JPH04230955A - High-temperature fuel cell - Google Patents

High-temperature fuel cell

Info

Publication number
JPH04230955A
JPH04230955A JP3125970A JP12597091A JPH04230955A JP H04230955 A JPH04230955 A JP H04230955A JP 3125970 A JP3125970 A JP 3125970A JP 12597091 A JP12597091 A JP 12597091A JP H04230955 A JPH04230955 A JP H04230955A
Authority
JP
Japan
Prior art keywords
cathode
current collector
fuel cell
electrolyte
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3125970A
Other languages
Japanese (ja)
Inventor
Atsushi Tsunoda
淳 角田
Hideto Koide
秀人 小出
Toshihiko Yoshida
利彦 吉田
Isao Mukaisawa
功 向沢
Fumiya Ishizaki
石▲崎▼ 文也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP3125970A priority Critical patent/JPH04230955A/en
Publication of JPH04230955A publication Critical patent/JPH04230955A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • H01M8/2485Arrangements for sealing external manifolds; Arrangements for mounting external manifolds around a stack
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reduce the contact resistance between the cathode and current collector of a high-temperature fuel cell and improve the cell output. CONSTITUTION:In a high-temperature fuel cell formed with a cathode 12 on the surface of a high-temperature electrolyte 1 and having a current collector 14 in contact with the cathode 12, the cathode 12 is made of La1-xSrxMo3, where M indicates Mn, Co or Ni, and at least one kind among Pd, Cr, Ti, Zn, Nb and Ta is provided on the surface of the electrolyte 11 faced to the cathode 12, the surface of the cathode 12 faced to the current collector 14 and/or the surface of the current collector 14 faced to the cathode 11.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は高温型燃料電池に係わり
、特にカソードの集電体との接触抵抗を低減し、電池出
力を向上させる技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-temperature fuel cells, and more particularly to a technique for reducing contact resistance between a cathode and a current collector and improving cell output.

【0002】0002

【従来の技術】高温型燃料電池としては、米国ウェスチ
ングハウス・エレクトリック社において既に5KW程度
のパイロットプラントが製造され、稼働しているが、こ
れは円筒型といわれるタイプで、電力密度が小さいため
小型化しにくい欠点がある。これに対して、平板型は1
段あたりの厚みを小さくすることによって電力密度を上
げることが可能であるという特徴を有するが、ガス封止
が難しいため、実証例は少ない。
[Prior Art] As for high-temperature fuel cells, a pilot plant of approximately 5KW has already been manufactured and operated at Westinghouse Electric Company in the United States, but this is a type called cylindrical and has a low power density. There is a drawback that it is difficult to downsize. On the other hand, the flat plate type has 1
Although it has the characteristic that it is possible to increase the power density by reducing the thickness per stage, there are few demonstration examples because gas sealing is difficult.

【0003】一般に電解質としては安定化もしくは部分
安定化ジルコニアが、カソードとしてはLa(Sr)M
nO3またはLa(Sr)CoO3が、アノードとして
はNi/ZrO2が用いられている。また集電体として
は金属又はLaCrO3が使用されている。
Generally, stabilized or partially stabilized zirconia is used as the electrolyte, and La(Sr)M is used as the cathode.
nO3 or La(Sr)CoO3, and Ni/ZrO2 as the anode. Further, metal or LaCrO3 is used as the current collector.

【0004】0004

【発明が解決しようとする課題】カソードとしては始め
は白金などが用いられていたが、酸素の解離反応に対す
る触媒活性が高く、電池性能が向上することから、白金
等に代えてペロブスカイト型酸化物が多く用いられてい
る。しかし、カソードとしてLa(Sr)MnO3また
はLa(Sr)CoO3などのペロブスカイト型酸化物
を用いた場合、カソードと集電体または電解質の接触抵
抗、特にカソードと集電体の接触抵抗が増大して、その
分だけ出力が低下している。
[Problems to be Solved by the Invention] Platinum and other materials were initially used as cathodes, but perovskite oxides were used instead of platinum because they have high catalytic activity against oxygen dissociation reactions and improve battery performance. is often used. However, when a perovskite oxide such as La(Sr)MnO3 or La(Sr)CoO3 is used as a cathode, the contact resistance between the cathode and the current collector or electrolyte, especially the contact resistance between the cathode and the current collector, increases. , the output is reduced by that amount.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、高温型電解質の1表面にカソードを形
成し、カソードに対して集電体を接触させた構造を有す
る高温型燃料電池において、カソードがLa1−x S
rxMO3 (式中、MはMn ,Co 又はNi を
表す)からなり、かつ電解質のカソードに面する表面、
カソードの集電体に面する表面及び/又は集電体のカソ
ードに面する表面にPd ,Cr ,Mn ,Ti ,
Zn ,Nb 及びTa のうち少なくとも1種を存在
せしめたことを特徴とする高温型燃料電池を提供するも
のである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a high-temperature electrolyte having a structure in which a cathode is formed on one surface of a high-temperature electrolyte and a current collector is brought into contact with the cathode. In a fuel cell, the cathode is La1-x S
rxMO3 (wherein M represents Mn, Co or Ni) and faces the cathode of the electrolyte,
Pd, Cr, Mn, Ti,
The present invention provides a high-temperature fuel cell characterized in that at least one of Zn, Nb, and Ta is present.

