JP6289170B2 - Inter-cell connecting member joining structure and inter-cell connecting member joining method - Google Patents

Inter-cell connecting member joining structure and inter-cell connecting member joining method Download PDF

Info

Publication number
JP6289170B2
JP6289170B2 JP2014040277A JP2014040277A JP6289170B2 JP 6289170 B2 JP6289170 B2 JP 6289170B2 JP 2014040277 A JP2014040277 A JP 2014040277A JP 2014040277 A JP2014040277 A JP 2014040277A JP 6289170 B2 JP6289170 B2 JP 6289170B2
Authority
JP
Japan
Prior art keywords
protective film
inter
connecting member
cell
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014040277A
Other languages
Japanese (ja)
Other versions
JP2015088446A (en
Inventor
孝之 中尾
孝之 中尾
井上 修一
修一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014040277A priority Critical patent/JP6289170B2/en
Publication of JP2015088446A publication Critical patent/JP2015088446A/en
Application granted granted Critical
Publication of JP6289170B2 publication Critical patent/JP6289170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体酸化物型燃料電池(以下、適宜「SOFC」と記載する。)用セルに用いられる空気極に、セル間接続部材を接合するためのセル間接続部材接合構造およびセル間接続部材接合構造を得るための方法に関する。   The present invention relates to an inter-cell connecting member joining structure and an inter-cell connection for joining an inter-cell connecting member to an air electrode used in a cell for a solid oxide fuel cell (hereinafter referred to as “SOFC” where appropriate). The present invention relates to a method for obtaining a member joining structure.

かかるSOFC用セルは、電解質膜の一方面側に空気極を接合するとともに、同電解質膜の他方面側に燃料極を接合してなる単セルを、空気極または燃料極に対して電子の授受を行う一対の電子伝導性の基材(セル間接続部材)により挟み込んだ構造を有する。
そして、このようなSOFC用セルは、例えば700〜900℃程度の作動温度で作動し、空気極側から燃料極側への電解質膜を介した酸化物イオンの移動に伴って、一対の電極間に起電力が発生し、その起電力を外部に取り出し利用することができる。セル間接続部材にはインターコネクタやインターコネクタを介してセル間を電気的に接続する部材(集電部材)等が該当する。インターコネクタは燃料と空気の隔壁となる部材である。
Such a SOFC cell has a single cell in which an air electrode is joined to one surface side of an electrolyte membrane and a fuel electrode is joined to the other surface side of the electrolyte membrane, and electrons are transferred to the air electrode or the fuel electrode. It has the structure pinched | interposed by a pair of electron conductive base material (inter-cell connection member) which performs.
Such a SOFC cell operates at an operating temperature of about 700 to 900 ° C., for example, and moves between a pair of electrodes as the oxide ions move from the air electrode side to the fuel electrode side through the electrolyte membrane. An electromotive force is generated in the circuit, and the electromotive force can be taken out and used outside. The inter-cell connecting member corresponds to an interconnector or a member (current collecting member) that electrically connects cells via the interconnector. The interconnector is a member that serves as a partition wall for fuel and air.

近年の開発の進展に伴い、SOFCの作動温度が下がってきている。従来の燃料電池の作動温度は1000℃程度であり、耐熱性の観点からランタンクロマイトに代表される金属酸化物が使用されていたが、最近は作動温度が700℃〜800℃まで下がっており、合金が使用できるようになってきた。合金使用により、コストダウン、ロバスト性の向上が期待できる。   With the progress of development in recent years, the operating temperature of SOFC is decreasing. The operating temperature of a conventional fuel cell is about 1000 ° C., and metal oxides typified by lanthanum chromite have been used from the viewpoint of heat resistance, but recently the operating temperature has dropped to 700 ° C. to 800 ° C., Alloys have become available. The use of alloys can be expected to reduce costs and improve robustness.

また、SOFC用セルは、その製造工程において、セル間接続部材用の基材と空気極および燃料極との間の接触抵抗をできるだけ小さくするなどの目的で、それらを積層した状態で、燃料電池の作動温度よりも高い1000℃〜1250℃程度の焼成温度で焼成する焼成処理を行う場合がある(例えば、特許文献1、2を参照。)。   In addition, in the manufacturing process, the SOFC cell is a fuel cell in a state in which they are stacked for the purpose of minimizing the contact resistance between the base material for the inter-cell connecting member, the air electrode, and the fuel electrode. There is a case where a firing process is performed in which firing is performed at a firing temperature of about 1000 ° C. to 1250 ° C., which is higher than the operating temperature (see, for example, Patent Documents 1 and 2).

一方、SOFC用セルで利用されるセル間接続部材用の基材の表面に、単一系酸化物に不純物をドープしてなるn型半導体保護膜を形成し、このような保護膜形成処理を行うことによって、合金中に含まれるCrが飛散し易い6価の酸化物へと酸化されることを抑制しようとする技術もあった(例えば、特許文献3を参照。)。   On the other hand, an n-type semiconductor protective film formed by doping impurities into a single oxide is formed on the surface of a base material for an inter-cell connection member used in a SOFC cell, and such protective film formation processing is performed. There has also been a technique for suppressing the oxidation of Cr contained in the alloy into a hexavalent oxide that is easily scattered (see, for example, Patent Document 3).

このようなSOFC用セルで利用されるセル間接続部材を空気極に接合する場合、通常空気極と同材料の接合材が用いられる場合が多い。
同材料の接合材が用いられることで、空気極との間の接合性を高くするとともに、焼成条件を、空気極がシンタリングしない程度に抑制することができる。また、セル間接合部材に設けられる保護膜材料に対しても十分な接合力を発揮する。
When joining an inter-cell connecting member used in such a SOFC cell to an air electrode, a joining material of the same material as that of the air electrode is often used.
By using the bonding material of the same material, the bonding property with the air electrode can be enhanced, and the firing conditions can be suppressed to the extent that the air electrode is not sintered. In addition, a sufficient bonding force is exhibited even for the protective film material provided on the inter-cell bonding member.

また、接合材としてスピネル構造を備えた金属酸化物材料を用いることも検討されている(特許文献4)。   In addition, the use of a metal oxide material having a spinel structure as a bonding material has been studied (Patent Document 4).

特開2004−259643号公報JP 2004-259634 A 国際公開WO2009/131180号パンフレットInternational Publication WO2009 / 131180 Pamphlet 国際公開WO2007/083627号パンフレットInternational Publication WO2007 / 083627 Pamphlet 特許4866955号公報Japanese Patent No. 4866955

しかし、空気極に用いられる材料を接合材として用いた場合には、燃料電池の長期使用に伴って徐々に劣化して、セル間接続部材上に設けた保護膜との接合材との間において破断剥離することがあることが見出された。これは、燃料電池の寿命が上記破断剥離により規制されることを意味し、燃料電池を長寿命なものとする妨げになっているものと考えられる。   However, when the material used for the air electrode is used as the bonding material, it gradually deteriorates with the long-term use of the fuel cell, and between the bonding material and the protective film provided on the inter-cell connection member It has been found that it can break at break. This means that the life of the fuel cell is regulated by the above-described fracture peeling, which is considered to be an obstacle to making the fuel cell have a long life.

また、接合材としてスピネル構造を備えた金属酸化物材料を用いる場合には、空気極とセル間接続部材とを直接接合することが考えられているものの、保護膜と接合材の破断剥離は問題とされておらず、防止保護膜と空気極との間を強固にかつ長期耐久性高く接合する技術は研究されていなかった。   In addition, when a metal oxide material having a spinel structure is used as a bonding material, it is considered that the air electrode and the inter-cell connecting member are directly bonded, but breakage and peeling between the protective film and the bonding material is a problem. No technology has been studied for joining the protective protective film and the air electrode firmly and with high long-term durability.

そこで、本発明は上記実状に鑑み、長期使用によっても破断剥離の発生しにくいセル間接続部材接合構造を提供することを目的とする。   In view of the above, the present invention has an object to provide an inter-cell connecting member bonding structure in which breakage peeling is unlikely to occur even after long-term use.

今般、本発明者らは、破断剥離が接合材における保護膜と接合している界面の内側部位において起こっており、おもに、燃料電池の使用時の通電発熱による前記接合材の劣化が原因と考えられることを見出している。そして、上記問題を改善するために、燃料電池の製造時の加熱条件のほかに、燃料電池の使用条件を加味して前記接合材の材質を適切に選択する必要があることに想到した。そして、鋭意研究の結果、前記保護膜と、接合材とを選択する際に、燃料電池の通電条件下での元素拡散が利用できることを実験的に明らかにした。   Recently, the present inventors considered that the fracture peeling occurred at the inner part of the interface bonded to the protective film in the bonding material, mainly due to deterioration of the bonding material due to energization heat generation during use of the fuel cell. To find out. And in order to improve the said problem, it came to the mind that it was necessary to select the material of the said joining material suitably in consideration of the use conditions of a fuel cell other than the heating conditions at the time of manufacture of a fuel cell. As a result of earnest research, it has been experimentally clarified that element diffusion under energization conditions of the fuel cell can be used when selecting the protective film and the bonding material.

