EP0739543A1 - Perowskitische elektroden und damit bestückte hochtemperatur-brennstoffzellen - Google Patents

Perowskitische elektroden und damit bestückte hochtemperatur-brennstoffzellen

Info

Publication number
EP0739543A1
EP0739543A1 EP95905046A EP95905046A EP0739543A1 EP 0739543 A1 EP0739543 A1 EP 0739543A1 EP 95905046 A EP95905046 A EP 95905046A EP 95905046 A EP95905046 A EP 95905046A EP 0739543 A1 EP0739543 A1 EP 0739543A1
Authority
EP
European Patent Office
Prior art keywords
perovskite
fuel cells
high temperature
temperature fuel
platinum metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95905046A
Other languages
German (de)
English (en)
French (fr)
Inventor
Dasarathi Laser and Plasma Technology DAS
Jimmie Edwards
Lutz Kindermann
Klaus Hilpert
Günther PÜTZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0739543A1 publication Critical patent/EP0739543A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an electrode
  • Perovskite base with solid electrolyte contact which is particularly suitable for high-temperature fuel cells.
  • Solid electrolyte fuel cells usually operate at operating temperatures of around 950 to 1000 ° C. The aim is to lower the operating temperature to approximately 800 ° C.
  • ZrO2 (YsZ) stabilized with Y 2 O 3 is generally used as the solid electrolyte.
  • the solid electrolyte which in the classic concept also serves as a substrate support and usually has a thickness of 100 to 150 ⁇ m, is coated on both sides with different materials as electrodes (see Fig. 1): Perovskites such as (La 1-x Sr x ) MnO 3 applied, as an anode a Ni / ZrO 2 cermet.
  • the aim of the invention is therefore to reduce the chemical interactions between the perovskites serving as electrodes and the solid electrolyte and, if appropriate, to improve the electrochemical properties of the electrodes. This goal is achieved by inhibiting platinum metal doping in the perovskite adjacent to the electrolyte.
  • doped electrodes additionally show improved electrochemical properties.
  • the doping amounts useful here can go up to over 1%, but are expediently chosen in the range from 10 to 10 3 ppm.
  • platinum metals iridium and ruthenium are preferred, which are absorbed by the perovskite in particular in oxidic form.
  • the doping can vary over the total volume of the
  • platinum metals with high oxide vapor pressure e.g.
  • the perovskite e.g. in air or another oxygen-containing atmosphere at elevated temperatures (approx. 600 - 1000 ° C) exposed to the access of the oxide vapor for long periods.
  • the desired doping can be achieved by impregnation and heat treatment or by suitable additives already during electrode manufacture.
  • perovskite cathodes of high-temperature fuel cells particular attention is paid to the perovskite cathodes of high-temperature fuel cells, but a perovskite provided for the anode can also be doped with platinum metal according to the invention.
  • the doping according to the invention is useful for types of perovskite and mixtures such as are provided for fuel cells, such as for example perovskite based on LaMnO 3 , LaCoO 3 , LaFeO 3 ⁇ , LaCrO 3, etc.
  • Perovskites based on lanthanum ferrite were examined in particular. Y 2 O 3 -containing ZrO 2 materials are widely used as the solid electrolyte.
  • the reduction in reactivity of perovskite electrodes by platinum metal doping can, of course, also be used with other oxide masses serving as solid electrolyte, such as mixed oxides based on Gd, Ce-based and doped BaCeO 3 .
  • the invention is not limited to fuel cells, but can be used in all cases of boundary layer structures operated at elevated temperatures, in which material of the perovskite type and high-temperature-resistant oxide materials in particular
  • perovskites e.g.
  • FIG. 1 shows a diagram for an electrode / electrolyte arrangement of fuel cells
  • FIG. 2 shows a graph for the SrZrO 3 formation in a powder mixture of YsZ and perovskite
  • Figure 3 is an x-ray diagram for
  • Figure 4 is a graph for the cell volume
  • Perovskite powders of different compositions were loaded for 48 h or 121 h at 900 ° C together with iridium sheet in air via the gas phase.
  • the samples pretreated in this way were mixed with the electrolyte material 8YsZ (with 8 mol% Y2O3 stabilized ZrO 2 ) in equimolar proportions, pressed into pellets and annealed or aged at 1000 ° C. for different times.
  • the formation of reaction products (SrZrO 3 or CaZrO 3 ) after 25 h or 48 h exposure was determined with the aid of X-ray diffraction images.
  • the results are summarized in Table 1. As can be seen, the samples doped with iridium show a much lower tendency to react with the electrolyte than that untreated samples.
  • the time course of the SrZrO 3 formation is plotted in FIG. 2, which clearly shows the difference.
  • a perovskite with the composition (La 0.6 Sr 0.4 ) 0.9 Fe 0.8 Co 0.2 O 3- ⁇ was chosen as the starting material, which was calcined for 48 h at 900 ° C in an oxygen atmosphere.
  • two samples of the same composition were "outsourced” in the same oxygen atmosphere in the presence of iridium at 900 ° C for 48 h or 121 h.
  • the nitrates of the corresponding metal components of the perovskite and Ir (III) oxide (Ir 2 O 3 ) served as starting materials. All components were homogenized in an aqueous solution, dried and then stored in air at 1200 ° C. for 48 h in order to build up the perovskite grid. With the help of a parallel iridium determination using neutron activation analysis and
  • the iridium content could be determined to be about 200 ppm in both cases.
  • the perovskite obtained was mixed in an equimolar ratio with YsZ, pressed into pellets and aged at 1000 ° C for 72 hours. The result is shown in Tab. 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
EP95905046A 1994-01-11 1995-01-10 Perowskitische elektroden und damit bestückte hochtemperatur-brennstoffzellen Withdrawn EP0739543A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4400540A DE4400540C2 (de) 1994-01-11 1994-01-11 Perowskitische Elektroden insbesondere für Hochtemperatur-Brennstoffzellen
DE4400540 1994-01-11
PCT/DE1995/000026 WO1995019053A1 (de) 1994-01-11 1995-01-10 Perowskitische elektroden und damit bestückte hochtemperatur-brennstoffzellen

