JP6906310B2 - Manufacturing method of solid oxide fuel cell - Google Patents

Manufacturing method of solid oxide fuel cell Download PDF

Info

Publication number
JP6906310B2
JP6906310B2 JP2017000744A JP2017000744A JP6906310B2 JP 6906310 B2 JP6906310 B2 JP 6906310B2 JP 2017000744 A JP2017000744 A JP 2017000744A JP 2017000744 A JP2017000744 A JP 2017000744A JP 6906310 B2 JP6906310 B2 JP 6906310B2
Authority
JP
Japan
Prior art keywords
cell
base material
protective film
solid oxide
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017000744A
Other languages
Japanese (ja)
Other versions
JP2017188426A (en
Inventor
孝之 中尾
孝之 中尾
井上 修一
修一 井上
英正 野中
英正 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Publication of JP2017188426A publication Critical patent/JP2017188426A/en
Application granted granted Critical
Publication of JP6906310B2 publication Critical patent/JP6906310B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体酸化物形燃料電池用セルの製造方法に関する。 The present invention relates to a method for manufacturing a cell for a solid oxide fuel cell.

固体酸化物形燃料電池(以下、適宜「SOFC」と記載する。)用セルは、電解質層の一方面側に空気極を接合すると共に、同電解質層の他方面側に燃料極を接合してなる単セルを、空気極又は燃料極に対して電子の授受を行う一対の電子伝導性のセル間接続部材により挟み込んで積層した構造を有する。
そして、このようなSOFC用セルでは、例えば700〜900℃程度の作動温度で作動し、空気極側から燃料極側への電解質膜を介した酸化物イオンの移動に伴って、一対の電極の間に起電力が発生し、その起電力を外部に取り出し利用することができる。
In a cell for a solid oxide fuel cell (hereinafter, appropriately referred to as "SOFC"), an air electrode is bonded to one surface side of the electrolyte layer, and a fuel electrode is bonded to the other surface side of the electrolyte layer. It has a structure in which a single cell is sandwiched between a pair of electron-conducting cell-cell connecting members that transfer electrons to an air electrode or a fuel electrode.
Then, in such a SOFC cell, for example, it operates at an operating temperature of about 700 to 900 ° C., and as the oxide ions move from the air electrode side to the fuel electrode side via the electrolyte membrane, the pair of electrodes An electromotive force is generated in the meantime, and the electromotive force can be taken out and used.

このようなSOFC用セルで利用されるセル間接続部材は、電子伝導性及び耐熱性に優れたCrを含有する材料で製作される。また、このような合金の耐熱性は、この合金の表面に形成されるクロミア(Cr23)の緻密な被膜に由来する。近年、SOFC用セルの動作温度が下がってきており、セル間接続部材の材料としてステンレス合金が用いられるようになった。セル間接続部材の基材の表面には、Cr飛散の抑制のため、金属酸化物等の保護膜が形成される。 The cell-cell connection member used in such an SOFC cell is made of a material containing Cr, which has excellent electron conductivity and heat resistance. Further, the heat resistance of such an alloy is derived from the dense film of chromium (Cr 2 O 3) formed on the surface of this alloy. In recent years, the operating temperature of SOFC cells has been lowered, and stainless alloys have come to be used as a material for cell-cell connecting members. A protective film such as a metal oxide is formed on the surface of the base material of the cell-cell connecting member in order to suppress Cr scattering.

特開昭60−169546号公報Japanese Unexamined Patent Publication No. 60-169546

Hideto Kurokawa et al., "Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient", Solid State Ionics 168 (2004) 13-21Hideto Kurokawa et al., "Oxidation behavior of Fe-16Cr alloy interconnect for SOFC under hydrogen potential gradient", Solid State Ionics 168 (2004) 13-21 William Qu et al., "Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects", Journal of Power Sources 153 (2006) 114-124William Qu et al., "Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects", Journal of Power Sources 153 (2006) 114-124

ここでステンレス合金には主成分のFe、Crの他に、耐熱性や耐食性の付与のために様々な元素が添加されている。これらの微量な添加元素が、金属/保護膜界面の近傍の酸素ポテンシャルによって、金属の内部に酸化物の膜状領域を形成することが報告されている(非特許文献1)。この文献では、金属の内部にMnとCrの複合酸化物(スピネル化合物)が形成されることが報告されている。 Here, in addition to the main components Fe and Cr, various elements are added to the stainless alloy in order to impart heat resistance and corrosion resistance. It has been reported that these trace amounts of additive elements form a film-like region of an oxide inside the metal due to the oxygen potential near the metal / protective film interface (Non-Patent Document 1). In this document, it is reported that a composite oxide (spinel compound) of Mn and Cr is formed inside the metal.

MnとCrの複合酸化物は、MnとCrとの組成比が変わると、導電性が大きく変化することが報告されている(非特許文献2)。例えばCrリッチなMnCr24は、SOFCの作動環境下(例えば、750℃)で、クロミア(Cr23)の約9倍の大きさの電気抵抗を有する。 It has been reported that the conductivity of a composite oxide of Mn and Cr changes significantly when the composition ratio of Mn and Cr changes (Non-Patent Document 2). For example, Cr-rich MnCr 2 O 4 has an electric resistance about 9 times as large as that of chromia (Cr 2 O 3 ) under the operating environment of SOFC (for example, 750 ° C.).

SOFC用セルは単セルとセル間接続部材とを交互に積層して構成されるから、セル間接続部材の電気抵抗を可及的小さくすることが求められる。上述したMnCr24のような電気抵抗の大きな酸化物がセル間接続部材の基材の内部に生じると、SOFC用セルの発電性能が大きく低下することが懸念される。なお特許文献1では、フェライト系ステンレス鋼において、Mnの含有量が増加するとMnCr24スケールが生成することが報告されている。 Since the SOFC cell is constructed by alternately stacking single cells and cell-to-cell connecting members, it is required to reduce the electrical resistance of the cell-cell connecting members as much as possible. If an oxide having a large electric resistance such as MnCr 2 O 4 described above is generated inside the base material of the cell-to-cell connection member, there is a concern that the power generation performance of the SOFC cell will be significantly deteriorated. In Patent Document 1, it is reported that MnCr 2 O 4 scale is generated when the Mn content is increased in ferritic stainless steel.

本発明は上述の課題に鑑みてなされたものであり、その目的は、電気抵抗の大きなMnCr24がセル間接続部材の基材の内部に生成することを抑制して、発電性能の高いSOFC用セルを提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to suppress the formation of MnCr 2 O 4 having a large electric resistance inside the base material of the cell-to-cell connection member, and to have high power generation performance. The purpose is to provide a cell for SOFC.

上記目的を達成するための本発明に係る固体酸化物形燃料電池用セルの製造方法の特徴構成は、
前記セル間接続部材の基材の表面に保護膜を形成する保護膜形成ステップと、
前記セル間接続部材と空気極とを接合層を介して接合する接合ステップとを有し、
前記基材は、Mnを含有するステンレス合金を主材料とし、
前記保護膜は、MnとCoとを含有するスピネル型金属酸化物を主材料とし、
前記接合ステップにおける前記接合層の焼き付けが1050℃以上1075℃以下の温度で行われる点にある。
The characteristic configuration of the method for manufacturing a cell for a solid oxide fuel cell according to the present invention for achieving the above object is as follows.
A protective film forming step of forming a protective film on the surface of the base material of the cell-cell connecting member,
It has a joining step for joining the cell-to-cell connecting member and an air electrode via a joining layer.
The base material is mainly made of a stainless alloy containing Mn.
The protective film is mainly made of a spinel-type metal oxide containing Mn and Co.
The point is that the baking of the bonding layer in the bonding step is performed at a temperature of 1050 ° C. or higher and 1075 ° C. or lower.

発明者らは、セル間接続部材と空気極とを接合する接合層の焼き付け温度により、セル間接続部材および接合層の電気抵抗の大きさが変化する現象を見出した。そして、接合層の焼き付け温度が1000℃の場合には、基材の内部にMnCr24が生成しており、1050℃以上の場合には、MnCr24の生成が抑制されていることを確認して、本発明の完成に至った。すなわち上記の特徴構成によれば、電気抵抗の大きなMnCr24がセル間接続部材の基材の内部に生成することを抑制して、発電性能の高いSOFC用セルを提供することができる。 The inventors have found a phenomenon in which the magnitude of the electrical resistance of the cell-cell connecting member and the bonding layer changes depending on the baking temperature of the bonding layer that joins the cell-cell connecting member and the air electrode. When the baking temperature of the bonding layer is 1000 ° C., MnCr 2 O 4 is formed inside the base material, and when the baking temperature is 1050 ° C. or higher, the formation of MnCr 2 O 4 is suppressed. Was confirmed, and the present invention was completed. That is, according to the above-mentioned characteristic configuration, it is possible to provide an SOFC cell having high power generation performance by suppressing the generation of MnCr 2 O 4 having a large electric resistance inside the base material of the cell-to-cell connecting member.

