EP0761660B1 - Verfahren zur Herstellung von Glycidylacrylat oder -methacrylat - Google Patents

Verfahren zur Herstellung von Glycidylacrylat oder -methacrylat Download PDF

Info

Publication number
EP0761660B1
EP0761660B1 EP96112907A EP96112907A EP0761660B1 EP 0761660 B1 EP0761660 B1 EP 0761660B1 EP 96112907 A EP96112907 A EP 96112907A EP 96112907 A EP96112907 A EP 96112907A EP 0761660 B1 EP0761660 B1 EP 0761660B1
Authority
EP
European Patent Office
Prior art keywords
epichlorohydrin
acid
process according
methacrylic acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96112907A
Other languages
English (en)
French (fr)
Other versions
EP0761660A1 (de
Inventor
Tsuyoshi Mitsubishi Gas Chem. Co. Inc. Isozaki
Masahiro Mitsubishi Gas Chem. Co. Inc. Kurokawa
Akihiro Mitsubishi Gas Chem. Co. Inc. Honma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Publication of EP0761660A1 publication Critical patent/EP0761660A1/de
Application granted granted Critical
Publication of EP0761660B1 publication Critical patent/EP0761660B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/16Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by esterified hydroxyl radicals

Definitions

  • the present invention relates to a process for producing a glycidyl ester of acrylic acid or methacrylic acid (hereinafter sometimes collectively referred to as "Glycidyl Methacrylate, etc.") which ester is widely used as a starting raw material for industrial use for resin modifiers, thermosetting coating materials, adhesives, textile treating agents, antistatic agents, ion exchange resins and the like.
  • Glycidyl Methacrylate, etc. have heretofore been produced generally by any of the following three processes.
  • the process (3) suffers the disadvantage of unfavorable economical efficiency in that there is a fear of causing polymerization of the alkali metal salt of Methacrylic Acid, etc. at the time of drying and so there is need for installing an expensive spray dryer or the like in order to achieve a high yield and for preparing-the aqueous solution of the alkali metal salt of Methacrylic Acid, etc. in a separate apparatus.
  • the process suffers the drawback that the yield of Glycidyl Methacrylate, etc. is lowered by the dissolution of Glycidyl Methacrylate, etc. in the water layer and the hydrolysis of the same.
  • the crude Glycidyl Methacrylate, etc. produced by any of the foregoing processes (1), (2) or (3), which is generally refined by distillation also involves the problem that the side reactions take place in the course of distillation as represented by the reaction formulae (a), (b) and (c) by the influence of the catalyst which can not be completely removed by filtration and water washing, and the by-produced epichlorohydrin, glycerol ester of methacrylic acid, glycidol and the like lower the purity and yield of the objective product.
  • the Glycidyl Methacrylate, etc. that are produced by the above-mentioned process usually contain about 300 to 10,000 ppm of epichlorohydrin, about 3,000 to 20,000 ppm of glycidol and about 3,000 to 10,000 ppm of hydrolyzable chlorine.
  • the above residual glycidol and chlorine bring about the deterioration of coating material characteristics and electrical characteristics in the fields of coating materials, electronic materials and textile materials and the problem of eruption of the skin, and in recent years the residual epichlorohydrin has caused the problems of carcinogenicity and the deterioration of working environment.
  • the epichlorohydrin that is, excess amount of epichlorohydrin to be used in the present is preferably selected in such an amount that it is present in the reaction system at the time of neutralization reaction and at the time of esterification reaction in a molar amount of 1 to 10 times, preferably 3 to 7 times based on Methacrylic Acid, etc.
  • An amount thereof less than the aforesaid lower limit brings about a decrease in the yield of the product due to poor agitational property of the slurry of an alkali metal salt of Methacrylic acid etc., whereas that more than the upper limit gives rise to an increase in the amount of impurities such as chlorine and lowering in economical efficiency.