【0006】本発明で用いるカソードはLa1−x S
rxMO3 (式中、MはMn ,Co 又はNi を
表す)である。xの値は導電率から0.05〜0.50
であることが好ましい。集電体としては、耐還元性、耐
熱性、耐酸化性、導電性の材料であればよいが、LaC
rO3,Cr を含むCo 基合金、Cr を含むNi
 基合金、金属Cr などが好ましく用いられる。
[0006] The cathode used in the present invention is La1-x S
rxMO3 (wherein M represents Mn, Co, or Ni). The value of x is 0.05 to 0.50 from the conductivity
It is preferable that The current collector may be any material that is resistant to reduction, heat resistant, oxidation resistant, and conductive, but LaC
rO3, Co-based alloy containing Cr, Ni containing Cr
Base alloys, metal Cr, etc. are preferably used.

【0007】電解質/カソード界面、及びカソード/集
電体界面に存在することによりカソードの接触抵抗を減
少させる金属としてはPd ,Cr ,Mn ,Ti 
,Zn ,Nb ,Ta のうち1種以上を用いる。本
発明者らは、このほか、Pt あるいはCo ,In 
,Sn を用いることを別途開示したが(特願平2−1
10482号及び同2−110483号)同様に、上記
のPd 等の金属でも効果があることを見い出した。
Metals that reduce the contact resistance of the cathode by being present at the electrolyte/cathode interface and the cathode/current collector interface include Pd, Cr, Mn, and Ti.
, Zn, Nb, and Ta. In addition, the present inventors have also discovered Pt, Co, In
, Sn was separately disclosed (Patent application No. 2-1)
No. 10482 and No. 2-110483), it was also found that metals such as the above-mentioned Pd are also effective.

【0008】Pd ,Cr ,Mn ,Ti ,Zn 
,Nb 及びTa のうち少なくとも1種を電解質表面
、カソード表面、あるいは集電体表面に適用する方法と
しては、スパッタリング、電子ビーム蒸着、等によるこ
とができる。 なお、Pd 等を適用する集電体表面はカソードと接触
しない表面でも有効である。高温型燃料電池の使用時の
高温でPd 等の一部が拡散して集電体とカソードの界
面に移動するからである。
[0008] Pd, Cr, Mn, Ti, Zn
, Nb 2 and Ta to the electrolyte surface, cathode surface, or current collector surface may be sputtering, electron beam evaporation, or the like. Note that the surface of the current collector to which Pd or the like is applied is also effective even on a surface that does not come into contact with the cathode. This is because at high temperatures during use of a high-temperature fuel cell, a portion of Pd and the like diffuses and moves to the interface between the current collector and the cathode.

【0009】Pd ,Cr ,Mn ,Ti ,Zn 
,Nb 及びTa のうち少なくとも1種の適用量は、
カソードと集電体あるいは電解質の界面に層を形成する
必要はなく、存在する程度に接触抵抗低減の効果がある
。上限は、カソードとしてのLa1−x SrxMO3
 の特性を阻害しない程度であればよい。
[0009] Pd, Cr, Mn, Ti, Zn
, Nb and Ta, the application amount of at least one of them is:
It is not necessary to form a layer at the interface between the cathode and the current collector or electrolyte, and the presence of a layer has the effect of reducing contact resistance. The upper limit is La1-x SrxMO3 as cathode
It is sufficient as long as it does not impede the characteristics of.

【0010】0010

【作用】Pd ,Cr ,Mn ,Ti ,Zn ,N
b 及びTa のうち少なくとも1種が電解質/カソー
ド界面、及びカソード/集電体界面に存在することによ
り、カソードのこれら界面での接触抵抗が減少し、燃料
電池の出力が向上する。
[Action] Pd, Cr, Mn, Ti, Zn, N
The presence of at least one of b and Ta at the electrolyte/cathode interface and cathode/current collector interface reduces the contact resistance of the cathode at these interfaces, improving the output of the fuel cell.