前記接合ステップにおける前記接合層の焼き付けが1075℃以下の温度で行われると、電気抵抗の大きなMnCr24がセル間接続部材の基材の内部に生成することを抑制して、発電性能の高いSOFC用セルを提供することができ好適である。なお接合層の焼き付けを1075℃を超えて高い温度で行うと、保護膜と基材との間で剥離が生じたり、酸化被膜(クロミア)成長が増進されたり等の抵抗が増大する可能性が高くなるため、好ましくない。 When the bonding layer is baked at a temperature of 1075 ° C. or lower in the bonding step, MnCr 2 O 4 having a large electrical resistance is suppressed from being generated inside the base material of the cell-to-cell connecting member, and the power generation performance is improved. It is suitable because it can provide a high SOFC cell. If the bonding layer is baked at a high temperature exceeding 1075 ° C., resistance such as peeling between the protective film and the base material and increased growth of the oxide film (chromia) may increase. It is not preferable because it becomes expensive.

上記目的を達成するための本発明に係る固体酸化物形燃料電池用セルの製造方法の特徴構成は、
前記セル間接続部材の基材の表面に保護膜を形成する保護膜形成ステップと、
前記セル間接続部材と空気極とを接合層を介して接合する接合ステップとを有し、
前記基材は、Mnを含有するステンレス合金を主材料とし、
前記保護膜は、MnとCoとを含有するスピネル型金属酸化物を主材料とし、
前記接合ステップにおける前記接合層の焼き付けが1050℃以上1075℃未満の温度で行われる点にある。
発明者らは、セル間接続部材と空気極とを接合する接合層の焼き付け温度により、セル間接続部材および接合層の電気抵抗の大きさが変化する現象を見出した。そして、接合層の焼き付け温度が1000℃の場合には、基材の内部にMnCr 2 4 が生成しており、1050℃以上の場合には、MnCr 2 4 の生成が抑制されていることを確認して、本発明の完成に至った。すなわち上記の特徴構成によれば、電気抵抗の大きなMnCr 2 4 がセル間接続部材の基材の内部に生成することを抑制して、発電性能の高いSOFC用セルを提供することができる。
さらに前記接合ステップにおける前記接合層の焼き付けが1075℃未満の温度で行われると、固体酸化物型燃料電池の実際の作動環境である700℃〜800℃における抵抗値を低く抑えることができ好ましい。
The characteristic configuration of the method for manufacturing a cell for a solid oxide fuel cell according to the present invention for achieving the above object is as follows.
A protective film forming step of forming a protective film on the surface of the base material of the cell-cell connecting member,
It has a joining step for joining the cell-to-cell connecting member and an air electrode via a joining layer.
The base material is mainly made of a stainless alloy containing Mn.
The protective film is mainly made of a spinel-type metal oxide containing Mn and Co.
The point is that the baking of the bonding layer in the bonding step is performed at a temperature of 1050 ° C. or higher and lower than 1075 ° C.
The inventors have found a phenomenon in which the magnitude of the electrical resistance of the cell-cell connecting member and the bonding layer changes depending on the baking temperature of the bonding layer that joins the cell-cell connecting member and the air electrode. When the baking temperature of the bonding layer is 1000 ° C., MnCr 2 O 4 is formed inside the base material, and when the baking temperature is 1050 ° C. or higher, the formation of MnCr 2 O 4 is suppressed. Was confirmed, and the present invention was completed. That is, according to the above-mentioned characteristic configuration, it is possible to provide an SOFC cell having high power generation performance by suppressing the generation of MnCr 2 O 4 having a large electric resistance inside the base material of the cell-to-cell connecting member.
Further, when the bonding layer is baked at a temperature of less than 1075 ° C. in the bonding step, the resistance value at 700 ° C. to 800 ° C., which is the actual operating environment of the solid oxide fuel cell, can be suppressed low, which is preferable.

本発明に係る固体酸化物形燃料電池用セルの製造方法の別の特徴構成は、前記基材の主材料のステンレス合金がSiを含有する点にある。 Another characteristic configuration of the method for producing a solid oxide fuel cell according to the present invention is that the stainless alloy as the main material of the base material contains Si.

基材の主材料のステンレス合金がSiを含有する場合には、保護膜形成ステップと接合ステップとを経た基材において、表面の近傍にSiO2の層が形成されていることが確認された。そしてその層は、接合層の焼き付けが1000℃の場合に比べて、1050℃以上の場合には、より厚くなっている。この層は、ステンレス合金内部からのMnの拡散を阻害して、基材の内部でのMnCr24の生成を抑制する効果があると考えられる。すなわち上記の特徴構成によれば、MnCr24の生成を更に効果的に抑制して、発電性能の高いSOFC用セルを提供することができる。 When the stainless alloy as the main material of the base material contained Si, it was confirmed that a layer of SiO 2 was formed in the vicinity of the surface of the base material that had undergone the protective film forming step and the joining step. The layer is thicker at 1050 ° C. or higher than when the bonding layer is baked at 1000 ° C. It is considered that this layer has an effect of inhibiting the diffusion of Mn from the inside of the stainless alloy and suppressing the formation of MnCr 2 O 4 inside the base material. That is, according to the above-mentioned characteristic configuration, it is possible to more effectively suppress the generation of MnCr 2 O 4 and provide an SOFC cell having high power generation performance.

本発明に係る固体酸化物形燃料電池用セルの製造方法の別の特徴構成は、前記基材の主材料のステンレス合金がTiを含有する点にある。 Another characteristic configuration of the method for producing a solid oxide fuel cell according to the present invention is that the stainless alloy as the main material of the base material contains Ti.

基材の主材料のステンレス合金がTiを含有する場合には、保護膜形成ステップと接合ステップとを経た基材において、表面の近傍にTiO2の層が形成されていることが確認された。そしてその層は、接合層の焼き付けが1000℃の場合に比べて、1050℃以上の場合には、より厚くなっている。この層は、ステンレス合金内部からのMnの拡散を阻害して、基材の内部でのMnCr24の生成を抑制する効果があると考えられる。すなわち上記の特徴構成によれば、MnCr24の生成を更に効果的に抑制して、発電性能の高いSOFC用セルを提供することができる。 When the stainless alloy, which is the main material of the base material, contains Ti, it was confirmed that a layer of TiO 2 was formed in the vicinity of the surface of the base material that had undergone the protective film forming step and the joining step. The layer is thicker at 1050 ° C. or higher than when the bonding layer is baked at 1000 ° C. It is considered that this layer has an effect of inhibiting the diffusion of Mn from the inside of the stainless alloy and suppressing the formation of MnCr 2 O 4 inside the base material. That is, according to the above-mentioned characteristic configuration, it is possible to more effectively suppress the generation of MnCr 2 O 4 and provide an SOFC cell having high power generation performance.

本発明に係る固体酸化物形燃料電池用セルの製造方法の別の特徴構成は、前記保護膜の主材料が、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)または、亜鉛コバルトマンガン系酸化物ZnzCoxMny4(0<x、y、z<3、x+y+z=3)である点にある。 Another characteristic feature of the manufacturing method of the solid oxide fuel cell according to the present invention, a main material of the protective layer is comprised of cobalt manganese oxide Co x Mn y O 4 (0 <x, y <3, x + y = 3) or zinc cobalt manganese oxide Zn z Co x Mn y O 4 (0 <x, y, z <3, x + y + z = 3).

上記の特徴構成によれば、保護膜の熱膨張率と基材や空気極の熱膨張率との不一致を小さくすることができ、SOFC用セルの耐久性を高めることができ好適である。 According to the above-mentioned characteristic configuration, the discrepancy between the coefficient of thermal expansion of the protective film and the coefficient of thermal expansion of the base material and the air electrode can be reduced, and the durability of the SOFC cell can be improved, which is preferable.

本発明に係る固体酸化物形燃料電池用セルの製造方法の別の特徴構成は、前記保護膜の主材料が、Co1.5Mn1.54またはCo2MnO4である点にある。 Another characteristic feature of the manufacturing method of the solid oxide fuel cell according to the present invention, a main material of the protective film, lies in a Co 1.5 Mn 1.5 O 4 or Co 2 MnO 4.

保護膜の主材料がCo2MnO4であるサンプルを用いた実験にて、MnCr24の生成が抑制されることが確認されている。同系統のスピネル型金属酸化物であるCo1.5Mn1.54についても同様の結果となることが強く推認される。すなわち上記の特徴構成によれば、電気抵抗の大きなMnCr24がセル間接続部材の基材の内部に生成することを抑制して、発電性能の高いSOFC用セルを提供することができる。 In an experiment using a sample in which the main material of the protective film is Co 2 MnO 4 , it has been confirmed that the formation of MnCr 2 O 4 is suppressed. It is strongly speculated that the same result will be obtained for Co 1.5 Mn 1.5 O 4 , which is a spinel-type metal oxide of the same type. That is, according to the above-mentioned characteristic configuration, it is possible to provide an SOFC cell having high power generation performance by suppressing the generation of MnCr 2 O 4 having a large electric resistance inside the base material of the cell-to-cell connecting member.

本発明に係る固体酸化物形燃料電池用セルの製造方法の別の特徴構成は、前記保護膜形成ステップにおいて、前記保護膜が電着塗装により形成される点にある。 Another characteristic configuration of the method for producing a solid oxide fuel cell according to the present invention is that the protective film is formed by electrodeposition coating in the protective film forming step.

上記特徴構成によれば、緻密で強固な保護膜を実現することができ、好適である。 According to the above-mentioned feature configuration, a dense and strong protective film can be realized, which is suitable.

