EP0739543A1 - Perovskite electrodes and high temperature fuel cells fitted therewith - Google Patents

Perovskite electrodes and high temperature fuel cells fitted therewith

Info

Publication number
EP0739543A1
EP0739543A1 EP95905046A EP95905046A EP0739543A1 EP 0739543 A1 EP0739543 A1 EP 0739543A1 EP 95905046 A EP95905046 A EP 95905046A EP 95905046 A EP95905046 A EP 95905046A EP 0739543 A1 EP0739543 A1 EP 0739543A1
Authority
EP
European Patent Office
Prior art keywords
perovskite
fuel cells
high temperature
temperature fuel
platinum metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95905046A
Other languages
German (de)
French (fr)
Inventor
Dasarathi Laser and Plasma Technology DAS
Jimmie Edwards
Lutz Kindermann
Klaus Hilpert
Günther PÜTZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0739543A1 publication Critical patent/EP0739543A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an electrode
  • Perovskite base with solid electrolyte contact which is particularly suitable for high-temperature fuel cells.
  • Solid electrolyte fuel cells usually operate at operating temperatures of around 950 to 1000 ° C. The aim is to lower the operating temperature to approximately 800 ° C.
  • ZrO2 (YsZ) stabilized with Y 2 O 3 is generally used as the solid electrolyte.
  • the solid electrolyte which in the classic concept also serves as a substrate support and usually has a thickness of 100 to 150 ⁇ m, is coated on both sides with different materials as electrodes (see Fig. 1): Perovskites such as (La 1-x Sr x ) MnO 3 applied, as an anode a Ni / ZrO 2 cermet.
  • the aim of the invention is therefore to reduce the chemical interactions between the perovskites serving as electrodes and the solid electrolyte and, if appropriate, to improve the electrochemical properties of the electrodes. This goal is achieved by inhibiting platinum metal doping in the perovskite adjacent to the electrolyte.
  • doped electrodes additionally show improved electrochemical properties.
  • the doping amounts useful here can go up to over 1%, but are expediently chosen in the range from 10 to 10 3 ppm.
  • platinum metals iridium and ruthenium are preferred, which are absorbed by the perovskite in particular in oxidic form.
  • the doping can vary over the total volume of the
  • platinum metals with high oxide vapor pressure e.g.
  • the perovskite e.g. in air or another oxygen-containing atmosphere at elevated temperatures (approx. 600 - 1000 ° C) exposed to the access of the oxide vapor for long periods.
  • the desired doping can be achieved by impregnation and heat treatment or by suitable additives already during electrode manufacture.
  • perovskite cathodes of high-temperature fuel cells particular attention is paid to the perovskite cathodes of high-temperature fuel cells, but a perovskite provided for the anode can also be doped with platinum metal according to the invention.
  • the doping according to the invention is useful for types of perovskite and mixtures such as are provided for fuel cells, such as for example perovskite based on LaMnO 3 , LaCoO 3 , LaFeO 3 ⁇ , LaCrO 3, etc.
  • Perovskites based on lanthanum ferrite were examined in particular. Y 2 O 3 -containing ZrO 2 materials are widely used as the solid electrolyte.
  • the reduction in reactivity of perovskite electrodes by platinum metal doping can, of course, also be used with other oxide masses serving as solid electrolyte, such as mixed oxides based on Gd, Ce-based and doped BaCeO 3 .
  • the invention is not limited to fuel cells, but can be used in all cases of boundary layer structures operated at elevated temperatures, in which material of the perovskite type and high-temperature-resistant oxide materials in particular
  • perovskites e.g.
  • FIG. 1 shows a diagram for an electrode / electrolyte arrangement of fuel cells
  • FIG. 2 shows a graph for the SrZrO 3 formation in a powder mixture of YsZ and perovskite
  • Figure 3 is an x-ray diagram for
  • Figure 4 is a graph for the cell volume
  • Perovskite powders of different compositions were loaded for 48 h or 121 h at 900 ° C together with iridium sheet in air via the gas phase.
  • the samples pretreated in this way were mixed with the electrolyte material 8YsZ (with 8 mol% Y2O3 stabilized ZrO 2 ) in equimolar proportions, pressed into pellets and annealed or aged at 1000 ° C. for different times.
  • the formation of reaction products (SrZrO 3 or CaZrO 3 ) after 25 h or 48 h exposure was determined with the aid of X-ray diffraction images.
  • the results are summarized in Table 1. As can be seen, the samples doped with iridium show a much lower tendency to react with the electrolyte than that untreated samples.
  • the time course of the SrZrO 3 formation is plotted in FIG. 2, which clearly shows the difference.
  • a perovskite with the composition (La 0.6 Sr 0.4 ) 0.9 Fe 0.8 Co 0.2 O 3- ⁇ was chosen as the starting material, which was calcined for 48 h at 900 ° C in an oxygen atmosphere.
  • two samples of the same composition were "outsourced” in the same oxygen atmosphere in the presence of iridium at 900 ° C for 48 h or 121 h.
  • the nitrates of the corresponding metal components of the perovskite and Ir (III) oxide (Ir 2 O 3 ) served as starting materials. All components were homogenized in an aqueous solution, dried and then stored in air at 1200 ° C. for 48 h in order to build up the perovskite grid. With the help of a parallel iridium determination using neutron activation analysis and
  • the iridium content could be determined to be about 200 ppm in both cases.
  • the perovskite obtained was mixed in an equimolar ratio with YsZ, pressed into pellets and aged at 1000 ° C for 72 hours. The result is shown in Tab. 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

