EP0761347A1 - Verfahren zum Betreiben eines Induktors und Induktor zur Durchführung des Verfahrens - Google Patents

Verfahren zum Betreiben eines Induktors und Induktor zur Durchführung des Verfahrens Download PDF

Info

Publication number
EP0761347A1
EP0761347A1 EP96113220A EP96113220A EP0761347A1 EP 0761347 A1 EP0761347 A1 EP 0761347A1 EP 96113220 A EP96113220 A EP 96113220A EP 96113220 A EP96113220 A EP 96113220A EP 0761347 A1 EP0761347 A1 EP 0761347A1
Authority
EP
European Patent Office
Prior art keywords
inductor
melt
cooling
fluid
molded part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96113220A
Other languages
German (de)
English (en)
French (fr)
Inventor
Raimund Brückner
Daniel Grimm
Steve Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Didier Werke AG
Original Assignee
Didier Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19603317A external-priority patent/DE19603317A1/de
Application filed by Didier Werke AG filed Critical Didier Werke AG
Publication of EP0761347A1 publication Critical patent/EP0761347A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/42Cooling of coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/60Pouring-nozzles with heating or cooling means

Definitions

  • the invention relates to a method for operating an inductor and an inductor for performing the method.
  • the inductor is water-cooled during operation.
  • the induction coil has a hollow cross section that forms a cooling channel (cf. EP 0 291 289 B1, EP 0 339 837 B1).
  • Water cooling serves to protect the inductor against overheating. Water cooling, however, has the disadvantage that any leaks lead to a possibly harmful, in any case undesirable development of water vapor when it emerges into a melt.
  • DE 41 36 066 A1 describes a pouring device for a metallurgical vessel and a method for opening and closing a pouring sleeve.
  • the inductor is to be brought into different displacement positions relative to the pouring sleeve in order to influence the heat conduction between the inductor and the pouring sleeve.
  • a gap between the The inductor and the pouring sleeve have thermal insulation, and the electrically switched on, cooled inductor inductively melts a metal plug existing in the pouring sleeve.
  • Patent application P 44 28 297 describes an inductor in an outlet member of a melt vessel, which is installed directly in the bottom of the melt vessel or in a perforated brick in the bottom of the melt vessel. This inductor cannot be operated in accordance with DE 41 36 066 A1 because it cannot be displaceable relative to the pouring sleeve.
  • the object of the invention is to propose a variable operating method for an inductor.
  • the operating method described has the advantage that it can be adapted to operating conditions in a variety of ways.
  • the inductor can be used to heat or cool melts in tapping devices, such as free-running nozzles, channels, stopper, slide and pipe closures or in transport channels and / or vessels. It can also be used to melt or solidify metals or non-metals, in particular non-metallic slags and / or glasses. It can also be used to heat components, containers or transport elements that come into contact with melts.
  • the inductor does not have to be moved in the working phases. It can therefore be built into the tapping device or rigidly connected to it.
  • liquid gas such as liquid gas, dry ice, water or gas, in particular compressed air
  • water is preferably not used.
  • liquid gas or dry ice as a coolant in the work phase, in which a high cooling capacity is desired, is favorable because it does not lead to dangerous water vapor or oxyhydrogen gas development in contact with a melt when escaping and any leaks in the liquid gas or dry ice guide can come.
  • compressed air can be used as the coolant.
  • the use of compressed air is cheap because it is simple and cheap to use and also does not lead to the problems associated with water cooling.
  • the melt is heated by the inductor in at least one tapping device of a melt vessel in a first working phase.
  • the inductor can be inductively coupled to the tapping device or in connection with an electrically non-conductive molded part directly to the electrically conductive melt in the molded part.
  • the first working phase thus serves to heat the melt or the tapping device.
  • a melt plug solidified in the tapping device can also melt.
  • the inductor works with very high electrical power, so that a melted edge zone is created on the plug before the thermal expansion of the plug comes into effect, so that it explodes the refractory material surrounding it.
  • the liquid peripheral zone layer is displaced as the plug gradually expands. Even with these high starting powers, a fluid, for example liquid gas or dry ice and in particular also compressed air, has proven to be sufficient coolant for the inductor.
  • a lower cooling capacity with reduced or switched off electrical power or electrical decoupling of the inductor is sufficient. It is cooled by means of the fluid, preferably compressed air. If several tapping devices are provided next to one another on the melt vessel and a reduced melt flow occurs on one or more of the tapping devices as a result of a lower temperature, these tapping devices can be reheated by increased electrical power or a reduction in the cooling capacity so that the same melt flow occurs at all tapping devices. Different heat emissions can also be compensated for.
  • the melt can be cooled in a further working phase.
  • the inductor is switched off electrically.
  • the cooling of the inductor continues to be operated and is preferably carried out with a high cooling capacity by means of water, liquid gas, dry ice or compressed air.
  • This working phase serves in particular to freeze the melt in the tapping device in order to specifically interrupt the melt flow.
  • An inductor (2) is installed in the bottom (1) of a melt vessel. This consists of an electrically conductive induction coil with a hollow cross section, which forms a cooling channel (3) for a cooling fluid.
  • the inductor (2) is connected to an electrical energy source by means of electrical connections (4, 5).
  • the inductor (2) encloses a free-running nozzle (6) made of refractory ceramic material (molded part) which is used as a tapping device in the bottom (1). This forms a channel (7) for the melt flow.
  • an inlet line (8) and on the other hand an outlet line (9) are connected to the cooling channel (3).
  • the inlet line (8) is via a 3-way valve (10) on a pressure container (11) for liquid gas or a dry ice container and on a compressed air source (12).