  • the carbonates of alkali metals and bicarbonates of the same to be used in the present are exemplified by sodium carbonate, sodium bicarbonate, potassium carbonate and potassium bicarbonate. They are used in an amount of at least one equivalent, usually preferably 1.0 to 1.7 equivalent of Methacrylic acid, etc.
  • Examples of the quaternary ammonium salts to be used as a reaction catalyst include tetramethylammonium chloride, trimethylethylammonium chloride, dimethyldiethylammonium chloride, methyltriethylammonium chloride, tetraethylammonium chloride, trimethylbenzylammonium chloride and triethylbenzylammonium chloride, of which are preferably usable tetramethylammonium chloride, tetraethylammonium chloride, triethylbenzylammonium chloride and trimethylbenzylammonium chloride.
  • the quaternary ammonium salt may be used alone or in combination with at least one other optional species.
  • the amount of the aforesaid salt to be used is usually 0.01 to 1.5 mol% based on the Methacrylic Acid, etc.
  • a polymerization inhibitor be present in the reaction system in any and all of the neutralization reaction, esterification reaction and distillation.
  • Such polymerization inhibitor may be optionally selected for use from the conventional polymerization inhibitors of amine, phenols, phosphorus; sulfur or transition-metal series.
  • the above-mentioned esterification reaction in the present invention can be put into practice under the conventional conditions.
  • part of the excess epichlorohydrin is recovered under reduced pressure after the esterification reaction.
  • the amount of the epichlorohydrin to be recovered is 5 to 80%, preferably 10 to 60%, more preferably 20 to 40% by weight based on the excess epichlorohydrin to be used.
  • a recovery amount thereof less than 5% by weight results in insufficient separability between the aqueous layer and organic layer, whereas that more than 80% by weight gives rise to the problem of worsenening the slurry properties of th liquid reaction prduct.
  • the aqueous solution of an alkali hydroxide to be added to the liquid reaction product after the completion of the esterification reaction recitation is made of the aqueous solution of at least one alkali hydroxide selected from sodium hydroxide, potassium hydroxide, calcium hydroxide and the like.
  • the concentration of the aqueous solution is preferably 1 to 15%, more preferably 3 to 10% by weight.
  • the amount of the aqueous solution of the alkali hydroxide to be used therein is 50 to 500g, preferably 100 to 400g, more preferably 150 to 300g per one mole of the Methacrylic Acid, etc.
  • the temperature of the crude Glycidyl Methacrylate, etc. to which the aqueous solution of the alkali hydroxide is added is 0 to 80°C, preferably 10 to 60°C, more preferably 20 to 40°C.
  • the aqueous solution of the alkali hydroxide is added to the liquid reaction product to separate it into the aqueous layer and organic layer, and thereafter a catalyst deactivator is added to the organic layer thus obtained.
  • a catalyst deactivator there is used, as the catalyst deactivator, at least one member selected from sodium salts and calcium salts each of alkylsulfonic acid, alkylbenzenesulfonic acid, phosphotungstic acid and phosphomolybdic acid.
  • the amount of the catalyst deactivator to be used is 1 to 70 mol%, preferably 5 to 50 mol%, more preferably 10 to 30 mol% based on the catalyst to be used.
  • the oxygen-containing gas to be used in the above-mentioned reaction and distillation according to the present invention is exemplified by air and the mixture of oxygen and nitrogen, and preferably has an oxygen content of 1 to 30% by volume.
  • the amount of the oxgen-containing gas to be used is 0.1 to 500, preferably 1 to 300, more preferably 5 to 100 milliliter (mL)/min in terms of flow rate at 20°C under atmospheric pressure per 1 kg of Glycidyl Methacrylate, etc.