In perovskite electrodes in contact with solid electrolytes, in particular those based on ZrO2-Y2O3, reactivity in the contact area is clearly reduced by doping the perovskite with platinum metal. Iridium or ruthenium in oxide form are preferred, in particular in a concentration range from 10 to 1000 ppm, appropriately distributed through the whole volume of the electrode. A platinum metal additive for perovskites based on lanthanum-ferrite is of particular interest. The perovskite electrodes provided with an inhibiting platinum metal additive are appropriately used as cathodes in high temperature fuel cells.

Description

B e s c h r e i b u n g Description
Perowskitische Elektroden und damit bestückte Perovskite electrodes and equipped with them
Hochtemperatur-Brennstoffzellen High temperature fuel cells
Die Erfindung bezieht sich auf eine Elektrode auf The invention relates to an electrode
Perowskit-Basis mit Feststoffelektrolytkontakt, die insbesondere für Hochtemperatur-Brennstoffzellen geeignet ist. Perovskite base with solid electrolyte contact, which is particularly suitable for high-temperature fuel cells.
Feststoffelektrolyt-Brennstoffzellen arbeiten üblicherweise bei Betriebstemperaturen von etwa 950 bis 1000°C. Eine Erniedrigung der Betriebstemperatur bis auf etwa 800°C wird angestrebt. Als Feststoffelektrolyt wird in der Regel mit Y2O3 stabilisiertes ZrO2 (YsZ) eingesetzt. Der Feststoffelektrolyt, der beim klassischen Konzept gleichzeitig als Substratträger dient und meist eine Dicke von 100 bis 150 μm hat, ist beidseitig mit unterschiedlichen Materialien als Elektroden beschichtet (vgl. Fig. 1): Als Kathode werden üblicherweise Perowskite wie z.B. (La1-xSrx)MnO3 aufgebracht, als Anode ein Ni/ZrO2-Cermet. Solid electrolyte fuel cells usually operate at operating temperatures of around 950 to 1000 ° C. The aim is to lower the operating temperature to approximately 800 ° C. ZrO2 (YsZ) stabilized with Y 2 O 3 is generally used as the solid electrolyte. The solid electrolyte, which in the classic concept also serves as a substrate support and usually has a thickness of 100 to 150 μm, is coated on both sides with different materials as electrodes (see Fig. 1): Perovskites such as (La 1-x Sr x ) MnO 3 applied, as an anode a Ni / ZrO 2 cermet.
Die hohen Betriebstemperaturen sind notwendig, um die bei der Energieumwandlung auftretenden Energieverluste in vertretbaren Grenzen zu halten. Sie haben allerdings den Nachteil, daß an die eingesetzten Werkstoffe und die Konstruktion der Zelle hohe Anforderungen gestellt werden. Ein besonderes Problem bilden dabei die den Betrieb störenden chemischen Wechselwirkungen an denThe high operating temperatures are necessary in order to keep the energy losses that occur during energy conversion within reasonable limits. However, they have the disadvantage that high demands are placed on the materials used and the construction of the cell. A particular problem here is the chemical interactions that interfere with operation
Grenzflächen der unterschiedlichen Materialpaarungen. Diese können an der Grenzfläche zwischen den Kathoden und dem Festelektrolyten zur Bildung neuer Phasen wie z.B. SrZrO3 und La2Zr2O7 führen, was sich störend auf den Zellenbetrieb auswirkt. Die Auswahl geeigneter Perowskite wird dadurch erschwert. Interfaces of the different material pairings. These can lead to the formation of new phases such as SrZrO 3 and La 2 Zr 2 O7 at the interface between the cathodes and the solid electrolyte, which is disruptive affects cell operation. This makes it difficult to select suitable perovskites.
Ziel der Erfindung ist daher eine Verminderung der chemischen Wechselwirkungen zwischen den als Elektroden dienenden Perowskiten und dem Festelektrolyten und ggf. eine Verbesserung der elektrochemischen Eigenschaften der Elektroden. Dieses Ziel wird durch eine inhibierende Platinmetalldotierung im Perowskit angrenzend an den Elektrolyten erreicht. The aim of the invention is therefore to reduce the chemical interactions between the perovskites serving as electrodes and the solid electrolyte and, if appropriate, to improve the electrochemical properties of the electrodes. This goal is achieved by inhibiting platinum metal doping in the perovskite adjacent to the electrolyte.