  • the dry ice can also be introduced into the inlet line in the form of bars or cartridges.
  • the inductor (2) is switched to high electrical power and the 3-way valve (10) is set so that liquid gas from the pressure vessel (11) changes to the gaseous state and flows through the cooling channel (3).
  • the liquid gas can be liquid nitrogen, for example. Solidified CO 2 (dry ice) and especially compressed air are also conceivable.
  • the heating inductor (2) is cooled by the liquid gas.
  • the melt flow is set in motion by the melting of the metal plug.
  • the electrical power of the inductor (2) can now be reduced or switched off because there is little or no need for post-heating.
  • the cooling capacity can also be reduced accordingly. This is done by switching the 3-way valve (10) to the compressed air source (12) at the latest now. In the standby phase, cooling is carried out with air, which limits the consumption of liquid gas.
  • the inductors can be controlled individually so that the same melt flow rates emerge through the freewheeling nozzles.
  • the cooling can be controlled in such a way that the melt which has penetrated into the cracks freezes in the cracks, but the main stream of the melt continues to run through the channel (7).
  • the inductor (2) is switched off electrically and the 3-way valve (10) is switched back to the pressure vessel (11) or the compressed air throughput is increased.
  • the inductor (2) is now cooled with a high cooling capacity, the free-running nozzle (6) correspondingly being cooled by heat conduction and the melt freezing in the channel (7) to form a plug which interrupts the melt flow.
  • the coolant emerges from the outlet line (9). It can be released directly into the environment without damage.
  • the liquid gas evaporating in the inductor (2) or the heated compressed air escapes.
  • liquid gas can also be conducted in a closed circuit.
  • a device for this is shown in dashed lines in the figure.
  • a further 3-way valve (13) is then provided on the outlet line (9), which leads on the one hand to a gas outlet (14) and on the other hand to a liquefied gas recovery apparatus (15), for example a compressor, which connects to the 3-way valve (10). connected.
  • the device described can also be used in other tapping devices of a melt vessel, for example the inductor (2) is then not installed in the bottom (1) of a melt vessel, but in a slide closure device or another component.
  • outlet lines (9, 9 ') (cooling fluid discharges) are connected to both ends of the inductor (2).
  • an inlet line (8) (cooling fluid supply) is connected to the cooling duct (3) of the inductor (3).
  • the inlet line (8) is connected to a point on the inductor (2) which corresponds to the desired cooling conditions. For example, it lies in the middle of its length.
  • the coolant entering through the inlet line (8) thus flows on the one hand to the outlet line (9) and on the other hand to the outlet line (9 '). It improves the cooling effect.
  • the most cooled point of the inductor (2) can be placed in a desired area of the inductor (2).
  • two inlet lines (8, 8 ') are provided between the two outlet lines (9, 9'). This allows the coolant flow to be increased and thus the cooling effect to be improved.
  • a partition (16) can be provided between the inlet lines (8, 8 ') in the cooling channel (3) of the inductor (2) (cf. FIG. 4). This ensures that the cooling fluid flowing in through the inlet line (8) only reaches the outlet line (9) and the cooling fluid flowing in through the inlet line (8 ') only reaches the outlet line (9').
  • the inductor (2) can thus be cooled in its upper region with a different cooling fluid than in its lower region, or else the two regions can be cooled differently with the same cooling fluid with more or less exposure.
  • inlet lines (8, 8 ') are arranged at the two ends of the helical inductor (2).
  • One or two outlet lines (9, 9 ') are provided approximately in the middle of the inductor (2). This can also improve the cooling effect.
  • inlet line (8) at one end of the inductor (2) and an outlet line (9 ') at the other end.
  • outlet line (9 ') In the central region of the inductor (2) there is then, separated by the partition (16), an outlet line (9) and an inlet line (8 '). This is shown in Figure 6.
  • more than two inlet lines and / or outlet lines can also be provided on the inductor (2).
  • Figure 7 shows a spiral, plate-shaped inductor (2).
  • an outlet line (9, 9 ') can be provided at each end, the inlet line (8) then being connected between the outlet lines (9, 9') and the inductor (2).
  • the alternatives described above can also be implemented in the spiral inductor (2) according to FIG.
  • FIG. 8 shows an inductor which consists of the combination of a helical inductor part (2 ') and a spiral inductor part (2' ').
  • This inductor is suitable, for example, for an immersion spout (10) which forms a refractory, ceramic molded part, the helical, screw-shaped inductor part (2 '') being introduced into a cylindrical region of the immersion spout and the spiral, plate-shaped inductor part (2 '') of an upper one Extension (10 ') of the immersion nozzle (10) is assigned.
  • the inductor parts (2 ', 2' ') can be connected as a unit. Their cooling can be carried out separately by appropriate inlet and outlet lines.
  • the helical, helical, cylindrical inductor part (2 ') is connected or combined with a second helical inductor part (2' '').
  • the second inductor part (2 '' ') widens conically, the individual turns merging into one another in different or changing radii.
  • the inductor part (2 ') is used as an internal inductor for a melt outlet (11) formed by a refractory ceramic molded part.
  • the inner inductor part (2 '' ') is used as an outer inductor for a plug (12) assigned to the melt outlet (11), which is also a refractory ceramic molded part.
  • the inlet lines and outlet lines described with reference to FIGS. 2 to 6 can also be provided here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Furnace Details (AREA)
  • General Induction Heating (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Furnace Charging Or Discharging (AREA)
EP96113220A 1995-08-28 1996-08-17 Verfahren zum Betreiben eines Induktors und Induktor zur Durchführung des Verfahrens Withdrawn EP0761347A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19531555 1995-08-28
DE19531555 1995-08-28
DE19603317 1996-01-31
DE19603317A DE19603317A1 (de) 1995-08-28 1996-01-31 Verfahren zum Betreiben eines Induktors und Induktor zur Durchführung des Verfahrens