記目的を達成するための本発明のセル間接続部材接合構造は、固体酸化物形燃料電池用セルに用いられる空気極に、セル間接続部材を接合するためのセル間接続部材接合構造であって、
セル間接続部材の基材に、保護膜形成材料としてのZn(Co,Mn)O 4 からなる保護膜を設けるとともに、前記保護膜と空気極との間を、燃料電池の通電条件下で元素拡散が生じ、保護膜形成材料との間に拡散接合が生じる保護膜形成材料と同系酸化物材料からなる接合材で接着接合してあり、接合材がCo Mn 4 (1.5≦x≦3、0≦y≦1.5、x+y=3)から選ばれる少なくとも一種の酸化物材料であることを特徴とする。
また、セル間接続部材の基材に、保護膜形成材料としてのCo 1.5 Mn 1.5 4 からなる保護膜を設けるとともに、前記保護膜と空気極との間を、燃料電池の通電条件下で元素拡散が生じ、保護膜形成材料との間に拡散接合が生じる保護膜形成材料と同系酸化物材料からなる接合材で接着接合してあり、接合材がCo Mn 4 (2≦x≦3、0≦y≦1、x+y=3)から選ばれる少なくとも一種の酸化物材料であってもよい。
Intercell connecting structure for joining members according to the invention for achieving the above Symbol purpose, the air electrode used in the solid oxide fuel cell, inter-cell connecting structure for joining members for joining the intercell connection member There,
A protective film made of Zn (Co, Mn) O 4 as a protective film forming material is provided on the base material of the inter-cell connecting member, and the element between the protective film and the air electrode is energized under the current-carrying condition of the fuel cell. diffusion occurs, Thea adhesively bonded by a bonding material diffusion bonding a protective film forming material and the same type oxide material occurring between the protective film forming material is, the bonding material is Co x Mn y O 4 (1.5 ≦ x ≦ 3, 0 ≦ y ≦ 1.5, x + y = 3) .
In addition, a protective film made of Co 1.5 Mn 1.5 O 4 as a protective film forming material is provided on the base material of the inter-cell connecting member, and the fuel cell is energized between the protective film and the air electrode. Under the conditions, element diffusion occurs and diffusion bonding occurs between the protective film forming material and the protective film forming material. The bonding material is made of the same oxide material, and the bonding material is Co x Mn y O 4 ( 2 ≦ x ≦ 3, 0 ≦ y ≦ 1, x + y = 3) may be used.

バルトマンガン系酸化物Co 1.5 Mn 1.5 4 または、亜鉛コバルトマンガン系酸化物Zn(Co,Mn)O 4 からなる保護膜は、基材として用いられる種々材料との密着性が高く、受熱に対する耐久性が高く、かつ、緻密層を形成した際に、スピネル構造の酸素バリア性が高く、Cr飛散防止効果の高い保護膜に形成されることが明らかになっている。また、スピネル構造を有する保護膜材料の中でも、上記保護膜は、基材、空気極等との熱膨張率の不一致(差)が小さく、特に製造工程時(保護膜の焼成時)において、一度は晒される800℃〜1000℃の環境下においても基材、空気極等との熱膨張率の不一致(差)が小さいうえに、Crの飛散抑制効果がきわめて高いことを見出している。 Cobalt-manganese oxide Co 1.5 Mn 1.5 O 4, or a zinc-cobalt-manganese-based oxide Zn (Co, Mn) protective film made of O 4 is the adhesion between the various materials used as substrate It has been revealed that when a dense layer is formed, it has a high spin barrier structure with a high oxygen barrier property and a high Cr scattering prevention effect when a dense layer is formed. Among the protective film materials having a spinel structure, the protective film has a small mismatch (difference) in the thermal expansion coefficient with the base material, the air electrode, etc., especially once during the manufacturing process (when the protective film is baked). Has found that, even under an exposed environment of 800 ° C. to 1000 ° C., the thermal expansion coefficient mismatch (difference) with the base material, the air electrode, etc. is small and the effect of suppressing Cr scattering is extremely high.

この保護膜に対して、前記保護膜と空気極との間を、燃料電池の通電条件下で元素拡散
が生じ、保護膜形成材料との間に拡散接合が生じる保護膜形成材料と同系酸化物材料から
なる接合材を用いて接合すると、前記接合材は、前記保護膜と同系酸化物材料であるため
、接合能力が高く、また、上記熱膨張率の観点からも、空気極に対しても接着性の高い材
料であることがわかる。
ここで、同系という場合、たとえば、Co 1.5 Mn 1.5 4 からなる保護膜に対してCo Mn 4 (2≦x≦3、0≦y≦1、x+y=3)からなる接合材、Zn(Co,Mn)O 4 からなる保護膜に対してCo Mn 4 (1.5≦x≦3、0≦y≦1.5、x+y=3)からなる接合材のように、主要な元素構成が共通しており、元素拡散が生じる共通の金属元素を備えるものをさす。
With respect to this protective film, element diffusion occurs between the protective film and the air electrode under the current-carrying condition of the fuel cell, and a diffusion bond is formed between the protective film-forming material and the similar oxide. When bonding is performed using a bonding material made of a material, the bonding material is an oxide material similar to the protective film, so that the bonding capability is high, and also from the viewpoint of the thermal expansion coefficient, the air electrode It turns out that it is a material with high adhesiveness.
Here, in the case of the same system, for example, from Co x Mn y O 4 (2 ≦ x ≦ 3, 0 ≦ y ≦ 1, x + y = 3) with respect to the protective film made of Co 1.5 Mn 1.5 O 4. A bonding material made of Co x Mn y O 4 (1.5 ≦ x ≦ 3, 0 ≦ y ≦ 1.5, x + y = 3) with respect to a protective film made of Zn (Co, Mn) O 4 As described above, the main element structure is common, and the element includes a common metal element that causes element diffusion.

そのうえ、前記接合材は、燃料電池の通電条件下で元素拡散が生じ、保護膜形成材料との間に拡散接合が生じるものであるから、前記接合材は長期使用にしたがって、接合材における保護膜と接合している界面の内側部位において破断剥離を起こしにくく、逆に拡散接合によって前記保護膜と強固に一体化するものであるから、長期使用に対して信頼性の高い構造とすることができる。
ここで、拡散接合とは、接合面間に生じる元素の拡散を利用して接合する強度を増す現象をさし、一般的には加圧、加熱を要することを前提とするが、本願では、同様の現象が燃料電池の使用時の通電、発熱等の作用によって生起される場合を含むものとする。
In addition, since the bonding material causes element diffusion under energization conditions of the fuel cell and diffusion bonding occurs between the bonding material and the protective film forming material, the bonding material can be used as a protective film in the bonding material according to long-term use. It is difficult to cause fracture peeling at the inner part of the interface that is bonded to the surface, and on the contrary, it is firmly integrated with the protective film by diffusion bonding, so that it can have a highly reliable structure for long-term use. .
Here, diffusion bonding refers to a phenomenon in which the strength of bonding is increased by utilizing diffusion of elements generated between bonding surfaces, and is generally assumed to require pressurization and heating. It is assumed that the same phenomenon occurs due to effects such as energization and heat generation during use of the fuel cell.

記拡散接合を生起する保護膜と、接合材との組み合わせは、コバルトマンガン系酸化
Co 1.5 Mn 1.5 4 または、亜鉛コバルトマンガン系酸化物Zn(Co,Mn)O 4 からなる保護膜に対して、前記保護膜と同系の酸化物材料からなり、燃料電池の通電条件下で元素拡散が生じ、保護膜形成材料との間に拡散接合が生じる接合材であればよいが、このような組み合わせとしては、前記保護膜形成材料がZn(Co,Mn)O 4 であり、前記接合材が、Co1.5Mn1.54、Co2MnO4、Co34から選ばれる少なくとも一種の酸化物材料である場合、および、前記保護膜形成材料がCo1.5Mn1.54であり、前記接合材が、Co2MnO4、Co34から選ばれる少なくとも一種の酸化物材料である場合のいずれであっても、拡散接合による強固な一体化が望めることが実験的に明らかになっている。
A protective film that occurs on Symbol diffusion bonding, a combination of a bonding material, cobalt-manganese-based oxide Co 1.5 Mn 1.5 O 4, or a zinc-cobalt-manganese-based oxide Zn (Co, Mn) from O 4 The protective film is made of an oxide material similar to the protective film, and may be a bonding material in which element diffusion occurs under energization conditions of the fuel cell and diffusion bonding occurs between the protective film forming material and the protective film. As such a combination, the protective film forming material is Zn (Co, Mn) O 4 , and the bonding material is at least selected from Co 1.5 Mn 1.5 O 4 , Co 2 MnO 4 , and Co 3 O 4. When it is a kind of oxide material, the protective film forming material is Co 1.5 Mn 1.5 O 4 , and the bonding material is at least one kind of oxide material selected from Co 2 MnO 4 and Co 3 O 4. In any case Be, that the views are strong integrated by diffusion bonding has revealed experimentally.

