internal combustion engine with essential components for controlling the fuel metering
  • FIG. 2 shows a block diagram to illustrate how fuel metering is influenced by the method according to the invention
  • Figure 3 shows a variant of the block diagram shown in Figure 2 and
  • Figure 4 is a flow diagram of the method according to the invention.
  • FIG. 1 shows a schematic illustration of an internal combustion engine 100 and essential components for controlling or regulating the fuel metering.
  • An air / fuel mixture is supplied to the internal combustion engine 100 via an intake tract 102 and the exhaust gases are discharged into an exhaust gas duct 104.
  • an air flow meter or air mass meter 106 for example a hot film air mass meter, a temperature sensor 108 for detecting the intake air temperature, a throttle valve 110 with a sensor 111 for detecting the opening angle the throttle valve 110, a pressure sensor 112 for detecting the pressure in the intake tract 102 and at least one injection nozzle 114.
  • the air flow meter or air mass meter 106 and the pressure sensor 112 are alternatively available.
  • An oxygen probe 116 is attached in the exhaust gas duct 104.
  • a speed sensor 118 and a sensor 119 for detecting the temperature of the internal combustion engine are attached to the internal combustion engine 100.
  • the internal combustion engine 100 has to ignite the air / fuel mixture in the
  • Cylinders for example four spark plugs 120. Furthermore, a sensor 122 for detecting the vehicle speed and an electric motor 124 are shown in FIG. 1, which drives a fan arranged in the engine compartment.
  • the output signals of the sensors described are transmitted to a central control device 126.
  • these are the following signals: a signal m from the air flow meter or air mass meter 106, a signal TAn from the temperature sensor 108 for detecting the intake air temperature tur, a signal ⁇ of the sensor 111 for detecting the opening angle of the throttle valve 110, a signal PS of the pressure sensor 112 downstream of the throttle valve 110, a signal ⁇ of the oxygen sensor 116, a signal n of the speed sensor 118, a signal TMot of the sensor 119 for detecting the temperature of the internal combustion engine 100 and a signal v from the sensor 122 for detecting the vehicle speed.
  • the control unit 126 evaluates the sensor signals and controls the injection nozzle or the injection nozzles 114 and the spark plugs 120.
  • the control unit 126 also controls the electric motor 124.
  • the device for carrying out the method according to the invention is generally integrated in control unit 126.
  • the influence of the wall temperature of the intake tract 102 on the actually metered amount of fuel can be taken into account when metering the fuel.
  • a sensor for detecting the wall temperature downstream of the injection valve or the injection valves 114 is not required in the method according to the invention. Instead, depending on the required accuracy, one or more factors influencing the wall temperature are taken into account.
  • a correction signal fTW or kTW is formed.
  • the correction signal fTW or kTW influences a transition compensation signal UK, which in turn influences a basic injection signal tp.
  • the transition compensation signal UK has the property that it increases the metered amount of fuel in the event of acceleration and decreases the metered amount of fuel in the case of deceleration.
  • the correction signal fTW or kTW can be determined according to the method according to the invention either directly from the corresponding influencing variables or via an intermediate variable TW which represents the wall temperature of the intake tract 102. tated and which is determined from the influencing variables.
  • the influencing variables are a heat flow QK caused by the fuel evaporation, a heat flow QAn between the air flowing through the intake tract 102 and the wall of the intake tract 102, a heat flow QMot between the engine block and the wall of the intake tract 102 and a heat flow QU between the ambient air flowing past the outer wall of the intake tract 102 and the wall of the intake tract 102.
  • the relationship between the intermediate variable TW for the wall temperature of the intake tract 102 and the influencing variables QK, QAn, QMot and QU can be represented by the following differential equation:
  • cW represents the specific heat and mW the mass of the wall of the intake tract 102.
  • the influencing variables QK, QAn, QMot and QU are determined from operating parameters and material parameters.
  • the heat flow QK caused by the fuel evaporation is determined according to the following equation:
  • QKE represents the amount of fuel metered per time. This variable is determined by control unit 126 and is therefore known.
  • hK represents the specific heat of vaporization of the fuel and is a material constant that is known.
  • x represents the proportion of the fuel which is deposited on the wall of the intake tract 102 and which subsequently cools the wall of the intake tract 102 by evaporation. The variable x is stored in a map as a function of the speed n and the pressure PS in the intake tract 102.
  • the heat flow QAn between the air flowing through the intake tract 102 and the wall of the intake tract 102 is determined according to the following equation:
  • CtN (m) represents the heat transfer coefficient between the air flowing past and the wall of the intake tract 102 as a function of the air mass flow m.
  • the heat flow QMot between the engine block and the wall of the intake tract 102 is determined using the following equation:
  • otMot denotes the heat transfer coefficient between the engine block and the wall of the intake tract 102 and is a material constant.
  • the heat flow QU between the ambient air flowing past the outside of the intake tract 102 and the wall of the intake tract 102 depends on the air mass flow of the passing ambient air and the temperature difference between the ambient air and the wall of the intake tract 102.
  • the air mass flow can be determined on the basis of the signal v for the vehicle speed and optionally on the basis of a signal for the operating state of the electric motor 124 which drives the fan in the engine compartment.
  • the temperature of the ambient air can be determined with an ambient temperature sensor (not shown in FIG. 1) or with the sensor 108 for the intake air temperature.
  • TWNeu TWAlt + (dt / (cW * mW)) * (QK + QAn + QMot + QU)
  • a start value TWStart for the wall temperature is initially specified and then the current value TWNew is determined iteratively from the previous value TWAlt. Details of this are shown in the flow diagram of FIG. 4 and described in the associated text.
  • FIG. 2 shows a block diagram to illustrate how the fuel metering is influenced by the method according to the invention.
  • a load signal L and a signal n for the speed of rotation of the fuel machine 100 are fed into one input of a block 200.
  • the load signal L can be determined in a known manner on the basis of one of the signals m, PS or ⁇ .
  • a basic injection signal tp is provided at the output of block 200. The determination of the basic injection signal tp from the signals L and n for load and speed is known from the prior art.
  • the output of block 200 is connected to a first input of a node 202.
  • the second input of the node 202 is connected to the output of a node 204.
  • a first input of node 204 is connected to the output of a block 206 for transition compensation.
  • the second input of node 204 is connected to the output of a block 208 which carries out the method according to the invention.
  • a series of input signals are typically fed into block 208. Which signals are involved depends on which of the influencing variables QK, QAn, QMot and QU are to be taken into account. Adjusting the double arrow pointing to block 208 stands for all input signals.
  • the signals L and n for the load and the speed of the internal combustion engine 100 are present at the two inputs of the block 206 for the transition compensation. From these signals, block 206 determines a transition compensation signal UK for influencing the basic injection signal tp and provides the signal UK at its output.
  • the signal UK is linked in node 204 with a correction signal fTW, which is output by block 208.
  • the signal generated by the link in node 204 is linked in node 202 with the basic injection signal tp to form an injection signal te.
  • the injection signal te is fed to a block 210, in which further corrections are possibly made, for example depending on the signal TMot for the temperature of the internal combustion engine 100 or on the signal ⁇ of the oxygen sensor 116, and which in the end is a signal for actuating the injection nozzle or of the injection nozzles 114.
  • the method according to the invention can be used to generate a correction signal fTW, which influences the signal UK and thus also the basic injection signal tp, in other words, the correction signal fTW ultimately influences the fuel metering.
  • the determination of the UK signal by means of block 206 is already known. A corresponding method is described for example in DE 41 15 211.
  • FIG. 2 relates to one of several possibilities of how the correction signal fTW generated with the method according to the invention can influence the fuel metering.
  • An alternative possibility is shown in FIG. 3.
  • Figure 3 shows a variant of the block diagram shown in Figure 2.
  • FIG. 3 shows the influencing of the UK signal by a correction signal kTW generated by the method according to the invention.
  • the signal UK is further processed analogously to FIG. 2 and is not shown in detail in FIG. 3.
  • the link point 204 shown in FIG. 2 is omitted.
  • blocks 300 and 302 and a link point 304 connected between these blocks replace block 206 in FIG. 2.
  • Block 300 determines from signals L and n for the load and for the speed of the internal combustion engine 100, which are fed into its two inputs, a signal for the change in the fuel wall film in the intake tract 102.
  • the signal generated in this way is linked at node 304 with a correction signal kTW which is generated by block 208 using the method according to the invention.
  • the correction signal kTW ultimately has the same effect on the transition compensation signal UK as the above-described correction signal fTW, that is to say the fuel metering is influenced in the same way in both cases.
  • the correction signals fTW and kTW act on the signal UK in different ways, the correction signals themselves are generally not identical.
  • the signal generated by node 304 is fed into the input of block 302, which generates signal UK using a method known from DE 41 15 211.
  • FIG. 4 shows a flow chart of the method according to the invention.
  • the signal TWAlt is set to the start value TWStart.
  • all input variables required for the method are read in.
  • step 402 is followed by step 404.
  • step 404 determines one or more of the influencing variables QK, QAn, QMot and QU.
  • the equations described above are used for the respective heat flows.
  • step 404 is followed by step 406, in which the signal TWNew for the current wall temperature is determined in accordance with the equation already mentioned above.
  • this equation contains one or more of the influencing variables QK, QAn, QMot and QU, which represent the individual heat flows.
  • Step 406 includes
  • Step 408 in which the signal TWAlt for the previous wall temperature is set to the value TWNew of the current wall temperature.
  • Step 408 is followed by step 410.
  • step 410 the correction signal fTW or kTW for influencing the fuel metering is determined for the current wall temperature from the signal TWNew.
  • the correction signal fTW or kTW is read out from a characteristic curve, for example, as a function of the signal TW.
  • the flow of the flow chart is ended at step 410 and begins again at step 402.