Publications (1)

Publication Number Publication Date
EP0761347A1 true EP0761347A1 (de) 1997-03-12

Family

ID=26018052

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96113220A Withdrawn EP0761347A1 (de) 1995-08-28 1996-08-17 Verfahren zum Betreiben eines Induktors und Induktor zur Durchführung des Verfahrens

Country Status (6)

Country Link
US (2) US6051822A (ja)
EP (1) EP0761347A1 (ja)
JP (1) JPH09120884A (ja)
CN (1) CN1068536C (ja)
AU (1) AU727932B2 (ja)
CA (1) CA2181215A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043472A (en) * 1996-08-28 2000-03-28 Didier-Werke Ag Assembly of tapping device and inductor therefor
DE19900915A1 (de) * 1999-01-13 2000-07-20 Schloemann Siemag Ag Verfahren und Vorrichtung zum Einstellen und/oder Halten der Temperatur einer Schmelze, bevorzugt einer Stahlschmelze beim Stranggießen
US7129808B2 (en) * 2004-09-01 2006-10-31 Rockwell Automation Technologies, Inc. Core cooling for electrical components
JP4496914B2 (ja) * 2004-10-19 2010-07-07 三菱自動車工業株式会社 モータの冷却装置
JP2009504414A (ja) * 2005-08-19 2009-02-05 アドバーンスト・メタルズ・テクノロジー・カンパニー 誘導動力が付与されるレードル底部ノズル
US20090128276A1 (en) * 2007-11-19 2009-05-21 John Horowy Light weight reworkable inductor
CN101636015B (zh) * 2008-07-25 2013-01-16 西北工业大学 高温度梯度低熔体流动电磁感应加热装置
JP5634756B2 (ja) * 2010-06-08 2014-12-03 中部電力株式会社 防爆構造誘導加熱装置
US9955533B2 (en) * 2011-09-20 2018-04-24 Crucible Intellectual Property, LLC. Induction shield and its method of use in a system
CN104797826B (zh) * 2013-03-14 2017-10-03 株式会社新柯隆 油扩散泵以及真空成膜装置
FR3005154B1 (fr) * 2013-04-26 2015-05-15 Commissariat Energie Atomique Four a chauffage par induction electromagnetique, utilisation du four pour la fusion d'un melange de metal(ux) et d'oxyde(s) representatif d'un corium