特に、前記保護膜形成材料がZn(Co,Mn)O4であり、前記接合材が、Co1.5Mn1.54、Co2MnO4、Co34から選ばれる少なくとも一種の酸化物材料である場合、Zn成分の含まれる亜鉛コバルトマンガン系酸化物と、Zn成分の含まれないコバルトマンガン系酸化物との間では、主にマンガンの元素拡散が見られ、この元素拡散による拡散接合による保護膜と接合材との接合一体化が図られ、前記保護膜形成材料がCo1.5Mn1.54であり、前記接合材が、Co2MnO4、Co34から選ばれる少なくとも一種の酸化物材料である場合、Mn含有率の高いコバルトマンガン系酸化物からMn含有率の低いコバルトマンガン系酸化物へのマンガンの元素拡散が見られ、この元素拡散による拡散接合による保護膜と接合材との接合一体化が図られるものと考えられる。 In particular, the protective film forming material is Zn (Co, Mn) O 4 , and the bonding material is at least one oxide material selected from Co 1.5 Mn 1.5 O 4 , Co 2 MnO 4 , and Co 3 O 4. In some cases, elemental diffusion of manganese is mainly observed between zinc-cobalt-manganese oxides containing Zn and cobalt-manganese oxides not containing Zn, and protection by diffusion bonding due to this elemental diffusion. At least one oxide selected from Co 2 MnO 4 and Co 3 O 4 , wherein the film and the bonding material are bonded and integrated, the protective film forming material is Co 1.5 Mn 1.5 O 4 , and the bonding material is Co 2 MnO 4 and Co 3 O 4 In the case of the material, elemental diffusion of manganese is observed from cobalt manganese-based oxides with a high Mn content to cobalt manganese-based oxides with a low Mn content. It is thought that joint integration with the composite material is achieved.

すなわち、亜鉛コバルトマンガン系酸化物Zn(Co,Mn)O 4 からなる保護膜に対して、コバルトマンガン系酸化物Co Mn 4 (1.5≦x≦3、0≦y≦1.5、x+y=3)を選択すれば、燃料電池の通電条件下で元素拡散が生じ、保護膜形成材料との間に拡散接合が生じるものと考えられ、前記保護膜形成材料がCo 1.5 Mn 1.5 4 である場合、前記接合材が、Co Mn 4 (2≦x≦3、0≦y≦1、x+y=3)を選択すれば、燃料電池の通電条件下で元素拡散が生じ、保護膜形成材料との間に拡散接合が生じるものと考えられる。 That is, the zinc-cobalt-manganese-based oxide Zn (Co, Mn) with respect to the protective film made of O 4, cobalt-manganese-based oxide Co x Mn y O 4 (1.5 ≦ x ≦ 3,0 ≦ y ≦ 1. 5, x + y = 3) , it is considered that element diffusion occurs under energization conditions of the fuel cell, and diffusion bonding occurs between the protective film forming material and the protective film forming material is Co 1.5. In the case of Mn 1.5 O 4 , if the bonding material is selected as Co x Mn y O 4 (2 ≦ x ≦ 3, 0 ≦ y ≦ 1, x + y = 3) , It is considered that element diffusion occurs and diffusion bonding occurs between the protective film forming material.

た、前記セル間接続部材の基材がSUS材であってもよい。 Also, the base material of the intercell connection member may be SUS material.

記基材がSUSである場合、前述のように、コストダウン、ロバスト性の向上が期待できる。また、SUSはCrを含んでおり、作動環境である高温大気雰囲気で表面にCr2O3やMnCr2O4の酸化被膜を形成する。この酸化被膜は経時的に膜厚が厚くなり、電気抵抗が増大するとともに、作動環境である高温大気雰囲気で6価クロムの化合物として蒸発し、空気極を被毒させて劣化を引き起こすことが知られている(Cr被毒と呼ばれる)。そのため、その表面に耐熱性に優れた金属酸化物材料をコーティングして劣化を抑制するのに前記保護膜を有効に作用させることができる。 If the previous Kimotozai is SUS, as described above, cost reduction, improvement in robustness can be expected. Further, SUS contains Cr, and an oxide film of Cr2O3 or MnCr2O4 is formed on the surface in a high-temperature air atmosphere that is an operating environment. It is known that this oxide film increases in thickness over time, increases electrical resistance, evaporates as a hexavalent chromium compound in a high-temperature atmospheric atmosphere, which is the working environment, and poisons the air electrode to cause deterioration. (Referred to as Cr poisoning). Therefore, the protective film can be effectively used to coat the surface with a metal oxide material having excellent heat resistance and suppress deterioration.

た、本発明のセル間接続部材接合方法の特徴構成は、固体酸化物形燃料電池用セルに用いられる空気極と、セル間接続部材を接合するセル間接続部材接合方法であって、セル間接続部材の基材に、保護膜形成材料としてのZn(Co,Mn)O 4 からなる保護膜を焼成・焼結して設け、前記保護膜と空気極との間を、Co Mn 4 (1.5≦x≦3、0≦y≦1.5、x+y=3)から選ばれる少なくとも一種の酸化物材料で接着接合するとともに、燃料電池作動温度〜950℃で焼成・焼結する点にある。
または、セル間接続部材の基材に、保護膜形成材料としてのCo 1.5 Mn 1.5 4 からなる保護膜を焼成・焼結して設け、前記保護膜と空気極との間を、Co Mn 4 (2≦x≦3、0≦y≦1、x+y=3)から選ばれる少なくとも一種の酸化物材料で接着接合するとともに、燃料電池の作動温度〜950℃で焼成・焼結する点にある。
すなわち、上記セル間接続部材接合構造を得るに、保護膜を形成してなるセル間接合部
材と空気極との間を、接合材により接着接合して燃料電池作動温度〜950℃で焼成・焼
結する点にある。
Also, characteristic feature of the intercell connection member joining method of the present invention, an air electrode used in the solid oxide fuel cell, a cell joined member joining method for joining the intercell connection member, the cell the substrate between the connecting member, Zn (Co, Mn) as a protective film forming material provided by sintering and sintering the protective film made of O 4, between the protective film and the air electrode, Co x Mn y It is adhesively bonded with at least one oxide material selected from O 4 (1.5 ≦ x ≦ 3, 0 ≦ y ≦ 1.5, x + y = 3) , and fired and sintered at a fuel cell operating temperature of 950 ° C. There is in point to do.
Alternatively, a protective film made of Co 1.5 Mn 1.5 O 4 as a protective film forming material is baked and sintered on the base material of the inter-cell connection member, and the gap between the protective film and the air electrode is provided. And at least one oxide material selected from Co x Mn y O 4 (2 ≦ x ≦ 3, 0 ≦ y ≦ 1, x + y = 3) and firing at a fuel cell operating temperature of 950 ° C. It is in the point of sintering.
That is, in order to obtain the inter-cell connecting member joining structure, the inter-cell joining member formed with a protective film and the air electrode are bonded and joined with a joining material, and the fuel cell is operated at a temperature of 950 ° C. to 950 ° C. It is in the point to conclude.

記構成によると、得られるセル間接続部材接合構造を、長期耐久性に優れたものとす
ることができる。そして、それらを接着接合する温度を燃料電池作動温度〜950℃とす
ることにより、上記セル間接続部材接合構造を得るに、保護膜を形成してなるセル間接合
部材と空気極との間を接合する際に、焼成・焼結に要する時間を必要以上に短くすること
なく、低温で焼成・焼結することができ、燃料電池の空気極などの他の構成要素に熱的な
負荷をかけることなく燃料電池用セルを組み立てることができるようになる。
According to the above Symbol configuration, intercell connecting structure for joining members obtained by, it can be provided with excellent long-term durability. Then, by setting the temperature for bonding them to the fuel cell operating temperature to 950 ° C., to obtain the above-mentioned inter-cell connecting member joining structure, the inter-cell joining member formed with the protective film and the air electrode are provided. When joining, firing and sintering can be performed at a low temperature without reducing the time required for firing and sintering more than necessary, and a thermal load is applied to other components such as the air electrode of the fuel cell. The fuel cell can be assembled without any problems.

その結果、燃料電池として耐久性が高く長期使用が可能なセル間接続部材接合構造を提供することができるようになった。 As a result, it is possible to provide an inter-cell connecting member joining structure that is durable and can be used for a long time as a fuel cell.

固体酸化物形燃料電池の概略図Schematic diagram of solid oxide fuel cell 固体酸化物形燃料電池のセル間接続部材の使用形態を示す図The figure which shows the usage condition of the connection member between cells of a solid oxide fuel cell 保護膜を形成したセル間接続部材試験片の断面図Cross-sectional view of inter-cell connecting member test piece with protective film formed セル間接続部材接合構造の長期耐久性を示すグラフA graph showing the long-term durability of the joint structure between cell connection members セル間接続部材接合構造の拡散接合を示すEPMA図EPMA diagram showing diffusion bonding of cell connecting member bonding structure セル間接続部材接合構造の長期連続耐久試験の結果を示すグラフThe graph which shows the result of the long-term continuous durability test of the connection member connection structure between cells セル間接続部材接合構造のサーマルサイクル試験の結果を示すグラフThe graph which shows the result of the thermal cycle test of the connection member connection structure between cells セル間接続部材接合構造のサーマルサイクル試験の結果を示すグラフThe graph which shows the result of the thermal cycle test of the connection member connection structure between cells

以下に、本発明のSOFC用セルおよび燃料電池用セル間接続部材を説明し、保護膜の製造方法およびその試験例を示す。なお、以下に好適な実施例を記すが、これら実施例はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。 The SOFC cell and fuel cell inter-cell connecting member of the present invention will be described below, and a protective film manufacturing method and test examples thereof will be shown. In addition, although suitable examples are described below, these examples are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