固体酸化物形燃料電池用セルの概略図Schematic diagram of solid oxide fuel cell cell 固体酸化物形燃料電池の作動時の反応の説明図Explanatory drawing of reaction at the time of operation of solid oxide fuel cell セル間接続部材接合構造の断面図Cross-sectional view of the cell-to-cell connecting member joining structure 通電試験治具の概略図Schematic diagram of energization test jig 電気抵抗の経時変化を示すグラフGraph showing changes in electrical resistance over time 固体酸化物形燃料電池用セルの断面のSEM画像およびEPMA図SEM image and EPMA diagram of the cross section of the solid oxide fuel cell 固体酸化物形燃料電池用セルの断面のSEM画像およびEPMA図SEM image and EPMA diagram of the cross section of the solid oxide fuel cell 電気抵抗の経時変化を示すグラフGraph showing changes in electrical resistance over time 初期温度特性(電気抵抗)を示すグラフGraph showing initial temperature characteristics (electrical resistance)

以下、固体酸化物形燃料電池(SOFC)用セルを説明し、その製造方法および実験例を示す。なお以下に本発明の好適な実施例を記すが、これら実施例はそれぞれ本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。 Hereinafter, a cell for a solid oxide fuel cell (SOFC) will be described, and a manufacturing method and an experimental example thereof will be shown. Preferable examples of the present invention will be described below, and each of these examples has been described in order to more specifically illustrate the present invention, and various changes may be made without departing from the spirit of the present invention. It is possible, and the present invention is not limited to the following description.

〔固体酸化物形燃料電池(SOFC)〕
図1および図2に示すSOFC用セルCは、酸素イオン伝導性の固体酸化物の緻密体からなる電解質膜30の一方面側に、酸素イオンおよび電子伝導性の多孔体からなる空気極31を接合するとともに、同電解質膜30の他方面側に電子伝導性の多孔体からなる燃料極32を接合してなる単セル3を備える。
さらに、SOFC用セルCは、この単セル3を、空気極31または燃料極32に対して電子の授受を行うとともに空気および水素を供給するための溝2が形成された一対の電子伝導性の合金または酸化物からなるセル間接続部材1により、適宜外周縁部においてガスシール体を挟持した状態で挟み込んだ構造を有する。空気極31とセル間接続部材1とが密着配置されることで、空気極31側の溝2が空気極31に空気を供給するための空気流路2aとして機能する。燃料極32とセル間接続部材1が密着配置されることで、燃料極32側の上記溝2が燃料極32に水素を供給するための燃料流路2bとして機能する。セル間接続部材1はインターコネクタとセルC間を電気的に接続する部材が接続された構成となることもある。
[Solid oxide fuel cell (SOFC)]
In the SOFC cell C shown in FIGS. 1 and 2, an air electrode 31 made of an oxygen ion-conducting porous body is provided on one side of an electrolyte membrane 30 made of an oxygen ion-conductive solid oxide dense body. In addition to joining, a single cell 3 formed by joining a fuel electrode 32 made of an electron-conducting porous body is provided on the other surface side of the electrolyte membrane 30.
Further, the SOFC cell C is a pair of electron conductive cells in which the single cell 3 is formed with a groove 2 for transmitting and receiving electrons to the air electrode 31 or the fuel electrode 32 and supplying air and hydrogen. It has a structure in which a gas-sealed body is appropriately sandwiched between cell-cell connecting members 1 made of an alloy or an oxide at an outer peripheral edge portion. By arranging the air electrode 31 and the cell-cell connecting member 1 in close contact with each other, the groove 2 on the air electrode 31 side functions as an air flow path 2a for supplying air to the air electrode 31. By arranging the fuel electrode 32 and the cell-cell connecting member 1 in close contact with each other, the groove 2 on the fuel electrode 32 side functions as a fuel flow path 2b for supplying hydrogen to the fuel electrode 32. The cell-to-cell connecting member 1 may have a configuration in which a member that electrically connects the interconnector and the cell C is connected.

なお、上記単セル3を構成する各要素で利用される一般的な材料について説明を加えると、例えば、上記空気極31の材料としては、LaMO3(例えばM=Mn,Fe,Co,Ni)中のLaの一部をアルカリ土類金属AE(AE=Sr,Ca)で置換した(La,AE)MO3のペロブスカイト型酸化物を利用することができる。上記燃料極32の材料としては、Niとイットリア安定化ジルコニア(YSZ)とのサーメットを利用することができ、さらに、電解質膜30の材料としては、イットリア安定化ジルコニア(YSZ)を利用することができる。 To add a description of the general materials used in each element constituting the single cell 3, for example, the material of the air electrode 31 is LaMO 3 (for example, M = Mn, Fe, Co, Ni). A perovskite-type oxide of (La, AE) MO 3 in which a part of La in the metal is replaced with an alkaline earth metal AE (AE = Sr, Ca) can be used. Cermet of Ni and yttria-stabilized zirconia (YSZ) can be used as the material of the fuel electrode 32, and yttria-stabilized zirconia (YSZ) can be used as the material of the electrolyte membrane 30. can.

そして、複数のSOFC用セルCが積層配置された状態で、複数のボルトおよびナットにより積層方向に押圧力を与えて挟持され、セルスタックとなる。
このセルスタックにおいて、積層方向の両端部に配置されたセル間接続部材1は、燃料流路2bまたは空気流路2aの一方のみが形成されるものであればよく、その他の中間に配置されたセル間接続部材1は、一方の面に燃料流路2bが形成され他方の面に空気流路2aが形成されるものを利用することができる。なお、このような積層構造のセルスタックでは、上記セル間接続部材1をセパレータと呼ぶ場合がある。
セルスタックは、燃料ガス(水素)を供給するマニホールドに、ガラスシール材等の接着材により取り付けられる。ガラスシール材としては、例えば結晶化ガラスが用いられる。ガラスシール材は、マニホールドの接着の他、単セル3とセル間接続部材1の間など、封止(シール)が必要な箇所に用いられる。
このようなセルスタックの構造を有するSOFCを一般的に平板型SOFCと呼ぶ。本実施形態では、一例として平板型SOFCについて説明するが、本発明はその他の構造のSOFCについても適用可能である。
Then, in a state where the plurality of SOFC cells C are stacked and arranged, the cells are sandwiched by applying a pressing force in the stacking direction by a plurality of bolts and nuts to form a cell stack.
In this cell stack, the cell-to-cell connecting members 1 arranged at both ends in the stacking direction need only be one in which only one of the fuel flow path 2b and the air flow path 2a is formed, and are arranged in the middle of the other. As the cell-cell connecting member 1, a member in which a fuel flow path 2b is formed on one surface and an air flow path 2a is formed on the other surface can be used. In a cell stack having such a laminated structure, the cell-cell connecting member 1 may be called a separator.
The cell stack is attached to a manifold that supplies fuel gas (hydrogen) with an adhesive such as a glass sealant. As the glass sealing material, for example, crystallized glass is used. The glass sealing material is used in places where sealing is required, such as between the single cell 3 and the cell-to-cell connecting member 1, in addition to adhering the manifold.
An SOFC having such a cell stack structure is generally called a flat plate type SOFC. In the present embodiment, the flat plate type SOFC will be described as an example, but the present invention can also be applied to SOFCs having other structures.

そして、このようなSOFC用セルCを備えたSOFCの作動時には、図2に示すように、空気極31に対して隣接するセル間接続部材1に形成された空気流路2aを介して空気を供給するとともに、燃料極32に対して隣接するセル間接続部材1に形成された燃料流路2bを介して水素を供給し、例えば800℃程度の作動温度で作動する。すると、空気極31において酸素分子O2が電子e-と反応して酸素イオンO2-が生成され、そのO2-が電解質膜30を通って燃料極32に移動し、燃料極32において供給されたH2がそのO2-と反応してH2Oとe-とが生成されることで、一対のセル間接続部材1の間に起電力Eが発生し、その起電力Eを外部に取り出し利用することができる。 Then, when the SOFC provided with the SOFC cell C is operated, as shown in FIG. 2, air is introduced through the air flow path 2a formed in the cell-to-cell connecting member 1 adjacent to the air electrode 31. At the same time, hydrogen is supplied via the fuel flow path 2b formed in the inter-cell connecting member 1 adjacent to the fuel electrode 32, and operates at an operating temperature of, for example, about 800 ° C. Then, oxygen molecules O 2 in the air electrode 31 is an electron e - is reacted with oxygen ions O 2- is generated, the O 2- passes through the electrolyte membrane 30 to move to the fuel electrode 32, provided at the fuel electrode 32 been H 2 reacts with the O 2-H 2 O and e - and that is generated, the electromotive force E is generated between the pair of cell connecting member 1, outside the electromotive force E Can be taken out and used.

〔セル間接続部材〕
セル間接続部材1は、図1および図3に示すように、単セル3との間で空気流路2a、燃料流路2bを形成しつつ接続可能にする溝板状に形成されている。基材11の表面に、後に述べる保護膜12を設けることでCr被毒を抑制することができ、固体酸化物形燃料電池用セルとして好適である。
[Cell-to-cell connection member]
As shown in FIGS. 1 and 3, the cell-cell connecting member 1 is formed in a groove plate shape that enables connection while forming an air flow path 2a and a fuel flow path 2b with the single cell 3. By providing the protective film 12 described later on the surface of the base material 11, Cr poisoning can be suppressed, which is suitable as a cell for a solid oxide fuel cell.

