JP6948791B2 - Manufacturing method of cell-to-cell connection member and manufacturing method of cell for solid oxide fuel cell - Google Patents

Manufacturing method of cell-to-cell connection member and manufacturing method of cell for solid oxide fuel cell Download PDF

Info

Publication number
JP6948791B2
JP6948791B2 JP2017000743A JP2017000743A JP6948791B2 JP 6948791 B2 JP6948791 B2 JP 6948791B2 JP 2017000743 A JP2017000743 A JP 2017000743A JP 2017000743 A JP2017000743 A JP 2017000743A JP 6948791 B2 JP6948791 B2 JP 6948791B2
Authority
JP
Japan
Prior art keywords
cell
fine powder
manufacturing
base material
connecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017000743A
Other languages
Japanese (ja)
Other versions
JP2017152364A (en
Inventor
孝之 中尾
孝之 中尾
井上 修一
修一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Publication of JP2017152364A publication Critical patent/JP2017152364A/en
Application granted granted Critical
Publication of JP6948791B2 publication Critical patent/JP6948791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、セル間接続部材の製造方法、および固体酸化物形燃料電池用セルの製造方法に関する。 The present invention relates to a method for manufacturing a cell-to-cell connecting member and a method for manufacturing a cell for a solid oxide fuel cell.

固体酸化物形燃料電池用セル(以下「SOFC用セル」と記載する場合がある。)は、電解質膜の一方面側に空気極を接合するとともに、同電解質膜の他方面側に燃料極を接合してなる単セルを、電子伝導性の基材(セル間接続部材)により挟み込んだ構造を有する。そしてこのようなSOFC用セルは、700〜900℃程度の作動温度で作動し、空気極側から燃料極側への電解質膜を介した酸化物イオンの移動に伴って、電極間に起電力を発生させる。セル間接続部材は、単セル同士を電気的に接続する部材であり、また燃料と空気の隔壁となる部材でもある。 A cell for a solid oxide fuel cell (hereinafter sometimes referred to as a "cell for SOFC") has an air electrode bonded to one side of an electrolyte membrane and a fuel electrode to the other side of the electrolyte membrane. It has a structure in which a single cell formed by joining is sandwiched between an electron conductive base material (cell-to-cell connecting member). Such an SOFC cell operates at an operating temperature of about 700 to 900 ° C., and generates an electromotive force between the electrodes as the oxide ions move from the air electrode side to the fuel electrode side via the electrolyte membrane. generate. The cell-cell connection member is a member that electrically connects single cells to each other, and is also a member that serves as a partition wall between fuel and air.

近年の開発の進展に伴い、SOFCの作動温度が下がってきている。従来の作動温度は1000℃程度であり、耐熱性の観点からランタンクロマイトに代表される金属酸化物が使用されていた。最近は作動温度が700℃〜800℃まで下がっており、SOFC用セルの構成部材として合金が使用できるようになってきた。合金の使用により、SOFCのコストダウン、ロバスト性の向上が期待できる。 With the progress of development in recent years, the operating temperature of SOFCs has been decreasing. The conventional operating temperature is about 1000 ° C., and a metal oxide typified by lanthanum chromite has been used from the viewpoint of heat resistance. Recently, the operating temperature has dropped to 700 ° C to 800 ° C, and alloys can be used as constituent members of SOFC cells. The use of alloys can be expected to reduce the cost of SOFCs and improve robustness.

合金としては、接合される金属酸化物の熱膨張率との整合性から、フェライト系ステンレス鋼が用いられることが多い。一方、耐熱性により優れたオーステナイト系ステンレス鋼であるFe−Cr−Ni合金や、ニッケル基合金であるNi−Cr合金などが用いられることもある。また(La,Ca)CrO3(カルシウムドープランタンクロマイト)に代表される金属酸化物が用いられることもある。 As the alloy, ferritic stainless steel is often used because of its consistency with the coefficient of thermal expansion of the metal oxide to be bonded. On the other hand, Fe-Cr-Ni alloy, which is an austenitic stainless steel having excellent heat resistance, Ni-Cr alloy, which is a nickel-based alloy, and the like may be used. In addition, metal oxides typified by (La, Ca) CrO 3 (calcium doprantan chromite) may be used.

これらの合金は、ほぼ例外なくCrを含んでおり、作動環境である高温大気雰囲気にて表面にCr23やMnCr24の酸化物皮膜を形成する。この酸化物皮膜は経時的に膜厚が厚くなり、電気抵抗が増大するとともに、作動環境である高温大気雰囲気で6価クロムの化合物として蒸発し、空気極を劣化させることが知られている(Cr被毒と呼ばれる)。また、(La,Ca)CrO3を用いた場合でも、合金の場合よりも少ないが、同様にCr被毒が生じる場合がある。そこで合金や(La,Ca)CrO3の表面に、耐熱性に優れた金属酸化物材料をコーティングして、空気極の劣化を抑制する試みがなされている。 These alloys contain Cr almost without exception, and form an oxide film of Cr 2 O 3 or Mn Cr 2 O 4 on the surface in a high temperature atmospheric atmosphere which is an operating environment. It is known that this oxide film becomes thicker with time, the electrical resistance increases, and it evaporates as a hexavalent chromium compound in the high-temperature atmospheric atmosphere, which is the operating environment, and deteriorates the air electrode (). Cr poisoning). Further, even when (La, Ca) CrO 3 is used, Cr poisoning may occur, although it is less than that of the alloy. Therefore, attempts have been made to suppress deterioration of the air electrode by coating the surface of the alloy or (La, Ca) CrO 3 with a metal oxide material having excellent heat resistance.

特許文献1の固体酸化物形燃料電池用セルでは、セル間接続部材の基材はフェライト系ステンレス合金製であり、その基材の表面に金属酸化物材料(Znx(CoyMn(1-y)(3-x)4)を含む保護膜が形成されている。保護膜の形成は詳しくは、金属酸化物材料の微粉末を含有するスラリー状の塗膜形成用材料をディッピング法により基材に塗布し、乾燥の後、1000℃で2時間焼成して金属酸化物材料を焼結させることにより、行われる。 The solid oxide fuel cell of Patent Document 1, the base material of the intercell connection member is made of ferritic stainless steel alloy, a metal oxide material on the surface of the substrate (Zn x (Co y Mn ( 1- A protective film containing (y) ) (3-x) O 4) is formed. For the formation of the protective film, more specifically, a slurry-like coating film-forming material containing a fine powder of a metal oxide material is applied to a base material by a dipping method, dried, and then fired at 1000 ° C. for 2 hours to oxidize the metal. It is done by sintering the material.

特開2013−229317号公報Japanese Unexamined Patent Publication No. 2013-229317

焼結による保護膜の形成の際に基材を高温に加熱すると、基材にダメージを与える可能性がある。上述の通りSOFCの作動温度が700〜800℃程度に低下し、基材に合金が使われるようになっている。保護膜の焼結の際の短時間の加熱であれば、基材を1000℃まで昇温しても問題はないものと考えられているが、より低い温度にて保護膜の焼結が可能であれば、固体酸化物形燃料電池用セルの耐久性・信頼性が向上できる可能性がある。 Heating the substrate to a high temperature during the formation of the protective film by sintering may damage the substrate. As described above, the operating temperature of the SOFC has been lowered to about 700 to 800 ° C., and an alloy has been used as the base material. It is considered that there is no problem even if the temperature of the base material is raised to 1000 ° C. if it is heated for a short time when sintering the protective film, but the protective film can be sintered at a lower temperature. If so, there is a possibility that the durability and reliability of the solid oxide fuel cell can be improved.