<固体酸化物形燃料電池>
本発明にかかるSOFC用セル間接続部材およびその製造方法の実施の形態について、図面に基づいて説明する。
図1および図2に示すSOFC用セルCは、酸化物イオン伝導性の固体酸化物の緻密体からなる電解質膜30の一方面側に、酸化物イオンおよび電子伝導性の多孔体からなる空気極31を接合するとともに、同電解質膜30の他方面側に電子伝導性の多孔体からなる燃料極32を接合してなる単セル3を備える。
さらに、SOFC用セルCは、この単セル3を、空気極31または燃料極32に対して電子の授受を行うとともに空気および水素を供給するための溝2が形成された一対の電子伝導性の合金または酸化物からなるセル間接続部材1により、適宜外周縁部においてガスシール体を挟持した状態で挟み込んだ構造を有する。そして、空気極31側の上記溝2が、空気極31とセル間接続部材1とが密着配置されることで、空気極31に空気を供給するための空気流路2aとして機能し、一方、燃料極32側の上記溝2が、燃料極32とセル間接続部材1とが密着配置されることで、燃料極32に水素を供給するための燃料流路2bとして機能する。セル間接続部材1はインターコネクタとセルC間を電気的に接続する部材が接続された構成となることもある。
<Solid oxide fuel cell>
An embodiment of an inter-cell connecting member for SOFC and a manufacturing method thereof according to the present invention will be described with reference to the drawings.
The SOFC cell C shown in FIGS. 1 and 2 has an air electrode made of an oxide ion and an electron conductive porous body on one side of an electrolyte membrane 30 made of a dense oxide oxide conductive solid oxide. 31 and a single cell 3 formed by joining a fuel electrode 32 made of an electron conductive porous body to the other surface side of the electrolyte membrane 30.
Further, the SOFC cell C exchanges electrons with the single cell 3 with respect to the air electrode 31 or the fuel electrode 32, and at the same time, a pair of electron conductive materials having grooves 2 for supplying air and hydrogen. The inter-cell connecting member 1 made of an alloy or an oxide has a structure in which the gas seal body is sandwiched between the outer peripheral edges as appropriate. And the said groove | channel 2 by the side of the air electrode 31 functions as the air flow path 2a for supplying air to the air electrode 31, because the air electrode 31 and the inter-cell connection member 1 are closely arranged, The groove 2 on the fuel electrode 32 side functions as a fuel flow path 2 b for supplying hydrogen to the fuel electrode 32 by arranging the fuel electrode 32 and the inter-cell connecting member 1 in close contact with each other. The inter-cell connecting member 1 may have a configuration in which a member that electrically connects the interconnector and the cell C is connected.

なお、上記SOFC用セルCを構成する各要素で利用される一般的な材料について説明を加えると、例えば、上記空気極31の材料としては、LaMO3(例えばM=Mn,Fe,Co)中のLaの一部をアルカリ土類金属AE(AE=Sr,Ca)で置換した(La,AE)MO3のペロブスカイト型酸化物を利用することができ、上記燃料極32の材料としては、Niとイットリア安定化ジルコニア(YSZ)とのサーメットを利用することができ、さらに、電解質膜30の材料としては、イットリア安定化ジルコニア(YSZ)を利用することができる。 In addition, when a general material used in each element constituting the SOFC cell C is described, for example, the material of the air electrode 31 is LaMO 3 (for example, M = Mn, Fe, Co). A perovskite oxide of (La, AE) MO 3 in which a part of La of Al is substituted with an alkaline earth metal AE (AE = Sr, Ca) can be used. And yttria-stabilized zirconia (YSZ) can be used, and yttria-stabilized zirconia (YSZ) can be used as the material of the electrolyte membrane 30.

さらに、これまで説明してきたSOFC用セルCでは、セル間接続部材1の材料としては、電子伝導性および耐熱性の優れた材料であるLaCrO3系等のペロブスカイト型酸化物や、フェライト系ステンレス鋼であるFe−Cr合金や、オーステナイト系ステンレス鋼であるFe−Cr−Ni合金や、ニッケル基合金であるNi−Cr合金などのように、Crを含有する合金または酸化物が利用されている。 Furthermore, in the SOFC cell C described so far, the inter-cell connection member 1 is made of a perovskite oxide such as LaCrO 3 which is excellent in electron conductivity and heat resistance, or ferritic stainless steel. Alloys or oxides containing Cr are used, such as Fe—Cr alloys, Fe—Cr—Ni alloys, which are austenitic stainless steels, Ni—Cr alloys, which are nickel-based alloys.

そして、複数のSOFC用セルCが積層配置された状態で、複数のボルトおよびナットにより積層方向に押圧力を与えて挟持され、セルスタックとなる。
このセルスタックにおいて、積層方向の両端部に配置されたセル間接続部材1は、燃料流路2bまたは空気流路2aの一方のみが形成されるものであればよく、その他の中間に配置されたセル間接続部材1は、一方の面に燃料流路2bが形成され他方の面に空気流路2aが形成されるものを利用することができる。なお、かかる積層構造のセルスタックでは、上記セル間接続部材1をセパレータと呼ぶ場合がある。
このようなセルスタックの構造を有するSOFCを一般的に平板型SOFCと呼ぶ。本実施形態では、一例として平板型SOFCについて説明するが、本願発明は、その他の構造のSOFCについても適用可能である。
In a state where a plurality of SOFC cells C are arranged in a stacked manner, a pressing force is applied in the stacking direction by a plurality of bolts and nuts to form a cell stack.
In this cell stack, the inter-cell connecting members 1 disposed at both ends in the stacking direction may be any one in which only one of the fuel flow path 2b or the air flow path 2a is formed, and is disposed in the other middle. As the inter-cell connecting member 1, a member in which the fuel channel 2b is formed on one surface and the air channel 2a is formed on the other surface can be used. In the cell stack having such a laminated structure, the inter-cell connecting member 1 may be referred to as a separator.
An SOFC having such a cell stack structure is generally called a flat-plate SOFC. In the present embodiment, a flat SOFC will be described as an example. However, the present invention is applicable to SOFCs having other structures.

そして、このようなSOFC用セルCを備えたSOFCの作動時には、図2に示すように、空気極31に対して隣接するセル間接続部材1に形成された空気流路2aを介して空気を供給するとともに、燃料極32に対して隣接するセル間接続部材1に形成された燃料流路2bを介して水素を供給し、例えば800℃程度の作動温度で作動する。すると、空気極31においてO2が電子e-と反応してO2-が生成され、そのO2-が電解質膜30を通って燃料極32に移動し、燃料極32において供給されたH2がそのO2-と反応してH2Oとe-とが生成されることで、一対のセル間接続部材1の間に起電力Eが発生し、その起
電力Eを外部に取り出し利用することができる。
When the SOFC having such a SOFC cell C is operated, air is passed through the air flow path 2a formed in the inter-cell connecting member 1 adjacent to the air electrode 31, as shown in FIG. While supplying, hydrogen is supplied through the fuel flow path 2b formed in the inter-cell connecting member 1 adjacent to the fuel electrode 32, and operates at an operating temperature of about 800 ° C., for example. Then, the air electrode 31 O 2 electrons e - are reacting with O 2- is generated, the O 2- passes through the electrolyte membrane 30 to move to the fuel electrode 32, H 2 supplied in the fuel electrode 32 Reacts with the O 2− to generate H 2 O and e , so that an electromotive force E is generated between the pair of inter-cell connecting members 1, and the electromotive force E is taken out and used. be able to.

<セル間接続部材>
前記セル間接続部材1は、図1、図3に示すように、例えば、フェライト系ステンレス合金製のセル間接続部材用の基材11の表面に保護膜12を設けて構成してある。そして、前記各単セル3の間に空気流路2a、燃料流路2bを形成しつつ接続可能にする溝板状に形成してある。
<Cell connecting member>
As shown in FIGS. 1 and 3, the inter-cell connecting member 1 is configured, for example, by providing a protective film 12 on the surface of a base material 11 for inter-cell connecting members made of a ferritic stainless alloy. And it forms in the shape of a groove plate which can be connected, forming the air flow path 2a and the fuel flow path 2b between each said single cell 3. As shown in FIG.

なお、セル間接続部材1の基材11としては、フェライト系ステンレス鋼が用いられることが多いが、耐熱性により優れたオーステナイト系ステンレス鋼であるFe−Cr−Ni合金や、ニッケル基合金であるNi−Cr合金などが用いられることもある。また、合金ではなく、(La,Ca)CrO3(カルシウムドープランタンクロマイト)に代表される金属酸化物が用いられることもある。 In addition, as the base material 11 of the connection member 1 between cells, although ferritic stainless steel is used in many cases, it is a Fe-Cr-Ni alloy which is austenitic stainless steel excellent in heat resistance, or a nickel base alloy. Ni-Cr alloy or the like may be used. In addition, instead of an alloy, a metal oxide typified by (La, Ca) CrO 3 (calcium dopeplank chromite) may be used.

前記保護膜12は、導電性セラミックス材料を含有する塗膜形成用材料を、前記基材11にコーティング(例えばディップコーティング)することにより保護膜12を厚膜として形成してある。前記厚膜の膜厚としては、0.1μm〜100μmが好適である。   The protective film 12 is formed as a thick film by coating the base material 11 with a coating film forming material containing a conductive ceramic material (for example, dip coating). The thickness of the thick film is preferably 0.1 μm to 100 μm.