セル間接続部材1の材料としては、電子伝導性および耐熱性の優れた材料であって、フェライト系ステンレス鋼であるFe−Cr合金、オーステナイト系ステンレス鋼であるFe−Cr−Ni合金など、Crを含有する合金が用いられる。本実施形態では特に、セル間接続部材1の基材11の主材料は、Mnを含有するステンレス合金であって、フェライト系であると好適であり、Siを含有すると好適であり、またTiを含有すると好適である。 The material of the cell-cell connecting member 1 is Cr, which is a material having excellent electron conductivity and heat resistance, such as Fe-Cr alloy which is a ferrite-based stainless steel and Fe-Cr-Ni alloy which is an austenitic stainless steel. An alloy containing is used. In this embodiment, in particular, the main material of the base material 11 of the cell-to-cell connecting member 1 is a stainless alloy containing Mn, preferably a ferrite type, preferably containing Si, and Ti. It is preferable to contain it.

〔酸化被膜〕
基材11の表面には、酸化被膜13が形成される。酸化被膜13は、周囲雰囲気中の酸素によって基板11の合金の表面が酸化されて生じる。本実施形態のようにCrを含有するステンレス合金の場合は、酸化被膜13は主にクロミア(Cr23)であり、緻密な被膜として形成される。酸化被膜13は、保護膜12の焼結や、接合層の焼き付け等、SOFC用セルの製造工程における熱処理にて形成される。
[Oxide film]
An oxide film 13 is formed on the surface of the base material 11. The oxide film 13 is formed by oxidizing the surface of the alloy of the substrate 11 with oxygen in the ambient atmosphere. In the case of a stainless alloy containing Cr as in the present embodiment, the oxide film 13 is mainly chromium (Cr 2 O 3 ) and is formed as a dense film. The oxide film 13 is formed by heat treatment in the manufacturing process of the SOFC cell, such as sintering the protective film 12 and baking the bonding layer.

〔保護膜〕
基材11の表面には、Cr被毒を抑制するため、保護膜12が形成されている。保護膜12は、MnとCoとを含有するスピネル型金属酸化物を主材料とする。保護膜12の主材料は、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)または、亜鉛コバルトマンガン系酸化物ZnzCoxMny4(0<x、y、z<3、x+y+z=3)であってもよい。Co1.5Mn1.54またはCo2MnO4であってもよい。なお「主材料」とは主たる材料であることを意味し、複数の種類の金属酸化物を混合して用いたり、他の成分を混合して用いることも可能である。
〔Protective film〕
A protective film 12 is formed on the surface of the base material 11 in order to suppress Cr poisoning. The protective film 12 is mainly made of a spinel-type metal oxide containing Mn and Co. The main material of the protective film 12 is cobalt manganese oxide Co x Mn y O 4 (0 <x, y <3, x + y = 3) or zinc cobalt manganese oxide Zn z Co x Mn y O 4 (0). <X, y, z <3, x + y + z = 3) may be used. Co 1.5 Mn 1.5 O 4 or Co 2 may be MnO 4. The "main material" means that it is the main material, and it is also possible to use a mixture of a plurality of types of metal oxides or a mixture of other components.

基材11への保護膜12の形成は、たとえば、ウエットコーティング法あるいは、ドライコーティング法によって形成することができる。ウエットコーティング法としては、スクリーン印刷法、ドクターブレード法、スプレーコート法、インクジェット法、スピンコート法、ディップコート、電気めっき法、無電解めっき法、電着塗装法等が例示できる。
また、ドライコーティング法としては、たとえば蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長(CVD)法、電気化学気相成長(EVD)法、イオンビーム法、レーザーアブレーション法、大気圧プラズマ成膜法、減圧プラズマ成膜法、溶射法等が例示できる。
The protective film 12 can be formed on the base material 11 by, for example, a wet coating method or a dry coating method. Examples of the wet coating method include a screen printing method, a doctor blade method, a spray coating method, an inkjet method, a spin coating method, a dip coating method, an electroplating method, an electroless plating method, and an electrodeposition coating method.
Examples of the dry coating method include a vapor deposition method, a sputtering method, an ion plating method, a chemical vapor deposition (CVD) method, an electrochemical vapor deposition (EVD) method, an ion beam method, a laser ablation method, and an atmospheric pressure plasma. Examples thereof include a film forming method, a reduced pressure plasma film forming method, and a thermal spraying method.

例えば、電着塗装法を適用すれば、下記のような手法で保護膜を形成することができる。
金属酸化物微粒子を電着液1リットル当り100gになるように分散し、ポリアクリル酸等のアニオン型樹脂とを含有している混合液を用いて電着塗装を行う。ここでは、(金属酸化物微粒子:アニオン型樹脂)=(1:1)(質量比)とした。
前記混合液を用い、基材11をプラス、対極としてSUS304の極板にマイナスの極性として通電を行うことによって、基材11表面に未硬化の電着塗膜が形成される。
電着塗装は、たとえば、前記混合液を満たした通電槽中に基材11を完全にまたは部分的に浸漬して陽極とし、通電することにより実施される。
電着塗装条件も特に制限されず、基材11である金属の種類、前記混合液の種類、通電槽の大きさおよび形状、得られるセル間接続部材1の用途などの各種条件に応じて広い範囲から適宜選択できるが、通常は、浴温度(前記混合液温度)10〜40℃程度、印加電圧10〜450V程度、電圧印加時間1〜10分程度、前記混合液の液温10〜40℃とすればよい。
なお、電着電圧、電着時間を変更することにより電着塗膜の膜厚をコントロールできる。また、基材に対して、種々前処理を行うこともできる。
この未硬化の電着塗膜が形成された基材11に加熱処理することによって、基材11表面に硬化した電着塗膜が形成される。
加熱処理は、電着塗膜を乾燥させる予備乾燥と、電着塗膜を硬化させる硬化加熱とを含み、予備乾燥後に硬化加熱が行われる。その後、電気炉を使用して例えば1000℃で2時間焼成し、その後徐冷する。
For example, if the electrodeposition coating method is applied, the protective film can be formed by the following method.
Metal oxide fine particles are dispersed so as to be 100 g per liter of electrodeposition liquid, and electrodeposition coating is performed using a mixed solution containing an anionic resin such as polyacrylic acid. Here, (metal oxide fine particles: anionic resin) = (1: 1) (mass ratio).
An uncured electrodeposition coating film is formed on the surface of the base material 11 by using the mixed solution and energizing the electrode plate of SUS304 with the base material 11 as a positive and a counter electrode as a negative polarity.
Electrodeposition coating is carried out, for example, by completely or partially immersing the base material 11 in an energizing tank filled with the mixed solution to form an anode and energizing.
The electrodeposition coating conditions are also not particularly limited, and are wide depending on various conditions such as the type of the metal as the base material 11, the type of the mixture, the size and shape of the energizing tank, and the application of the obtained inter-cell connecting member 1. It can be appropriately selected from the range, but usually, the bath temperature (the mixed solution temperature) is about 10 to 40 ° C., the applied voltage is about 10 to 450 V, the voltage application time is about 1 to 10 minutes, and the liquid temperature of the mixed solution is 10 to 40 ° C. And it is sufficient.
The film thickness of the electrodeposited coating film can be controlled by changing the electrodeposition voltage and the electrodeposition time. In addition, various pretreatments can be performed on the base material.
By heat-treating the base material 11 on which the uncured electrodeposition coating film is formed, a cured electrodeposition coating film is formed on the surface of the base material 11.
The heat treatment includes pre-drying for drying the electrodeposition coating film and curing heating for curing the electrodeposition coating film, and curing heating is performed after the pre-drying. Then, it is fired in an electric furnace at, for example, 1000 ° C. for 2 hours, and then slowly cooled.

〔接合層〕
接合層により、セル間接続部材1と単セル3の空気極31とが接合される。詳しくは、セル間接続部材1の基材11の表面に形成された保護膜11と、単セル3の空気極31とが、接合層により接着・接合されている。接合層の主材料としては、空気極31と類似のペロブスカイト型酸化物や、スピネル型酸化物が用いられる。たとえばLSCF6428(La0.6Sr0.4Co0.2Fe0.83-δ)が用いられる。
[Joining layer]
The joining layer joins the cell-to-cell connecting member 1 and the air electrode 31 of the single cell 3. Specifically, the protective film 11 formed on the surface of the base material 11 of the cell-to-cell connecting member 1 and the air electrode 31 of the single cell 3 are adhered and bonded by a bonding layer. As the main material of the bonding layer, a perovskite-type oxide similar to the air electrode 31 or a spinel-type oxide is used. For example, LSCF6428 (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ ) is used.

〔固体酸化物形燃料電池用セルの製造方法〕
次に固体酸化物形燃料電池用セルの製造方法について説明する。固体酸化物形燃料電池用セルの製造方法は、保護膜形成ステップと、接合ステップとを有する。
[Manufacturing method of solid oxide fuel cell]
Next, a method for manufacturing a cell for a solid oxide fuel cell will be described. A method for manufacturing a cell for a solid oxide fuel cell includes a protective film forming step and a joining step.

〔保護膜形成ステップ〕
保護膜形成ステップでは、セル間接続部材1の基材11の表面に保護膜12を形成する。保護膜12の形成は、例示した各種の方法により行われる。例えばウエットコーティング法によれば、成膜ステップと焼結ステップとにより行われる。
[Protective film formation step]
In the protective film forming step, the protective film 12 is formed on the surface of the base material 11 of the cell-to-cell connecting member 1. The protective film 12 is formed by various methods illustrated. For example, according to the wet coating method, it is performed by a film forming step and a sintering step.