また製造工程の改善によるコストダウンを目的として、基材の保護膜の焼成のための熱処理と、その後の熱処理(単セルと基材との接合、ガラスシール部材等を用いた封止など)とを一度に行うことが要望されている。しかし、例えばガラスシール部材は耐熱温度の上限が低く、1000℃まで昇温すると封止する部位に損傷が生じる恐れがあった。そこで、より低い温度にて焼結が可能な保護膜の実現が求められていた。 In addition, for the purpose of cost reduction by improving the manufacturing process, heat treatment for firing the protective film of the base material and subsequent heat treatment (bonding of a single cell and the base material, sealing using a glass seal member, etc.) Is required to be done at once. However, for example, the glass seal member has a low upper limit of the heat resistant temperature, and when the temperature is raised to 1000 ° C., there is a risk that the sealed portion may be damaged. Therefore, there has been a demand for the realization of a protective film that can be sintered at a lower temperature.

本発明は上述の課題に鑑みてなされたものであり、その目的は、従来よりも低温で保護膜を焼結することが可能なセル間接続部材の製造方法、および固体酸化物形燃料電池用セルの製造方法を提供することにある。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is a method for manufacturing an inter-cell connecting member capable of sintering a protective film at a lower temperature than before, and for a solid oxide fuel cell. The purpose is to provide a method for manufacturing a cell.

上記目的を達成するための、固体酸化物形燃料電池用セルに用いられるセル間接続部材の製造方法の特徴構成は、
コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)を主成分とする金属酸化物微粉末と金属亜鉛の微粉末とを含有するスラリーを用いて、セル間接続部材の基材に塗膜を湿式成膜する成膜ステップと、
塗膜を湿式形成した前記基材に900℃以下の温度で熱処理を施し、前記金属酸化物微粉末を焼結させて基材の表面に保護膜を形成する焼結ステップを有する点にある。
The characteristic configuration of the method for manufacturing the cell-to-cell connection member used in the solid oxide fuel cell for achieving the above object is as follows.
Cobalt-manganese-based oxide Co x Mn y O 4 with a slurry containing a fine powder (0 <x, y <3 , x + y = 3) metal oxide as a main component powder and metallic zinc, the cell A film forming step in which a coating film is wet-deposited on the base material of the connecting member,
The point is that the base material on which the coating film is wet-formed is heat-treated at a temperature of 900 ° C. or lower, and the metal oxide fine powder is sintered to form a protective film on the surface of the base material.

通常であれば、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)を主成分とする保護膜は、1000℃を下回る温度では適切に焼結させることができない。しかし発明者らは鋭意検討の末、保護膜の材料であるコバルトマンガン系金属酸化物の微粉末を含有したスラリーに、金属の微粉末を混合することにより、保護膜の焼結が促進される場合があることを見出した。そして、金属亜鉛の微粉末をスラリーに含有させると、保護膜の焼結に必要な温度を従来より下げられることを実験で確認し、本発明を完成した。 Ordinarily, cobalt-manganese-based oxide Co x Mn y O 4 (0 <x, y <3, x + y = 3) protective film composed mainly of, it to properly sintered at a temperature below 1000 ° C. I can't. However, after diligent studies, the inventors have studied diligently, and by mixing the fine metal powder with the slurry containing the fine powder of cobalt-manganese-based metal oxide, which is the material of the protective film, the sintering of the protective film is promoted. I found that there are cases. Then, it was confirmed by experiments that the temperature required for sintering the protective film could be lowered by containing fine powder of metallic zinc in the slurry, and the present invention was completed.

すなわち上記の特徴構成によれば、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)を主成分とする金属酸化物微粉末と金属亜鉛の微粉末とを含有するスラリーを用いて、セル間接続部材の基材に塗膜を湿式成膜する成膜ステップと、塗膜を湿式形成した基材に900℃以下の温度で熱処理を施し、金属酸化物微粉末を焼結させて基材の表面に保護膜を形成する焼結ステップとを有することで、従来よりも低温で保護膜を焼結することが可能となる。これにより、保護膜焼結の際に基材に与える熱的ダメージを低減できる。また単セルと基材との接合や、ガラスシール部材等を用いた封止などを保護膜焼結と同時に行うことも可能となる。 That is, according to the above characteristic structure, cobalt-manganese-based oxide Co x Mn y O 4 and fine powder (0 <x, y <3 , x + y = 3) metal oxide as a main component powder and metallic zinc using a slurry containing performs the film formation step of wet deposition a coating film, the heat treatment of the coating film at a temperature of 900 ° C. or less to a substrate which is wet-formed substrate of the intercell connection member, metal oxides By having a sintering step of sintering fine powder to form a protective film on the surface of the base material, it is possible to sinter the protective film at a lower temperature than before. As a result, it is possible to reduce the thermal damage given to the base material when the protective film is sintered. It is also possible to join the single cell and the base material, seal using a glass sealing member, or the like at the same time as sintering the protective film.

金属亜鉛の微粉末の含有により焼結温度が低下する理由としては、焼結ステップにおいてコバルトマンガン系金属酸化物が焼結する際、金属酸化物微粉末の間にて、亜鉛とコバルトマンガン系金属酸化物とによりスピネル構造の金属酸化物が生成されて、金属酸化物微粉末の焼結を促進し、その結果従来よりも低い温度で保護膜の焼結が実現したと考えられる。 The reason why the sintering temperature is lowered by the inclusion of the fine powder of metallic zinc is that when the cobalt manganese metal oxide is sintered in the sintering step, the zinc and the cobalt manganese metal are between the fine powder of the metal oxide. It is considered that the metal oxide having a spinel structure is generated by the oxide to promote the sintering of the metal oxide fine powder, and as a result, the sintering of the protective film is realized at a temperature lower than the conventional one.

なお一般的に、金属酸化物を低温で緻密に焼結させるために、低融点の焼結助剤(リチウム、アルミニウム、ガラス等)を添加することが考えられる。しかしSOFC用セルに従来の焼結助剤を使用すると、SOFCの作動温度・奮起にて不純物(例えばガラスの場合、SiやBなど)が揮発し、空気極や燃料極で反応して、電極の性能を大きく低下させる、いわゆる不純物被毒を引き起こす場合がある。そのためSOFCの構成材料の焼結助剤としては、劣化を引き起こす要因となる元素を含むものは使用することができない。また焼結助剤に含まれる元素は、絶縁性が高く、焼結を促進できたとしても電気抵抗を増大させてしまい、電子伝導性が必要とされる材料には使用することができない。しかし金属亜鉛は、保護膜の中の他元素と反応して、低温で保護膜を焼結させることができ、保護膜の緻密性・密着性も十分であった。また保護膜等の電子伝導性も維持されることから、従来の焼結助剤とは異なった作用・効果を有していると考えられる。 In general, it is conceivable to add a low melting point sintering aid (lithium, aluminum, glass, etc.) in order to densely sinter the metal oxide at a low temperature. However, when a conventional sintering aid is used for the SOFC cell, impurities (for example, Si and B in the case of glass) volatilize at the operating temperature and inspiration of the SOFC and react at the air electrode and fuel electrode to form an electrode. It may cause so-called impurity poisoning, which greatly reduces the performance of the fuel cell. Therefore, as a sintering aid for the constituent material of SOFC, one containing an element that causes deterioration cannot be used. Further, the element contained in the sintering aid has high insulating property, and even if sintering can be promoted, the electric resistance is increased, and the element cannot be used for a material requiring electron conductivity. However, metallic zinc can react with other elements in the protective film to sinter the protective film at a low temperature, and the tightness and adhesion of the protective film are sufficient. In addition, since the electron conductivity of the protective film and the like is also maintained, it is considered that the protective film has an action / effect different from that of the conventional sintering aid.

本発明に係るセル間接続部材の製造方法の別の特徴構成は、前記金属酸化物微粉末がCo1.5Mn1.54を主成分とするものである点にある。 Another characteristic configuration of the method for manufacturing the cell-cell connecting member according to the present invention is that the metal oxide fine powder contains Co 1.5 Mn 1.5 O 4 as a main component.