  • the distillation procedure in the present invention can be put into practice by optionally selecting a condition.
  • the purities (%) of the starting raw materials and the objective product, and ppm are indicated unexceptionally by purities (% by weight), and ppm on weight basis, respectively.
  • a 100 liter (L) stainless steel-made reaction vessel was charged with 72.0 kg of epichlorohydrin, 5.86 kg of sodium carbonate anhydride and 0.06 kg of phenothiazine to form liquid reactant, which was raised in temperature with air blown thereinto at a rate of 1.0 L/min.
  • reaction temperature reached 110°C
  • methacrylic acid was added to the reactant over a period of 40 minutes.
  • the epichlorohydrin and water were azeotropically distilled out and discharged outside the reaction system.
  • reaction temperature was raised to 115°C and the azeotropic distillation almost ceased, when the azeotropic distillate was obtained including 20.43 kg of epichlorohydrin layer and 1.2 kg of aqueous layer.
  • 0.03 kg of tetramethylammonium chloride was added to the liquid reactant to proceed with the reaction at 115°C for one hour, while air was continuously blown thereinto at a rate of 1.0 L/min.
  • the resultant liquid reaction product was cooled to 30°C while a part of excess epichlorohydrin (25%) was recovered under reduced pressure and subsequently incorporated with 20 kg of 3% aqueous solution of sodium hydroxide with stirring for 5 minutes. After the stoppage of air blowing, the liquid reaction product was allowed to stand to be separated into an oil layer and an aqueous layer. The oil layer was incorporated with 0.005 kg of sodium p-toluenesulfonate as a catalyst deactivator. Thereafter, epichlorohydrin was distilled away under reduced pressure and the liquid reaction product was subjected to vaccum distillation while air was blown thereinto at a rate of 0.2 L/min.
  • Example 1 The procedure in Example 1 was repeated for the synthesis of glycidyl methacrylate except that 40g of sodium phosphotungstate was used as a catalyst deactivator in place of sodium p-toluenesulfonate, and air was blown into during the distillation at a rate of 1 L/min instead of 0.2 L/min.
  • a 100 liter (L) stainless steel-made reaction vessel was charged with 72.0 kg of epichlorohydrin, 5.86 kg of sodium carbonate anhydride and 0.06 kg of phenothiazine to form liquid reactant, which was raised in temperature with air blown thereinto at a rate of 2.0 L/min.
  • reaction temperature reached 110°C
  • methacrylic acid was added to the reactant over a period of 30 minutes.
  • the epichlorohydrin and water were azeotropically distilled out and discharged outside the reaction system.
  • reaction temperature was raised to 115°C and the azeotropic distillation almost ceased, when the azeotropic distillate was obtained including 21.64 kg of epichlorohydrin layer and 1.16 kg of aqueous layer.
  • 0.045 kg of tetraethylammonium chloride was added to the liquid reactant to proceed with the reaction at 115°C for one hour, while air was continuously blown thereinto at a rate of 2.0 L/min.
  • the resultant liquid reaction product was cooled to 30°C while a part of excess epichlorohydrin (30%) was recovered under reduced pressure and subsequently incorporated with 22 kg of 5% aqueous solution of sodium hydroxide with stirring for 5 minutes. After the stoppage of air blowing, the liquid reaction product was allowed to stand to be separated into an oil layer and an aqueous layer. The oil layer was incorporated with 0.005 kg of sodium p-toluenesulfonate as a catalyst deactivator. Thereafter, epichlorohydrin was distilled away under reduced pressure and the liquid reaction product was subjected to vaccum distillation while air was blown thereinto at a rate of 0.4 L/min.
  • a 100 liter (L) stainless steel-made reaction vessel was charged with 72.0 kg of epichlorohydrin, 5.86 kg of sodium carbonate anhydride and 0.06 kg of phenothiazine to form liquid reactant, which was raised in temperature with air blown thereinto at a rate of 1.0 L/min.