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE599522C (de) * 1932-11-02 1934-07-04 Heraeus Vacuumschmelze A G Abstichvorrichtung fuer metallurgische Schmelzoefen
DE733256C (de) * 1940-12-05 1943-05-05 Aeg Induktionsofen mit von einem inerten Gas mit gegenueber der Aussenatmosphaere hoeherem Druck gefuellten, gasdichten Gehaeuse
DE863203C (de) * 1950-05-26 1954-04-08 Gussstahlwerk Bochumer Ver Ag Verfahren zum Herstellen von Bloecken aus besonders hochwertigen Staehlen in einer als kernloser Induktionsofen ausgebildeten Kokille
DE4031955A1 (de) * 1990-10-09 1991-05-02 Edwin Schmidt Verfahren und vorrichtung zum tiefkuehlen elektrischer hohlleiter stromdurchflossener spulen
EP0291289B1 (en) * 1987-05-11 1991-07-24 Electricity Association Services Limited Electromagnetic valve
EP0339837B1 (en) * 1988-04-25 1993-02-24 Electricity Association Services Limited Electromagnetic valve
DE4136066A1 (de) * 1991-11-01 1993-05-06 Didier-Werke Ag, 6200 Wiesbaden, De Ausgusseinrichtung fuer ein metallurgisches gefaess und verfahren zum oeffnen und schliessen einer ausgusshuelse
DE4207694A1 (de) * 1992-03-11 1993-09-16 Leybold Durferrit Gmbh Vorrichtung fuer die herstellung von metallen und metall-legierungen hoher reinheit
US5348566A (en) * 1992-11-02 1994-09-20 General Electric Company Method and apparatus for flow control in electroslag refining process
DE4428297A1 (de) * 1994-08-10 1996-02-15 Didier Werke Ag Feuerfeste Düse und Verfahren zum Vergießen einer Metallschmelze aus einem Gefäß

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE531352C (de) * 1929-03-27 1931-08-08 Applic Electro Thermiques Soc Verfahren zur Kuehlung von Spulen fuer Induktionsoefen
US2294413A (en) * 1939-04-25 1942-09-01 Raytheon Mfg Co Method of locally heat-treating metal bodies
US2281335A (en) * 1940-05-21 1942-04-28 Budd Induction Heating Inc Induction heating
US2759085A (en) * 1952-08-21 1956-08-14 Hartford Nat Bank & Trust Co Method of heating a workpiece by high-frequency currents
DE1011541B (de) * 1956-05-19 1957-07-04 Deutsche Edelstahlwerke Ag Verfahren und Vorrichtung zum Kuehlen von Induktionsspulen
DE1200481B (de) * 1961-01-24 1965-09-09 Bbc Brown Boveri & Cie Vorrichtung zum OEffnen und Schliessen der Ausflussoeffnung eines Behaelters fuer geschmolzene Metalle
US3403240A (en) * 1965-09-02 1968-09-24 Navy Usa Portable remote induction brazing station with flexible lead
DE4109818A1 (de) * 1990-12-22 1991-11-14 Edwin Schmidt Verfahren und vorrichtung zum tiefkuehlen elektrischer hohlleiter stromdurchflossener spulen
JP3033210B2 (ja) * 1991-02-27 2000-04-17 富士電機株式会社 ビレット誘導加熱装置
EP0528025B1 (fr) * 1991-03-05 1996-06-12 Commissariat A L'energie Atomique Four de fusion en continu de melanges d'oxydes par induction directe a haute frequence a temps d'affinage tres court et a faible consommation en energie
DE4320766C2 (de) * 1993-06-23 2002-06-27 Ald Vacuum Techn Ag Vorrichtung zum Einschmelzen einer festen Schicht aus elektrisch leitfähigem Material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE599522C (de) * 1932-11-02 1934-07-04 Heraeus Vacuumschmelze A G Abstichvorrichtung fuer metallurgische Schmelzoefen
DE733256C (de) * 1940-12-05 1943-05-05 Aeg Induktionsofen mit von einem inerten Gas mit gegenueber der Aussenatmosphaere hoeherem Druck gefuellten, gasdichten Gehaeuse
DE863203C (de) * 1950-05-26 1954-04-08 Gussstahlwerk Bochumer Ver Ag Verfahren zum Herstellen von Bloecken aus besonders hochwertigen Staehlen in einer als kernloser Induktionsofen ausgebildeten Kokille
EP0291289B1 (en) * 1987-05-11 1991-07-24 Electricity Association Services Limited Electromagnetic valve
EP0339837B1 (en) * 1988-04-25 1993-02-24 Electricity Association Services Limited Electromagnetic valve
DE4031955A1 (de) * 1990-10-09 1991-05-02 Edwin Schmidt Verfahren und vorrichtung zum tiefkuehlen elektrischer hohlleiter stromdurchflossener spulen
DE4136066A1 (de) * 1991-11-01 1993-05-06 Didier-Werke Ag, 6200 Wiesbaden, De Ausgusseinrichtung fuer ein metallurgisches gefaess und verfahren zum oeffnen und schliessen einer ausgusshuelse
DE4207694A1 (de) * 1992-03-11 1993-09-16 Leybold Durferrit Gmbh Vorrichtung fuer die herstellung von metallen und metall-legierungen hoher reinheit
US5348566A (en) * 1992-11-02 1994-09-20 General Electric Company Method and apparatus for flow control in electroslag refining process
DE4428297A1 (de) * 1994-08-10 1996-02-15 Didier Werke Ag Feuerfeste Düse und Verfahren zum Vergießen einer Metallschmelze aus einem Gefäß