Co1.5Mn1.54を主成分とする金属酸化物微粉末と、金属亜鉛との組合せにより、従来より低い温度にて保護膜の焼結が可能であることが実験により確かめられている。 It has been experimentally confirmed that the protective film can be sintered at a lower temperature than before by combining the metal oxide fine powder containing Co 1.5 Mn 1.5 O 4 as a main component and metallic zinc.

本発明に係るセル間接続部材の製造方法の別の特徴構成は、前記スラリーに含有される前記金属亜鉛の微粉末の含有量が、前記金属酸化物微粉末と前記金属亜鉛の微粉末との総量に対して5重量%以上50重量%以下である点にある。 Another characteristic configuration of the method for producing an inter-cell connecting member according to the present invention is that the content of the fine powder of metallic zinc contained in the slurry is the same as that of the fine powder of metal oxide and the fine powder of zinc. The point is that it is 5% by weight or more and 50% by weight or less with respect to the total amount.

上記の特徴構成の通り、スラリーに含有される金属亜鉛の微粉末の含有量を、金属酸化物微粉末と金属亜鉛の微粉末との総量に対して5重量%以上50重量%以下とすることで、基材との密着性が良好な保護膜を形成可能である。 As described in the above characteristic configuration, the content of the fine powder of metallic zinc contained in the slurry shall be 5% by weight or more and 50% by weight or less with respect to the total amount of the fine powder of metal oxide and the fine powder of metallic zinc. Therefore, it is possible to form a protective film having good adhesion to the base material.

本発明に係るセル間接続部材の製造方法の別の特徴構成は、前記スラリーに含有される前記金属亜鉛の微粉末の含有量が、前記金属酸化物微粉末と前記金属亜鉛の微粉末との総量に対して20重量%以上50重量%以下である点にある。 Another characteristic configuration of the method for producing an inter-cell connecting member according to the present invention is that the content of the fine powder of metallic zinc contained in the slurry is the same as that of the fine powder of metal oxide and the fine powder of zinc. The point is that it is 20% by weight or more and 50% by weight or less with respect to the total amount.

上記の特徴構成の通り、スラリーに含有される金属亜鉛の微粉末の含有量が、金属酸化物微粉末と金属亜鉛の微粉末との総量に対して20重量%以上50重量%以下とすることで、焼結ステップの熱処理の温度を更に低くすることができ好適である。 As described in the above characteristic configuration, the content of the fine powder of metallic zinc contained in the slurry is 20% by weight or more and 50% by weight or less with respect to the total amount of the fine powder of metal oxide and the fine powder of metallic zinc. Therefore, the heat treatment temperature of the sintering step can be further lowered, which is preferable.

本発明に係るセル間接続部材の製造方法の別の特徴構成は、前記焼結ステップにおける前記熱処理が、875℃以下の温度で行われる点にある。 Another characteristic configuration of the method for manufacturing an cell-cell connecting member according to the present invention is that the heat treatment in the sintering step is performed at a temperature of 875 ° C. or lower.

コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)を主成分とする金属酸化物微粉末と金属亜鉛の微粉末とを含有するスラリーを用いることで、875℃以下の熱処理温度にて保護膜を焼結させることが可能となる。875℃以下という比較的低温での保護膜の焼結は、金属亜鉛の微粉末を用いない従来の方法では不可能であった。 Cobalt-manganese-based oxide Co x Mn y O 4 (0 <x, y <3, x + y = 3) By using a slurry containing a fine powder of metal oxide fine powder and metallic zinc as a main component, The protective film can be sintered at a heat treatment temperature of 875 ° C. or lower. Sintering of the protective film at a relatively low temperature of 875 ° C. or lower was impossible by the conventional method without using fine powder of metallic zinc.

本発明に係るセル間接続部材の製造方法の別の特徴構成は、前記焼結ステップにおける前記熱処理が、800℃以上の温度で行われる点にある。 Another characteristic configuration of the method for manufacturing an cell-cell connecting member according to the present invention is that the heat treatment in the sintering step is performed at a temperature of 800 ° C. or higher.

コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)を主成分とする金属酸化物微粉末と金属亜鉛の微粉末とを含有するスラリーを用いることで、焼結ステップにおける熱処理の温度を800℃まで下げられることが実験で確認されている。 Cobalt-manganese-based oxide Co x Mn y O 4 (0 <x, y <3, x + y = 3) By using a slurry containing a fine powder of metal oxide fine powder and metallic zinc as a main component, It has been experimentally confirmed that the temperature of the heat treatment in the sintering step can be lowered to 800 ° C.

上述したセル間接続部材の製造方法において、前記焼結ステップにおける前記熱処理は、固体酸化物形燃料電池用セルの単セルと前記基材とを接合しない状態で好適に行うことができる。 In the method for manufacturing the cell-to-cell connecting member described above, the heat treatment in the sintering step can be preferably performed in a state where the single cell of the solid oxide fuel cell and the base material are not bonded.

また上記したセル間接続部材の製造方法において、前記焼結ステップにおける前記熱処理は、固体酸化物形燃料電池用セルの単セルと前記基材とが接合され、セルスタックが形成された状態で好適に行うことができる。そして熱処理を875℃以下の温度で行うことで、セルスタックの状態でのガラスシール部材等を用いた封止などを保護膜の焼結と同時に行うことができるから、熱処理のプロセスを少なくして製造コストの低減が可能となる。またセルスタックが形成され状態であれば、熱処理を大気雰囲気下で行うことができ、製造コストをさらに低減することができ好適である。 Further, in the method for manufacturing the cell-to-cell connecting member described above, the heat treatment in the sintering step is suitable in a state where the single cell of the solid oxide fuel cell and the base material are joined to form a cell stack. Can be done. By performing the heat treatment at a temperature of 875 ° C. or lower, sealing using a glass sealing member or the like in the state of the cell stack can be performed at the same time as sintering the protective film, so that the heat treatment process can be reduced. It is possible to reduce the manufacturing cost. Further, if the cell stack is formed, the heat treatment can be performed in an air atmosphere, and the manufacturing cost can be further reduced, which is preferable.

上記目的を達成するための、固体酸化物形燃料電池用セルの製造方法の特徴構成は、
コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)を主成分とする金属酸化物微粉末と金属亜鉛の微粉末とを含有するスラリーを用いて、セル間接続部材の基材に塗膜を湿式成膜する成膜ステップと、
固体酸化物形燃料電池用セルの単セルと塗膜を湿式成膜した前記基材とを接合してセルスタックを形成する接合ステップと、
前記セルスタックに900℃以下の温度で熱処理を施し、前記金属酸化物微粉末を焼結させて基材の表面に保護膜を形成する焼結ステップを有する点にある。
The characteristic configuration of the manufacturing method of the solid oxide fuel cell for achieving the above object is as follows.
Cobalt-manganese-based oxide Co x Mn y O 4 with a slurry containing a fine powder (0 <x, y <3 , x + y = 3) metal oxide as a main component powder and metallic zinc, the cell A film forming step in which a coating film is wet-deposited on the base material of the connecting member,
A joining step of joining a single cell of a solid oxide fuel cell and the base material on which a coating film is wet-deposited to form a cell stack.
The cell stack is heat-treated at a temperature of 900 ° C. or lower to have a sintering step of sintering the metal oxide fine powder to form a protective film on the surface of the base material.