成膜ステップでは、金属酸化物の微粉末を含有するスラリーを用いてセル間接続部材1の基材11に塗膜を湿式成膜する。湿式成膜は、スラリーに基材11を浸けて(ディップ)引き上げることで行ってもよいし、電着塗装法により行ってもよいし、先に例示した方法のいずれかを用いてもよい。湿式成膜は、基材11の全体に対して行ってもよいし、平板状の基材11の一方の面のみに行ってもよい。なお後者の場合、湿式成膜が行われ保護膜12が形成された面が、単セル3の空気極31に接合されることになる。湿式成膜が行われず基材11の素材が露出している面が、単セル3の燃料極32に接合されることになる。 In the film forming step, a coating film is wet-deposited on the base material 11 of the cell-to-cell connection member 1 using a slurry containing a fine powder of a metal oxide. The wet film formation may be carried out by immersing the base material 11 in the slurry (dip) and pulling it up, by an electrodeposition coating method, or by using any of the methods exemplified above. The wet film formation may be performed on the entire base material 11, or may be performed on only one surface of the flat plate-shaped base material 11. In the latter case, the surface on which the protective film 12 is formed by the wet film formation is joined to the air electrode 31 of the single cell 3. The surface where the material of the base material 11 is exposed without the wet film formation is joined to the fuel electrode 32 of the single cell 3.

焼結ステップでは、塗膜を湿式成膜した基材11に熱処理を施し、金属酸化物の微粉末を焼結させて基材11の表面に保護膜12を形成する。熱処理は、例えば1000℃で2時間行われる。熱処理の際の雰囲気としては、種々選択が可能である。微粉末を含有するスラリーの塗布が基材11の一方の面に対して行われ、他方の面では基材11の素材が露出している場合には、熱処理を不活性ガスや還元ガスの雰囲気下で行うと、基材11の素材が露出した面の酸化を抑制することができ好適である。 In the sintering step, the base material 11 on which the coating film is wet-deposited is heat-treated, and the fine powder of the metal oxide is sintered to form the protective film 12 on the surface of the base material 11. The heat treatment is performed at, for example, 1000 ° C. for 2 hours. Various choices can be made as the atmosphere during the heat treatment. When the slurry containing the fine powder is applied to one surface of the base material 11 and the material of the base material 11 is exposed on the other surface, the heat treatment is performed in an atmosphere of an inert gas or a reducing gas. If it is carried out below, oxidation of the exposed surface of the material of the base material 11 can be suppressed, which is preferable.

〔接合ステップ〕
接合ステップでは、セル間接続部材1と空気極31とを接合層を介して接合する。詳しくは、上述の接合層の材料を含有するペーストをセル間接続部材1に塗布して単セル3と接合し、熱処理を施して焼き付けにより接合層を形成する。熱処理は通常であれば、燃料電池の作動温度〜950℃の低温で行うが、本実施形態では1050℃以上の高温で行う。1075℃以下の温度で行うと更に好適であり、1075℃未満の温度で行うとより好適であり、1050℃で行うと尚好適である。
[Joining step]
In the joining step, the cell-to-cell connecting member 1 and the air electrode 31 are joined via a joining layer. Specifically, the paste containing the material of the above-mentioned bonding layer is applied to the cell-cell connecting member 1 to bond with the single cell 3, and heat treatment is performed to form the bonding layer by baking. Normally, the heat treatment is performed at a low temperature of the operating temperature of the fuel cell to 950 ° C., but in the present embodiment, the heat treatment is performed at a high temperature of 1050 ° C. or higher. It is more preferable to carry out at a temperature of 1075 ° C. or lower, more preferably at a temperature of less than 1075 ° C., and even more preferably at 1050 ° C.

〔接合層の焼き付けの温度によるセル間接続部材の電気抵抗・元素分布の変化〕
以上述べたSOFC用セルの製造方法に沿って実験サンプルを作成し、電気抵抗の経時変化、断面のSEM観察およびEPMA元素分析を行った。
[Changes in electrical resistance and element distribution of cell-cell connection members due to baking temperature of the bonding layer]
Experimental samples were prepared according to the method for producing SOFC cells described above, and changes in electrical resistance over time, SEM observation of cross sections, and EPMA elemental analysis were performed.

〔実験サンプルの作成〕
〔実験例1(1000℃):比較例〕
1mm厚の22wt%Crの高純度フェライト系ステンレス鋼の板の表面に、Co2MnO4の微粉末を含有するスラリーを用いてアニオン電着塗装法にて塗膜を成膜した。その板を1000℃の大気雰囲気下にて2時間加熱し、Co2MnO4を主材料とする保護膜を形成した。板の両面にLSCF6428を塗布し、乾燥させ、1000℃で2時間焼き付けを行い、接合層(を模擬した層)を形成した。以上の様にして、固体酸化物形燃料電池用セルのセル間接続部材1を模した実験例1のサンプルを作成した。
[Creation of experimental sample]
[Experimental Example 1 (1000 ° C.): Comparative Example]
A coating film was formed on the surface of a 1 mm thick 22 wt% Cr high-purity ferritic stainless steel plate by an anion electrodeposition coating method using a slurry containing a fine powder of Co 2 MnO 4. The plate was heated in an air atmosphere of 1000 ° C. for 2 hours to form a protective film containing Co 2 MnO 4 as a main material. LSCF6428 was applied to both sides of the plate, dried, and baked at 1000 ° C. for 2 hours to form a bonding layer (a layer simulating). As described above, a sample of Experimental Example 1 imitating the cell-to-cell connection member 1 of the solid oxide fuel cell cell was prepared.

〔実験例2(1025℃):比較例〕
接合層の焼き付け温度を1025℃に変更し、その他の条件は実験例1と同様にして、実験例2のサンプルを作成した。
[Experimental Example 2 (1025 ° C.): Comparative Example]
The baking temperature of the bonding layer was changed to 1025 ° C., and the other conditions were the same as in Experimental Example 1 to prepare a sample of Experimental Example 2.

〔実験例3(1050℃):実施例〕
接合層の焼き付け温度を1050℃に変更し、その他の条件は実験例1と同様にして、実験例3のサンプルを作成した。
[Experimental Example 3 (1050 ° C.): Example]
The baking temperature of the bonding layer was changed to 1050 ° C., and the other conditions were the same as in Experimental Example 1, and a sample of Experimental Example 3 was prepared.

〔実験例4(1075℃):実施例〕
接合層の焼き付け温度を1075℃に変更し、その他の条件は実験例1と同様にして、実験例4のサンプルを作成した。
[Experimental Example 4 (1075 ° C.): Example]
The baking temperature of the bonding layer was changed to 1075 ° C., and the other conditions were the same as in Experimental Example 1 to prepare a sample of Experimental Example 4.

〔電気抵抗の経時変化〕
実験例1〜4のサンプルについて、電気抵抗の経時変化を測定した。800時間までの結果を図5のグラフに示す。測定は、図4に示す通電試験治具5に各サンプルをセットし、900℃の環境下、定電流状態にて経時的に電気抵抗を測定して行った。通電試験治具5は、一対の金属板51の間にサンプルを挟んで、ネジ52で固定した構造である。接合層にPtメッシュ53が接した状態とされ、この一対のPtメッシュ53の間の抵抗値を測定することで、サンプルの抵抗値を測定した。
[Changes in electrical resistance over time]
The time course of electrical resistance was measured for the samples of Experimental Examples 1 to 4. The results up to 800 hours are shown in the graph of FIG. The measurement was carried out by setting each sample on the energization test jig 5 shown in FIG. 4 and measuring the electric resistance with time in a constant current state in an environment of 900 ° C. The energization test jig 5 has a structure in which a sample is sandwiched between a pair of metal plates 51 and fixed with screws 52. The Pt mesh 53 was in contact with the bonding layer, and the resistance value of the sample was measured by measuring the resistance value between the pair of Pt mesh 53.

図5に示される結果から、実験例3(1050℃)のサンプルが最も電気抵抗が小さく、次いで実験例4(1075℃)が電気抵抗が小さく、実験例1(1000℃)および実験例2(1025℃)は電気抵抗が比較的大きいと認められる。 From the results shown in FIG. 5, the sample of Experimental Example 3 (1050 ° C.) had the lowest electrical resistance, followed by Experimental Example 4 (1075 ° C.), which had the lowest electrical resistance, and Experimental Example 1 (1000 ° C.) and Experimental Example 2 ( 1025 ° C.) is recognized as having a relatively large electrical resistance.

実験例3(1050℃)は、実験開始時の初期抵抗も最も小さく、その後300時間付近まで徐々に抵抗値が低下した。300時間以降は若干増加傾向であるが、800時間経過後であっても、実験サンプルの中で電気抵抗が最も小さい。 In Experimental Example 3 (1050 ° C.), the initial resistance at the start of the experiment was also the smallest, and then the resistance value gradually decreased until around 300 hours. It tends to increase slightly after 300 hours, but even after 800 hours, the electrical resistance is the smallest among the experimental samples.