Abstract

In a fuel dosage control process for internal combustion engines, in particular in an unsteady mode of operation, a correction signal (fTW, kTW) is generated to control fuel dosage. For that purpose, at least one of the following signals is taken into account: a signal (QK) related to the heat flow caused by fuel evaporation in the suction pipe (102); a signal (QAn) related to the heat flow between the air that flows through the suction pipe (102) and the wall of the suction pipe (102); a signal (QMot) related to the heat flow between the engine block and the wall of the suction pipe (102); a signal (QU) related to the heat flow between the air flowing through the engine chamber and the wall of the suction pipe (102). A signal (TW) that represents the temperature of the wall of the suction pipe (102) may be determined when forming the correction signal (fTW, kTW).

Description

9 9
- 1- 1
Verfahren zur Beeinflussung der Kraftstoffzumessung bei ei¬ ner BrennkraftmaschineMethod for influencing the fuel metering in an internal combustion engine
Stand der TechnikState of the art
Die Erfindung geht aus von einem Verfahren zur Beeinflussung der Kraftstoffzumessung bei einer Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1.The invention is based on a method for influencing the fuel metering in an internal combustion engine according to the preamble of claim 1.
Aus der DE 41 15 211 ist ein elektronisches Steuersystem für die Kraftstoffzumessung bei einer Brennkraftmaschine be¬ kannt. Beim bekannten System wird ein Grundeinspritzmengen- signal mit einem Übergangskompensationssignal verknüpft, das eine Anpassung der zugemessenen KraftStoffmenge im Beschleu- nigungs- und Verzögerungsfall bewirkt. Bei der Ermittlung des Übergangskompensationssignals wird u.a. ein Wandfilmmen- gensignal sowie eine Reihe von Korrektursignalen berücksich- tigt.An electronic control system for metering fuel in an internal combustion engine is known from DE 41 15 211. In the known system, a basic injection quantity signal is linked to a transition compensation signal, which brings about an adjustment of the metered fuel quantity in the event of acceleration and deceleration. When determining the transition compensation signal, a wall film quantity signal and a number of correction signals are taken into account.
Der Erfindung liegt die Aufgabe zugrunde, das bekannte System weiter zu verbessern. Insbesondere soll ein gewünsch¬ tes Luft/Kraftstoff-Verhältnis in möglichst vielen Betriebs- zuständen der Brennkraftmaschine möglichst genau eingehalten werden. Vorteile der ErfindungThe invention has for its object to further improve the known system. In particular, a desired air / fuel ratio should be adhered to as precisely as possible in as many operating states of the internal combustion engine as possible. Advantages of the invention
Die Erfindung hat den Vorteil, daß sie eine optimale Kraft¬ stoffzumessung im dynamischen Betrieb der Brennkraftmaschine ermöglicht.The invention has the advantage that it enables optimum fuel metering in dynamic operation of the internal combustion engine.
Dies wird durch Berücksichtigung eines oder mehrerer Signale erreicht, die den Wärmestrom zum Ansaugtrakt hin bzw. vom Ansaugtrakt weg beschreiben.This is achieved by considering one or more signals that describe the heat flow to the intake tract or away from the intake tract.
Bei bisherigem Verfahren muß bei der Parametereinstellung für die Kraftstoffzumessung ein Kompromiß zwischen verschie¬ denen Betriebszuständen gefunden werden, z.B. Umgebungstem¬ peratur hoch/niedrig oder hohe Fahrzeuggeschwindig- keit/mittlere Fahrzeuggeschwindigkeit/Stand. Durch Berück¬ sichtigung dieser Einflüsse auf das Wandfilmverhalten kann für diese Zustände ein optimales Luft/Kraftstoffgemisch im Instationärbetrieb erreicht werden.In the previous method, a compromise between different operating states must be found when setting parameters for the fuel metering, e.g. Ambient temperature high / low or high vehicle speed / medium vehicle speed / stand. By taking these influences on the wall film behavior into account, an optimal air / fuel mixture can be achieved in transient operation for these conditions.
Zeichnungdrawing
Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsbeispiele erläutert.The invention is explained below with reference to the embodiments shown in the drawing.
Es zeigenShow it
Figur 1 eine schematische Darstellung einer Brennkraftma¬ schine mit wesentlichen Komponenten zur Steuerung der Kraft¬ stoffzumessung,FIG. 1 shows a schematic illustration of an internal combustion engine with essential components for controlling the fuel metering,
Figur 2 ein Blockschaltbild zur Verdeutlichung, wie die Kraftstoffzumessung mit dem erfindungsgemäßen Verfahren be¬ einflußt wird, Figur 3 eine Variante des in Figur 2 dargestellten Block¬ schaltbilds undFIG. 2 shows a block diagram to illustrate how fuel metering is influenced by the method according to the invention, Figure 3 shows a variant of the block diagram shown in Figure 2 and
Figur 4 ein Flußdiagramm des erfindungsgemäßen Verfahrens.Figure 4 is a flow diagram of the method according to the invention.
Figur 1 zeigt eine schematische Darstellung einer Brenn¬ kraftmaschine 100 und wesentlicher Komponenten zur Steuerung bzw. Regelung der Kraftstoffzumessung. Über einen Ansaug¬ trakt 102 wird der Brennkraftmaschine 100 Luft/Kraftstoff-Gemisch zugeführt und die Abgase werden in einen Abgaskanal 104 abgegeben. Im Ansaugtrakt 102 sind - in Stromrichtung der angesaugten Luft gesehen - ein Luftmengen¬ messer oder Luf massenmesser 106, beispielsweise ein Heiß- film-Luftmassenmesser, ein Temperatursensor 108 zur Erfas- sung der Ansauglufttemperatur, eine Drosselklappe 110 mit einem Sensor 111 zur Erfassung des Öffnungswinkels der Dros¬ selklappe 110, ein Drucksensor 112 zur Erfassung des Drucks im Ansaugtrakt 102 und wenigstens eine Einspritzdüse 114 an¬ gebracht. In der Regel sind der Luftmengenmesser oder Luft- massenmesser 106 und der Drucksensor 112 alternativ vorhan¬ den. Im Abgaskanal 104 ist eine Sauerstoffsonde 116 ange¬ bracht. An der Brennkraf maschine 100 sind ein Drehzahlsen¬ sor 118 und ein Sensor 119 zur Erfassung der Temperatur der Brennkraftmaschine angebracht. Die Brennkraf maschine 100 besitzt zur Zündung des Luft/Kraftstoff-Gemisches in denFIG. 