上記の特徴構成によれば、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)を主成分とする金属酸化物微粉末と金属亜鉛の微粉末とを含有するスラリーを用いて、セル間接続部材の基材に塗膜を湿式成膜する成膜ステップと、固体酸化物形燃料電池用セルの単セルと塗膜を湿式成膜した基材とを接合してセルスタックを形成する接合ステップと、セルスタックに900℃以下の温度で熱処理を施し、金属酸化物微粉末を焼結させて基材の表面に保護膜を形成する焼結ステップとを有することで、従来よりも低温で保護膜を焼結することが可能となる。これにより、保護膜焼結の際に基材に与える熱的ダメージを低減できる。そして単セルと基材とを接合してセルスタックを形成した状態で熱処理を行い、保護膜を焼結するので、熱処理のプロセスを少なくして固体酸化物形燃料電池用セルの製造コストを低減することができる。 According to the above characteristic structure, cobalt-manganese-based oxide Co x Mn y O 4 and fine powder (0 <x, y <3 , x + y = 3) metal oxide as a main component powder and metallic zinc Using the contained slurry, a film forming step of wet-forming a coating film on the base material of the cell-to-cell connection member, and a single cell of a solid oxide fuel cell and a base material on which a coating film is wet-deposited are formed. A joining step of joining to form a cell stack and a sintering step of subjecting the cell stack to a heat treatment at a temperature of 900 ° C. or lower and sintering metal oxide fine powder to form a protective film on the surface of the base material. By having it, it becomes possible to sinter the protective film at a lower temperature than before. As a result, it is possible to reduce the thermal damage given to the base material when the protective film is sintered. Then, heat treatment is performed in a state where the single cell and the base material are joined to form a cell stack, and the protective film is sintered. Therefore, the heat treatment process is reduced and the manufacturing cost of the solid oxide fuel cell is reduced. can do.

本発明に係る固体酸化物形燃料電池用セルの製造方法の別の特徴構成は、前記焼結ステップにおける前記熱処理が、875℃以下の温度で行われる点にある。 Another characteristic configuration of the method for producing a solid oxide fuel cell according to the present invention is that the heat treatment in the sintering step is performed at a temperature of 875 ° C. or lower.

上記の特徴構成によれば、セルスタックの状態での熱処理が875℃以下の温度で行われるので、例えばガラスシール部材等を用いた封止などを保護膜の焼結と同時に行うことができるから、熱処理のプロセスをさらに少なくして固体酸化物形燃料電池用セルの製造コストを低減することができる。またセルスタックが形成された状態であれば、熱処理を大気雰囲気下で行うことができ、製造コストをさらに低減することができ好適である。 According to the above characteristic configuration, since the heat treatment in the state of the cell stack is performed at a temperature of 875 ° C. or lower, for example, sealing using a glass sealing member or the like can be performed at the same time as sintering the protective film. The heat treatment process can be further reduced to reduce the manufacturing cost of the solid oxide fuel cell. Further, if the cell stack is formed, the heat treatment can be performed in an air atmosphere, and the manufacturing cost can be further reduced, which is preferable.

固体酸化物形燃料電池用セルの概略図Schematic diagram of solid oxide fuel cell cell 固体酸化物形燃料電池の作動時の反応の説明図Explanatory drawing of reaction at the time of operation of solid oxide fuel cell セル間接続部材の断面図Cross-sectional view of cell-to-cell connecting member テープ剥離試験の結果を示す表Table showing the results of the tape peeling test 抵抗値の経時変化の測定結果を示すグラフGraph showing the measurement result of the change of resistance value with time 作成したサンプルの断面を示す画像Image showing the cross section of the created sample 作成したサンプルの断面を示す画像Image showing the cross section of the created sample 抵抗値の経時変化の測定結果を示すグラフGraph showing the measurement result of the change of resistance value with time

以下、固体酸化物形燃料電池用セルおよびセル間接続部材を説明し、製造方法および実験例を示す。なお以下に本発明の好適な実施例を記すが、これら実施例はそれぞれ本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。 Hereinafter, the solid oxide fuel cell cell and the cell-to-cell connection member will be described, and a manufacturing method and an experimental example will be shown. Preferable examples of the present invention will be described below, and each of these examples has been described in order to more specifically exemplify the present invention, and various changes may be made without departing from the spirit of the present invention. It is possible, and the present invention is not limited to the following description.

〔固体酸化物形燃料電池(SOFC)〕
図1および図2に示すSOFC用セルCは、酸素イオン伝導性の固体酸化物の緻密体からなる電解質膜30の一方面側に、酸素イオンおよび電子伝導性の多孔体からなる空気極31を接合するとともに、同電解質膜30の他方面側に電子伝導性の多孔体からなる燃料極32を接合してなる単セル3を備える。
さらに、SOFC用セルCは、この単セル3を、空気極31または燃料極32に対して電子の授受を行うとともに空気および水素を供給するための溝2が形成された一対の電子伝導性の合金または酸化物からなるセル間接続部材1により、適宜外周縁部においてガスシール体を挟持した状態で挟み込んだ構造を有する。空気極31とセル間接続部材1とが密着配置されることで、空気極31側の溝2が空気極31に空気を供給するための空気流路2aとして機能する。燃料極32とセル間接続部材1が密着配置されることで、燃料極32側の上記溝2が燃料極32に水素を供給するための燃料流路2bとして機能する。セル間接続部材1はインターコネクタとセルC間を電気的に接続する部材が接続された構成となることもある。
[Solid oxide fuel cell (SOFC)]
In the SOFC cell C shown in FIGS. 1 and 2, an air electrode 31 made of an oxygen ion-conducting porous body is provided on one side of an electrolyte membrane 30 made of a dense body of an oxygen ion-conducting solid oxide. In addition to joining, a single cell 3 formed by joining a fuel electrode 32 made of an electron-conducting porous body is provided on the other surface side of the electrolyte membrane 30.
Further, the SOFC cell C is a pair of electron conductive cells in which the single cell 3 is formed with a groove 2 for transmitting and receiving electrons to the air electrode 31 or the fuel electrode 32 and supplying air and hydrogen. It has a structure in which a gas-sealed body is appropriately sandwiched between cell-cell connecting members 1 made of an alloy or an oxide at an outer peripheral edge portion. By arranging the air electrode 31 and the cell-cell connecting member 1 in close contact with each other, the groove 2 on the air electrode 31 side functions as an air flow path 2a for supplying air to the air electrode 31. By arranging the fuel electrode 32 and the cell-cell connecting member 1 in close contact with each other, the groove 2 on the fuel electrode 32 side functions as a fuel flow path 2b for supplying hydrogen to the fuel electrode 32. The cell-to-cell connecting member 1 may have a configuration in which a member that electrically connects the interconnector and the cell C is connected.

なお、上記SOFC用セルCを構成する各要素で利用される一般的な材料について説明を加えると、例えば、上記空気極31の材料としては、LaMO3(例えばM=Mn,Fe,Co,Ni)中のLaの一部をアルカリ土類金属AE(AE=Sr,Ca)で置換した(La,AE)MO3のペロブスカイト型酸化物を利用することができ、上記燃料極32の材料としては、Niとイットリア安定化ジルコニア(YSZ)とのサーメットを利用することができ、さらに、電解質膜30の材料としては、イットリア安定化ジルコニア(YSZ)を利用することができる。 If a general material used in each element constituting the SOFC cell C is described, for example, the material of the air electrode 31 is LaMO 3 (for example, M = Mn, Fe, Co, Ni). A perovskite-type oxide of (La, AE) MO 3 in which a part of La in) is replaced with an alkaline earth metal AE (AE = Sr, Ca) can be used, and the material of the fuel electrode 32 can be used. , Ni and yttria-stabilized zirconia (YSZ) can be used, and yttria-stabilized zirconia (YSZ) can be used as the material of the electrolyte membrane 30.

さらに、これまで説明してきたSOFC用セルCでは、セル間接続部材1の材料としては、電子伝導性および耐熱性の優れた材料であるLaCrO3系等のペロブスカイト型酸化物や、フェライト系ステンレス鋼であるFe−Cr合金、オーステナイト系ステンレス鋼であるFe−Cr−Ni合金、ニッケル基合金であるNi−Cr合金などのように、Crを含有する合金または酸化物が利用されている。 Further, in the SOFC cell C described so far, as the material of the cell-to-cell connecting member 1, a perovskite-type oxide such as LaCrO 3 type, which is a material having excellent electron conductivity and heat resistance, or a ferrite type stainless steel Cr-containing alloys or oxides are used, such as Fe-Cr alloys, Fe-Cr-Ni alloys, which are austenite-based stainless steels, and Ni-Cr alloys, which are nickel-based alloys.