Publications (1)

Publication Number Publication Date
EP0739543A1 true EP0739543A1 (de) 1996-10-30

Family

ID=6507700

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95905046A Withdrawn EP0739543A1 (de) 1994-01-11 1995-01-10 Perowskitische elektroden und damit bestückte hochtemperatur-brennstoffzellen

Country Status (7)

Country Link
US (1) US5824429A (ja)
EP (1) EP0739543A1 (ja)
JP (1) JPH09507335A (ja)
AU (1) AU694471B2 (ja)
DE (1) DE4400540C2 (ja)
NO (1) NO962900L (ja)
WO (1) WO1995019053A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19547700C2 (de) * 1995-12-20 1998-09-17 Forschungszentrum Juelich Gmbh Elektrodensubstrat für eine Brennstoffzelle
DE19547701C2 (de) * 1995-12-20 2000-01-20 Forschungszentrum Juelich Gmbh Elektrode-Elektrolyt-System aus oxidischem Material
DE19605086C1 (de) * 1996-02-12 1997-06-26 Siemens Ag Hochtemperatur-Brennstoffzelle und aus solchen bestehender Hochtemperatur-Brennstoffzellenstapel
JPH09238367A (ja) * 1996-02-29 1997-09-09 Matsushita Electric Ind Co Ltd テレビジョン信号送信方法,テレビジョン信号送信装置,テレビジョン信号受信方法,テレビジョン信号受信装置,テレビジョン信号送信受信方法,テレビジョン信号送信受信装置
DE19640926C1 (de) * 1996-10-04 1998-01-15 Dornier Gmbh Elektrode für eine elektrochemische Zelle, Elektroden-Elektrolyteinheit und zugehöriges Herstellungsverfahren
ATE198519T1 (de) 1997-09-11 2001-01-15 Sulzer Hexis Ag Elektrochemisch aktives element zu einer festoxidbrennstoffzelle
ATE349777T1 (de) * 1999-10-08 2007-01-15 Fuelcell Energy Ltd Kompositelektroden für festkörperelektrochemische vorrichtungen
US6565737B2 (en) * 2000-12-14 2003-05-20 Battelle Memorial Institute Method and apparatus for selectively removing oxygen using a non-catalytic electrode in an electrochemical cell
WO2002056399A2 (en) * 2001-01-12 2002-07-18 Global Thermoelectric Inc. Redox solid oxide fuel cell
US6620535B2 (en) * 2001-05-09 2003-09-16 Delphi Technologies, Inc. Strategies for preventing anode oxidation
EP1289035A2 (en) * 2001-08-29 2003-03-05 Matsushita Electric Industrial Co., Ltd. Composite electrode for reducing oxygen
US7045244B2 (en) * 2002-06-10 2006-05-16 Hewlett-Packard Development Company, L.P. Fuel cells utilizing non-porous nanofilm microchannel architecture
JP4601896B2 (ja) * 2002-10-30 2010-12-22 富士通セミコンダクター株式会社 半導体装置及びその製造方法
US7758992B2 (en) * 2002-11-15 2010-07-20 Battelle Memorial Institute Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices
US20040214070A1 (en) * 2003-04-28 2004-10-28 Simner Steven P. Low sintering lanthanum ferrite materials for use as solid oxide fuel cell cathodes and oxygen reduction electrodes and other electrochemical devices
DE10351955A1 (de) * 2003-11-07 2005-06-16 Forschungszentrum Jülich GmbH Kathodenwerkstoff für eine Hochtemperatur-Brennstoffzelle (SOFC) sowie eine daraus herstellbare Kathode
US7157165B2 (en) * 2003-11-18 2007-01-02 Uchicago Argonne, Llc Iron-based perovskite cathodes for solid oxide fuel cells

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671323A (en) * 1970-01-12 1972-06-20 Westinghouse Electric Corp Hydrophobic layers for gas diffusion electrodes
BR7902625A (pt) * 1978-05-04 1979-11-27 Du Pont Aperfeicoamento em sensor de concentracao de oxigenio
DE2837118C2 (de) * 1978-08-25 1982-05-19 Dornier System Gmbh, 7990 Friedrichshafen Poröse Oxidelektroden für elektrochemische Hochtemperaturzellen
US4631238A (en) * 1985-01-18 1986-12-23 Westinghouse Electric Corp. Cobalt doped lanthanum chromite material suitable for high temperature use
DE3610363A1 (de) * 1986-03-27 1987-10-01 Kernforschungsz Karlsruhe Verfahren zum kontinuierlichen ueberwachen von konzentrationen von gasfoermigen bestandteilen in gasgemischen, ausgenommen o(pfeil abwaerts)2(pfeil abwaerts)
JPH01105472A (ja) * 1987-10-16 1989-04-21 Mitsubishi Heavy Ind Ltd 固体電解質燃料電池
US4895576A (en) * 1988-04-15 1990-01-23 Westinghouse Electric Corp. Method of doping interconnections for electrochemical cells
US4885078A (en) * 1988-12-07 1989-12-05 Westinghouse Electric Corp. Devices capable of removing silicon and aluminum from gaseous atmospheres
JPH03112059A (ja) * 1989-09-27 1991-05-13 Osaka Gas Co Ltd 固体電解質燃料電池
JPH03112057A (ja) * 1989-09-27 1991-05-13 Osaka Gas Co Ltd 固体電解質燃料電池
ES2100877T5 (es) * 1989-12-27 2004-03-16 The Standard Oil Company Reactores electroquimicos y membranas de varios componentes utiles para reacciones de oxidacion.
JP3134882B2 (ja) * 1990-03-30 2001-02-13 東燃ゼネラル石油株式会社 ランタンクロマイト系複合酸化物と用途
JPH0412457A (ja) * 1990-04-27 1992-01-17 Tonen Corp 高温型燃料電池
JPH04230955A (ja) * 1990-05-31 1992-08-19 Tonen Corp 高温型燃料電池
DE4116734C1 (ja) * 1991-05-23 1992-10-15 Abb Patent Gmbh, 6800 Mannheim, De
US5543239A (en) * 1995-04-19 1996-08-06 Electric Power Research Institute Electrode design for solid state devices, fuel cells and sensors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9519053A1 *