<保護膜>
一般的な成膜法としては、下記のようなものが挙げられる。
たとえば、ウエットコーティング法あるいは、ドライコーティング法によって形成することができる。
ウエットコーティング法としては、スクリーン印刷法、ドクターブレード法、スプレーコート法、インクジェット法、スピンコート法、ディップコート、電気めっき法、無電解めっき法、電着塗装法等が例示できる。また、ドライコーティング法としては、たとえば蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長(CVD)法、電気化学気相成長(EVD)法、イオンビーム法、レーザーアブレーション法、大気圧プラズマ成膜法、減圧プラズマ成膜法、溶射法等が例示できる。
<Protective film>
Examples of general film forming methods include the following.
For example, it can be formed by a wet coating method or a dry coating method.
Examples of the wet coating method include a screen printing method, a doctor blade method, a spray coating method, an ink jet method, a spin coating method, a dip coating, an electroplating method, an electroless plating method, and an electrodeposition coating method. Examples of dry coating methods include vapor deposition, sputtering, ion plating, chemical vapor deposition (CVD), electrochemical vapor deposition (EVD), ion beam, laser ablation, and atmospheric pressure plasma. Examples thereof include a film forming method, a low pressure plasma film forming method, and a thermal spraying method.

しかし、ドライコーティング法として、CVD・EVD法や溶射法等は、保護膜形成のためのプロセスが複雑となる、保護膜の組成が安定しない等の欠点があるため、これらの方法に代えて、レーザーアブレーション法により保護膜を形成することも考えられている。
また、レーザーアブレーション法を採用すると、CVD・EVD法や溶射法に比べて、製造コストが高くなるため、現実的には、安価に保護膜を製造できる技術として、ウエットコーティング法が採用される場合が多い。
そのようなウエットコーティング法としては、スクリーン印刷法、ドクターブレード法、スプレーコート法、インクジェット法、スピンコート法、ディップコート、電気めっき法、無電解めっき法、電着塗装法等が例示できる。
例えば、電着塗装法を適用すれば、下記のような手法で保護膜を形成することができる。
金属酸化物微粒子を電着液1リットル当り100gになるように分散し、ポリアクリル酸等のアニオン型樹脂とを含有している混合液を用いて電着塗装を行った。ここでは、(金属酸化物微粒子:アニオン型樹脂)=(1:1)(質量比)とした。
前記混合液を用い、基材11をプラス、対極としてSUS304の極板にマイナスの極性として通電を行うことによって、基材11表面に未硬化の電着塗膜が形成される。
電着塗装は、公知の方法に従い、たとえば、前記混合液を満たした通電槽中に基材11を完全にまたは部分的に浸漬して陽極とし、通電することにより実施される。
電着塗装条件も特に制限されず、基材11である金属の種類、前記混合液の種類、通電槽の大きさおよび形状、得られるセル間接続部材1の用途などの各種条件に応じて広い範囲から適宜選択できるが、通常は、浴温度(前記混合液温度)10〜40℃程度、印加電圧10〜450V程度、電圧印加時間1〜10分程度、前記混合液の液温10〜40℃とすればよい。
なお、電着電圧、電着時間を変更することにより電着塗膜の膜厚をコントロールできる。また、基材に対して、種々前処理を行うこともできる。
この未硬化の電着塗膜が形成された基材11に加熱処理することによって、基材11表面に硬化した電着塗膜が形成される。
加熱処理は、電着塗膜を乾燥させる予備乾燥と、電着塗膜を硬化させる硬化加熱とを含み、予備乾燥後に硬化加熱が行われる。その後、電気炉を使用して1000℃で2時間焼成し、その後徐冷してセル間接続部材1を得た。
However, as a dry coating method, the CVD / EVD method, the thermal spraying method, and the like have drawbacks such as a complicated process for forming the protective film, and the composition of the protective film is not stable. It is also considered to form a protective film by a laser ablation method.
In addition, if laser ablation is used, the manufacturing cost is higher than that of CVD / EVD or thermal spraying, so in reality, when wet coating is used as a technology that can manufacture a protective film at low cost. There are many.
Examples of such wet coating methods include screen printing methods, doctor blade methods, spray coating methods, ink jet methods, spin coating methods, dip coatings, electroplating methods, electroless plating methods, electrodeposition coating methods, and the like.
For example, if an electrodeposition coating method is applied, a protective film can be formed by the following method.
Metal oxide fine particles were dispersed at 100 g per liter of electrodeposition solution, and electrodeposition coating was performed using a mixed solution containing an anionic resin such as polyacrylic acid. Here, (metal oxide fine particles: anionic resin) = (1: 1) (mass ratio).
An uncured electrodeposition coating film is formed on the surface of the base material 11 by energizing the electrode plate of the SUS304 with a negative polarity using the mixed solution as a positive electrode and the base material 11 as a counter electrode.
The electrodeposition coating is carried out according to a known method, for example, by immersing the base material 11 completely or partially in an energization tank filled with the mixed solution as an anode and energizing.
The electrodeposition coating conditions are not particularly limited, and may vary depending on various conditions such as the type of metal that is the base material 11, the type of the mixed liquid, the size and shape of the current-carrying tank, and the use of the inter-cell connecting member 1 to be obtained. Although it can be suitably selected from the range, normally, the bath temperature (the temperature of the mixed solution) is about 10 to 40 ° C., the applied voltage is about 10 to 450 V, the voltage application time is about 1 to 10 minutes, and the liquid temperature of the mixed solution is 10 to 40 ° C. And it is sufficient.
In addition, the film thickness of the electrodeposition coating film can be controlled by changing the electrodeposition voltage and the electrodeposition time. Various pretreatments can also be performed on the substrate.
By heating the substrate 11 on which the uncured electrodeposition coating film is formed, a cured electrodeposition coating film is formed on the surface of the substrate 11.
The heat treatment includes preliminary drying for drying the electrodeposition coating film and curing heating for curing the electrodeposition coating film, and curing heating is performed after the preliminary drying. Then, it baked at 1000 degreeC for 2 hours using the electric furnace, and annealed after that, and the connection member 1 between cells was obtained.

保護膜形成用材料として用いられる前記金属酸化物の微粒子としては、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)または、亜鉛コバルトマンガン系酸化物ZnzCoxMny4(0<x、y、z<3、x+y+z=3)からなる金属酸化物微粒子が用いられ、具体的には、Zn(Co,Mn)O4、Co1.5Mn1.54などを主成分として含有する平均粒径が0.1μm以上2μm以下のものが好適に用いられる。 As the fine particles of the metal oxide used as a material for forming a protective film, a cobalt-manganese oxide Co x Mn y O 4 (0 <x, y <3, x + y = 3) or zinc-cobalt-manganese-based oxide Zn Metal oxide fine particles made of z Co x Mn y O 4 (0 <x, y, z <3, x + y + z = 3) are used. Specifically, Zn (Co, Mn) O 4 , Co 1.5 Mn 1.5 Those having an average particle size of 0.1 μm or more and 2 μm or less containing O 4 or the like as a main component are preferably used.

<接合材による接着・接合>
前記保護膜12は、接合材4を用いて前記空気極31に接着接合し、燃料電池用セルCとして形成される。さらに、その燃料電池用セルCを順次直列に接合することによって燃料電池のセルスタックを形成する。(図1,3参照)
この接合材4としては、亜鉛コバルトマンガン系酸化物ZnzCoxMny4(0<x、y、z<3、x+y+z=3)からなる保護膜に対して、コバルトマンガン系酸化物CoxMny4(0≦x、y≦3、x+y=3)の接合材、より具体的には、前記保護膜形成材料がZn(Co,Mn)O4である場合、前記接合材4として、Co1.5Mn1.54、Co2MnO4、Co34等の酸化物材料を用いることができ、前記保護膜形成材料がCoxMny4(0<x、y<3、x+y=3)である場合、前記接合材が、Cox+αMny-αO4(0≦x、y、α≦3、x+y=3)、より具体的には、前記保護膜形成材料がCo1.5Mn1.54である場合、前記接合材4として、Co2MnO4、Co34等の酸化物材料を用いることができる。これらの材料は後述の実験例より、前記保護膜12と空気極31との間を、燃料電池の通電条件下で元素拡散が生じ、保護膜形成材料との間に拡散接合が生じる保護膜形成材料と同系酸化物材料からなる接合材4で接着接合する構成となるように選択することが好ましい。
すなわち、接合材4を選択すれば、燃料電池の通電条件下で元素拡散が生じ、保護膜形成材料との間に拡散接合が生じるものと考えられる。
また、前記保護膜12の焼成には1000℃での加熱を要するのに対し、接合材4による接着・接合は、燃料電池の作動温度〜950℃の低温で行うことができる。これは、基材11と保護膜12との接合には比較的高温(燃料電池の使用温度よりもやや高い温度)が必要であるのに対して、空気極31と接合材4、接合材4と保護膜12の接着接合には、拡散接合が期待できることから比較的低温で可能になるものと考えられる。
<Adhesion and bonding with bonding materials>
The protective film 12 is adhesively bonded to the air electrode 31 using the bonding material 4 and is formed as a fuel cell C. Further, the fuel cell cells C are sequentially joined in series to form a fuel cell stack. (See Figures 1 and 3)
As the bonding material 4, zinc-cobalt-manganese-based oxide Zn z Co x Mn y O 4 with respect to (0 <x, y, z <3, x + y + z = 3) a protective film, a cobalt-manganese oxide Co x Mn y O 4 (0 ≦ x, y ≦ 3, x + y = 3) bonding material, more specifically, the protective film forming material Zn (Co, Mn) if O is 4, the bonding material 4 as, Co 1.5 Mn 1.5 O 4, Co 2 MnO 4, Co 3 O 4 such as an oxide material can be used for the protective film forming material Co x Mn y O 4 (0 <x, y <3, x + y = 3), the bonding material is Co x + αMny y α0 4 (0 ≦ x, y, α ≦ 3, x + y = 3), more specifically, the protective film forming material is Co 1.5. If a Mn 1.5 O 4, as the bonding material 4, Mochiiruko oxide material such as Co 2 MnO 4, Co 3 O 4 Can. From these experimental examples, these materials are formed as a protective film in which element diffusion occurs between the protective film 12 and the air electrode 31 under the current-carrying condition of the fuel cell, and diffusion bonding occurs between the protective film forming material. The material is preferably selected so as to be bonded and bonded with the bonding material 4 made of the same oxide material as the material.
That is, if the bonding material 4 is selected, it is considered that element diffusion occurs under energization conditions of the fuel cell and diffusion bonding occurs between the protective film forming material.
In addition, the firing of the protective film 12 requires heating at 1000 ° C., whereas the bonding / bonding by the bonding material 4 can be performed at a low temperature of the fuel cell operating temperature to 950 ° C. This is because a relatively high temperature (a temperature slightly higher than the operating temperature of the fuel cell) is required for the bonding between the base material 11 and the protective film 12, whereas the air electrode 31, the bonding material 4, and the bonding material 4 are used. It can be considered that diffusion bonding can be expected for adhesive bonding between the protective film 12 and the protective film 12 at a relatively low temperature.