そして、複数のSOFC用セルCが積層配置された状態で、複数のボルトおよびナットにより積層方向に押圧力を与えて挟持され、セルスタックとなる。
このセルスタックにおいて、積層方向の両端部に配置されたセル間接続部材1は、燃料流路2bまたは空気流路2aの一方のみが形成されるものであればよく、その他の中間に配置されたセル間接続部材1は、一方の面に燃料流路2bが形成され他方の面に空気流路2aが形成されるものを利用することができる。なお、このような積層構造のセルスタックでは、上記セル間接続部材1をセパレータと呼ぶ場合がある。
セルスタックは、燃料ガス(水素)を供給するマニホールドに、ガラスシール材等の接着材により取り付けられる。ガラスシール材としては、例えば結晶化ガラスが用いられる。ガラスシール材は、マニホールドの接着の他、単セル3とセル間接続部材1の間など、封止(シール)が必要な箇所に用いられる。
このようなセルスタックの構造を有するSOFCを一般的に平板型SOFCと呼ぶ。本実施形態では、一例として平板型SOFCについて説明するが、本発明はその他の構造のSOFCについても適用可能である。
Then, in a state where the plurality of SOFC cells C are stacked and arranged, the cells are sandwiched by applying a pressing force in the stacking direction by a plurality of bolts and nuts to form a cell stack.
In this cell stack, the cell-to-cell connecting members 1 arranged at both ends in the stacking direction need only be one in which only one of the fuel flow path 2b and the air flow path 2a is formed, and are arranged in the middle of the other. As the cell-cell connecting member 1, a member in which a fuel flow path 2b is formed on one surface and an air flow path 2a is formed on the other surface can be used. In a cell stack having such a laminated structure, the cell-cell connecting member 1 may be called a separator.
The cell stack is attached to a manifold that supplies fuel gas (hydrogen) with an adhesive such as a glass sealant. As the glass sealing material, for example, crystallized glass is used. The glass sealing material is used in places where sealing is required, such as between the single cell 3 and the cell-to-cell connecting member 1, in addition to adhering the manifold.
An SOFC having such a cell stack structure is generally called a flat plate type SOFC. In the present embodiment, the flat plate type SOFC will be described as an example, but the present invention can also be applied to SOFCs having other structures.

そして、このようなSOFC用セルCを備えたSOFCの作動時には、図2に示すように、空気極31に対して隣接するセル間接続部材1に形成された空気流路2aを介して空気を供給するとともに、燃料極32に対して隣接するセル間接続部材1に形成された燃料流路2bを介して水素を供給し、例えば800℃程度の作動温度で作動する。すると、空気極31において酸素分子O2が電子e-と反応して酸素イオンO2-が生成され、そのO2-が電解質膜30を通って燃料極32に移動し、燃料極32において供給されたH2がそのO2-と反応してH2Oとe-とが生成されることで、一対のセル間接続部材1の間に起電力Eが発生し、その起電力Eを外部に取り出し利用することができる。 Then, when the SOFC provided with the SOFC cell C is operated, as shown in FIG. 2, air is introduced through the air flow path 2a formed in the cell-to-cell connecting member 1 adjacent to the air electrode 31. At the same time, hydrogen is supplied through the fuel flow path 2b formed in the inter-cell connecting member 1 adjacent to the fuel electrode 32, and operates at an operating temperature of, for example, about 800 ° C. Then, oxygen molecules O 2 in the air electrode 31 is an electron e - is reacted with oxygen ions O 2- is generated, the O 2- passes through the electrolyte membrane 30 to move to the fuel electrode 32, provided at the fuel electrode 32 been H 2 reacts with the O 2-H 2 O and e - and that is generated, the electromotive force E is generated between the pair of cell connecting member 1, outside the electromotive force E Can be taken out and used.

〔セル間接続部材〕
セル間接続部材1は、図1および図3に示すように、単セル3との間で空気流路2a、燃料流路2bを形成しつつ接続可能にする溝板状に形成されている。基材11の材料としては、先に述べたようにCrを含有する合金または金属酸化物が用いられる。基材11の表面には、酸化皮膜13が形成されている。さらに基材11の表面に、次に述べる保護膜12を設けることでCr被毒を抑制することができ、固体酸化物形燃料電池用セルとして好適である。
[Cell-to-cell connection member]
As shown in FIGS. 1 and 3, the cell-cell connecting member 1 is formed in a groove plate shape that enables connection while forming an air flow path 2a and a fuel flow path 2b with the single cell 3. As the material of the base material 11, a Cr-containing alloy or metal oxide is used as described above. An oxide film 13 is formed on the surface of the base material 11. Further, by providing the protective film 12 described below on the surface of the base material 11, Cr poisoning can be suppressed, which is suitable as a cell for a solid oxide fuel cell.

〔保護膜〕
本実施形態に係るセル間接続部材1では、基材11の表面に、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)を主成分とする金属酸化物微粉末と金属亜鉛を主成分とする金属微粉末とを用いて、保護膜12が形成される。
〔Protective film〕
In intercell connection member 1 according to the present embodiment, on the surface of the substrate 11, cobalt-manganese-based oxide Co x Mn y O 4 (0 <x, y <3, x + y = 3) metal oxide mainly composed of The protective film 12 is formed by using the fine powder and the fine metal powder containing metallic zinc as a main component.

基材11への保護膜12の形成は、概略次のようにして行う。まず、上述の金属酸化物微粉末および金属微粉末を溶剤やバインダ樹脂等と混合してスラリーを作成する。そのスラリーを用いて基材11の表面に塗膜を湿式成膜し、乾燥・加熱等により塗膜を硬化させる。そして、塗膜が形成された基材11を高温で熱処理し、塗膜中の樹脂等の成分を焼き飛ばし、金属酸化物微粉末を焼結させる。熱処理は、大気雰囲気下の他、酸素や水素の分圧を制御した雰囲気下、還元雰囲気下、不活性雰囲気下などで行うことができる。 The protective film 12 is formed on the base material 11 as follows. First, the above-mentioned metal oxide fine powder and metal fine powder are mixed with a solvent, a binder resin, or the like to prepare a slurry. A coating film is wet-deposited on the surface of the base material 11 using the slurry, and the coating film is cured by drying, heating, or the like. Then, the base material 11 on which the coating film is formed is heat-treated at a high temperature to burn off components such as resin in the coating film, and the metal oxide fine powder is sintered. The heat treatment can be performed not only in an atmospheric atmosphere, but also in an atmosphere in which the partial pressures of oxygen and hydrogen are controlled, in a reducing atmosphere, in an inert atmosphere, and the like.

湿式成膜による塗膜の形成方法としては、スクリーン印刷法、ドクターブレード法、スプレーコート法、インクジェット法、スピンコート法、ディップコートなどが例示できる。 Examples of the method for forming a coating film by wet film formation include a screen printing method, a doctor blade method, a spray coating method, an inkjet method, a spin coating method, and a dip coating method.

〔セル間接続部材の製造方法〕
次にセル間接続部材の製造方法について説明する。セル間接続部材の製造方法は、成膜ステップと、焼結ステップとを有する。
[Manufacturing method of cell-to-cell connecting member]
Next, a method of manufacturing the cell-cell connecting member will be described. The method for manufacturing the cell-cell connecting member includes a film forming step and a sintering step.

〔成膜ステップ〕
成膜ステップでは、金属酸化物微粉末と金属微粉末とを含有するスラリーを用いて、セル間接続部材1の基材11に塗膜を湿式成膜する。本実施形態では、金属酸化物微粉末として、コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)を主成分とするものを用い、金属微粉末として、金属亜鉛を主成分とするものを用いる。金属酸化物微粉末として、Co1.5Mn1.54を主成分とするものを用いると更に好適である。
[Film formation step]
In the film forming step, a coating film is wet-deposited on the base material 11 of the cell-to-cell connection member 1 using a slurry containing the metal oxide fine powder and the metal fine powder. In the present embodiment, as a fine powder metal oxides, cobalt-manganese-based oxide Co x Mn y O 4 a (0 <x, y <3 , x + y = 3) used as a main component, a metallic powder, Use one containing metallic zinc as the main component. It is more preferable to use a metal oxide fine powder containing Co 1.5 Mn 1.5 O 4 as a main component.