【0011】[0011]

【実施例】実施例1 図1の集合様式に従い固体電解質型燃料電池を製作した
。固体電解質板11にはイットリアを3モルパーセント
添加したジルコニアである部分安定化ジルコニアの寸法
50×50×0.2mmの板状物を用いた。酸素通路側
にLa0.9Sr0.1MnO3粉末(平均粒径約5μ
m)を有機系バインダーに分散し、厚さ0.1〜0.5
mmに塗布してカソート12とし、水素通路側にNi 
/ZrO2(9/1重量比)のサーメット混合粉末を有
機系バインダーに分散し、厚さ0.1〜0.5mmに塗
布してアノード13とした。集電体14はNi 系耐熱
合金の寸法50×50×5mmの平板にガス流路として
深さ2.0mmの溝を設けたものをそのまま、またはカ
ソードとの接触面にPd ペーストを塗布して用いた。
EXAMPLES Example 1 A solid oxide fuel cell was manufactured according to the assembly pattern shown in FIG. As the solid electrolyte plate 11, a plate-like material of partially stabilized zirconia, which is zirconia added with 3 mole percent of yttria, and having dimensions of 50 x 50 x 0.2 mm was used. La0.9Sr0.1MnO3 powder (average particle size approximately 5μ) on the oxygen passage side
m) is dispersed in an organic binder to a thickness of 0.1 to 0.5
Ni is applied to the hydrogen passage side to form cathode 12.
A cermet mixed powder of /ZrO2 (9/1 weight ratio) was dispersed in an organic binder and applied to a thickness of 0.1 to 0.5 mm to obtain an anode 13. The current collector 14 is a flat plate made of a Ni-based heat-resistant alloy with dimensions of 50 x 50 x 5 mm with a groove of 2.0 mm deep as a gas flow path, or it is made by applying Pd paste on the contact surface with the cathode. Using.

【0012】この固体電解質板11と集電体14を図1
の如く積層し、固体電解質板11と集電体14の間に軟
化点が約 800℃のガラスペーストを塗布してガス封
止用とした。 このガラスペーストは電池の作動温度1000℃で軟化
してガスを封止する。こうして集積した電池に図2に示
した円筒状のアルミナ製マニホールド22を取り付けた
。マニホールド22と電池本体21との接触部分はセラ
ミックペーストを塗布乾燥して接合した後、さらにガラ
スペーストを塗布してガス封止した。電気の取り出し部
には白金リード線を溶接し、電気的に接続した。同図中
、23は水素入口、24は未反応水素出口、25は酸素
入口、26は未反応酸素出口である。
This solid electrolyte plate 11 and current collector 14 are shown in FIG.
A glass paste having a softening point of about 800° C. was applied between the solid electrolyte plate 11 and the current collector 14 for gas sealing. This glass paste softens at the operating temperature of the battery, 1000° C., and seals in gas. A cylindrical alumina manifold 22 shown in FIG. 2 was attached to the battery thus assembled. The contact portion between the manifold 22 and the battery body 21 was coated with ceramic paste, dried, and bonded, and then glass paste was further coated to seal the contact portion with gas. A platinum lead wire was welded to the electricity outlet for electrical connection. In the figure, 23 is a hydrogen inlet, 24 is an unreacted hydrogen outlet, 25 is an oxygen inlet, and 26 is an unreacted oxygen outlet.

【0013】このようにして作製した燃料電池を加熱し
た。室温から 150℃までは1℃/min で加熱し
、ガラスペーストの溶媒を蒸発させた。 150〜 3
50℃までは5℃/min で昇温した。 350℃以
上では水素通路側には、アノードの酸化を防止する為、
窒素ガスを流し、5℃/min で1000℃まで昇温
した。その後、1000℃に保存してアノード側に水素
、カソード側に酸素を流し、発電を開始した。開放電圧
はいずれの場合も1.25Vでガスクロスリークは水素
の0.5%以下であった。
The fuel cell thus produced was heated. The glass paste was heated at a rate of 1°C/min from room temperature to 150°C to evaporate the solvent of the glass paste. 150~3
The temperature was raised at a rate of 5°C/min up to 50°C. At temperatures above 350°C, there is a
The temperature was raised to 1000°C at a rate of 5°C/min by flowing nitrogen gas. Thereafter, it was stored at 1000°C, hydrogen was flowed to the anode side, and oxygen was flowed to the cathode side, and power generation was started. The open circuit voltage was 1.25 V in all cases, and the gas cross leak was 0.5% or less of hydrogen.