Also Published As

Publication number Publication date
NO962900D0 (no) 1996-07-10
AU1382195A (en) 1995-08-01
JPH09507335A (ja) 1997-07-22
NO962900L (no) 1996-07-10
US5824429A (en) 1998-10-20
AU694471B2 (en) 1998-07-23
WO1995019053A1 (de) 1995-07-13
DE4400540A1 (de) 1995-07-13
DE4400540C2 (de) 1995-10-12

Similar Documents

Publication Publication Date Title
WO1995019053A1 (de) Perowskitische elektroden und damit bestückte hochtemperatur-brennstoffzellen
DE2837118C2 (de) Poröse Oxidelektroden für elektrochemische Hochtemperaturzellen
EP2036152B1 (de) Keramische werkstoffkombination für eine anode für eine hochtemperatur-brennstoffzelle
DE19949431A1 (de) Festoxidbrennstoffzelle mit einem Mischungsgradienten zwischen Elektrode und Elektrolyt
EP1595302B1 (de) Herstellungsverfahren für eine schutzschicht für hochtemperaturbelastete, chromoxidbildende substrate
DE19814174A1 (de) Kathodenzusammensetzung für Feststoff-Oxidbrennstoffzellen
EP1287571A1 (de) Hochtemperaturwerkstoff
EP2134663A2 (de) Werkstoff für schutzschichten auf hochtemperaturbelastbaren, chromoxidbildenden substraten, ein verfahren zu seiner herstellung sowie verwendung
EP0902493B1 (de) Elektrochemisch aktives Element zu einer Festoxidbrennstoffzelle
DE19839202A1 (de) Leitfähige Substanz aus Mischoxidionen und deren Verwendung
DE19839382B4 (de) Oxid-Ionenleiter und seine Verwendung
DE112012001479T5 (de) Brennstoffzelle
DE10130783A1 (de) Brennstoffzelle
WO2005045979A2 (de) Kathodenwerkstoff für eine hochtemperatur-brennstoffzelle (sofc) sowie eine daraus herstellbare kathode
WO1998025316A1 (de) Werkstoff für brennstoffzellen-interkonnektoren
EP1497884A2 (de) Hochtemperatur-festelektrolyt- brennstoffzelle umfassend einen verbund aus nanoporösen dünnschichtelektroden und einem strukturiertem elektrolyt
EP3331075B1 (de) Brennstoffzelle mit verbesserter robustheit
US8343685B2 (en) Composite material suitable for use as an electrode material in a SOC
DE102013007637B4 (de) Kathoden-Elektrolyt-Anodeneinheit von Hochtemperatur-Brennstoffzellen
DE112009003518T5 (de) Anodenwerkstoff for Hochtemperaturbrennstoffzellen
DE2824408C3 (de) Verfahren zur Herstellung eines elektronisch
DE112021007166T5 (de) Brennstoffelektrode und elektrochemische zelle
EP1481431B1 (de) Kathode für den einsatz bei hohen temperaturen
DE10209791C1 (de) Anodenmaterial für Hochtemperatur-Brennstoffzellen
WO2021083624A1 (de) Elektrodenmaterial, verfahren zu dessen herstellung und dessen verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19971126

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980929