本実施形態では、スラリーに含有される金属微粉末の含有量が、金属酸化物微粉末と金属微粉末との総量に対して5重量%以上50重量%以下とされる。スラリーに含有される金属微粉末の含有量が、金属酸化物微粉末と金属微粉末との総量に対して20重量%以上50重量%以下であるとより好ましい。25重量%以上50重量%以下であるとさらに好ましい。 In the present embodiment, the content of the metal fine powder contained in the slurry is 5% by weight or more and 50% by weight or less with respect to the total amount of the metal oxide fine powder and the metal fine powder. It is more preferable that the content of the metal fine powder contained in the slurry is 20% by weight or more and 50% by weight or less with respect to the total amount of the metal oxide fine powder and the metal fine powder. It is more preferably 25% by weight or more and 50% by weight or less.

湿式成膜は、スラリーに基材11を浸けて(ディップ)引き上げることで行ってもよいし、先に例示した方法のいずれかを用いてもよい。湿式成膜は、基材11の全体に対して行ってもよいし、平板状の基材11の一方の面のみに行ってもよい。なお後者の場合、湿式成膜が行われ保護膜12が形成された面が、単セル3の空気極31に接合されることになる。湿式成膜が行われず基材11の素材が露出している面が、単セル3の燃料極32に接合されることになる。 The wet film formation may be carried out by immersing the base material 11 in the slurry (dip) and pulling it up, or may use any of the methods exemplified above. The wet film formation may be performed on the entire base material 11, or may be performed on only one surface of the flat plate-shaped base material 11. In the latter case, the surface on which the protective film 12 is formed by the wet film formation is joined to the air electrode 31 of the single cell 3. The surface where the material of the base material 11 is exposed without the wet film formation is joined to the fuel electrode 32 of the single cell 3.

〔焼結ステップ〕
焼結ステップでは、塗膜を湿式成膜した基材11に熱処理を施し、微粉末を焼結させて基材11の表面に保護膜12を形成する。熱処理は、900℃以下で行われると好ましく、900℃未満で行われるとより好ましく、875℃以下で行われると更に好ましい。熱処理は、850℃以上で行われると好ましく、825℃以上で行われるとより好ましく、800℃以上で行われると更に好ましい。
[Sintering step]
In the sintering step, the base material 11 on which the coating film is wet-deposited is heat-treated, and the fine powder is sintered to form the protective film 12 on the surface of the base material 11. The heat treatment is preferably performed at 900 ° C. or lower, more preferably below 900 ° C., and even more preferably at 875 ° C. or lower. The heat treatment is preferably performed at 850 ° C. or higher, more preferably at 825 ° C. or higher, and even more preferably at 800 ° C. or higher.

焼結ステップにおける熱処理は、固体酸化物形燃料電池用セルの単セル3と基材11とを接合しない状態で行われてもよい。熱処理の際の雰囲気としては、種々選択が可能である。微粒子を含有するスラリーの塗布が基材11の一方の面に対して行われ、他方の面では基材11の素材が露出している場合には、熱処理を不活性ガスや還元ガスの雰囲気下で行うと、基材11の素材が露出した面の酸化を抑制することができ好適である。 The heat treatment in the sintering step may be performed in a state where the single cell 3 of the solid oxide fuel cell and the base material 11 are not bonded. Various choices can be made as the atmosphere during the heat treatment. When the slurry containing the fine particles is applied to one surface of the base material 11 and the material of the base material 11 is exposed on the other surface, the heat treatment is performed under the atmosphere of an inert gas or a reducing gas. It is preferable that the material of the base material 11 can suppress the oxidation of the exposed surface.

〔固体酸化物形燃料電池用セルの製造方法〕
続いて固体酸化物形燃料電池用セルの製造方法について説明する。固体酸化物形燃料電池用セルの製造方法は、成膜ステップと、接合ステップと、焼結ステップとを有する。上述のセル間接続部材の製造方法が、セル間接続部材1の基材と単セル3とを接合しない状態で、熱処理を施して保護膜12を焼結したのに対し、下掲の固体酸化物形燃料電池用セルの製造方法は、セル間接続部材1の基材と単セル3とを接合ステップにて接合した後で、焼結ステップにて熱処理を施して保護膜12を焼結する。なお成膜ステップについては上述したセル間接続部材の製造方法と同様であるため、説明を省略する。
[Manufacturing method of solid oxide fuel cell]
Subsequently, a method for manufacturing a cell for a solid oxide fuel cell will be described. A method for manufacturing a cell for a solid oxide fuel cell includes a film forming step, a joining step, and a sintering step. In the above-mentioned manufacturing method of the cell-to-cell connecting member, the protective film 12 is sintered by heat treatment in a state where the base material of the cell-to-cell connecting member 1 and the single cell 3 are not bonded, whereas the solid oxide described below is used. In the method for manufacturing a cell for a physical fuel cell, after joining the base material of the cell-to-cell connecting member 1 and the single cell 3 in a joining step, heat treatment is performed in a sintering step to sinter the protective film 12. .. Since the film forming step is the same as the method for manufacturing the cell-cell connecting member described above, the description thereof will be omitted.

〔接合ステップ〕
接合ステップでは、固体酸化物形燃料電池用セルの単セル3とスラリーを塗布した基材11とを接合してセルスタックを形成する。セルスタックの形成は、例えば次の様に行う。単セル3と基材11との間に接合材を挟んで(あるいは塗布して)、単セル3と基材11とを交互に積み重ねる。なお、ガラスシール材によるシール(封止)が必要な部位(例えに、マニホールドとの接合部位や、単セル3と基材11との間など)に、結晶化ガラスを含有するスラリーを塗布してもよい。そして、積層した単セル3と基材11の全体をボルト等で固定する。
[Joining step]
In the joining step, the single cell 3 of the solid oxide fuel cell and the base material 11 coated with the slurry are joined to form a cell stack. The cell stack is formed, for example, as follows. A bonding material is sandwiched (or applied) between the single cell 3 and the base material 11, and the single cell 3 and the base material 11 are alternately stacked. A slurry containing crystallized glass is applied to a part that needs to be sealed with a glass sealing material (for example, a joint part with a manifold or between a single cell 3 and a base material 11). You may. Then, the entire laminated single cell 3 and the base material 11 are fixed with bolts or the like.

〔焼結ステップ〕
焼結ステップでは、セルスタックに熱処理を施し、微粉末を焼結させて基材11の表面に保護膜12を形成する。熱処理は、セル間接続部材の製造方法と同様、900℃以下で行われると好ましく、900℃未満で行われるとより好ましく、875℃以下で行われると更に好ましい。熱処理は、850℃以上で行われると好ましく、825℃以上で行われるとより好ましく、800℃以上で行われると更に好ましい。
[Sintering step]
In the sintering step, the cell stack is heat-treated and the fine powder is sintered to form the protective film 12 on the surface of the base material 11. The heat treatment is preferably performed at 900 ° C. or lower, more preferably below 900 ° C., and even more preferably at 875 ° C. or lower, as in the method for manufacturing the cell-cell connecting member. The heat treatment is preferably performed at 850 ° C. or higher, more preferably at 825 ° C. or higher, and even more preferably at 800 ° C. or higher.