【0014】カソード12にLa0.9Sr0.1Mn
O3粉末(平均粒径約5μm)を用い、集電体14にN
i 系合金製のものをそのまま用いた場合の放電特性を
次に示す。   この電池のオーミック抵抗はカレントインターラプ
ター法によると70mΩであった。
[0014] La0.9Sr0.1Mn on the cathode 12
Using O3 powder (average particle size approximately 5 μm), N was applied to the current collector 14.
The discharge characteristics when the i-based alloy is used as is is shown below. The ohmic resistance of this battery was 70 mΩ according to the current interrupter method.

【0015】さらに集電体14のカソード12との接触
面にPd ペーストを塗布して用いた場合の放電特性は
次のようになり、集電体14をそのまま用いた場合より
も向上した。   この電池のオーミック抵抗はカレントインターラプ
ター法によると45mΩと低くなっていた。
Further, when Pd paste was applied to the contact surface of the current collector 14 with the cathode 12, the discharge characteristics were as follows, and were improved compared to when the current collector 14 was used as is. The ohmic resistance of this battery was as low as 45 mΩ according to the current interrupter method.

【0016】実施例2 実施例1と同様にして、但しPd に代えてTi を用
いて固体電解質型燃料電池を製作しマニホールドに取付
けた。作製した燃料電池を実施例1と同様に加熱した。 すなわち、室温から 150℃までは1℃/min で
加熱し、ガラスペーストの溶媒を蒸発させた。 150
℃〜 300℃までは5℃/min で昇温した。 3
00℃以上では水素通路側には、アノードの酸化を防止
する為、窒素ガスを流し、5℃/min で1000℃
まで昇温した。その後、1000℃に保持してアノード
側に水素、カソード側に酸素を流し、発電を開始した。 開放電圧は1.25Vでガスクロスリークは水素の0.
3%以下であった。
Example 2 A solid oxide fuel cell was manufactured in the same manner as in Example 1, except that Ti was used instead of Pd, and it was attached to a manifold. The produced fuel cell was heated in the same manner as in Example 1. That is, the glass paste was heated at a rate of 1°C/min from room temperature to 150°C to evaporate the solvent of the glass paste. 150
The temperature was raised at a rate of 5°C/min from °C to 300°C. 3
At temperatures above 00°C, nitrogen gas is flowed into the hydrogen passage to prevent oxidation of the anode, and the temperature is increased to 1000°C at a rate of 5°C/min.
The temperature rose to Thereafter, the temperature was maintained at 1000°C, hydrogen was flowed to the anode side, and oxygen was flowed to the cathode side, and power generation was started. The open circuit voltage is 1.25V, and the gas cross leak is 0.2V for hydrogen.
It was less than 3%.

【0017】セパレーターにTi をスパッタした場合
の放電特性を以下に示す。 オーミック抵抗は同様に50mΩであった。
The discharge characteristics when Ti is sputtered onto the separator are shown below. Similarly, the ohmic resistance was 50 mΩ.

【0018】[0018]

【発明の効果】本発明によれば、高温型燃料電池のカソ
ードと集電体あるいは電解質の間の接触抵抗が低減し、
電池出力が向上する。
[Effects of the Invention] According to the present invention, the contact resistance between the cathode and the current collector or electrolyte of a high-temperature fuel cell is reduced;
Battery output is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】平板型燃料電池の展開構成図である。FIG. 1 is a developed configuration diagram of a flat plate fuel cell.

【図2】平板型燃料電池にマニホールドを取りつけた様
子を示す斜視図である。
FIG. 2 is a perspective view showing a state in which a manifold is attached to a flat plate fuel cell.

【符号の説明】[Explanation of symbols]

11…電解質 12…カソード 13…アノード 14,15,16…集電体 14a,14b,15b,16a…溝 11...Electrolyte 12...Cathode 13...Anode 14, 15, 16... Current collector 14a, 14b, 15b, 16a... groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  高温型電解質の1表面にカソードを形
成し、カソードに対して集電体を接触させた構造を有す
る高温型燃料電池において、カソードがLa1−x S
rxMO3 (式中、MはMn ,Co 又はNi を
表す)からなり、かつ電解質のカソードに面する表面、
カソードの集電体に面する表面及び/又は集電体のカソ
ードに面する表面にPd ,Cr ,Mn ,Ti ,
Zn ,Nb 及びTa のうちの少なくとも1種を存
在せしめたことを特徴とする高温型燃料電池。
Claim 1: A high-temperature fuel cell having a structure in which a cathode is formed on one surface of a high-temperature electrolyte and a current collector is brought into contact with the cathode.
rxMO3 (wherein M represents Mn, Co or Ni) and faces the cathode of the electrolyte,
Pd, Cr, Mn, Ti,
A high temperature fuel cell characterized in that at least one of Zn, Nb and Ta is present.
JP3125970A 1990-05-31 1991-05-29 High-temperature fuel cell Pending JPH04230955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3125970A JPH04230955A (en) 1990-05-31 1991-05-29 High-temperature fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14006890 1990-05-31
JP2-140068 1990-05-31
JP3125970A JPH04230955A (en) 1990-05-31 1991-05-29 High-temperature fuel cell