  • reaction temperature reached 110°C
  • methacrylic acid was added to the reactant over a period of 30 minutes.
  • the epichlorohydrin and water were azeotropically distilled out and discharged outside the reaction system.
  • reaction temperature was raised to 115°C and the azeotropic distillation almost ceased, when the azeotropic distillate was obtained including 19.32 kg of epichlorohydrin layer and 1.12 kg of aqueous layer.
  • 0.03 kg of tetramethylammonium chloride was added to the liquid reactant to proceed with the reaction at 115°C for one hour, while air was continuously blown thereinto at a rate of 1.0 L/min.
  • the resultant liquid reaction product was cooled to 30°C while a part of excess epichlorohydrin (38%) was recovered under reduced pressure and subsequently incorporated with 22 kg of water with stirring for 5 minutes. After the stoppage of air blowing, the liquid reaction product was allowed to stand to be separated into an oil layer and an aqueous layer. The oil layer was incorporated with 0.005 kg of sodium p-toluenesulfonate as a catalyst deactivator. Thereafter, epichlorohydrin was distilled away under reduced pressure and the liquid reaction product was subjected to vaccum distillation while air was blown thereinto at a rate of 0.2 L/min.
  • Example 1 The procedure in Example 1 was repeated for the synthesis of glycidyl methacrylate except that 40g of sodium phosphotungstate was used as a catalyst deactivator in place of sodium p-toluenesulfonate and nitrogen was blown into during the distillation at a rate of 0.2 L/min in place of air. As a result, polymerization took place during the distillation, thereby failing to produce glycidyl methacrylate.
  • Example 1 The procedure in Example 1 was repeated for the synthesis of glycidyl methacrylate except that air was not blown into at the time of the reaction. As a result, polymerization took place during the reaction, thereby failing to separate the reaction product into aqueous layer and oil layer, and produce glycidyl methacrylate.
  • Example 3 The procedure in Example 3 was repeated for the synthesis of glycidyl methacrylate except that any catalyst deactivator was not added prior to the distillation. As a result, residual catalyst exerted adverse influence and thus there was obtained the objective glycidyl methacrylate in a yield of only 89.3%, having 98.2% purity, 1220 ppm epichlorohydrin, 840 ppm glycidol and 420 ppm hydrolyzable chlorine.
  • a 100 liter (L) stainless steel-made reaction vessel was charged with 72.0 kg of epichlorohydrin, 5.86 kg of sodium carbonate anhydride and 0.06 kg of phenothiazine to form liquid reactant, which was raised in temperature with air blown thereinto at a rate of 1.0 L/min.
  • reaction temperature reached 110°C
  • methacrylic acid was added to the reactant over a period of 30 minutes.
  • the epichlorohydrin and water were azeotropically distilled out and discharged outside the reaction system.
  • reaction temperature was raised to 115°C and the azeotropic distillation almost ceased, when the azeotropic distillate was obtained including 18.82 kg of epichlorohydrin layer and 1.22 kg of aqueous layer.
  • 0.03 kg of tetramethylammonium chloride was added to the liquid reactant to proceed with the reaction at 115°C for one hour, while air was continuously blown thereinto at a rate of 1.0 L/min.
  • the resultant liquid reaction product was cooled to 30°C and subsequently filtered to remove halogenated alkali. Thereafter the filtrate was returned in the reaction vessel, and epichlorohydrin was distilled away under reduced pressure and the filtered liquid reaction product was subjected to vaccum distillation while air was blown thereinto at a rate of 0.2 L/min.
  • the objective glycidyl methacrylate in an amount of 11.5 kg having 97.9% purity, 3940 ppm epichlorohydrin, 16520 ppm glycidol and 6800 ppm hydrolyzable chlorine at 87.2% yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Claims (10)