1 shows a schematic illustration of an internal combustion engine 100 and essential components for controlling or regulating the fuel metering. An air / fuel mixture is supplied to the internal combustion engine 100 via an intake tract 102 and the exhaust gases are discharged into an exhaust gas duct 104. In the intake tract 102 - seen in the flow direction of the intake air - there is an air flow meter or air mass meter 106, for example a hot film air mass meter, a temperature sensor 108 for detecting the intake air temperature, a throttle valve 110 with a sensor 111 for detecting the opening angle the throttle valve 110, a pressure sensor 112 for detecting the pressure in the intake tract 102 and at least one injection nozzle 114. As a rule, the air flow meter or air mass meter 106 and the pressure sensor 112 are alternatively available. An oxygen probe 116 is attached in the exhaust gas duct 104. A speed sensor 118 and a sensor 119 for detecting the temperature of the internal combustion engine are attached to the internal combustion engine 100. The internal combustion engine 100 has to ignite the air / fuel mixture in the
Zylindern beispielsweise vier Zündkerzen 120. Weiterhin sind in Figur 1 noch ein Sensor 122 zur Erfassung der Fahrzeugge¬ schwindigkeit und ein Elektromotor 124 dargestellt, der ei¬ nen im Motorraum angeordneten Lüfter antreibt.Cylinders, for example four spark plugs 120. Furthermore, a sensor 122 for detecting the vehicle speed and an electric motor 124 are shown in FIG. 1, which drives a fan arranged in the engine compartment.
Die Ausgangssignale der beschriebenen Sensoren werden einem zentralen Steuergerät 126 übermittelt. Im einzelnen handelt es sich dabei um folgende Signale: Ein Signal m des Luftmen¬ genmessers oder Luftmassenmessers 106, ein Signal TAn des Temperatursensors 108 zur Erfassung der Ansauglufttempera- tur, ein Signal α des Sensors 111 zur Erfassung des Öff¬ nungswinkels der Drosselklappe 110, ein Signal PS des Druck¬ sensors 112 stromab der Drosselklappe 110, ein Signal λ des Sauerstoffsensors 116, ein Signal n des Drehzahlsensors 118, ein Signal TMot des Sensors 119 zur Erfassung der Temperatur der Brennkraftmaschine 100 und ein Signal v des Sensors 122 zur Erfassung der Fahrzeuggeschwindigkeit. Das Steuergerät 126 wertet die Sensorsignale aus und steuert die Einspritz¬ düse bzw. die Einspritzdüsen 114 und die Zündkerzen 120 an. Weiterhin steuert das Steuergerät 126 den Elektromotor 124 an.The output signals of the sensors described are transmitted to a central control device 126. Specifically, these are the following signals: a signal m from the air flow meter or air mass meter 106, a signal TAn from the temperature sensor 108 for detecting the intake air temperature tur, a signal α of the sensor 111 for detecting the opening angle of the throttle valve 110, a signal PS of the pressure sensor 112 downstream of the throttle valve 110, a signal λ of the oxygen sensor 116, a signal n of the speed sensor 118, a signal TMot of the sensor 119 for detecting the temperature of the internal combustion engine 100 and a signal v from the sensor 122 for detecting the vehicle speed. The control unit 126 evaluates the sensor signals and controls the injection nozzle or the injection nozzles 114 and the spark plugs 120. The control unit 126 also controls the electric motor 124.
Die Vorrichtung zur Durchführung des erfindungsgemäßen Ver¬ fahrens ist in der Regel im Steuergerät 126 integriert. Mit Hilfe des erfindungsgemäßen Verfahrens kann der Einfluß der Wandtemperatur des Ansaugtrakts 102 auf die tatsächlich zu¬ gemessene Kraftstoffmenge bei der Kraftstoffzumessung be¬ rücksichtigt werden. Ein Sensor zur Erfassung der Wandtempe¬ ratur stromab des Einspritzventils bzw. der Einspritzventile 114 ist beim erfindungsgemäßen Verfahren nicht erforderlich. Statt dessen werden - je nach geforderter Genauigkeit - eine oder mehrere Einflußgrδßen auf die Wandtemperatur berück¬ sichtigt. Ausgehend von diesen Einflußgrδßen wird ein Kor¬ rektursignal fTW bzw. kTW gebildet. Das Korrektursignal fTW bzw. kTW beeinflußt ein Übergangskompensationssignal UK, das seinerseits ein Grundeinspritzsignal tp beeinflußt. Das Übergangskompensationssignal UK hat die Eigenschaft, daß es im Beschleunigungsfall die zugemessene Kraftstoffmenge er¬ höht und im Verzδgerungsfall die zugemessene Kraftstoffmenge erniedrigt.The device for carrying out the method according to the invention is generally integrated in control unit 126. With the aid of the method according to the invention, the influence of the wall temperature of the intake tract 102 on the actually metered amount of fuel can be taken into account when metering the fuel. A sensor for detecting the wall temperature downstream of the injection valve or the injection valves 114 is not required in the method according to the invention. Instead, depending on the required accuracy, one or more factors influencing the wall temperature are taken into account. Based on these influencing variables, a correction signal fTW or kTW is formed. The correction signal fTW or kTW influences a transition compensation signal UK, which in turn influences a basic injection signal tp. The transition compensation signal UK has the property that it increases the metered amount of fuel in the event of acceleration and decreases the metered amount of fuel in the case of deceleration.