以下にセル間接続部材接合方法についての実施例を詳述するが、本発明は、以下の実施例に限定されるものではない。 Examples of the inter-cell connection member joining method will be described in detail below, but the present invention is not limited to the following examples.

〔実施例1〕
前記ステンレス鋼材からなるインターコネクタ(セル間接続部材1)用の基材11表面にCo1.5Mn1.54よりなる塗膜を設けた試験片を作成し、前記試験片を1000℃で、2時間加熱する熱処理を行うことにより、前記塗膜を焼成し(焼成工程)、保護膜12を作成した。前記保護膜12は、各試験片とも保護膜12の膜厚が5〜10μm程度になる条件でアニオン電着塗装した。
[Example 1]
A test piece provided with a coating film made of Co 1.5 Mn 1.5 O 4 on the surface of the base material 11 for the interconnector (inter-cell connecting member 1) made of the stainless steel material was prepared, and the test piece was kept at 1000 ° C. for 2 hours. By performing a heat treatment to heat, the coating film was baked (baking step), and the protective film 12 was formed. For each of the test pieces, the protective film 12 was subjected to anion electrodeposition under the condition that the thickness of the protective film 12 was about 5 to 10 μm.

得られた試験片をLSCF6428(La0.6Sr0.4Co0.2Fe0.83-δ)からなる空気極31に対して、Co2MnO4からなる接合材によって接合・接着し、燃料電池の作動温度〜950℃の温度で焼結させて、燃料電池試験用セルCを得た。
得られた燃料電池試験用セルCを、集電材(白金メッシュ)を介してSUSからなる一対の試験用電極間に挟持させ、試験用電極間に800℃の燃料電池使用環境において通電して、両試験用電極間の電圧の経時変化を調べたところ図4のようになった。比較として上記保護膜12に対して、接合材4としてCo1.5Mn1.54を用いた場合と、LSCF6428を用いた場合についても同様に経時変化を求めた。
経時変化は、燃料電池使用環境における初期起電力と、時間経過後における起電力との比率の変化(電圧変化率)として求めた。
The obtained test piece was bonded and adhered to the air electrode 31 made of LSCF6428 (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 -δ) with a bonding material made of Co 2 MnO 4. The fuel cell test cell C was obtained by sintering at a temperature of 950 ° C.
The obtained fuel cell test cell C is sandwiched between a pair of test electrodes made of SUS via a current collector (platinum mesh) and energized between the test electrodes in a fuel cell use environment at 800 ° C., When the time-dependent change of the voltage between both test electrodes was examined, it was as shown in FIG. As a comparison, changes with time were similarly obtained for the protective film 12 when Co 1.5 Mn 1.5 O 4 was used as the bonding material 4 and when LSCF6428 was used.
The change with time was determined as the change in the ratio (voltage change rate) between the initial electromotive force in the environment where the fuel cell was used and the electromotive force after the lapse of time.

図4より、保護膜12に対する接合材4として、Co2MnO4を用いた場合(図中太実線)には、保護膜12(Co1.5Mn1.54)と接合材4(Co2MnO4)と
の間に元素拡散が生じ、保護膜形成材料との間に拡散接合が生じるため、1000時間にわたる長期使用によっても起電力はほとんど変化しないのに対して、接合材4として従来のLSCF6428を用いた場合(図中一点鎖線)には、保護膜12(Co1.5Mn1.54)と接合材4(LSCF6428)との間に元素拡散が生じず、長期使用にしたがって、起電力が高くなり電圧変化率が上昇しており長期安定性において不十分であることがわかる。また、Co1.5Mn1.54を用いた場合(図中実線〜破線)、100時間程度の試験により、電圧変化率が大きく上下し始め、保護膜12と接合材4との間で剥離が生じている兆候が見られ始めた(実測値では、図中破線部分から電圧変化率が大きく上下振動している)。
From FIG. 4, when Co 2 MnO 4 is used as the bonding material 4 to the protective film 12 (thick solid line in the figure), the protective film 12 (Co 1.5 Mn 1.5 O 4 ) and the bonding material 4 (Co 2 MnO 4). ) And diffusion bonding between the protective film forming material and the electromotive force hardly change even after long-term use over 1000 hours, whereas the conventional LSCF6428 is used as the bonding material 4. When used (the chain line in the figure), element diffusion does not occur between the protective film 12 (Co 1.5 Mn 1.5 O 4 ) and the bonding material 4 (LSCF6428), and the electromotive force increases with long-term use. It can be seen that the rate of change in voltage is increased and the long-term stability is insufficient. When Co 1.5 Mn 1.5 O 4 is used (solid line to broken line in the figure), the voltage change rate starts to greatly increase and decrease by a test for about 100 hours, and peeling occurs between the protective film 12 and the bonding material 4. (In the measured value, the voltage change rate is greatly oscillating up and down from the broken line part in the figure).

また、上記保護膜12(Co1.5Mn1.54)と接合材4(Co2MnO4)を用いた場合の通電初期(a)と1000時間通電試験後(b)のセル間接続部材接合構造についてEPMAによる元素濃度分布を調べたところ図5のようになった。なお、CPは組成像、Co,Mnはそれぞれの元素の濃度分布であり、図中、濃色部分が各元素濃度の高い部分を示している。
図より、初期と試験後とで、Mn分布(各図右上)が保護膜12から接合層に向かって元素拡散が生じていることが読み取れるとともに、相対的に接合層におけるCo分布が減少していることが読み取れる。
すなわち、接合材4と保護膜形成材料との間に拡散接合が生じていることが読み取れる。
In addition, the inter-cell connecting member bonding structure after the initial energization (a) and after the 1000-hour energization test (b) when the protective film 12 (Co 1.5 Mn 1.5 O 4 ) and the bonding material 4 (Co 2 MnO 4 ) are used. When the element concentration distribution by EPMA was examined, it was as shown in FIG. Note that CP is a composition image, and Co and Mn are concentration distributions of the respective elements. In the drawing, dark colored portions indicate portions where the concentration of each element is high.
From the figure, it can be seen that the Mn distribution (upper right of each figure) has element diffusion from the protective film 12 toward the bonding layer in the initial stage and after the test, and the Co distribution in the bonding layer is relatively reduced. I can read that
That is, it can be read that diffusion bonding occurs between the bonding material 4 and the protective film forming material.

〔実施例2〕
保護膜12の材料と接合材4の材料との材質を表1のように種々変更して同様に起電力の経時変化を調べ、電圧増加率の増減(長期安定性)についてまとめた。長期安定性は1000時間の通電試験によって電圧増加率が増加したもの(1より大)について×、それ以外を○として表示している。
[Example 2]
The material of the protective film 12 and the material of the bonding material 4 were variously changed as shown in Table 1, and the change with time of the electromotive force was similarly examined, and the increase / decrease (long-term stability) of the voltage increase rate was summarized. The long-term stability is indicated as x for the voltage increase rate (greater than 1) increased by 1000 hours energization test, and ◯ for the other.