  1. Verfahren zur Herstellung eines Glycidylesters von Acrylsäure oder Methacrylsäure, welches die Schritte Neutralisieren von Acrylsäure oder Methacrylsäure mit mindestens einem Bestandteil, der ausgewählt wird aus der aus Carbonaten von Alkalimetallen und Bicarbonaten derselben bestehenden Gruppe in einer überschüssigen Menge Epichlorhydrin, während ein sauerstoffhaltiges Gas in das flüssige Reaktionssystem geblasen wird; Durchführung einer azeotropen Destillation zur Entfernung des durch die Neutralisation gebildeten Wassers und Epichlorhydrins aus dem Reaktionssystem und Bildung eines Alkalimetallsalzes von Acrylsäure oder Methacrylsäure; anschließend Zugabe eines quaternären Ammonlumsalzes als Katalysator zum Reaktionssystem zur Umsetzung des Alkalimetallsalzes der Säure mit Epichlorhydrin und so Herstellung des Glycidylesters der Säure; dann nach der Veresterungsreaktion Abkühlen des flüssigen Reaktionsproduktes, während ein Teil des überschüssigen Epichlorhydrins unter reduziertem Druck isoliert wird; dann Zugabe einer wässrigen Lösung eines Alkalihydroxids zur Trennung desselben in eine wässrige Phase und eine organische Phase; Zugabe eines Katalysator-Deaktivators zur resultierenden organischen Phase; und anschließende Destillation der organischen Phase zur Abtrennung des Glycidylesters der Säure, während ein sauerstoffhaltiges Gas in die organische Phase geblasen wird, umfasst.
  2. Verfahren nach Anspruch 1, wobei das Epichlorhydrin nach Vervollständigung der Veresterungsreaktion in einem Anteil von 5 bis 80 Gew.-% bezogen auf die überschüssige Menge an Epichlorhydrin isoliert wird.
  3. Verfahren nach Anspruch 1, wobei die wässrige Lösung eines Alkalihydroxids eine wässrige Lösung von mindestens einem Bestandteil ist, der ausgewählt wird aus der aus Natriumhydroxid, Kaliumhydroxid und Calciumhydroxid bestehenden Gruppe.
  4. Verfahren nach Anspruch 1, wobei die wässrige Lösung eines Alkalihydroxids, die verwendet werden soll, eine Konzentration von 1 bis 15 Gew.-% aufweist und in einer Menge von 50 bis 500 g pro Mol Acrylsäure oder Methacrylsäure eingesetzt wird.
  5. Verfahren nach Anspruch 1, wobei die Temperatur des rohen Glycidylacrylats oder des rohen Glycidylmethacrylats zum Zeitpunkt des Versetzens mit der wässrigen Lösung eines Alkalihydroxids im Bereich von 0 bis 80°C liegt.
  6. Verfahren nach Anspruch 1, wobei der Katalysator-Deaktivator mindestens ein Bestandteil ist, der ausgewählt wird aus der aus Natriumsalzen und Calciumsalzen jeweils von Alkylsulfonsäure, Alkylbenzolsulfonsäure, Phosphowolframsäure und Phosphomolybdänsäure bestehenden Gruppe.
  7. Verfahren nach Anspruch 1, wobei die Menge an Katalysator-Deaktivator, der eingesetzt werden soll, 1 bis 70 Mol-% bezogen auf den zu verwendenden Katalysator beträgt.
  8. Verfahren nach Anspruch 1, wobei das sauerstoffhaltige Gas ausgewählt wird aus der aus Luft und einem Mischgas aus Sauerstoff und Stickstoff bestehenden Gruppe.
  9. Verfahren nach Anspruch 1, wobei das während der Reaktion und Destillation zu verwendende sauerstoffhaltige Gas einen Sauerstoffgehalt von 1 bis 30 Vol.-% aufweist und in einer Menge von 0,1 bis 500 ml/min., ausgedrückt als Flussrate bei 20°C unter Atmosphärendruck, bezogen auf 1 kg Glycidylacrylat oder Glycidylmethacrylat verwendet wird.
  10. Verfahren nach Anspruch 1, wobei der Glycidylester von Acrylsäure oder Methacrylsäure als Zielprodukt eine Reinheit von mindestens 98 %, einen Gehalt an Epichlorhydrin von höchstens 300 ppm nach Gewicht, einen Gehalt an Glycidol von höchstens 3000 ppm nach Gewicht und einen Gehalt an hydrolysierbarem Chlor von höchstens 3000 ppm nach Gewicht aufweist.
EP96112907A 1995-08-25 1996-08-10 Verfahren zur Herstellung von Glycidylacrylat oder -methacrylat Expired - Lifetime EP0761660B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP217559/95 1995-08-25
JP21755995 1995-08-25
JP21755995A JP3922310B2 (ja) 1995-08-25 1995-08-25 アクリル酸またはメタクリル酸のグリシジルエステルの製造方法