Das Korrektursignal fTW bzw. kTW kann gemäß dem erfindungs¬ gemäßen Verfahren entweder direkt aus den entsprechenden Einflußgrδßen ermittelt werden oder über eine Zwischengrδße TW, die die Wandtemperatur des Ansaugtraktes 102 repräsen- tiert und die aus den Einflußgrößen ermittelt wird. Als Ein- flußgrδßen kommen ein durch die Kraftstoffverdampfung verur¬ sachter Wärmestrom QK, ein Wärmestrom QAn zwischen der durch den Ansaugtrakt 102 strömenden Luft und der Wand des Ansaug- traktes 102, ein Wärmestrom QMot zwischen dem Motorblock und der Wand des Ansaugtraktes 102 und ein Wärmestrom QU zwi¬ schen der an der Außenwand des Ansaugtrakts 102 vorbeistrδ- menden Umgebungsluft und der Wand des Ansaugtrakts 102 in Betracht. Der Zusammenhang zwischen der Zwischengrδße TW für die Wandtemperatur des Ansaugtrakts 102 und den Einflußgrδ- ßen QK, QAn, QMot und QU kann durch die folgende Differenti¬ algleichung dargestellt werden:The correction signal fTW or kTW can be determined according to the method according to the invention either directly from the corresponding influencing variables or via an intermediate variable TW which represents the wall temperature of the intake tract 102. tated and which is determined from the influencing variables. The influencing variables are a heat flow QK caused by the fuel evaporation, a heat flow QAn between the air flowing through the intake tract 102 and the wall of the intake tract 102, a heat flow QMot between the engine block and the wall of the intake tract 102 and a heat flow QU between the ambient air flowing past the outer wall of the intake tract 102 and the wall of the intake tract 102. The relationship between the intermediate variable TW for the wall temperature of the intake tract 102 and the influencing variables QK, QAn, QMot and QU can be represented by the following differential equation:
cW * mW * dTW/dt = QK + QAn + QMot + QUcW * mW * dTW / dt = QK + QAn + QMot + QU
Dabei stellt cW die spezifische Wärme und mW die Masse der Wand des Ansaugtraktes 102 dar. Die Einflußgrδßen QK, QAn, QMot und QU werden aus Betriebskenngrδßen und Materialpara¬ metern ermittelt.Here, cW represents the specific heat and mW the mass of the wall of the intake tract 102. The influencing variables QK, QAn, QMot and QU are determined from operating parameters and material parameters.
Der durch die Kraftstoffverdampfung verursachte Wärmestrom QK wird gemäß der folgenden Gleichung ermittelt:The heat flow QK caused by the fuel evaporation is determined according to the following equation:
QK = - qKE * hK * xQK = - qKE * hK * x
Dabei stellt qKE die pro Zeit zugemessene Kraftstoffmenge dar. Diese Größe wird vom Steuergerät 126 festgelegt und ist somit bekannt. hK stellt die spezifische Verdampfungswärme des Kraftstoffs dar und ist eine Materialkonstante, die be- kannt ist. x stellt den Anteil des sich an der Wand des An¬ saugtrakts 102 anlagernden Kraftstoffs dar, der anschließend durch Verdampfung die Wand des Ansaugtrakts 102 kühlt. Die Größe x ist in einem Kennfeld in Abhängigkeit von der Drehzahl n und dem Druck PS im Ansaugtrakt 102 abgelegt. Der Wärmestrom QAn zwischen der durch den Ansaugtrakt 102 strömenden Luft und der Wand des Ansaugtraktes 102 wird ge¬ mäß folgender Gleichung ermittelt:QKE represents the amount of fuel metered per time. This variable is determined by control unit 126 and is therefore known. hK represents the specific heat of vaporization of the fuel and is a material constant that is known. x represents the proportion of the fuel which is deposited on the wall of the intake tract 102 and which subsequently cools the wall of the intake tract 102 by evaporation. The variable x is stored in a map as a function of the speed n and the pressure PS in the intake tract 102. The heat flow QAn between the air flowing through the intake tract 102 and the wall of the intake tract 102 is determined according to the following equation:
QAn = ccN (m) * (TAn - TW)QAn = ccN (m) * (TAn - TW)
Dabei stellt CtN (m) den Wärmeübergangskoeffizienten zwischen der vorbeiströmenden Luf und der Wand des Ansaugtrakts 102 als Funktion des Luftmassenstroms m dar.Here, CtN (m) represents the heat transfer coefficient between the air flowing past and the wall of the intake tract 102 as a function of the air mass flow m.
Der Wärmestrom QMot zwischen dem Motorblock und der Wand des Ansaugtraktes 102 wird nach folgender Gleichung ermittelt:The heat flow QMot between the engine block and the wall of the intake tract 102 is determined using the following equation:
QMot = OtMot * (TMot - TW)QMot = OtMot * (TMot - TW)
otMot bezeichnet den Wärmeübergangskoeffizienten zwischen dem Motorblock und der Wand des Ansaugtraktes 102 und ist eine Materialkonstante.otMot denotes the heat transfer coefficient between the engine block and the wall of the intake tract 102 and is a material constant.
Der Wärmestrom QU zwischen der an der Außenseite des Ansaug¬ trakts 102 vorbeistrδmenden Umgebungsluft und der Wand des Ansaugtrakts 102 hängt vom Luftmassenstrom der vorbeistrδ¬ menden Umgebungsluft und der Temperaturdifferenz zwischen der Umgebungsluft und der Wand des Ansaugtraktes 102 ab. Der Luftmassenstrom kann ausgehend vom Signal v für die Fahr¬ zeuggeschwindigkeit und optional von einem Signal für den Betriebszustand des Elektromotors 124, der den Lüfter im Mo¬ torraum antreibt, ermittelt werden. Die Temperatur der Umge¬ bungsluft kann mit einem in Figur 1 nicht dargestellten Um- gebungstemperatursensor oder mit dem Sensor 108 für die An¬ sauglufttemperatur ermittelt werden.The heat flow QU between the ambient air flowing past the outside of the intake tract 102 and the wall of the intake tract 102 depends on the air mass flow of the passing ambient air and the temperature difference between the ambient air and the wall of the intake tract 102. The air mass flow can be determined on the basis of the signal v for the vehicle speed and optionally on the basis of a signal for the operating state of the electric motor 124 which drives the fan in the engine compartment. The temperature of the ambient air can be determined with an ambient temperature sensor (not shown in FIG. 1) or with the sensor 108 for the intake air temperature.
Die oben angegebene Differentialgleichung kann gelöst wer¬ den, indem man die zeitliche Ableitung der Wandtemperatur des Ansaugtraktes 102 durch einen entsprechenen Differenzen- quotienten ersetzt, das heißt der Ausdruck dTW/dt wird er¬ setzt durch den Ausdruck (TWNeu - TWAlt)/dt. Nach TWNeu um¬ geformt ergibt sich folgende Gleichung:The above-mentioned differential equation can be solved by taking the time derivative of the wall temperature of the intake tract 102 by a corresponding difference. quotients replaced, that is, the expression dTW / dt is replaced by the expression (TWNeu - TWAlt) / dt. The following equation is formed after TWNeu:
TWNeu = TWAlt + (dt/(cW * mW) ) * (QK + QAn + QMot + QU)TWNeu = TWAlt + (dt / (cW * mW)) * (QK + QAn + QMot + QU)
Bei der Ermittlung des jeweils aktuellen Werts TWNeu für die Wandtemperatur wird anfangs ein Startwert TWStart für die Wandtemperatur vorgegeben und dann wird jeweils iterativ der aktuelle Wert TWNeu aus dem vorhergehenden Wert TWAlt ermit¬ telt. Einzelheiten hierzu sind im Flußdiagramm der Figur 4 dargestellt und im dazugehörigen Text beschrieben.When determining the current value TWNew for the wall temperature, a start value TWStart for the wall temperature is initially specified and then the current value TWNew is determined iteratively from the previous value TWAlt. Details of this are shown in the flow diagram of FIG. 4 and described in the associated text.
Figur 2 zeigt ein Blockschaltbild zur Verdeutlichung, wie die Kraftstoffzumessung mit dem erfindungsgemäßen Verfahren beeinflußt wird. In je einen Eingang eines Blocks 200 wird ein Lastsignal L und ein Signal n für die Drehzahl der Brennkrfatmaschine 100 eingespeist. Das Lastsignal L kann auf bekannte Art und Weise ausgehend von einem der Signale m, PS oder α ermittelt werden. Am Ausgang des Blocks 200 wird ein Grundeinspritzsingal tp bereitgestellt. Die Ermitt¬ lung des Grundeinspritzsignals tp aus den Signalen L und n für Last und Drehzahl ist aus dem Stand der Technik bekannt. Der Ausgang des Blocks 200 ist mit einem ersten Eingang ei- nes Verknüpfungspunktes 202 verbunden. Der zweite Eingang des Verknüpfungspunktes 202 ist mit dem Ausgang eines Ver¬ knüpfungspunktes 204 verbunden. Ein erster Eingang des Ver¬ knüpfungspunktes 204 ist mit dem Ausgang eines Blocks 206 zur Übergangskompensation verbunden. Der zweite Eingang des Verknüpfungspunktes 204 ist mit dem Ausgang eines Blocks 208 verbunden, der das erfindungsgemäße Verfahren durchführt. In den Block 208 werden in der Regel eine Reihe von Eingangs- Signalen eingespeist. Um welche Signale es sich dabei im einzelnen handelt, hängt davon ab, welche der Einflußgrδßen QK, QAn, QMot und QU berücksichtigt werden sollen. Stellver- tretend für alle Eingangssignale steht der auf den Block 208 gerichtete Doppelpfeil.Figure 2 shows a block diagram to illustrate how the fuel metering is influenced by the method according to the invention. A load signal L and a signal n for the speed of rotation of the fuel machine 100 are fed into one input of a block 200. The load signal L can be determined in a known manner on the basis of one of the signals m, PS or α. A basic injection signal tp is provided at the output of block 200. The determination of the basic injection signal tp from the signals L and n for load and speed is known from the prior art. The output of block 200 is connected to a first input of a node 202. The second input of the node 202 is connected to the output of a node 204. A first input of node 204 is connected to the output of a block 206 for transition compensation. The second input of node 204 is connected to the output of a block 208 which carries out the method according to the invention. A series of input signals are typically fed into block 208. Which signals are involved depends on which of the influencing variables QK, QAn, QMot and QU are to be taken into account. Adjusting the double arrow pointing to block 208 stands for all input signals.
An den beiden Eingängen des Blocks 206 zur Übergangskompen- sation liegen die Signale L und n für die Last und die Dreh¬ zahl der Brennkraf maschine 100 an. Der Block 206 ermittelt aus diesen Signalen ein Ubergangskompensations-Signal UK zur Beeinflussung des Grundeinspritzsignals tp und stellt das Signal UK an seinem Ausgang bereit. Das Signal UK wird im Verknüpfungspunkt 204 mit einem Korrektursignal fTW ver¬ knüpft, das vom Block 208 ausgegeben wird. Das durch die Verknüpfung im Verknüpfungspunkt 204 erzeugte Signal wird im Verknüpfungspunkt 202 mit dem Grundeinspritzsingal tp zu ei¬ nem Einspritzsignal te verknüpft. Das Einspritzsignal te wird einem Block 210 zugeführt, in dem ggf. weitere Korrek¬ turen vorgenommen werden, beispielsweise abhängig vom Signal TMot für die Temperatur der Brennkraftmaschine 100 oder vom Signal λ des Sauerstoffsensors 116, und der letztendlich ein Signal zur Ansteuerung der Einspritzdüse bzw. der Einspritz- düsen 114 erzeugt.The signals L and n for the load and the speed of the internal combustion engine 100 are present at the two inputs of the block 206 for the transition compensation. From these signals, block 206 determines a transition compensation signal UK for influencing the basic injection signal tp and provides the signal UK at its output. The signal UK is linked in node 204 with a correction signal fTW, which is output by block 208. The signal generated by the link in node 204 is linked in node 202 with the basic injection signal tp to form an injection signal te. The injection signal te is fed to a block 210, in which further corrections are possibly made, for example depending on the signal TMot for the temperature of the internal combustion engine 100 or on the signal λ of the oxygen sensor 116, and which in the end is a signal for actuating the injection nozzle or of the injection nozzles 114.
Wie in Figur 2 abgebildet, kann mit dem erfindungsgemäßen Verfahren ein Korrektursignal fTW erzeugt werden, das das Signal UK und somit auch das Grundeinspritzsignal tp beein- flußt, mit anderen Worten, das Korrektursignal fTW beein¬ flußt letztendlich die Kraf stoffzumessung. Die Ermittlung des Signals UK mittels des Blocks 206 ist bereits bekannt. Ein entsprechendes Verfahren ist beispielsweise in der DE 41 15 211 beschrieben.As shown in FIG. 2, the method according to the invention can be used to generate a correction signal fTW, which influences the signal UK and thus also the basic injection signal tp, in other words, the correction signal fTW ultimately influences the fuel metering. The determination of the UK signal by means of block 206 is already known. A corresponding method is described for example in DE 41 15 211.