熱処理は、空気流路2aに空気を流し、燃料流路2bに水素(燃料ガス)を流した状態で行う。そうすると、基材11の水素(燃料ガス)と接する面は、酸化皮膜の形成を抑制することができ好適である。セルスタックにガラスシール材を使用した封止を行っている場合には、ガラスシール材の耐熱温度よりも低い温度で熱処理を行うと好ましい。例えば、ガラスシール材の耐熱温度が950℃の場合には、熱処理を900℃で行うと、ガラスシール材に与える熱的ダメージを低減できるため好ましい。また焼結ステップの熱処理において、燃料極32の還元処理を同時に行うよう構成してもよい。 The heat treatment is performed in a state where air is passed through the air flow path 2a and hydrogen (fuel gas) is passed through the fuel flow path 2b. Then, the surface of the base material 11 in contact with hydrogen (fuel gas) is suitable because the formation of an oxide film can be suppressed. When the cell stack is sealed using a glass sealing material, it is preferable to perform the heat treatment at a temperature lower than the heat resistant temperature of the glass sealing material. For example, when the heat resistant temperature of the glass sealing material is 950 ° C., it is preferable to perform the heat treatment at 900 ° C. because the thermal damage to the glass sealing material can be reduced. Further, in the heat treatment of the sintering step, the reduction treatment of the fuel electrode 32 may be performed at the same time.

スラリーに金属亜鉛の微粉末を混合した場合(実験例1〜6)と、混合しない場合(実験例7〜9)について、セル間接続部材1の基材11に保護膜12を形成し、性能評価(テープ剥離試験、抵抗値の経時変化)および断面観察を行った。 When the slurry is mixed with fine powder of metallic zinc (Experimental Examples 1 to 6) and when not mixed (Experimental Examples 7 to 9), a protective film 12 is formed on the base material 11 of the cell-to-cell connecting member 1 to perform performance. Evaluation (tape peeling test, change in resistance value with time) and cross-sectional observation were performed.

〔実験例1:Co1.5Mn1.54と金属亜鉛とによる保護膜の形成〕
セル間接続部材1の基材11としてSUS445J1(フェライト系ステンレス)の部材を用いた。金属酸化物微粉末として、Co1.5Mn1.54を用いた。金属微粉末として金属亜鉛を用いた。溶媒としてのアルコール(1−メトキシ−2−プロパノール)30gと、バインダ樹脂としてのヒドロキシプロピルセルロース2.7gと、上述の金属酸化物微粉末と金属酸化物微粉末とをペイントシェーカーにて混合し、スラリーを作成した。
[Experimental example 1: Formation of protective film with Co 1.5 Mn 1.5 O 4 and metallic zinc]
A SUS445J1 (ferritic stainless steel) member was used as the base material 11 of the cell-cell connecting member 1. Co 1.5 Mn 1.5 O 4 was used as the metal oxide fine powder. Metallic zinc was used as the metal fine powder. 30 g of alcohol (1-methoxy-2-propanol) as a solvent, 2.7 g of hydroxypropyl cellulose as a binder resin, and the above-mentioned metal oxide fine powder and metal oxide fine powder were mixed with a paint shaker. A slurry was prepared.

実験例1では、スラリーに含有される金属微粉末の含有量を、金属酸化物微粉末と金属微粉末との総量に対して50重量%とした。このスラリーを用いて、一般的なディップ法にて基材11に塗膜を形成した。詳しくは、1回目のコーティングの後、乾燥を行い、その後2回目のコーティングを行い、塗膜を形成した。 In Experimental Example 1, the content of the metal fine powder contained in the slurry was set to 50% by weight with respect to the total amount of the metal oxide fine powder and the metal fine powder. Using this slurry, a coating film was formed on the base material 11 by a general dipping method. Specifically, after the first coating, drying was performed, and then the second coating was performed to form a coating film.

続いて、箱形電気炉にて大気雰囲気下で加熱し、基材11に熱処理を施して、溶媒およびバインダ樹脂の分解・脱離と、保護膜12の焼結を行った。実験例1では、800℃、825℃、850℃、875℃、900℃の5種類の熱処理温度にて、5種類のサンプルを作成した。 Subsequently, the base material 11 was heated in an atmospheric atmosphere in a box-shaped electric furnace to decompose and desorb the solvent and binder resin, and the protective film 12 was sintered. In Experimental Example 1, five types of samples were prepared at five types of heat treatment temperatures of 800 ° C., 825 ° C., 850 ° C., 875 ° C., and 900 ° C.

〔実験例2〜6:金属微粉末の含有量変更〕
実験例2〜6として、金属微粉末の含有量を変えてサンプルを作成した。金属微粉末の含有量は、実験例2は25重量%、実験例3は20重量%、実験例4は15重量%、実験例5は10重量%、実験例6は5重量%である。他の条件は実験例1と同様である。すなわち、実験例2〜6のそれぞれに対して、800℃、825℃、850℃、875℃、900℃の5種類の熱処理温度にて、それぞれ5種類のサンプルを作成した。
[Experimental Examples 2 to 6: Change in content of fine metal powder]
As Experimental Examples 2 to 6, samples were prepared by changing the content of the fine metal powder. The content of the fine metal powder is 25% by weight in Experimental Example 2, 20% by weight in Experimental Example 3, 15% by weight in Experimental Example 4, 10% by weight in Experimental Example 5, and 5% by weight in Experimental Example 6. Other conditions are the same as in Experimental Example 1. That is, for each of Experimental Examples 2 to 6, five types of samples were prepared at five types of heat treatment temperatures of 800 ° C., 825 ° C., 850 ° C., 875 ° C., and 900 ° C., respectively.

〔実験例7〜9:金属微粉末を不使用〕
実験例7〜9として、金属微粉末をスラリーに混合せずにサンプルを作成した。金属酸化物微粉末として、実験例7ではZnCoMnO4、実験例8ではCo2MnO4、実験例9ではCo1.5Mn1.54を用いた。熱処理温度に関して、実験例1〜6の5種類に950℃、975℃、1000℃を加えた8種類にて、サンプルを作成した。なお実験例7(ZnCoMnO4)では875℃のサンプルを作成していない。
[Experimental Examples 7-9: No metal fine powder used]
As Experimental Examples 7 to 9, samples were prepared without mixing the fine metal powder with the slurry. As the metal oxide powder, Example 7 In ZnCoMnO 4, Experiment 8, Co 2 MnO 4, using Co 1.5 Mn 1.5 O 4 In Example 9. Regarding the heat treatment temperature, samples were prepared at 8 types in which 950 ° C, 975 ° C, and 1000 ° C were added to 5 types of Experimental Examples 1 to 6. In Experimental Example 7 (ZnCMnO 4 ), a sample at 875 ° C. was not prepared.

〔テープ剥離試験〕
実験例1〜9のサンプルに対して、テープ剥離試験を行った。テープ剥離試験は、テープ(ダイヤテックス製、パイオラン養生用粘着テープ Y−09−GR)を保護膜12に貼り付け、テープを剥がして行い、テープに保護膜12の欠片が付着しているか否かを目視で確認することにより行った。テープに保護膜12の欠片が付着していない場合に、保護膜12が適切に形成されている(合格)と判断した。テープに保護膜12の欠片が付着している場合には、保護膜12が適切に形成されていない(不合格)と判断した。
[Tape peeling test]
A tape peeling test was performed on the samples of Experimental Examples 1 to 9. The tape peeling test is performed by attaching a tape (made by Diatex, adhesive tape for curing Piolan Y-09-GR) to the protective film 12, peeling off the tape, and checking whether or not a piece of the protective film 12 is attached to the tape. Was visually confirmed. When the piece of the protective film 12 was not attached to the tape, it was determined that the protective film 12 was properly formed (passed). When a piece of the protective film 12 was attached to the tape, it was determined that the protective film 12 was not properly formed (failed).

テープ剥離試験の結果を図4の表に示す。合格を「○」、不合格を「×」で示している。「−」の欄は、サンプルを作成していないことを示している。 The results of the tape peeling test are shown in the table of FIG. Passes are indicated by "○" and failures are indicated by "×". The "-" column indicates that a sample has not been created.