Es wurde nämlich überraschenderweise festgestellt, daß die Reaktivität von Perowskiten gegenüber Festelektrolytmassen, insbesondere solchen auf ZrO2-Y2O3-Basis, durch eine Platinmetalldotierung des Perowskits, der in das Gitter eingebaute Platinmetall (ionen) enthält, deutlich vermindert wird. Ferner wurde festgestellt, daß gewisse Platinmetalle, wie z.B. Iridium, die üblicherweise unter Sauerstoffeinfluß als Oxide sehr flüchtig sind, im Perowskit gebunden werden. So It has been surprisingly found that the reactivity of perovskites towards solid electrolyte materials, in particular those based on ZrO 2 -Y 2 O 3 , is significantly reduced by platinum metal doping of the perovskite, which contains platinum metal (ions) built into the lattice. It was also found that certain platinum metals, such as iridium, which are usually very volatile under the influence of oxygen, are bound in the perovskite. So
dotierte Elektroden zeigen zusätzlich verbesserte elektrochemische Eigenschaften. doped electrodes additionally show improved electrochemical properties.
Die dabei nützlichen Dotierungsmengen können bis über 1 % gehen, werden aber zweckmäßigerweise im Bereich von 10 - 103 ppm gewählt. Unter den Platinmetallen werden Iridium und Ruthenium bevorzugt, die insbesondere in oxidischer Form vom Perowskit aufgenommen werden. Die Dotierung kann sich über das Gesamtvolumen der The doping amounts useful here can go up to over 1%, but are expediently chosen in the range from 10 to 10 3 ppm. Among the platinum metals, iridium and ruthenium are preferred, which are absorbed by the perovskite in particular in oxidic form. The doping can vary over the total volume of the
Elektrode erstrecken, besonders wichtig ist jedoch der Grenzbereich dem Festelektrolyten gegenüber. Zwar sind perowskitische Elektroden in unterschiedlicher Zusammensetzung und vielfältiger Dotierung bekannt (siehe z.B. EP 0 373 745 A2), jedoch wurde bislang keine Plantinmetalldotierung, insbesondere des Grenzbereichs zum Elektrolyten hin in Erwägung gezogen, geschweige denn deren stabilisierende Wirkung erkannt. Es findet sich lediglich in der DE 28 37 118 C2 ein Hinweis auf den Zusatz von Platin oder Platinlegierung zu chromhaltigen Elektroden mit Perowskitstruktur zur Verbesserung der katalytischen Einstellung des Abgasgleichgewichts ohne jede Spezifizierung. Dieser der allgemeinen Kenntnis der abgaskatalytischen Wirkung von Platin und Platinlegierung folgende Vor-schlag aus 1978 kann keinesfalls als Hinweis auf die stabilisierendeExtend electrode, but the border area with the solid electrolyte is particularly important. Perovskite electrodes with different compositions and varied doping are known (see, for example, EP 0 373 745 A2), but no plantin metal doping, in particular of the Borderline to the electrolyte was considered, let alone recognized its stabilizing effect. There is only a reference in DE 28 37 118 C2 to the addition of platinum or platinum alloy to chromium-containing electrodes with a perovskite structure to improve the catalytic adjustment of the exhaust gas balance without any specification. This proposal from 1978, which follows the general knowledge of the exhaust gas catalytic effect of platinum and platinum alloy, can in no way serve as an indication of the stabilizing effect
Wirkung einer Dotierung von perowskitischen Elektroden durch Platinmetalle in aufoxidierter Form im Grenzbereich zum Festelektrolyten hin verstanden werden. Zur Erzielung der erfindungsgemäßen Dotierung werden Platinmetalle mit hohem Oxiddampfdruck (wie z.B. Effect of doping perovskite electrodes by platinum metals in oxidized form in the boundary region to the solid electrolyte can be understood. To achieve the doping according to the invention, platinum metals with high oxide vapor pressure (e.g.
Iridium) über die Gasphase in das Material eingebracht. Dafür wird der Perowskit z.B. in Luft oder einer anderen Sauerstoffhaltigen Atmosphäre bei erhöhten Temperaturen (etwa 600 - 1000°C) über längere Zeiten hinweg dem Zugriff des Oxiddampfs ausgesetzt. Alternativ kann die gewünschte Dotierung durch Imprägnierung und Hitzbehandlung oder bereits bei der Elektrodenherstellung durch geeignete Zusätze erreicht werden. Iridium) introduced into the material via the gas phase. For this, the perovskite e.g. in air or another oxygen-containing atmosphere at elevated temperatures (approx. 600 - 1000 ° C) exposed to the access of the oxide vapor for long periods. Alternatively, the desired doping can be achieved by impregnation and heat treatment or by suitable additives already during electrode manufacture.
Besonderes Augenmerk gilt im Rahmen der vorliegenden Erfindung den Perowskit-Kathoden von HochtemperaturBrennstoffzellen, jedoch kann auch ein für die Anode vorgesehener Perowskit erfindungsgemäß mit Platinmetall dotiert sein. In the context of the present invention, particular attention is paid to the perovskite cathodes of high-temperature fuel cells, but a perovskite provided for the anode can also be doped with platinum metal according to the invention.