Das in Figur 2 dargestellte Blockschaltbild betrifft eine von mehreren Möglichkeiten, wie das mit dem erfindungsgemä¬ ßen Verfahren erzeugte Korrektursignal fTW die Kraftstoffzu¬ messung beeinflussen kann. Eine alternative Möglichkeit ist in Figur 3 dargestellt. Figur 3 zeigt eine Variante des in Figur 2 dargestellten Blockschaltbilds. In Figur 3 ist die Beeinflussung des Signals UK durch ein mit dem erfindungsgemäßen Verfahren erzeugtes Korrektursignal kTW dargestellt. Die Weiterverar¬ beitung des Signals UK erfolgt analog zu Figur 2 und ist in Figur 3 nicht im einzelnen dargestellt. Allerdings entfällt der in Figur 2 dargestellte Verknüpfungspunkt 204. An die Stelle des Blocks 206 aus Figur 2 treten bei Figur 3 die Blöcke 300 und 302 und ein zwischen diese Blöcke geschalte¬ ter Verknüpfungspunkt 304. Der Block 300 ermittelt aus den Signalen L und n für die Last und für die Drehzahl der Brennkraftmaschine 100, die in seine beiden Eingänge einge¬ speist werden, ein Signal für die Änderung des Kraft- Stoff-Wandfilms im Ansaugtrakt 102. Das so erzeugte Signal wird im Verknüpfungspunkt 304 mit einem Korrektursignal kTW verknüpft, das vom Block 208 mittels des erfindungsgemäßen Verfahrens erzeugt wird. Das Korrektursignal kTW hat letztendlich die gleiche Wirkung auf das Übergangskompensa- tions-Signal UK wie das obenbeschriebene Korrektursignal fTW, das heißt, die Kraftstoffzumessung wird in beiden Fäl¬ len in gleicher Weise beeinflußt. Da die Korrektursignale fTW und kTW aber auf verschiedene Arten auf das Signal UK einwirken, sind die Korrektursignale selbst in der Regel nicht identisch.The block diagram shown in FIG. 2 relates to one of several possibilities of how the correction signal fTW generated with the method according to the invention can influence the fuel metering. An alternative possibility is shown in FIG. 3. Figure 3 shows a variant of the block diagram shown in Figure 2. FIG. 3 shows the influencing of the UK signal by a correction signal kTW generated by the method according to the invention. The signal UK is further processed analogously to FIG. 2 and is not shown in detail in FIG. 3. However, the link point 204 shown in FIG. 2 is omitted. In FIG. 3, blocks 300 and 302 and a link point 304 connected between these blocks replace block 206 in FIG. 2. Block 300 determines from signals L and n for the load and for the speed of the internal combustion engine 100, which are fed into its two inputs, a signal for the change in the fuel wall film in the intake tract 102. The signal generated in this way is linked at node 304 with a correction signal kTW which is generated by block 208 using the method according to the invention. The correction signal kTW ultimately has the same effect on the transition compensation signal UK as the above-described correction signal fTW, that is to say the fuel metering is influenced in the same way in both cases. However, since the correction signals fTW and kTW act on the signal UK in different ways, the correction signals themselves are generally not identical.
Das vom Verknüpfungspunkt 304 erzeugte Signal wird in den Eingang des Blocks 302 eingespeist, der nach einem aus der DE 41 15 211 bekannten Verfahren das Signal UK erzeugt.The signal generated by node 304 is fed into the input of block 302, which generates signal UK using a method known from DE 41 15 211.
Figur 4 zeigt ein Flußdiagramm des erfindungsgemäßen Verfah¬ rens. In einem ersten Schritt 400 wird das Signal TWAlt auf den Startwert TWStart gesetzt. Im darauffolgenden Schritt 402 werden sämtliche für das Verfahren benötigte Eingangs- großen eingelesen. Auf Schritt 402 folgt ein Schritt 404. In Schritt 404 werden je nach Ausführungsbeispiel eine oder mehrere der Einflußgrδßen QK, QAn, QMot und QU ermittelt. Dabei kommen die weiter oben beschriebenen Gleichungen für die jeweiligen Wärmestrδme zur Anwendung. An Schritt 404 schließt sich ein Schritt 406 an, in dem das Signal TWNeu für die aktuelle Wandtemperatur gemäß der bereits weiter oben genannten Gleichung ermittelt wird. Je nach Ausfüh¬ rungsbeispiel enthält diese Gleichung einen oder mehrere der Einflußgrδßen QK, QAn, QMot und QU, die die einzelnen Wärme- ströme repräsentieren. An Schritt 406 schließt sich einFIG. 4 shows a flow chart of the method according to the invention. In a first step 400, the signal TWAlt is set to the start value TWStart. In the following step 402, all input variables required for the method are read in. Step 402 is followed by step 404. In Depending on the exemplary embodiment, step 404 determines one or more of the influencing variables QK, QAn, QMot and QU. The equations described above are used for the respective heat flows. Step 404 is followed by step 406, in which the signal TWNew for the current wall temperature is determined in accordance with the equation already mentioned above. Depending on the exemplary embodiment, this equation contains one or more of the influencing variables QK, QAn, QMot and QU, which represent the individual heat flows. Step 406 includes
Schritt 408 an, in dem das Signal TWAlt für die vorherge¬ hende Wandtemperatur auf den Wert TWNeu der aktuellen Wand¬ temperatur gesetzt wird. An Schritt 408 schließt sich ein Schritt 410 an. Im Schritt 410 wird aus dem Signal TWNeu für die aktuelle Wandtemperatur das Korrektursignal fTW bzw. kTW zur Beeinflussung der Kraftstoffzumessung ermittelt. Dabei wird das Korrektursignal fTW bzw. kTW beispielsweise in Ab¬ hängigkeit vom Signal TW aus einer Kennlinie ausgelesen. Mit Schritt 410 ist der Durchlauf des Flußdiagramms beendet und beginnt von neuem bei Schritt 402. Step 408, in which the signal TWAlt for the previous wall temperature is set to the value TWNew of the current wall temperature. Step 408 is followed by step 410. In step 410, the correction signal fTW or kTW for influencing the fuel metering is determined for the current wall temperature from the signal TWNew. The correction signal fTW or kTW is read out from a characteristic curve, for example, as a function of the signal TW. The flow of the flow chart is ended at step 410 and begins again at step 402.