表1より、実施例1にもあるように保護膜12としてCo1.5Mn1.54を用いた場合には、LSCF6428やCo1.5Mn1.54を用いても長期安定性が不十分であるのに対し、Co2MnO4やCo34を用いた場合には、優れた安定性を発揮していることがわかる。また、保護膜12としてZn(Co,Mn)O4を用いた場合には、前記接合材4が、Co1.5Mn1.54、Co2MnO4、Co34を用いた場合に優れた安定性を発揮していることがわかった。優れた安定性を示す実施例は、いずれも、燃料電池の通電条件下で元素拡散が生じ、保護膜形成材料との間に拡散接合が生じる条件下であることから、前記保護膜12と空気極31との間を、このような条件を満たす接合材4で接着接合することが好ましいことがあきらかになった。 As shown in Table 1, when Co 1.5 Mn 1.5 O 4 is used as the protective film 12 as in Example 1, long-term stability is insufficient even when LSCF6428 or Co 1.5 Mn 1.5 O 4 is used. On the other hand, when Co 2 MnO 4 or Co 3 O 4 is used, it can be seen that excellent stability is exhibited. Further, when Zn (Co, Mn) O 4 is used as the protective film 12, the bonding material 4 is excellent when Co 1.5 Mn 1.5 O 4 , Co 2 MnO 4 , and Co 3 O 4 are used. It was found that it was stable. In all of the examples showing excellent stability, element diffusion occurs under the energization condition of the fuel cell, and diffusion bonding occurs between the protective film forming material and the protective film 12 and the air. It has become clear that it is preferable to bond and bond between the electrode 31 and the electrode 31 with the bonding material 4 that satisfies such conditions.

〔長期連続耐久試験〕
上記の実施例1および2では1000時間の通電試験を行ったが、より長期間での安定性を確認するために4000時間の通電試験を行った。結果を図6に示す。
[Long-term continuous durability test]
In Examples 1 and 2 above, an energization test for 1000 hours was performed, but an energization test for 4000 hours was performed in order to confirm stability over a longer period of time. The results are shown in FIG.

まず試験用セルCの作成条件を述べるが、上記の実施例1と同様である。ステンレス鋼材からなる基材11に、Co1.5Mn1.54微粒子とアニオン型樹脂を含有した混合液を用いて電着塗装を行い、1000℃で2時間加熱して焼成を行い、基材11の表面にCo1.5Mn1.54からなる保護膜を形成した。電着塗装は、保護膜の膜厚が5〜15μm程度となる条件で行った。得られた基材11を、単セル3のLSCF6428(La0.6Sr0.4Co0.2Fe0.83-δ)からなる空気極31に、本発明の接合材を用いて接合し、800〜950℃の温度で焼結させて、試験用のセルCを得た。接合材としてCo2MnO4とCo34の2種類を使用し、2種類の試験用セルCを作成した。 First, conditions for creating the test cell C will be described, which are the same as those in the first embodiment. Electrodeposition coating is performed on a base material 11 made of a stainless steel material using a mixed solution containing Co 1.5 Mn 1.5 O 4 fine particles and an anionic resin, heated at 1000 ° C. for 2 hours, and fired. A protective film made of Co 1.5 Mn 1.5 O 4 was formed on the surface. The electrodeposition coating was performed under the condition that the protective film had a thickness of about 5 to 15 μm. The obtained base material 11 was joined to the air electrode 31 made of LSCF6428 (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3- δ) of the single cell 3 using the joining material of the present invention, and the temperature of 800 to 950 ° C. Sintering was performed at a temperature to obtain a test cell C. Two types of test cells C were prepared using two types of bonding materials, Co 2 MnO 4 and Co 3 O 4 .

次に長期連続耐久試験の試験条件を述べる。得られた2種類の試験用セルCを、集電材(白金メッシュ)を介してSUSからなる一対の試験用電極間に挟持させ、800℃の燃料電池使用環境において試験用電極間に4000時間通電し、抵抗値の経時変化を調べた。   Next, the test conditions for the long-term continuous durability test are described. The obtained two types of test cells C are sandwiched between a pair of test electrodes made of SUS via a current collector (platinum mesh) and energized for 4000 hours between the test electrodes in a fuel cell usage environment at 800 ° C. The change in resistance value with time was examined.

図6より、保護膜Co1.5Mn1.54に対してCo2MnO4(実線)とCo34(破線)のいずれの接合材を用いた場合であっても、試験期間中に抵抗値の顕著な増加は見られず、優れた長期安定性を示す。 From FIG. 6, it can be seen that the resistance value during the test period is not limited to the case of using either Co 2 MnO 4 (solid line) or Co 3 O 4 (dashed line) for the protective film Co 1.5 Mn 1.5 O 4 . No significant increase is observed, and excellent long-term stability is exhibited.

〔サーマルサイクル試験〕
燃料電池の作動温度は約800℃であるから、燃料電池の起動・停止の繰り返しによりSOFC用セルは室温(燃料電池停止時)→800℃→室温→800℃の温度変化を繰り返し受けることになる。このような環境下でのセル間接続部材接合構造の耐久性を確認するため、サーマルサイクル試験を行った。結果を図7と図8に示す。
[Thermal cycle test]
Since the operating temperature of the fuel cell is about 800 ° C., the SOFC cell is repeatedly subjected to a temperature change of room temperature (when the fuel cell is stopped) → 800 ° C. → room temperature → 800 ° C. by repeated starting and stopping of the fuel cell. . In order to confirm the durability of the inter-cell connecting member bonding structure under such an environment, a thermal cycle test was performed. The results are shown in FIGS.

試験用セルCの作成条件は上記の長期連続耐久試験と同じであるため、詳細な記載を省略する。基材11にはCo1.5Mn1.54からなる保護膜を形成し、接合材にはCo2MnO4とCo34の2種類を用いて、2種類の試験用のセルCを得た。 Since the conditions for creating the test cell C are the same as those in the long-term continuous durability test, detailed description is omitted. A protective film made of Co 1.5 Mn 1.5 O 4 was formed on the base material 11, and two types of test cells C were obtained using two types of bonding materials, Co 2 MnO 4 and Co 3 O 4 . .

次にサーマルサイクル試験の試験条件を述べる。得られた2種類の試験用セルCを、集電材(白金メッシュ)を介してSUSからなる一対の試験用電極間に挟持させた。試験用電極間に通電した状態で、800℃に昇温、室温に降温のサイクルからなるサーマルサイクルを繰り返して、抵抗値の経時変化を調べた。サーマルサイクルの1周期は約20時間、800℃と室温の区間はそれぞれ約10時間である。   Next, the test conditions of the thermal cycle test are described. The obtained two types of test cells C were sandwiched between a pair of test electrodes made of SUS via a current collector (platinum mesh). While energized between the test electrodes, a thermal cycle consisting of a cycle of raising the temperature to 800 ° C. and lowering the temperature to room temperature was repeated, and the change in resistance value with time was examined. One cycle of the thermal cycle is about 20 hours, and the interval between 800 ° C. and room temperature is about 10 hours.

図7は試験開始から50時間までの抵抗値変化を示すグラフであり、図8は2000時間から2050時間までの抵抗値変化を示すグラフである。2000時間経過後であっても、接合材Co2MnO4(実線)とCo34(破線)の両サンプルの抵抗値は実験開始時と同程度の80〜120mΩcm2程度を示しており、抵抗値の顕著な増加は見られなかった。試験は2000時間を超えて継続しており、サーマルサイクル120周期を超えているが、抵抗値は実験開始時と同程度である。起動・停止の繰り返しによる温度変化を受ける環境下においても、保護膜Co1.5Mn1.54と接合剤Co2MnO4またはCo34による本発明のセル間接続部材接合構造は、高い接着性と低い接触抵抗を維持できる。 FIG. 7 is a graph showing a change in resistance value from the start of the test to 50 hours, and FIG. 8 is a graph showing a change in resistance value from 2000 hours to 2050 hours. Even after 2000 hours, the resistance values of both samples of the bonding materials Co 2 MnO 4 (solid line) and Co 3 O 4 (broken line) show about 80 to 120 mΩcm 2, which is the same as that at the start of the experiment, There was no significant increase in resistance. The test has continued for over 2000 hours and has exceeded 120 thermal cycles, but the resistance is similar to that at the start of the experiment. Even in an environment subject to temperature changes due to repeated starting and stopping, the inter-cell connecting member bonding structure of the present invention using the protective film Co 1.5 Mn 1.5 O 4 and the bonding agent Co 2 MnO 4 or Co 3 O 4 has high adhesiveness. And maintain low contact resistance.

本発明によれば、耐久性が高く長期にわたって安定して使用することができるセル間接続部材1、SOFC用セルを備えた燃料電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel cell provided with the endurance and the cell connection member 1 which can be used stably over a long period of time, and the cell for SOFC can be provided.