Die erfindungsgemäße Dotierung ist für Perowskitsorten und -Mischungen nützlich, wie sie für Brennstoffzellen vorgesehen werden, wie beispielsweise Perowskite auf LaMnO3-Basis, LaCoO3-Basis, LaFeO3~Basis, LaCrO3-Basis udgl. The doping according to the invention is useful for types of perovskite and mixtures such as are provided for fuel cells, such as for example perovskite based on LaMnO 3 , LaCoO 3 , LaFeO 3 ~, LaCrO 3, etc.
Untersucht wurden insbesondere Perowskite auf LanthanFerrit-Basis. Als Festelektrolyt sind Y2O3-haltige ZrO2-Massen umfänglich in Gebrauch. Die Reaktivitätsminderung perowskitischer Elektroden durch Platinmetall-Dotierungen (insb. in oxidischer Form) kann jedoch selbstverständlich auch anderen als Festelektrolyt dienenden Oxidmassen gegenüber, wie z.B. Mischoxiden auf Gd, CeBasis und dotiertem BaCeO3, ausgenutzt werden. Perovskites based on lanthanum ferrite were examined in particular. Y 2 O 3 -containing ZrO 2 materials are widely used as the solid electrolyte. The reduction in reactivity of perovskite electrodes by platinum metal doping (in particular in oxidic form) can, of course, also be used with other oxide masses serving as solid electrolyte, such as mixed oxides based on Gd, Ce-based and doped BaCeO 3 .
Selbstverständlich ist die Erfindung nicht auf Brennstoffzellen beschränkt, sondern in allen Fällen von bei erhöhten Temperaturen betriebenen Grenzschichtstrukturen anwendbar, bei denen Material vom Perowskit-Typ und hochtemperaturfeste Oxidmassen insbesondere Of course, the invention is not limited to fuel cells, but can be used in all cases of boundary layer structures operated at elevated temperatures, in which material of the perovskite type and high-temperature-resistant oxide materials in particular
amphoterer bis schwach basischer Beschaffenheit amphoteric to slightly basic
aneinandergrenzen. adjoin.
Die Verminderung bzw. Vermeidung von chemischen The reduction or avoidance of chemical
Wechselwirkungen gemäß der Erfindung bietet die Interactions according to the invention offers the
Möglichkeit, Perowskite mit verbesserten elektrischen Eigenschaften bei hohen Betriebstemperaturen (950 -1000°C) einzusetzen bzw. längere Betriebszeiten zu erreichen. Possibility to use perovskites with improved electrical properties at high operating temperatures (950-1000 ° C) or to achieve longer operating times.
Ferner wird der Einsatz von Perowskiten, wie z.B Furthermore, the use of perovskites, e.g.
(La1-xSrx)-(Fe1-yCoy)O3, möglich, die wegen ihrer attraktiven elektrischen Eigenschaften auch bei niedrigeren Temperaturen (von etwa 500 bis 900°C) einen wirtschaftlichen Zellenbetrieb gestatten: Eine Erniedrigung der Zellentemperatur, wobei auch die Dicke des YsZ deutlich unter 100 μm verringert werden kann bzw. (La 1-x Sr x ) - (Fe 1-y Co y ) O 3 , which, because of their attractive electrical properties, allow economical cell operation even at lower temperatures (from about 500 to 900 ° C): a lowering of the cell temperature , whereby the thickness of the YsZ can also be reduced significantly below 100 μm or
andere Festelektrolyte als YsZ zum Einsatz kommen können, ist ein vorrangiges Ziel der BrennstoffzellenEntwicklung, um Kosten zu senken und BetriebsZeiten zu verlängern. Nachfolgend werden Versuche zur Verdeutlichung der Erfindung mitgeteilt. Dabei wird auf die beigefügten Zeichnungen Bezug genommen; es zeigen: Figur 1 ein Schema für eine Elektroden/ElektrolytAnordnung von Brennstoffzellen; Solid electrolytes other than YsZ can be used is a primary goal of fuel cell development in order to reduce costs and extend operating times. Attempts to illustrate the invention are given below. Reference is made to the accompanying drawings; FIG. 1 shows a diagram for an electrode / electrolyte arrangement of fuel cells;
Figur 2 ein Kurvenbild für die SrZrO3~Bildung in einem Pulvergemisch aus YsZ und Perowskit,FIG. 2 shows a graph for the SrZrO 3 formation in a powder mixture of YsZ and perovskite,
La0.6Sr0.4Fe0.8Mn0.2O3-δ, mit▲ bzw. La 0.6 Sr 0.4 Fe 0.8 Mn 0.2 O 3-δ , with ▲ or
ohne● Ir-Dotierung in Abhängigkeit von der without ● Ir doping depending on the
Zeit; Time;
Figur 3 ein Röntgendiagramm für  Figure 3 is an x-ray diagram for
La0.6Sr0.4Fe0.8Mn0.2O3-δ (1), La 0.6 Sr 0.4 Fe 0.8 Mn 0.2 O 3-δ (1),
La0.6Sr0.4Fe0.8Mn0.2O3-δ + 121 h Ir (2) und La0.6Sr0.4Fe0.8Mn0.2O3-δ + 48 h Ir (3); und La 0.6 Sr 0.4 Fe 0.8 Mn 0.2 O 3-δ + 121 h Ir (2) and La 0.6 Sr 0.4 Fe 0.8 Mn 0.2 O 3-δ + 48 h Ir (3); and