Claims

Ansprüche Expectations
1. Verfahren zur Beeinflussung der Kraftstoffzumessung bei einer Brennkraftmaschine (100) , wobei ein Korrektursignal1. A method for influencing the fuel metering in an internal combustion engine (100), wherein a correction signal
(fTW, kTW) zur Beeinflussung der Kraftstoffzumessung gebil¬ det wird, dadurch gekennzeichnet, daß bei der Bildung des Korrektursignals (fTW, kTW) wenigstens eines der folgenden Signale berücksichtigt wird:(fTW, kTW) is formed to influence the fuel metering, characterized in that at least one of the following signals is taken into account when forming the correction signal (fTW, kTW):
- ein Signal (QK) , das mit dem Wärmestrom durch Kraf stoff¬ verdampfung im Ansaugtrakt (102) zusammenhängt,a signal (QK) which is related to the heat flow due to fuel evaporation in the intake tract (102),
- ein Signal (QAn) , das mit dem Wärmestrom zwischen der durch den Ansaugtrakt (102) strömenden Luft und der Wand des Ansaugtraktes (102) zusammenhängt,a signal (QAn) which is related to the heat flow between the air flowing through the intake tract (102) and the wall of the intake tract (102),
- ein Signal (QMot) , das mit dem Wärmestrom zwischen dem Mo¬ torblock und der Wand des Ansaugtraktes (102) zusammenhängt und- A signal (QMot), which is related to the heat flow between the engine block and the wall of the intake tract (102) and
- ein Signal (QU) , das mit dem Wärmestrom zwischen der durch den Motorraum strömenden Luft und der Wand des Ansaugtraktes (102) zusammenhängt.- A signal (QU), which is related to the heat flow between the air flowing through the engine compartment and the wall of the intake tract (102).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei der Bildung des Korrektursignals (fTW, kTW) ein Signal (TW) ermittelt wird, das die Wandtemperatur des Ansaugtrak¬ tes (102) repräsentiert. 2. The method according to claim 1, characterized in that in the formation of the correction signal (fTW, kTW) a signal (TW) is determined which represents the wall temperature of the intake tract (102).
3. Verfahren nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß das Korrektursignal (fTW) ein Signal (UK) zur Beschleunigungsanreicherung oder zur Verzδ- gerungsabmagerung beeinflußt.3. The method according to any one of the preceding claims, da¬ characterized in that the correction signal (fTW) influences a signal (UK) for acceleration enrichment or for deceleration emaciation.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Korrektursignal (kTW) ein Signal beeinflußt, das mit dem Kraftstoff-Wandfilm im Ansaugtrakt zusammenhängt und zur Ermittlung des Signals (UK) zur Beschleunigungsanreicherung oder zur Verzδgerungsabmagerung gebildet wird.4. The method according to claim 2, characterized in that the correction signal (kTW) influences a signal which is related to the fuel wall film in the intake tract and is formed to determine the signal (UK) for acceleration enrichment or for deceleration reduction.
5. Verfahren nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß das Signal (QK) , das mit dem Wär¬ mestrom durch KraftstoffVerdampfung im Ansaugtrakt (102) zu- sammenhängt, ausgehend vom einem Signal (qKE) für die pro Zeit zugemessene Kraftstoffmenge und einem Signal (x) für den Anteil des sich an der Wand des Ansaugtraktes (102) an¬ lagernden Kraftstoffs ermittelbar ist.5. The method according to any one of the preceding claims, characterized in that the signal (QK), which is related to the heat flow due to fuel evaporation in the intake tract (102), is based on a signal (qKE) for the metered per time Fuel quantity and a signal (x) for the proportion of the fuel accumulating on the wall of the intake tract (102) can be determined.
6. Verfahren nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß das Signal (QAn) , das mit dem Wär¬ mestrom zwischen der durch den Ansaugtrakt (102) strömenden Luft und der Wand des Ansaugtraktes (102) zusammenhängt, ausgehend von einem Signal (m) für den Luftmassenstrom durch den Ansaugtrakt (102) und der Differenz eines Signals (TAn) für die Ansauglufttemperatur und des Signals (TW) für die Wandtemperatur des Ansaugtraktes (102) erτnittelbar ist.6. The method according to any one of the preceding claims, characterized in that the signal (QAn), which is related to the heat flow between the air flowing through the intake tract (102) and the wall of the intake tract (102), starting from one Signal (m) for the air mass flow through the intake tract (102) and the difference between a signal (TAn) for the intake air temperature and the signal (TW) for the wall temperature of the intake tract (102) can be determined.
7. Verfahren nach einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, daß das Signal (QMot) , das mit dem7. The method according to any one of the preceding claims, characterized in that the signal (QMot) that with the
Wärmestrom zwischen dem Motorblock und der Wand des Ansaug¬ traktes (102) zusammenhängt ausgehend von der Differenz ei¬ nes Signals (TMot) für die Temperatur der Brennkraftmaschine (100) und des Signal (TW) für die Wandtemperatur des Ansaug- traktes (102) ermittelbar ist. Heat flow between the engine block and the wall of the intake tract (102) is based on the difference between a signal (TMot) for the temperature of the internal combustion engine (100) and the signal (TW) for the wall temperature of the intake tract (102) can be determined.
8. Verfahren nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß das Signal (QU) , das mit dem Wär¬ mestrom zwischen der durch den Motorraum strömenden Luft und der Wand des Ansaugtraktes (102) zusammenhängt, ausgehend von einem Signal (v) für die Fahrzeuggeschwindigkeit, einem Signal (TAn) für die Umgebungstemperatur oder Ansauglufttem¬ peratur und optional von einem Signal für den Betriebszu¬ stand eines Lüfters im Motorraum ermittelbar ist.8. The method according to any one of the preceding claims, characterized in that the signal (QU), which is related to the heat flow between the air flowing through the engine compartment and the wall of the intake tract (102), starting from a signal (v ) for the vehicle speed, a signal (TAn) for the ambient temperature or intake air temperature and optionally a signal for the operating state of a fan in the engine compartment.
9. Vorrichtung zur Durchführung eines Verfahrens nach einem der vorhergehenden Ansprüche. 9. Device for performing a method according to one of the preceding claims.
EP95936442A 1994-12-14 1995-11-15 Fuel dosage control process for internal combustion engines Expired - Lifetime EP0797730B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4444416 1994-12-14
DE4444416A DE4444416A1 (en) 1994-12-14 1994-12-14 Method for influencing fuel metering in an internal combustion engine
PCT/DE1995/001596 WO1996018811A1 (en) 1994-12-14 1995-11-15 Fuel dosage control process for internal combustion engines