実験例4(1075℃)は、実験開始時の初期抵抗は、実験例1(1000℃)、実験例2(1025℃)と同程度であったが、その後500時間付近まで徐々に抵抗値が低下した。その後は若干増加傾向であるが、増加率は小さく、800時間でも実験例3(1050℃)に次いで電気抵抗が小さい。 In Experimental Example 4 (1075 ° C.), the initial resistance at the start of the experiment was about the same as that of Experimental Example 1 (1000 ° C.) and Experimental Example 2 (1025 ° C.), but the resistance value gradually increased until around 500 hours thereafter. It has decreased. After that, it tends to increase slightly, but the rate of increase is small, and even at 800 hours, the electrical resistance is the second smallest after Experimental Example 3 (1050 ° C.).

実験例1(1000℃)は、実験開始時の初期抵抗が最も大きく、急激な増加・緩やかな減少・緩やかな増加を経る間、一貫して実験例3(1050℃)および実験例4(1075℃)よりも電気抵抗が大きい。 Experimental Example 1 (1000 ° C.) had the largest initial resistance at the start of the experiment, and consistently experienced Experimental Example 3 (1050 ° C.) and Experimental Example 4 (1075 ° C.) during a rapid increase, a gradual decrease, and a gradual increase. The electrical resistance is greater than (° C).

実験例2(1025℃)は、実験開始時の初期抵抗は実験例3(1050℃)と同程度であったが、その後急激な増加・緩やかな増加を続け、200時間以降は電気抵抗が最も大きい。 In Experimental Example 2 (1025 ° C.), the initial resistance at the start of the experiment was about the same as that in Experimental Example 3 (1050 ° C.), but after that, it continued to increase rapidly and gradually, and the electrical resistance was the highest after 200 hours. big.

電気抵抗の経時変化について、4500時間までの結果を図8のグラフに示す。図8に示される結果から、実験例3(1050℃)の実験サンプルが、長期的な電気抵抗の増加が最も小さく、最も耐久性が高いことが分かった。 The graph of FIG. 8 shows the results of the change in electrical resistance over time up to 4500 hours. From the results shown in FIG. 8, it was found that the experimental sample of Experimental Example 3 (1050 ° C.) had the smallest increase in long-term electrical resistance and the highest durability.

実験例1(1000℃)および実験例2(1025℃)では、3000時間以降で電気抵抗が増加する挙動を示した。この抵抗増加は、金属/酸化被膜界面に生成するTiO2、SiO2の層(後述)が実験例3(1050℃)および実験例4(1075℃)に比べて薄いことに起因する、高温環境下(900℃)でのCr23被膜の厚み増大、もしくはステンレス鋼の基材の異常酸化(Fe23の形成、金属の高温腐食)によるものと考えられる。 In Experimental Example 1 (1000 ° C.) and Experimental Example 2 (1025 ° C.), the electrical resistance increased after 3000 hours. This increase in resistance is due to the fact that the layers of TiO 2 and SiO 2 (described later) formed at the metal / oxide film interface are thinner than those of Experimental Example 3 (1050 ° C) and Experimental Example 4 (1075 ° C), resulting in a high temperature environment. It is considered that this is due to the increase in the thickness of the Cr 2 O 3 coating under (900 ° C.) or the abnormal oxidation of the stainless steel base material ( formation of Fe 2 O 3 and high temperature corrosion of the metal).

〔初期温度特性(電気抵抗)〕
実験例1〜4のサンプルについて、上述した電気抵抗の経時変化を測定する前に、電気抵抗の初期温度特性を測定した。結果を図9のグラフに示す。測定は、上述の経時変化測定と同様の状態にサンプルをセットし、600℃から900℃まで50℃刻みの温度で電気抵抗を測定して行った。
[Initial temperature characteristics (electrical resistance)]
For the samples of Experimental Examples 1 to 4, the initial temperature characteristics of the electric resistance were measured before measuring the time-dependent change of the electric resistance described above. The results are shown in the graph of FIG. The measurement was carried out by setting the sample in the same state as the above-mentioned time-dependent change measurement and measuring the electric resistance at a temperature of 600 ° C. to 900 ° C. in increments of 50 ° C.

図5に示される結果から、固体酸化物形燃料電池の実際の作動環境である700℃〜800℃においては、実験例4(1075℃)が最も電気抵抗が大きいと認められる。これは、金属/酸化被膜界面に生成するTiO2、SiO2、Cr23の層(後述)が実験例の中で最も厚いためと考えられる。 From the results shown in FIG. 5, it is recognized that Experimental Example 4 (1075 ° C.) has the highest electrical resistance in the actual operating environment of the solid oxide fuel cell, 700 ° C. to 800 ° C. It is considered that this is because the layers of TiO 2 , SiO 2 , and Cr 2 O 3 (described later) formed at the metal / oxide film interface are the thickest in the experimental examples.

以上の初期温度特性および経時変化の測定結果から、実験例4(1075℃)は、900℃での経時変化では最も小さい電気抵抗を示したが、固体酸化物形燃料電池の実際の作動環境である700℃〜800℃においては電気抵抗が大きくなることが分かった。このため、接合ステップにおける前記接合層の焼き付けが1075℃未満の温度で行われると、固体酸化物形燃料電池の実際の作動環境である700℃〜800℃における抵抗値を低く抑えることができ好ましい。接合ステップにおける前記接合層の焼き付けが1050℃で行われると、更に好ましい。 From the above initial temperature characteristics and the measurement results of the change with time, Experimental Example 4 (1075 ° C.) showed the smallest electrical resistance with time change at 900 ° C., but in the actual operating environment of the solid oxide fuel cell. It was found that the electrical resistance increased at a certain 700 ° C. to 800 ° C. Therefore, if the bonding layer is baked at a temperature of less than 1075 ° C. in the bonding step, the resistance value at 700 ° C. to 800 ° C., which is the actual operating environment of the solid oxide fuel cell, can be suppressed low, which is preferable. .. It is even more preferable that the bonding layer is baked at 1050 ° C. in the bonding step.

〔元素分布の変化〕
作成した実験例1、3および4のサンプルについて、断面のSEM観察およびEPMA元素分析を行った。観察・分析は、サンプル作成後(接合層の焼き付け後)の状態(図6)と、900℃での400時間の熱処理を施した状態(図7)とで行った。観察・分析は、実験例1(1000℃、各図の上段)、実験例3(1050℃、各図の中段)および実験例4(1075℃、各図の下段)に対して行っている。
[Changes in element distribution]
The prepared samples of Experimental Examples 1, 3 and 4 were subjected to SEM observation of cross sections and EPMA elemental analysis. The observation and analysis were carried out in a state after the sample was prepared (after the bonding layer was baked) (FIG. 6) and in a state where the heat treatment was performed at 900 ° C. for 400 hours (FIG. 7). Observation and analysis are performed on Experimental Example 1 (1000 ° C., upper part of each figure), Experimental Example 3 (1050 ° C., middle part of each figure) and Experimental Example 4 (1075 ° C., lower part of each figure).

各図の左端の行がSEM観察の画像、他の4行がEPMA元素マッピング図(Cr,Mn,SiおよびTi)を示している。SEM画像には、画像の上側から基材11、酸化被膜13、保護膜12および接合層が表れている。EPMA元素マッピング図(以下「EPMA図」。)では、元素の濃度が高い位置が濃色で示されている。なお4種の元素の濃度スケールは異なっており、異なる元素間で同じ濃さの色が表れていても、同じ濃度であることを意味しない。 The leftmost row of each figure shows the image of SEM observation, and the other four rows show the EPMA element mapping diagram (Cr, Mn, Si and Ti). In the SEM image, the base material 11, the oxide film 13, the protective film 12, and the bonding layer are shown from the upper side of the image. In the EPMA element mapping diagram (hereinafter referred to as “EPMA diagram”), the positions where the element concentration is high are shown in dark colors. The concentration scales of the four elements are different, and even if the same dark color appears between different elements, it does not mean that they have the same concentration.

SEM画像の視野と、EPMA図の視野とは一致している。例えば、図6の1000℃サンプル(実験例1)のCrのEPMA図には、濃色のCr分布領域が図の下方に存在するが、この領域はSEM画像の酸化被膜13の領域と一致している。これは、酸化被膜13の主成分のクロミア(Cr23)に含有されるCrが、EPMA図に表れているからである。なおCrは、基材11の領域に淡く分布し、保護膜12および接合層の領域には存在しないと認められる。これは基材11、保護膜12および接合層の組成と一致している。 The field of view of the SEM image and the field of view of the EPMA diagram are in agreement. For example, in the EPMA diagram of Cr of the 1000 ° C. sample (Experimental Example 1) of FIG. 6, a dark Cr distribution region exists at the lower part of the diagram, but this region coincides with the region of the oxide film 13 of the SEM image. ing. This is because Cr contained in chromia (Cr 2 O 3 ), which is the main component of the oxide film 13, appears in the EPMA diagram. It is recognized that Cr is lightly distributed in the region of the base material 11 and does not exist in the region of the protective film 12 and the bonding layer. This is consistent with the composition of the base material 11, the protective film 12, and the bonding layer.