Figur 4 ein Kurvenbild für das Zellvolumen nach Figure 4 is a graph for the cell volume
Auslagerung der Zusammensetzung Outsourcing the composition
(La0.6Sr0.4)(Fe0.8Mn0.2)O3-δ über 48 h und 121 h in einer Ir-Atmosphäre. (La 0.6 Sr 0.4 ) (Fe 0.8 Mn 0.2 ) O 3-δ over 48 h and 121 h in an Ir atmosphere.
Perowskitpulver unterschiedlicher Zusammensetzungen (Tab. 1) wurden 48 h bzw. 121 h bei 900°C zusammen mit Iridiumblech in Luft über die Gasphase beladen. Die so vorbehandelten Proben wurden mit dem Elektrolytmaterial 8YsZ (mit 8 Mol% Y2O3 stabilisiertes ZrO2) in äquimolaren Verhältnissen gemischt, zu Pellets verpreßt und bei 1000°C über unterschiedliche Zeiten hinweg getempert bzw. ausgelagert. Mit Hilfe von Röntgenbeugungsaufnahmen wurde die Bildung von Reaktionsprodukten (SrZrO3 bzw. CaZrO3) nach 25 h bzw. 48 h Auslagerung ermittelt. Die Ergebnisse sind in Tabelle 1 zusammengefaßt. Wie man sieht, zeigen die mit Iridium dotierten Proben eine sehr viel geringere Reaktionsneigung mit dem Elektrolyten als die unbehandelten Proben. Der zeitliche Verlauf der SrZrO3 - Bildung ist in Fig. 2 aufgetragen, die den Unterschied auffallig verdeut- licht. Perovskite powders of different compositions (Tab. 1) were loaded for 48 h or 121 h at 900 ° C together with iridium sheet in air via the gas phase. The samples pretreated in this way were mixed with the electrolyte material 8YsZ (with 8 mol% Y2O3 stabilized ZrO 2 ) in equimolar proportions, pressed into pellets and annealed or aged at 1000 ° C. for different times. The formation of reaction products (SrZrO 3 or CaZrO 3 ) after 25 h or 48 h exposure was determined with the aid of X-ray diffraction images. The results are summarized in Table 1. As can be seen, the samples doped with iridium show a much lower tendency to react with the electrolyte than that untreated samples. The time course of the SrZrO 3 formation is plotted in FIG. 2, which clearly shows the difference.
Wie die nachfolgenden Versuche zeigen, erfolgt bei der Iridium - Beladung des Perowskits ein nachweisbarer Einbau des Platinmetalls in das Gitter: As the following experiments show, when the perovskite is loaded with iridium, the platinum metal is demonstrably incorporated into the lattice:
Als Ausgangsmaterial wurde ein Perowskit der Zusammensetzung (La0.6Sr0.4)0.9Fe0.8Co0.2O3-δ gewählt, der für 48 h bei 900°C in einer Sauerstoffatmosphäre calciniert wurde. Parallel hierzu wurden zwei Proben der gleichen Zusammensetzung in der gleichen Sauerstoffatmosphäre in Gegenwart von Iridium bei 900° C über 48 h bzw. 121 h "ausgelagert". A perovskite with the composition (La 0.6 Sr 0.4 ) 0.9 Fe 0.8 Co 0.2 O 3-δ was chosen as the starting material, which was calcined for 48 h at 900 ° C in an oxygen atmosphere. In parallel, two samples of the same composition were "outsourced" in the same oxygen atmosphere in the presence of iridium at 900 ° C for 48 h or 121 h.
Die anschließend angefertigten Röntgenbeugungsaufhahmen zeigen für die Ir-beladenen Proben eine eindeutige Aufspaltung der Perowskitreflexe (Fig. 3), denen mit Hilfe von Computerberechnungen zwei unterschiedlichen Gittertypen zugeordnet werden konnten (Tab. 2). In beiden mit Iridium beladenen Proben findet man neben dem orthorhombischen Ausgangsgitter ein rhomboedrisches Gitter mit erheblich vergrößertem Zellvolumen (Tab. 2 u. Fig. 4). The X-ray diffraction images subsequently produced show a clear splitting of the perovskite reflexes for the Ir-loaded samples (FIG. 3), to which two different grating types could be assigned with the aid of computer calculations (Table 2). In both samples loaded with iridium, in addition to the orthorhombic starting grid, a rhombohedral grid with a considerably enlarged cell volume can be found (Tab. 2 and Fig. 4).
Dieser Befund läßt den Schluß zu, daß das Iridium in das Perowskitgitter eingebaut wird.  This finding suggests that the iridium is built into the perovskite lattice.
Zusätzlich wurden Perowskitzusammensetzungen, In addition, perovskite compositions,