Publications (2)

Publication Number Publication Date
EP0797730A1 true EP0797730A1 (en) 1997-10-01
EP0797730B1 EP0797730B1 (en) 1999-02-03

Family

ID=6535725

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95936442A Expired - Lifetime EP0797730B1 (en) 1994-12-14 1995-11-15 Fuel dosage control process for internal combustion engines

Country Status (6)

Country Link
US (1) US6035831A (en)
EP (1) EP0797730B1 (en)
JP (1) JP3803375B2 (en)
KR (1) KR100378457B1 (en)
DE (2) DE4444416A1 (en)
WO (1) WO1996018811A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190703A1 (en) 2012-06-21 2013-12-27 L'oreal Cosmetic solid composition comprise a non volatile hydrocarbonated oil, waxes and a high content from non volatile phenylated silicone oil

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636451B4 (en) * 1996-09-07 2010-06-10 Robert Bosch Gmbh Device for controlling the amount of fuel to be supplied to an internal combustion engine
EP1312783A1 (en) * 2001-10-05 2003-05-21 Robert Bosch GmbH Method for operating an internal combustion engine
DE102006002738A1 (en) * 2006-01-20 2007-08-02 Robert Bosch Gmbh Control system for fuel injectors, at a motor common rail assembly, uses signals and adapted correction values to maintain a long-term consistent performance without sensors/actuators
JP4418480B2 (en) * 2007-04-24 2010-02-17 株式会社日立製作所 Fuel control device for internal combustion engine
US8234038B2 (en) * 2007-11-27 2012-07-31 GM Global Technology Operations LLC Intake air temperature diagnostic system
DE102016203436B4 (en) * 2016-03-02 2017-11-30 Continental Automotive Gmbh Method and device for determining an injection time for injecting a fuel
KR20230047456A (en) 2020-08-06 2023-04-07 아이리듬 테크놀로지스, 아이엔씨 Electrical Components for Physiological Monitoring Devices

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454847A (en) * 1980-07-18 1984-06-19 Nippondenso Co., Ltd. Method for controlling the air-fuel ratio in an internal combustion engine
JPS5888435A (en) * 1981-11-19 1983-05-26 Honda Motor Co Ltd Air fuel ratio corrector of internal combustion engine having correcting function by intake temperature
JPS60192846A (en) * 1984-03-15 1985-10-01 Nissan Motor Co Ltd Fuel supplying device of internal-combustion engine
JPS61265334A (en) * 1985-05-17 1986-11-25 Toyota Motor Corp Method of controlling air-fuel ratio of internal combustion engine
DE4115211C2 (en) * 1991-05-10 2003-04-30 Bosch Gmbh Robert Method for controlling fuel metering in an internal combustion engine
DE4121396A1 (en) * 1991-06-28 1993-01-07 Bosch Gmbh Robert FUEL INJECTION METHOD AND DEVICE
DE4442679C2 (en) * 1993-11-30 2001-06-07 Honda Motor Co Ltd Fuel injection quantity control system for an internal combustion engine
JPH07208249A (en) * 1994-01-12 1995-08-08 Honda Motor Co Ltd Control device of internal combustion engine
US5427070A (en) * 1994-05-04 1995-06-27 Chrysler Corporation Method of averaging coolant temperature for an internal combustion engine
DE4415994A1 (en) * 1994-05-06 1995-11-09 Bosch Gmbh Robert Control system for an internal combustion engine
JP3562026B2 (en) * 1995-05-18 2004-09-08 日産自動車株式会社 Engine air-fuel ratio control device
US5584277A (en) * 1995-09-26 1996-12-17 Chrysler Corporation Fuel delivery system with wall wetting history and transient control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9618811A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190703A1 (en) 2012-06-21 2013-12-27 L'oreal Cosmetic solid composition comprise a non volatile hydrocarbonated oil, waxes and a high content from non volatile phenylated silicone oil

Also Published As

Publication number Publication date
DE4444416A1 (en) 1996-06-20
EP0797730B1 (en) 1999-02-03
DE59505057D1 (en) 1999-03-18
WO1996018811A1 (en) 1996-06-20
US6035831A (en) 2000-03-14
KR980700508A (en) 1998-03-30
JPH10510345A (en) 1998-10-06
JP3803375B2 (en) 2006-08-02
KR100378457B1 (en) 2003-07-18

Similar Documents

Publication Publication Date Title
EP1147309B1 (en) Device for suppressing engine knocking in an internal combustion engine
EP0084037B2 (en) Control device for the supply pressure of a supercharged combustion engine
EP0894958B1 (en) Failure detecting unit for an internal combustion engine and method for operating an internal combustion engine
DE4343353C2 (en) Method and device for controlling an internal combustion engine
DE10145038A1 (en) Method and device for operating at least one supercharger of an internal combustion engine
WO2002020964A1 (en) Method for operating an internal combustion engine, and a corresponding device
DE4330368A1 (en) Method and device for controlling the drive power output of a vehicle
DE102004004490A1 (en) Method for operating an internal combustion engine with at least two exhaust gas turbochargers
DE4404668A1 (en) Control of vehicle catalyser IC engine output
DE4401828B4 (en) Method and device for predicting a future load signal in connection with the control of an internal combustion engine
EP1725915B1 (en) Process control system
DE4344960A1 (en) Model-based control system for supercharging of IC engine
EP0885353B1 (en) Method and arrangement for controlling or regulating the power of a superchargeable internal combustion engine
EP1215388A2 (en) Method and system for controlling an internal combustion engine
EP1091106A2 (en) Method for determining engine exhaust backpressure at a turbine
EP0797730A1 (en) Fuel dosage control process for internal combustion engines
EP0976922B1 (en) Method for torque adjustment
WO2011076551A1 (en) Method and device for performing an on-board diagnosis
DE4322270B4 (en) Method and device for controlling an internal combustion engine
DE19753996A1 (en) Judder vibrations damping method e.g. for motor vehicle turbo-diesel IC engine
DE4220286C2 (en) Method for checking the function of an actuator in a vehicle
EP0728922B1 (en) Controller with adapted integral part for the air mass flow of a turbocharged internal combustion engine
EP1103711B1 (en) Method and apparatus for controlling the torque of a diesel engine
EP0985812B1 (en) Optimalisation of the part of the fresh air in the charge of a combustion engine
DE10025495B4 (en) Method for operating an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19971114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 59505057

Country of ref document: DE

Date of ref document: 19990318

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20081124

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081121

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20091128

Year of fee payment: 15

Ref country code: FR

Payment date: 20091202

Year of fee payment: 15

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091116

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140124

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59505057

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150602