まずCrの分布に着目すると、図6に示されるサンプル作成後の状態では、実験例1、3および4のいずれも、Cr分布領域6は酸化被膜13の領域に形成されている。そしてその状態は、図7に示される900℃での400時間の熱処理を施した状態でも維持され、大きな変化は認められない。すなわち900℃での400時間の熱処理により、Crの分布状態は大きくは変化していないと考えられる。 First, focusing on the distribution of Cr, in the state after sample preparation shown in FIG. 6, the Cr distribution region 6 is formed in the region of the oxide film 13 in all of Experimental Examples 1, 3 and 4. The state is maintained even after being heat-treated at 900 ° C. for 400 hours as shown in FIG. 7, and no significant change is observed. That is, it is considered that the distribution state of Cr has not changed significantly by the heat treatment at 900 ° C. for 400 hours.

〔Mnの分布〕
次にMnの分布に着目すると、図6に示されるサンプル作成後の状態では、実験例1、3および4のいずれも、Mn分布領域7は保護膜12の領域に形成されている。基材11の領域にはMn分布領域7は存在しない。これを図7に示される900℃での400時間の熱処理を施した状態と比較すると、実験例1(1000℃)では、Mn分布領域7に加え、その上側に島状の領域7aが形成されていると認められる。この島状のMn分布領域7aの位置は、CrのEPMA図およびSEM画像との比較から、基材11の内部であると認められる。つまり実験例1(1000℃)では、900℃での400時間の熱処理により、保護膜12からMnが移動して、基材11の内部にMn分布領域7aが形成されたと認められる。
[Distribution of Mn]
Next, focusing on the distribution of Mn, in the state after sample preparation shown in FIG. 6, the Mn distribution region 7 is formed in the region of the protective film 12 in all of Experimental Examples 1, 3 and 4. The Mn distribution region 7 does not exist in the region of the base material 11. Comparing this with the state of heat treatment at 900 ° C. for 400 hours shown in FIG. 7, in Experimental Example 1 (1000 ° C.), in addition to the Mn distribution region 7, an island-shaped region 7a was formed on the upper side thereof. It is recognized that it is. The position of the island-shaped Mn distribution region 7a is recognized to be inside the base material 11 from the comparison with the EPMA diagram of Cr and the SEM image. That is, in Experimental Example 1 (1000 ° C.), it is recognized that Mn moved from the protective film 12 and the Mn distribution region 7a was formed inside the base material 11 by the heat treatment at 900 ° C. for 400 hours.

この島状のMn分布領域7aのMnは、熱力学的な考察から、金属/保護膜界面の近傍の酸素ポテンシャルによって、基材11に含有されるCrと結合し、MnCr24として存在していると考えられる。MnCr24は、SOFCの作動環境下の温度域では、クロミア(Cr23)と比べて非常に大きい電気抵抗を有するから、このMn分布領域7aのMnCr24により、実験例1のサンプルの電気抵抗が大きくなったと考えられる。 From thermodynamic considerations, the Mn of this island-shaped Mn distribution region 7a is bound to Cr contained in the base material 11 by the oxygen potential near the metal / protective film interface, and exists as MnCr 2 O 4. It is thought that it is. Since MnCr 2 O 4 has a very large electrical resistance in the temperature range under the operating environment of SOFC as compared with chromia (Cr 2 O 3 ), the Mn Cr 2 O 4 in the Mn distribution region 7a is used in Experimental Example 1. It is probable that the electrical resistance of the sample in was increased.

そして実験例3(1050℃)では、図7に示される900℃での400時間の熱処理を施した状態であっても、保護膜12の領域に形成された帯状のMn分布領域7のみ存在し、基材11の内部に実験例1のような島状の領域は存在していないと認められる。従って実験例3(1050℃)では、実験例1のような高抵抗のMnCr24は発生せず、それ故に電気抵抗が小さくなったと考えられる。 Then, in Experimental Example 3 (1050 ° C.), even in the state of being heat-treated at 900 ° C. for 400 hours shown in FIG. 7, only the band-shaped Mn distribution region 7 formed in the region of the protective film 12 is present. It is recognized that the island-shaped region as in Experimental Example 1 does not exist inside the base material 11. Therefore, in Experimental Example 3 (1050 ° C.), it is considered that the high resistance MnCr 2 O 4 as in Experimental Example 1 was not generated, and therefore the electrical resistance was reduced.

実験例4(1075℃)では、帯状のMn分布領域7の上側に、小さな島状のMn分布領域7bが形成されていると認められる。これら島状の領域は、SEM図およびCrのEPMA図との比較から、酸化被膜13の内部に存在していると認められる。実験例1では、島状のMn分布領域7aは基板11の内部に位置していた。すなわち実験例4の島状のMn分布領域7bの存在位置は、実験例1とは異なっている。 In Experimental Example 4 (1075 ° C.), it is recognized that a small island-shaped Mn distribution region 7b is formed above the band-shaped Mn distribution region 7. From the comparison with the SEM diagram and the EPMA diagram of Cr, it is recognized that these island-shaped regions exist inside the oxide film 13. In Experimental Example 1, the island-shaped Mn distribution region 7a was located inside the substrate 11. That is, the location of the island-shaped Mn distribution region 7b in Experimental Example 4 is different from that in Experimental Example 1.

実験例4の、酸化被膜13の内部(すなわちクロミア(Cr23)の内部)に位置するMn分布領域7bは、熱力学的な考察から、実験例1のMnCr24ではなく、より電気抵抗の小さいMn2CrO4として存在していると考えられる。これにより、実験例4の電気抵抗は実験例1よりも大幅に小さくなったと考えられる。 From the thermodynamic point of view, the Mn distribution region 7b located inside the oxide film 13 (that is, inside the chromia (Cr 2 O 3 )) of Experimental Example 4 is not Mn Cr 2 O 4 of Experimental Example 1 but more. It is considered that it exists as Mn 2 CrO 4 having a small electric resistance. As a result, it is considered that the electrical resistance of Experimental Example 4 is significantly smaller than that of Experimental Example 1.

〔Siの分布〕
次にSiの分布に着目すると、図6に示されるサンプル作成後の状態では、実験例1、3および4のいずれも、Si分布領域8は基材11の内部に、基材11と酸化被膜13との界面に沿って帯状に形成されている。すなわち、基材11のステンレス合金の含有するSiが、基材11の表面近傍にSiO2の層を形成していると考えられる。実験例1、3および4を比較すると、実験例1のSi分布領域8の厚さに比べ、実験例3および4のSi分布領域8の厚さは大きいと認められる。従って、接合層の焼き付け温度が高いほど、Si分布領域8の厚さ、すなわちSiO2層の厚さが大きくなると認められる。このSiO2層は、保護膜12から基材11内部へのMnの拡散を阻害して、実験例1のような基材11の内部でのMnCr24の生成を抑制する効果があると考えられる。なお図6と図7との比較から、900℃での400時間の熱処理によっても、SiO2層の厚さは大きくなると認められる。
[Distribution of Si]
Next, focusing on the distribution of Si, in the state after sample preparation shown in FIG. 6, in each of Experimental Examples 1, 3 and 4, the Si distribution region 8 is inside the base material 11, and the base material 11 and the oxide film are formed. It is formed in a band shape along the interface with 13. That is, it is considered that Si contained in the stainless alloy of the base material 11 forms a layer of SiO 2 in the vicinity of the surface of the base material 11. Comparing Experimental Examples 1, 3 and 4, it is recognized that the thickness of the Si distribution region 8 of Experimental Examples 3 and 4 is larger than the thickness of the Si distribution region 8 of Experimental Example 1. Therefore, it is recognized that the higher the baking temperature of the bonding layer, the larger the thickness of the Si distribution region 8, that is, the thickness of the SiO 2 layer. The SiO 2 layer has the effect of inhibiting the diffusion of Mn from the protective film 12 into the base material 11 and suppressing the formation of Mn Cr 2 O 4 inside the base material 11 as in Experimental Example 1. Conceivable. From the comparison between FIGS. 6 and 7, it is recognized that the thickness of the SiO 2 layer is increased even by the heat treatment at 900 ° C. for 400 hours.

〔Tiの分布〕
最後にTiの分布に着目すると、図6に示されるサンプル作成後の状態では、実験例1、3および4のいずれも、Ti分布領域9は基材11の内部に、基材11と酸化被膜13との界面に沿って帯状に形成されている。すなわち、基材11のステンレス合金の含有するTiが、基材11の表面近傍にTiO2の層を形成していると考えられる。実験例1、3および4を比較すると、実験例1のTi分布領域9の厚さに比べ、実験例3および4のTi分布領域9の厚さは大きいと認められる。従って、接合層の焼き付け温度が高いほど、Ti分布領域9の厚さ、すなわちTiO2層の厚さが大きくなると認められる。このTiO2層は、保護膜12から基材11内部へのMnの拡散を阻害して、実験例1のような基材11の内部でのMnCr24の生成を抑制する効果があると考えられる。なお図6と図7との比較から、900℃での400時間の熱処理によっても、TiO2層の厚さは大きくなると認められる。
[Distribution of Ti]
Finally, focusing on the distribution of Ti, in the state after sample preparation shown in FIG. 6, in all of Experimental Examples 1, 3 and 4, the Ti distribution region 9 is inside the base material 11, and the base material 11 and the oxide film are formed. It is formed in a band shape along the interface with 13. That is, it is considered that Ti contained in the stainless alloy of the base material 11 forms a layer of TiO 2 in the vicinity of the surface of the base material 11. Comparing Experimental Examples 1, 3 and 4, it is recognized that the thickness of the Ti distribution region 9 of Experimental Examples 3 and 4 is larger than the thickness of the Ti distribution region 9 of Experimental Example 1. Therefore, it is recognized that the higher the baking temperature of the bonding layer, the larger the thickness of the Ti distribution region 9, that is, the thickness of the TiO 2 layer. The TiO 2 layer has the effect of inhibiting the diffusion of Mn from the protective film 12 into the base material 11 and suppressing the formation of Mn Cr 2 O 4 inside the base material 11 as in Experimental Example 1. Conceivable. From the comparison between FIGS. 6 and 7, it is recognized that the thickness of the TiO 2 layer is increased even by the heat treatment at 900 ° C. for 400 hours.