La0.6Sr0.4Fe0.8Co0.2O3-δ und (La0.6Sr0.4)09Fe0.8Mn0.2O3-δ , mit relativ hohen Iridiumkonzentrationen (bis zu einigen Gew.-%) über längere Zeit (226 h und 432 h) bei 900°C einer Sauerstoffatmosphäre ausgesetzt. Die anschließende Analyse ergab Ir-Verluste von maximal 20%. Abschließend läßt sich somit feststellen, daß das Iridium tatsächlich als Dotierung in das Gitter des Perowskits eingebaut wird und dort der Reaktivität zum Festelektrolyten hin entgegenwirkt. Zusätzlich zu den Dotierungsexperimenten über die Dampφhase wurde ein Perowskit der Zusammensetzung La0.6Sr0.4Fe0.8Mn0.203-δ mit einer Iridiumdotierung unmittelbar aus den Komponenten synthetisiert. La 0.6 Sr 0.4 Fe 0.8 Co 0.2 O 3-δ and (La 0.6 Sr 0.4 ) 09 Fe 0.8 Mn 0.2 O 3-δ , with relatively high iridium concentrations (up to a few% by weight) over a long period (226 h and 432 h) exposed to an oxygen atmosphere at 900 ° C. The subsequent analysis showed Ir losses of a maximum of 20%. In conclusion, it can thus be established that the iridium is actually incorporated into the lattice of the perovskite as a doping and counteracts the reactivity towards the solid electrolyte there. In addition to the doping experiments using the vapor phase, a perovskite with the composition La 0.6 Sr 0 .4Fe 0.8 Mn 0.2 0 3-δ with an iridium doping was synthesized directly from the components.
Als Ausgangsmaterialien dienten die Nitrate der entsprechenden Metallkomponenten des Perowskits sowie Ir(III)Oxid (lr2O3). Alle Bestandteile wurden in einer wäßrigen Lösung homogenisiert, getrocknet und anschließend bei 1200°C für 48 h in Luft ausgelagert, um das Perowskitgitter aufzubauen. Mit Hilfe einer parallel durchgeführte Iridiumbestimmung mittels Neutronenaktivierungsanalyse und The nitrates of the corresponding metal components of the perovskite and Ir (III) oxide (Ir 2 O 3 ) served as starting materials. All components were homogenized in an aqueous solution, dried and then stored in air at 1200 ° C. for 48 h in order to build up the perovskite grid. With the help of a parallel iridium determination using neutron activation analysis and
Funkenquellen-Massenspektrometrie konnte der Iridiumgehalt in beiden Fällen zu etwa 200 ppm bestimmt werden. Spark source mass spectrometry, the iridium content could be determined to be about 200 ppm in both cases.
Der erhaltene Perowskit wurde in äquimolarem Verhältnis mit YsZ gemischt, zu Pellets verpreßt und 72 h bei 1000ºC ausgelagert. Das Ergebnis ist in Tab. 1 dargestellt. The perovskite obtained was mixed in an equimolar ratio with YsZ, pressed into pellets and aged at 1000 ° C for 72 hours. The result is shown in Tab. 1.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Elektrode auf Perowskit-Basis mit Feststoffelektrolytkontakt, 1. perovskite-based electrode with solid electrolyte contact,
g e k e n n z e i c h n e t d u r c h  marked by
eine inhibierende Platinmetalldotierung im  an inhibiting platinum metal doping in
Perowskit angrenzend an den Elektrolyten.  Perovskite adjacent to the electrolyte.
2. Elektrode nach Anspruch 1 , 2. Electrode according to claim 1,
g e k e n n z e i c h n e t durch einen Gehalt an  g e k e n n e i c h n e t by a content of
Iridium oder Ruthenium in oxidischer Form.  Iridium or ruthenium in oxidic form.
3. Elektrode nach Anspruch 1 oder 2, 3. Electrode according to claim 1 or 2,
g e k e n n z e i c h n e t durch einen. Platinmetallgehalt von 10 - 1000 ppm im Perowskit über das Gesamtvolumen der Elektrode hinweg.  g e k e n n e i c h n e t by one. Platinum metal content of 10 - 1000 ppm in the perovskite across the total volume of the electrode.
4. Elektrode nach einem der vorangehenden Ansprüche, 4. Electrode according to one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t  characterized
daß das Grundmaterial ein Perowskit auf LanthanFerrit-Basis ist.  that the base material is a perovskite based on lanthanum ferrite.
5. Elektrode nach einem der vorangehenden Ansprüche, 5. Electrode according to one of the preceding claims,
g e k e n n z e i c h n e t d u r c h  marked by
ihren Einsatz in Hochtemperatur-Brennstoffzellen.  their use in high temperature fuel cells.
6. Elektrode nach einem der vorangehenden Ansprüche, 6. Electrode according to one of the preceding claims,
g e k e n n z e i c h n e t d u r c h  marked by
ihren Einsatz als Kathode in FestelektrolytBrennstoffzellen.  its use as a cathode in solid electrolyte fuel cells.
7. Hochtemperatur-Brennstoffzellen mit Elektroden 7. High temperature fuel cells with electrodes
nach einem der vorangehenden Ansprüche, insb. als Kathoden, according to one of the preceding claims, especially as cathodes ,
EP95905046A 1994-01-11 1995-01-10 Perovskite electrodes and high temperature fuel cells fitted therewith Withdrawn EP0739543A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4400540A DE4400540C2 (en) 1994-01-11 1994-01-11 Perovskite electrodes, especially for high-temperature fuel cells
DE4400540 1994-01-11
PCT/DE1995/000026 WO1995019053A1 (en) 1994-01-11 1995-01-10 Perovskite electrodes and high temperature fuel cells fitted therewith