Also Published As

Publication number Publication date
US6051822A (en) 2000-04-18
CN1147985A (zh) 1997-04-23
AU727932B2 (en) 2001-01-04
JPH09120884A (ja) 1997-05-06
CN1068536C (zh) 2001-07-18
US6072166A (en) 2000-06-06
AU6425696A (en) 1997-03-06
CA2181215A1 (en) 1997-03-01

Similar Documents

Publication Publication Date Title
DE602004004147T2 (de) Erwärmungssysteme und -verfahren
DE3130683C2 (de) Auslaßventil für den Bodenauslaß eines Glasschmelzofens sowie Verfahren zum Ablassen des geschmolzenen Glases vom Bodenauslaß des Glasschmelzofens
DE69829085T2 (de) Induktionsofen und Bodenabstichmechanismus dafür
EP0379647B1 (de) Feuerfeste Verbindung sowie Induktionsspule hierfür
EP0761347A1 (de) Verfahren zum Betreiben eines Induktors und Induktor zur Durchführung des Verfahrens
DE19531161C2 (de) Warmkammer-Druckgießmaschine
EP2310538A1 (de) Verfahren und vorrichtungen zur regelung der strömungsgeschwindigkeit und zum abbremsen von nichtferromagnetischen, elektrisch leitfähigen flüssigkeiten und schmelzen
DE2430637A1 (de) Anordnung zur kondensierung und abscheidung von wachs, paraffin und anderen stoffen aus einem gasstrom
DE19641169C1 (de) Verfahren und Vorrichtung zum disontinuierlichen Abstechen von Schmelzen
EP0989200A1 (de) Bedampfungsvorrichtung
DD295035A5 (de) Elektromagnetisches ventil
DE19603317A1 (de) Verfahren zum Betreiben eines Induktors und Induktor zur Durchführung des Verfahrens
EP1135341B1 (de) Vorrichtung zum erschmelzen oder läutern von gläsern oder glaskeramiken
DE4136066A1 (de) Ausgusseinrichtung fuer ein metallurgisches gefaess und verfahren zum oeffnen und schliessen einer ausgusshuelse
WO1998005452A1 (de) Verfahren, vorrichtung und feuerfester ausguss zum angiessen und/oder vergiessen von flüssigen metallen
DE3641617A1 (de) Verfahren zum regeln von stranggiessbedingungen
DE1521195B2 (de) Verfahren und Vorrichtung zum kontinuierlichen Umgießen eines Metallstranges mit einer dicken Schicht eines Metalls mit einem niedrigeren Schmelzpunkt
DE19651534C2 (de) Verfahren, Vorrichtung und feuerfester Ausguß zum Angießen und/oder Vergießen von flüssigen Metallen
EP0944448B1 (de) Induktor bei einem schmelzengefäss
EP0167037A1 (de) Badelektrode zu Pfannenofen
WO1998018584A2 (de) Verfahren, vorrichtung und verschlussglied zum angiessen von flüssigen schmelzen
EP1785206A1 (de) Verfahren und Vorrichtung zum Kühlen einer Stranggiesskokille mittels Dampf
DE3041741C2 (de) Induktionsrinnenofen
DE19540641C2 (de) Verfahren zum Betrieb einer Induktionsvorrichtung beim Ausfluß nichtmetallischer Schmelzen
DE10035097A1 (de) Heizvorrichtung mit Inneninduktor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19970912

17Q First examination report despatched

Effective date: 19981028

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020423