Publications (1)

Publication Number Publication Date
JPH04230955A true JPH04230955A (en) 1992-08-19

Family

ID=26462259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3125970A Pending JPH04230955A (en) 1990-05-31 1991-05-29 High-temperature fuel cell

Country Status (1)

Country Link
JP (1) JPH04230955A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995019053A1 (en) * 1994-01-11 1995-07-13 Forschungszentrum Jülich GmbH Perovskite electrodes and high temperature fuel cells fitted therewith
WO1996028856A1 (en) * 1995-03-16 1996-09-19 British Nuclear Fuels Plc Solid oxide fuel cells with specific electrode layers
JP2004055326A (en) * 2002-07-19 2004-02-19 Toho Gas Co Ltd Unit cell of solid oxide fuel cell and solid oxide fuel cell using the unit cell
WO2019233857A1 (en) * 2018-06-07 2019-12-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Seal for an integral joint with sealing effect between stacks of electrochemical cells or a joint between a stack and a planar adapter, and method for producing said seal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995019053A1 (en) * 1994-01-11 1995-07-13 Forschungszentrum Jülich GmbH Perovskite electrodes and high temperature fuel cells fitted therewith
US5824429A (en) * 1994-01-11 1998-10-20 Forschungszentrum Julich Gmbh Perovskite electrodes and high temperature fuel cells fitted therein
WO1996028856A1 (en) * 1995-03-16 1996-09-19 British Nuclear Fuels Plc Solid oxide fuel cells with specific electrode layers
US6013386A (en) * 1995-03-16 2000-01-11 British Nuclear Fuels Plc Solid oxide fuel cells with specific electrode layers
JP2004055326A (en) * 2002-07-19 2004-02-19 Toho Gas Co Ltd Unit cell of solid oxide fuel cell and solid oxide fuel cell using the unit cell
US7108938B2 (en) 2002-07-19 2006-09-19 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell
WO2019233857A1 (en) * 2018-06-07 2019-12-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Seal for an integral joint with sealing effect between stacks of electrochemical cells or a joint between a stack and a planar adapter, and method for producing said seal

Similar Documents

Publication Publication Date Title
Yang et al. Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells
US4582766A (en) High performance cermet electrodes
Matsuzaki et al. Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes
JP3756524B2 (en) Electrical interconnector for planar fuel cell
US20110159173A1 (en) Conductive coating for solid oxide fuel cells
JP3924772B2 (en) Air electrode current collector of solid oxide fuel cell
JP6289170B2 (en) Inter-cell connecting member joining structure and inter-cell connecting member joining method
JP6889900B2 (en) Anode for solid oxide fuel cell and its manufacturing method, and solid oxide fuel cell
JPH04230955A (en) High-temperature fuel cell
JP5481611B2 (en) High temperature steam electrolysis cell
JPH0381959A (en) Solid electrolyte fuel cell
JP4587663B2 (en) Fuel electrode for solid oxide fuel cell and method for producing the same
JP3381544B2 (en) Composite air electrode material for low temperature operation solid fuel cells
AU748484B2 (en) Electrochemical cell with sintered anode of metallic particles and oxides
JPH0412457A (en) High-temperature type fuel cell
JP7395171B2 (en) Anode for solid oxide fuel cells and solid oxide fuel cells
JP3894103B2 (en) Current collector material for solid oxide fuel cells
US10411267B2 (en) Highly porous cathode catalyst layer structures for flexible solid oxide fuel cell applications in vehicles
JP3244310B2 (en) Solid oxide fuel cell
JPH0412456A (en) High-temperature type fuel cell
JPH07245113A (en) Solid electrolyte for fuel cell and solid electrolyte fuel cell using this
JP2948441B2 (en) Flat solid electrolyte fuel cell
JPH06188003A (en) Solid electrolyte type fuel battery
CA2560769C (en) Electrolyte electrode assembly and method of producing the same
US10637070B2 (en) Highly porous anode catalyst layer structures for fuel flexible solid oxide fuel cells