Publications (1)

Publication Number Publication Date
EP0739543A1 true EP0739543A1 (en) 1996-10-30

Family

ID=6507700

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95905046A Withdrawn EP0739543A1 (en) 1994-01-11 1995-01-10 Perovskite electrodes and high temperature fuel cells fitted therewith

Country Status (7)

Country Link
US (1) US5824429A (en)
EP (1) EP0739543A1 (en)
JP (1) JPH09507335A (en)
AU (1) AU694471B2 (en)
DE (1) DE4400540C2 (en)
NO (1) NO962900L (en)
WO (1) WO1995019053A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19547700C2 (en) * 1995-12-20 1998-09-17 Forschungszentrum Juelich Gmbh Electrode substrate for a fuel cell
DE19547701C2 (en) * 1995-12-20 2000-01-20 Forschungszentrum Juelich Gmbh Electrode-electrolyte system made of oxidic material
DE19605086C1 (en) * 1996-02-12 1997-06-26 Siemens Ag High-temperature fuel cell and from such existing high-temperature fuel cell stacks
JPH09238367A (en) * 1996-02-29 1997-09-09 Matsushita Electric Ind Co Ltd Television signal transmission method, television signal transmitter, television signal reception method, television signal receiver, television signal transmission/ reception method and television signal transmitter-receiver
DE19640926C1 (en) * 1996-10-04 1998-01-15 Dornier Gmbh Electrode for electrochemical cell
ATE198519T1 (en) 1997-09-11 2001-01-15 Sulzer Hexis Ag ELECTROCHEMICALLY ACTIVE ELEMENT FOR A SOLID OXIDE FUEL CELL
ATE349777T1 (en) * 1999-10-08 2007-01-15 Fuelcell Energy Ltd COMPOSITE ELECTRODES FOR SOLID STATE ELECTROCHEMICAL DEVICES
US6565737B2 (en) * 2000-12-14 2003-05-20 Battelle Memorial Institute Method and apparatus for selectively removing oxygen using a non-catalytic electrode in an electrochemical cell
WO2002056399A2 (en) * 2001-01-12 2002-07-18 Global Thermoelectric Inc. Redox solid oxide fuel cell
US6620535B2 (en) * 2001-05-09 2003-09-16 Delphi Technologies, Inc. Strategies for preventing anode oxidation
EP1289035A2 (en) * 2001-08-29 2003-03-05 Matsushita Electric Industrial Co., Ltd. Composite electrode for reducing oxygen
US7045244B2 (en) * 2002-06-10 2006-05-16 Hewlett-Packard Development Company, L.P. Fuel cells utilizing non-porous nanofilm microchannel architecture
JP4601896B2 (en) * 2002-10-30 2010-12-22 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof
US7758992B2 (en) * 2002-11-15 2010-07-20 Battelle Memorial Institute Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices
US20040214070A1 (en) * 2003-04-28 2004-10-28 Simner Steven P. Low sintering lanthanum ferrite materials for use as solid oxide fuel cell cathodes and oxygen reduction electrodes and other electrochemical devices
DE10351955A1 (en) * 2003-11-07 2005-06-16 Forschungszentrum Jülich GmbH Cathode material for a high-temperature fuel cell (SOFC) and a cathode producible therefrom
US7157165B2 (en) * 2003-11-18 2007-01-02 Uchicago Argonne, Llc Iron-based perovskite cathodes for solid oxide fuel cells