1 :セル間接続部材
2 :溝
2a :空気流路
2b :燃料流路
3 :単セル
11 :基材
12 :保護膜
30 :電解質膜
31 :空気極
32 :燃料極
C :固体酸化物形燃料電池(SOFC)用セル
1: Inter-cell connecting member 2: Groove 2a: Air flow path 2b: Fuel flow path 3: Single cell 11: Base material 12: Protective film 30: Electrolyte film 31: Air electrode 32: Fuel electrode C: Solid oxide fuel Battery (SOFC) cell

Claims (5)

固体酸化物形燃料電池用セルに用いられる空気極に、セル間接続部材を接合するためのセル間接続部材接合構造であって、
セル間接続部材の基材に、保護膜形成材料としてのZn(Co,Mn)O 4 からなる保護膜を設けるとともに、前記保護膜と空気極との間を、燃料電池の通電条件下で元素拡散が生じ、保護膜形成材料との間に拡散接合が生じる保護膜形成材料と同系酸化物材料からなる接合材で接着接合してあり、接合材がCo Mn 4 (1.5≦x≦3、0≦y≦1.5、x+y=3)から選ばれる少なくとも一種の酸化物材料であるセル間接続部材接合構造。
An inter-cell connecting member joining structure for joining an inter-cell connecting member to an air electrode used for a solid oxide fuel cell,
A protective film made of Zn (Co, Mn) O 4 as a protective film forming material is provided on the base material of the inter-cell connecting member, and the element between the protective film and the air electrode is energized under the current-carrying condition of the fuel cell. diffusion occurs, Thea adhesively bonded by a bonding material diffusion bonding a protective film forming material and the same type oxide material occurring between the protective film forming material is, the bonding material is Co x Mn y O 4 (1.5 ≦ x ≦ 3, 0 ≦ y ≦ 1.5, x + y = 3) An inter-cell connecting member bonding structure which is at least one kind of oxide material .
固体酸化物形燃料電池用セルに用いられる空気極に、セル間接続部材を接合するためのセル間接続部材接合構造であって、  An inter-cell connecting member joining structure for joining an inter-cell connecting member to an air electrode used for a solid oxide fuel cell,
セル間接続部材の基材に、保護膜形成材料としてのCo  Co as a protective film forming material on the base material of the connection member between cells 1.51.5 MnMn 1.51.5 O 4Four からなる保護膜を設けるとともに、前記保護膜と空気極との間を、燃料電池の通電条件下で元素拡散が生じ、保護膜形成材料との間に拡散接合が生じる保護膜形成材料と同系酸化物材料からなる接合材で接着接合してあり、接合材がCoAnd a protective film forming material in which the element diffusion occurs between the protective film and the air electrode under the current-carrying condition of the fuel cell and a diffusion bonding is formed between the protective film forming material and the protective film forming material. It is adhesively bonded with a bonding material made of material, and the bonding material is Co x MnMn y O 4Four (2≦x≦3、0≦y≦1、x+y=3)から選ばれる少なくとも一種の酸化物材料であるセル間接続部材接合構造。An inter-cell connecting member bonding structure that is at least one oxide material selected from (2 ≦ x ≦ 3, 0 ≦ y ≦ 1, x + y = 3).
前記セル間接続部材の基材がSUS材である請求項1または2に記載のセル間接続部材接合構造。 The inter-cell connecting member joining structure according to claim 1 or 2, wherein a base material of the inter-cell connecting member is a SUS material. 固体酸化物形燃料電池用セルに用いられる空気極と、セル間接続部材を接合するセル間接続部材接合方法であって、
セル間接続部材の基材に、保護膜形成材料としてのZn(Co,Mn)O 4 からなる保護膜を焼成・焼結して設け、前記保護膜と空気極との間を、Co Mn 4 (1.5≦x≦3、0≦y≦1.5、x+y=3)から選ばれる少なくとも一種の酸化物材料で接着接合するとともに、燃料電池の作動温度〜950℃で焼成・焼結するセル間接続部材接合方法。
An inter-cell connecting member joining method for joining an air electrode used for a solid oxide fuel cell and an inter-cell connecting member,
The substrate of intercell connection member, Zn (Co, Mn) as a protective film forming material provided by sintering and sintering the protective film made of O 4, between the protective film and the air electrode, Co x Mn Adhesion and bonding with at least one oxide material selected from y O 4 (1.5 ≦ x ≦ 3, 0 ≦ y ≦ 1.5, x + y = 3) and firing at a fuel cell operating temperature of 950 ° C. Inter-cell connecting member joining method for sintering.
固体酸化物形燃料電池用セルに用いられる空気極と、セル間接続部材を接合するセル間接続部材接合方法であって、
セル間接続部材の基材に、保護膜形成材料としてのCo 1.5 Mn 1.5 4 からなる保護膜を焼成・焼結して設け、前記保護膜と空気極との間を、Co Mn 4 (2≦x≦3、0≦y≦1、x+y=3)から選ばれる少なくとも一種の酸化物材料で接着接合するとともに、燃料電池の作動温度〜950℃で焼成・焼結するセル間接続部材接合方法。
An inter-cell connecting member joining method for joining an air electrode used for a solid oxide fuel cell and an inter-cell connecting member,
The substrate of intercell connection member, provided by firing and sintering the protective film made of Co 1.5 Mn 1.5 O 4 as a protective film forming material, between the protective film and the air electrode, Co x Mny y O 4 (2 ≦ x ≦ 3, 0 ≦ y ≦ 1, x + y = 3) is bonded and bonded with at least one oxide material , and is fired and sintered at an operating temperature of the fuel cell of 950 ° C. Cell connecting member joining method.
JP2014040277A 2013-09-27 2014-03-03 Inter-cell connecting member joining structure and inter-cell connecting member joining method Active JP6289170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014040277A JP6289170B2 (en) 2013-09-27 2014-03-03 Inter-cell connecting member joining structure and inter-cell connecting member joining method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013202292 2013-09-27
JP2013202292 2013-09-27
JP2014040277A JP6289170B2 (en) 2013-09-27 2014-03-03 Inter-cell connecting member joining structure and inter-cell connecting member joining method

Publications (2)

Publication Number Publication Date
JP2015088446A JP2015088446A (en) 2015-05-07
JP6289170B2 true JP6289170B2 (en) 2018-03-07

Family

ID=53050986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014040277A Active JP6289170B2 (en) 2013-09-27 2014-03-03 Inter-cell connecting member joining structure and inter-cell connecting member joining method

Country Status (1)

Country Link
JP (1) JP6289170B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3350862T3 (en) * 2015-09-14 2019-12-02 Elcogen Oy PROTECTIVE DEVICE FOR STRUCTURAL PLATE STRUCTURE CELLS AND PROCEDURE FOR THE PROTECTION DEVICE
JP6572731B2 (en) * 2015-10-23 2019-09-11 株式会社デンソー Fuel cell stack
WO2017131176A1 (en) * 2016-01-28 2017-08-03 京セラ株式会社 Electroconductive member, cell stack, module, and module storage device
JP6742104B2 (en) * 2016-02-05 2020-08-19 大阪瓦斯株式会社 Method for producing inter-cell connecting member, and method for producing solid oxide fuel cell cell
JP7050214B1 (en) 2020-11-26 2022-04-07 京セラ株式会社 Conductive members, cells, cell stacking devices, modules and module housing devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5483539B2 (en) * 2009-02-04 2014-05-07 日本碍子株式会社 Joining method
JP5044628B2 (en) * 2009-11-09 2012-10-10 日本碍子株式会社 Coating body
JP2011165652A (en) * 2010-01-14 2011-08-25 Osaka Gas Co Ltd Method of manufacturing interconnector for fuel cell, and interconnector for fuel cell
JP5770659B2 (en) * 2011-03-28 2015-08-26 大阪瓦斯株式会社 Solid oxide fuel cell and inter-cell connecting member
US10431833B2 (en) * 2012-03-01 2019-10-01 Bloom Energy Corporation Coatings for metal interconnects to reduce SOFC degradation
JP5356624B1 (en) * 2012-06-29 2013-12-04 日本碍子株式会社 A joined body in which the power generation parts of a solid oxide fuel cell are electrically connected

Also Published As

Publication number Publication date
JP2015088446A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5607903B2 (en) Barrier coating for interconnect, related apparatus and forming method
US8349395B2 (en) Electrically conductive steel-ceramic composite and process to manufacture it
JP6289170B2 (en) Inter-cell connecting member joining structure and inter-cell connecting member joining method
JP5770659B2 (en) Solid oxide fuel cell and inter-cell connecting member
JP5785135B2 (en) Method for producing current collecting member for solid oxide fuel cell and current collecting member for solid oxide fuel cell
JP6584097B2 (en) Inter-cell connecting member joining method and method for producing solid oxide fuel cell
JP7080060B2 (en) Cell-to-cell connection member, solid oxide fuel cell cell, solid oxide fuel cell, SOFC monogeneration system, and SOFC cogeneration system
JP2013118178A (en) Solid oxide fuel cell
JP5943821B2 (en) Method for producing inter-cell connecting member and method for producing solid oxide fuel cell
JP5778711B2 (en) Method for manufacturing inter-cell connecting member, inter-cell connecting member, and solid oxide fuel cell
JP2013118177A (en) Solid oxide fuel cell
JP6358921B2 (en) Method for producing solid oxide fuel cell and method for joining cells
JP5215443B2 (en) Solid oxide fuel cell
JP6917182B2 (en) Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks
JP2017084509A (en) Fuel battery cell stack
JP7357577B2 (en) Inter-cell connection member, solid oxide fuel cell, SOFC monogeneration system, SOFC cogeneration system, and method for manufacturing inter-cell connection member
JP6268209B2 (en) Fuel cell power generation unit and fuel cell stack
JP6188372B2 (en) Solid oxide fuel cell and inter-cell connecting member for fuel cell
JP2015011958A (en) Protective film formation method
JP6906310B2 (en) Manufacturing method of solid oxide fuel cell
JP6165051B2 (en) Manufacturing method of fuel cell member
JP6742104B2 (en) Method for producing inter-cell connecting member, and method for producing solid oxide fuel cell cell
JP2018206693A (en) Conductive member, electrochemical reaction unit and electrochemical reaction cell stack
JP2018010871A (en) Method for manufacturing inter-cell connection member
JP2007019037A (en) Solid electrolyte type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180206

R150 Certificate of patent or registration of utility model

Ref document number: 6289170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150