1 :セル間接続部材
11 :基材
12 :保護膜
13 :酸化被膜
2 :溝
2a :空気流路
2b :燃料流路
3 :単セル
30 :電解質膜
31 :空気極
32 :燃料極
4 :接合材
C :固体酸化物形燃料電池用セル
1: Cell-to-cell connecting member 11: Base material 12: Protective film 13: Oxide film 2: Groove 2a: Air flow path 2b: Fuel flow path 3: Single cell 30: Electrolyte film 31: Air pole 32: Fuel pole 4: Joining Material C: Solid oxide fuel cell

Claims (7)

セル間接続部材と空気極とを接合してなる固体酸化物形燃料電池用セルの製造方法であって、
前記セル間接続部材の基材の表面に保護膜を形成する保護膜形成ステップと、
前記セル間接続部材と空気極とを接合層を介して接合する接合ステップとを有し、
前記基材は、Mnを含有するステンレス合金を主材料とし、
前記保護膜は、MnとCoとを含有するスピネル型金属酸化物を主材料とし、
前記接合ステップにおける前記接合層の焼き付けが1050℃以上1075℃以下の温度で行われる、
固体酸化物形燃料電池用セルの製造方法。
A method for manufacturing a cell for a solid oxide fuel cell, which is formed by joining a cell-to-cell connecting member and an air electrode.
A protective film forming step of forming a protective film on the surface of the base material of the cell-cell connecting member,
It has a joining step for joining the cell-to-cell connecting member and an air electrode via a joining layer.
The base material is mainly made of a stainless alloy containing Mn.
The protective film is mainly made of a spinel-type metal oxide containing Mn and Co.
The bonding layer is baked in the bonding step at a temperature of 1050 ° C. or higher and 1075 ° C. or lower.
A method for manufacturing a cell for a solid oxide fuel cell.
セル間接続部材と空気極とを接合してなる固体酸化物形燃料電池用セルの製造方法であって、A method for manufacturing a cell for a solid oxide fuel cell, which is formed by joining a cell-to-cell connecting member and an air electrode.
前記セル間接続部材の基材の表面に保護膜を形成する保護膜形成ステップと、A protective film forming step of forming a protective film on the surface of the base material of the cell-cell connecting member,
前記セル間接続部材と空気極とを接合層を介して接合する接合ステップとを有し、It has a joining step for joining the cell-to-cell connecting member and an air electrode via a joining layer.
前記基材は、Mnを含有するステンレス合金を主材料とし、The base material is mainly made of a stainless alloy containing Mn.
前記保護膜は、MnとCoとを含有するスピネル型金属酸化物を主材料とし、The protective film is mainly made of a spinel-type metal oxide containing Mn and Co.
前記接合ステップにおける前記接合層の焼き付けが1050℃以上1075℃未満の温度で行われる、The bonding layer is baked in the bonding step at a temperature of 1050 ° C or higher and lower than 1075 ° C.
固体酸化物形燃料電池用セルの製造方法。A method for manufacturing a cell for a solid oxide fuel cell.
前記基材の主材料のステンレス合金がSiを含有する請求項1又は2に記載の固体酸化物形燃料電池用セルの製造方法。 The method for producing a solid oxide fuel cell according to claim 1 or 2 , wherein the stainless alloy as the main material of the base material contains Si. 前記基材の主材料のステンレス合金がTiを含有する請求項1〜のいずれか1項に記載の固体酸化物形燃料電池用セルの製造方法。 The method for producing a cell for a solid oxide fuel cell according to any one of claims 1 to 3 , wherein the stainless alloy as the main material of the base material contains Ti. 前記保護膜の主材料が、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)または、亜鉛コバルトマンガン系酸化物ZnzCoxMny4(0<x、y、z<3、x+y+z=3)である請求項1〜のいずれか1項に記載の固体酸化物形燃料電池用セルの製造方法。 The main material of the protective film is cobalt manganese oxide Co x Mn y O 4 (0 <x, y <3, x + y = 3) or zinc cobalt manganese oxide Zn z Co x Mn y O 4 (0). The method for producing a cell for a solid oxide fuel cell according to any one of claims 1 to 4 , wherein <x, y, z <3, x + y + z = 3). 前記保護膜の主材料が、Co1.5Mn1.54またはCo2MnO4である請求項1〜のいずれか1項に記載の固体酸化物形燃料電池用セルの製造方法。 The main material of the protective film, Co 1.5 Mn 1.5 O 4 or Co 2 MnO 4 The method of manufacturing a solid oxide fuel cell according to any one of claims 1 to 5,. 前記保護膜形成ステップにおいて、前記保護膜が電着塗装により形成される請求項1〜のいずれか1項に記載の固体酸化物形燃料電池用セルの製造方法。 The method for producing a solid oxide fuel cell according to any one of claims 1 to 6 , wherein the protective film is formed by electrodeposition coating in the protective film forming step.
JP2017000744A 2016-03-31 2017-01-05 Manufacturing method of solid oxide fuel cell Active JP6906310B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016071195 2016-03-31
JP2016071195 2016-03-31

Publications (2)

Publication Number Publication Date
JP2017188426A JP2017188426A (en) 2017-10-12
JP6906310B2 true JP6906310B2 (en) 2021-07-21

Family

ID=60044195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017000744A Active JP6906310B2 (en) 2016-03-31 2017-01-05 Manufacturing method of solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP6906310B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7263283B2 (en) 2020-03-18 2023-04-24 東芝エネルギーシステムズ株式会社 METAL MEMBER AND MANUFACTURING METHOD THEREOF

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931423B2 (en) * 2006-01-18 2012-05-16 京セラ株式会社 Heat-resistant conductive member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, fuel cell
JP5013750B2 (en) * 2006-05-29 2012-08-29 京セラ株式会社 Cell stack and fuel cell
DE102007060272A1 (en) * 2007-12-14 2009-06-18 Elringklinger Ag Bipolar plate and method for producing a protective layer on a bipolar plate
KR101220746B1 (en) * 2010-12-28 2013-01-09 주식회사 포스코 Solid oxide fuel cell interconnect and coating method thereof
JP2013118178A (en) * 2011-10-31 2013-06-13 Osaka Gas Co Ltd Solid oxide fuel cell
JP5778711B2 (en) * 2013-03-26 2015-09-16 大阪瓦斯株式会社 Method for manufacturing inter-cell connecting member, inter-cell connecting member, and solid oxide fuel cell

Also Published As

Publication number Publication date
JP2017188426A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP5607903B2 (en) Barrier coating for interconnect, related apparatus and forming method
JP6800297B2 (en) Electrochemical devices, solid oxide fuel cell cells, and methods for manufacturing them
US8349395B2 (en) Electrically conductive steel-ceramic composite and process to manufacture it
WO2009131180A1 (en) Cell for solid oxide fuel battery
US20090317705A1 (en) Fuel cell interconnect structures, and related devices and processes
JP6289170B2 (en) Inter-cell connecting member joining structure and inter-cell connecting member joining method
JP5080749B2 (en) Current collecting member for fuel cell, cell stack, and fuel cell
JP7080060B2 (en) Cell-to-cell connection member, solid oxide fuel cell cell, solid oxide fuel cell, SOFC monogeneration system, and SOFC cogeneration system
JP6584097B2 (en) Inter-cell connecting member joining method and method for producing solid oxide fuel cell
JP6735568B2 (en) Cell stack manufacturing method
JP5785135B2 (en) Method for producing current collecting member for solid oxide fuel cell and current collecting member for solid oxide fuel cell
JP6906310B2 (en) Manufacturing method of solid oxide fuel cell
JP6967894B2 (en) Manufacturing method of cell-to-cell connection member
JP6358921B2 (en) Method for producing solid oxide fuel cell and method for joining cells
JP2013118177A (en) Solid oxide fuel cell
JP5778711B2 (en) Method for manufacturing inter-cell connecting member, inter-cell connecting member, and solid oxide fuel cell
JP6917182B2 (en) Conductive members, electrochemical reaction units, and electrochemical reaction cell stacks
JP7357577B2 (en) Inter-cell connection member, solid oxide fuel cell, SOFC monogeneration system, SOFC cogeneration system, and method for manufacturing inter-cell connection member
JP6268209B2 (en) Fuel cell power generation unit and fuel cell stack
JP6910172B2 (en) Manufacturing method of cell-to-cell connection member
JP6742104B2 (en) Method for producing inter-cell connecting member, and method for producing solid oxide fuel cell cell
JP2009266582A (en) Unit cell for solid oxide fuel cell
JP6948791B2 (en) Manufacturing method of cell-to-cell connection member and manufacturing method of cell for solid oxide fuel cell
JP6821613B2 (en) Conductive members, electrochemical reaction units and electrochemical reaction cell stack
JP2020161478A (en) Manufacturing method of solid oxide fuel cell and solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6906310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150