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671323A (en) * 1970-01-12 1972-06-20 Westinghouse Electric Corp Hydrophobic layers for gas diffusion electrodes
BR7902625A (en) * 1978-05-04 1979-11-27 Du Pont IMPROVEMENT IN OXYGEN CONCENTRATION SENSOR
DE2837118C2 (en) * 1978-08-25 1982-05-19 Dornier System Gmbh, 7990 Friedrichshafen Porous oxide electrodes for high temperature electrochemical cells
US4631238A (en) * 1985-01-18 1986-12-23 Westinghouse Electric Corp. Cobalt doped lanthanum chromite material suitable for high temperature use
DE3610363A1 (en) * 1986-03-27 1987-10-01 Kernforschungsz Karlsruhe METHOD FOR CONTINUOUSLY MONITORING CONCENTRATIONS OF GASEOUS INGREDIENTS IN GAS MIXTURES, EXCEPT O (ARROW DOWN) 2 (ARROW DOWN)
JPH01105472A (en) * 1987-10-16 1989-04-21 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
US4895576A (en) * 1988-04-15 1990-01-23 Westinghouse Electric Corp. Method of doping interconnections for electrochemical cells
US4885078A (en) * 1988-12-07 1989-12-05 Westinghouse Electric Corp. Devices capable of removing silicon and aluminum from gaseous atmospheres
JPH03112059A (en) * 1989-09-27 1991-05-13 Osaka Gas Co Ltd Solid electrolyte fuel cell
JPH03112057A (en) * 1989-09-27 1991-05-13 Osaka Gas Co Ltd Solid electrolyte fuel cell
ES2100877T5 (en) * 1989-12-27 2004-03-16 The Standard Oil Company ELECTROCHEMICAL REACTORS AND MEMBRANES OF VARIOUS USEFUL COMPONENTS FOR OXIDATION REACTIONS.
JP3134882B2 (en) * 1990-03-30 2001-02-13 東燃ゼネラル石油株式会社 Lanthanum chromite complex oxides and applications
JPH0412457A (en) * 1990-04-27 1992-01-17 Tonen Corp High-temperature type fuel cell
JPH04230955A (en) * 1990-05-31 1992-08-19 Tonen Corp High-temperature fuel cell
DE4116734C1 (en) * 1991-05-23 1992-10-15 Abb Patent Gmbh, 6800 Mannheim, De
US5543239A (en) * 1995-04-19 1996-08-06 Electric Power Research Institute Electrode design for solid state devices, fuel cells and sensors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9519053A1 *

Also Published As

Publication number Publication date
NO962900D0 (en) 1996-07-10
AU1382195A (en) 1995-08-01
JPH09507335A (en) 1997-07-22
NO962900L (en) 1996-07-10
US5824429A (en) 1998-10-20
AU694471B2 (en) 1998-07-23
WO1995019053A1 (en) 1995-07-13
DE4400540A1 (en) 1995-07-13
DE4400540C2 (en) 1995-10-12

Similar Documents

Publication Publication Date Title
WO1995019053A1 (en) Perovskite electrodes and high temperature fuel cells fitted therewith
DE2837118C2 (en) Porous oxide electrodes for high temperature electrochemical cells
EP2036152B1 (en) Ceramic material combination for an anode of a high-temperature fuel cell
DE19949431A1 (en) Solid oxide fuel cell of cylindrical or flat layered structure has solid electrolyte and air electrode layers or an interlayer of continuously varying perovskite composition
EP1595302B1 (en) Method for producing a protective coating for substrates that are subjected to high temperatures and form chromium oxide
DE19814174A1 (en) Solid oxide fuel cell cathode composition
EP1287571A1 (en) Material used at high temperatures
EP2134663A2 (en) Material for protective coatings on high temperature-resistant chromium oxide-forming substrates, method for the production thereof, and use thereof
EP0902493B1 (en) Elektrochemical active element for a solid oxide fuel cell
DE19839202A1 (en) Perovskite-type substance containing oxide of mixed ions and having high electronic-ionic mixed conductivity
DE19839382B4 (en) Oxide ion conductor and its use
DE112012001479T5 (en) fuel cell
DE10130783A1 (en) fuel cell
WO2005045979A2 (en) Cathode material for a high-temperature fuel cell (sofc) and a cathode that can be produced therefrom
WO1998025316A1 (en) Material for fuel element interconnectors
EP1497884A2 (en) High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte
EP3331075B1 (en) Fuel cell with improved robustness
US8343685B2 (en) Composite material suitable for use as an electrode material in a SOC
DE102013007637B4 (en) Cathode-electrolyte-anode unit of high-temperature fuel cells
DE112009003518T5 (en) Anode material for high temperature fuel cells
DE2824408C3 (en) Process for producing an electronically
DE112021007166T5 (en) FUEL ELECTRODE AND ELECTROCHEMICAL CELL
EP1481431B1 (en) Cathode for use at high temperatures
DE10209791C1 (en) Anode material used in powder form in a mixture with an electrolyte powder for high temperature fuel cells, or in a gas sensor with an electrolyte powder, comprises a mixed oxide containing rare earth, alkaline earth and transition metals
WO2021083624A1 (en) Electrode material, method for the production thereof, and use of same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19971126

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980929