Publications (2)

Publication Number Publication Date
EP0761660A1 EP0761660A1 (de) 1997-03-12
EP0761660B1 true EP0761660B1 (de) 2003-10-22

Family

ID=16706162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96112907A Expired - Lifetime EP0761660B1 (de) 1995-08-25 1996-08-10 Verfahren zur Herstellung von Glycidylacrylat oder -methacrylat

Country Status (4)

Country Link
US (1) US5750739A (de)
EP (1) EP0761660B1 (de)
JP (1) JP3922310B2 (de)
DE (1) DE69630425T2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236279A1 (de) * 2002-08-08 2004-02-19 Basf Ag Verfahren zur Abtrennung von Veresterungskatalysator
TWI345564B (en) 2003-12-02 2011-07-21 Mitsubishi Gas Chemical Co Method for producing glycidyl 2-hydroxyisobutyrate
JP5264157B2 (ja) * 2007-12-06 2013-08-14 三菱レイヨン株式会社 グリシジル(メタ)アクリレートの製造法
JP5417087B2 (ja) * 2009-08-25 2014-02-12 株式会社日本触媒 グリシジルアクリレートの製造方法
JP6044264B2 (ja) * 2012-10-26 2016-12-14 三菱瓦斯化学株式会社 メタクリル酸グリシジルの製造法
WO2014148301A1 (ja) * 2013-03-22 2014-09-25 三菱レイヨン株式会社 グリシジル(メタ)アクリレートの製造方法
CN104086509A (zh) * 2014-07-10 2014-10-08 中昊(大连)化工研究设计院有限公司 甲基丙烯酸缩水甘油酯的合成方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721380A (en) * 1980-07-11 1982-02-04 Mitsubishi Gas Chem Co Inc Preparation of glycidyl acrylate or methacrylate
DE3126943A1 (de) * 1980-07-11 1982-03-25 Mitsubishi Gas Chemical Co., Inc., Tokyo Verfahren zur herstellung von glycidylacrylat oder -methacrylat
US4862510A (en) * 1987-03-24 1989-08-29 Emhart Industries, Inc. Lead sense system for component insertion machine
JPH0832693B2 (ja) * 1987-04-13 1996-03-29 大阪有機化学工業株式会社 アクリル酸グリシジルまたはメタクリル酸グリシジルの精製方法
FR2656305B1 (fr) * 1989-12-22 1992-04-10 Norsolor Sa Procede de purification du (meth)acrylate de glycidyle.
JP3018483B2 (ja) * 1990-11-21 2000-03-13 三菱瓦斯化学株式会社 グリシジルアクリレート又はグリシジルメタクリレートの精製法
JP2967252B2 (ja) * 1993-06-17 1999-10-25 大阪有機化学工業株式会社 グリシジルメタクリレートの製造法
JP3654306B2 (ja) * 1994-05-20 2005-06-02 三菱瓦斯化学株式会社 グリシジルアクリレートまたはグリシジルメタクリレートの製造方法

Also Published As

Publication number Publication date
DE69630425D1 (de) 2003-11-27
JPH0959268A (ja) 1997-03-04
EP0761660A1 (de) 1997-03-12
US5750739A (en) 1998-05-12
JP3922310B2 (ja) 2007-05-30
DE69630425T2 (de) 2004-05-06

Similar Documents

Publication Publication Date Title
EP1115714A1 (de) Verfahren zur herstellung von glycidylestern verzweigter carbonsäuren
US4755262A (en) Method for purification of glycidyl acrylate or glycidyl methacrylate
EP0936214A2 (de) Verfahren zur Herstellung von Isocyanatoalkyl-(meth)acrylaten
EP0761660B1 (de) Verfahren zur Herstellung von Glycidylacrylat oder -methacrylat
US6245935B1 (en) Method for producing isocyanatoalkyl (meth)acrylate
JP2967252B2 (ja) グリシジルメタクリレートの製造法
JPH0441449A (ja) シクロヘキサン―1,2―ジオールの製造方法
US5527927A (en) Process for producing glycidyl acrylate or glycidyl methacrylate
EP0487305B1 (de) Methode zur Reinigung von rohem glycidyl (Meth)-Acrylat
US9303003B2 (en) Process for producing glycidyl (meth)acrylate
JP3775438B2 (ja) グリシジルメタクリレートまたはグリシジルアクリレートの製造方法
EP3424896A1 (de) Verfahren zur herstellung einer flüssigen zusammensetzung mit monoetherat, flüssige zusammensetzung und verfahren zur herstellung einer polymerisierbaren verbindung
GB2025970A (en) Process for preparation of glycidyl ester of acrylic acid
US4356321A (en) Production of N,N,N',N'-tetraacetylethylenediamine
JP3807817B2 (ja) ジフェニルカーボネートの精製方法
US3661938A (en) Process for the preparation of glycidyl esters
EP1022275A1 (de) Verfahren zur Reinigung von Glycidyl (meth) acrylat
JPH09249657A (ja) (メタ)アクリル酸グリシジルの精製方法
JPH0120152B2 (de)
JP2906276B2 (ja) エポキシ化された(メタ)アクリレートの製造方法
JPH0522696B2 (de)
GB2270912A (en) Preparation of hydroxyalkyl acrylic or methacrylic acid esters
JP2002128772A (ja) 2−グリシジルオキシエチル(メタ)アクリレートの製造方法
JPH09202751A (ja) ジt−ブチルジカーボネートの製造方法
JP4672145B6 (ja) 分岐鎖カルボン酸のグリシジルエステルの製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19970815

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69630425

Country of ref document: DE

Date of ref document: 20031127

Kind code of ref document: P

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040804

Year of fee payment: 9

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050810

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130807

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130808

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69630425

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69630425

Country of ref document: DE

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901