実験例1〜3では、800℃〜900℃の全てのサンプルで合格した。実験例4および5では、825℃〜900℃のサンプルで合格したが、800℃のサンプルは不合格であった。実験例6では、850℃〜900℃のサンプルで合格したが、800℃および825℃のサンプルでは不合格であった。 In Experimental Examples 1 to 3, all samples at 800 ° C. to 900 ° C. passed. In Experimental Examples 4 and 5, samples at 825 ° C to 900 ° C passed, but samples at 800 ° C failed. In Experimental Example 6, samples at 850 ° C. to 900 ° C. passed, but samples at 800 ° C. and 825 ° C. failed.

金属亜鉛をスラリーに添加しなかった実験例7〜9では、875℃以下のサンプルは全て不合格となった。実験例7および9では、900℃〜1000℃のサンプルは合格した。実験例8では、1000℃のサンプルのみ合格した。 In Experimental Examples 7 to 9 in which metallic zinc was not added to the slurry, all the samples below 875 ° C. were rejected. In Experimental Examples 7 and 9, samples at 900 ° C to 1000 ° C passed. In Experimental Example 8, only the sample at 1000 ° C. passed.

以上の実験結果から考察するに、金属亜鉛をスラリーに添加しなかった実験例7〜9で875℃以下の合格がないのに対し、金属亜鉛をスラリーに添加した実験例1〜6では875℃以下で剥離試験に合格していることから、金属亜鉛をスラリーに添加することによって、添加しない場合に比べ、より低い温度(875℃以下)での保護膜12の焼結が可能となり、保護膜12と基材11との密着強度の向上が認められる。また金属亜鉛の含有量について、5重量%の実験例6における800℃と825℃、10重量%の実験例5における800℃、および15重量%の実験例4における800℃にて不合格であるのに対し、含有量が20重量%以上の実験例1〜3では全てのサンプルで合格している。この結果から、保護膜12が形成可能な下限の温度と金属亜鉛の含有量との間には相関があり、含有量が多いほど、より低い温度での保護膜12の焼結が可能であると認められる。 Considering from the above experimental results, Experimental Examples 7 to 9 in which metallic zinc was not added to the slurry did not pass the temperature below 875 ° C, whereas Experimental Examples 1 to 6 in which metallic zinc was added to the slurry did not pass the temperature of 875 ° C or lower. Since the peeling test was passed below, by adding metallic zinc to the slurry, the protective film 12 can be sintered at a lower temperature (875 ° C or lower) than when it is not added, and the protective film can be sintered. An improvement in the adhesion strength between the 12 and the base material 11 is observed. The content of metallic zinc was rejected at 800 ° C. and 825 ° C. in Experimental Example 6 of 5% by weight, 800 ° C. in Experimental Example 5 of 10% by weight, and 800 ° C. in Experimental Example 4 of 15% by weight. On the other hand, in Experimental Examples 1 to 3 having a content of 20% by weight or more, all the samples passed. From this result, there is a correlation between the lower limit temperature at which the protective film 12 can be formed and the content of metallic zinc, and the higher the content, the lower the temperature at which the protective film 12 can be sintered. Is recognized.

〔SOFCの使用環境下での抵抗値の経時変化の測定〕
実験例2、6および7で作成したセル間接続部材1(熱処理温度:800℃)をSOFCの使用環境下におき、抵抗値の経時変化を測定した。具体的には、セル間接続部材1の両面に導電性セラミックペーストを塗布して白金メッシュの集電材を取り付け、850℃とした電気炉に設置し、抵抗値を測定した。表1に、測定初期の面抵抗(単位:mΩ・cm2)の値を示す。また図5に、300時間までの面抵抗の推移のグラフを示す。
[Measurement of change over time in resistance value under SOFC usage environment]
The cell-cell connecting member 1 (heat treatment temperature: 800 ° C.) prepared in Experimental Examples 2, 6 and 7 was placed in an SOFC usage environment, and the change in resistance value with time was measured. Specifically, a conductive ceramic paste was applied to both sides of the cell-cell connecting member 1, a platinum mesh current collector was attached, and the mixture was installed in an electric furnace at 850 ° C., and the resistance value was measured. Table 1 shows the values of the surface resistance (unit: mΩ · cm 2) at the initial stage of measurement. Further, FIG. 5 shows a graph of the transition of the surface resistance up to 300 hours.

Figure 0006948791
Figure 0006948791

測定初期の面抵抗に関し、金属亜鉛をスラリーに添加しなかった実験例7に比べ、金属亜鉛をスラリーに添加した実験例2および6は、面抵抗が小さくなった。したがって、金属亜鉛をスラリーに添加して保護膜12を形成することにより、面抵抗のより小さいセル間接続部材1が得られたと認められる。 Regarding the surface resistance at the initial stage of measurement, the surface resistance was smaller in Experimental Examples 2 and 6 in which metallic zinc was added to the slurry than in Experimental Example 7 in which metallic zinc was not added to the slurry. Therefore, it is recognized that the cell-cell connecting member 1 having a smaller surface resistance was obtained by adding metallic zinc to the slurry to form the protective film 12.

また図5のグラフに示されるように、金属亜鉛をスラリーに添加しなかった実験例7は、面抵抗が増加して300時間付近で100mΩ・cm2を越えた。一方金属亜鉛をスラリーに添加した実験例2および6は、面抵抗の経時的な増加はみられるものの、300時間が経過しても面抵抗は100mΩ・cm2を越えず、実験例7よりも面抵抗は小さい。したがって、金属亜鉛をスラリーに添加して保護膜12を形成することにより、面抵抗の経時的な増加がより抑制されたセル間接続部材1が得られたと認められる。 Further, as shown in the graph of FIG. 5, in Experimental Example 7 in which metallic zinc was not added to the slurry, the surface resistance increased and exceeded 100 mΩ · cm 2 in the vicinity of 300 hours. On the other hand, in Experimental Examples 2 and 6 in which metallic zinc was added to the slurry, the surface resistance did not exceed 100 mΩ · cm 2 even after 300 hours, although the surface resistance increased with time, which was higher than that of Experimental Example 7. The surface resistance is small. Therefore, it is recognized that by adding metallic zinc to the slurry to form the protective film 12, the cell-cell connecting member 1 in which the increase in surface resistance with time is further suppressed is obtained.

図8に、4500時間までの面抵抗の推移のグラフを示す。表2に、3500時間から4500時間での劣化率(1000時間当たりの抵抗値の変化量)を示す。 FIG. 8 shows a graph of the transition of the surface resistance up to 4500 hours. Table 2 shows the deterioration rate (change amount of resistance value per 1000 hours) from 3500 hours to 4500 hours.

Figure 0006948791
Figure 0006948791

図8のグラフに示されるように、金属亜鉛をスラリーに添加した実験例2および6において、長期にわたって抵抗値が安定しており、抵抗値の急激な増加など問題となる挙動は見られないことが確認された。また表2に示されるように、金属亜鉛をスラリーに添加した実験例2および6では、金属亜鉛をスラリーに添加しなかった実験例7に比べて劣化率が小さくなった。特に実験例2(25重量%添加)では、実験例7(添加なし)に比べて劣化率を1/5以下に低減することができた。以上の結果から、このことから、金属亜鉛をスラリーに添加して保護膜12を形成することにより、電気抵抗の経時的な増加が長期にわたって抑制されるセル間接続部材1が得られたと認められる。 As shown in the graph of FIG. 8, in Experimental Examples 2 and 6 in which metallic zinc was added to the slurry, the resistance value was stable for a long period of time, and no problematic behavior such as a rapid increase in the resistance value was observed. Was confirmed. Further, as shown in Table 2, in Experimental Examples 2 and 6 in which metallic zinc was added to the slurry, the deterioration rate was smaller than that in Experimental Example 7 in which metallic zinc was not added to the slurry. In particular, in Experimental Example 2 (25% by weight added), the deterioration rate could be reduced to 1/5 or less as compared with Experimental Example 7 (without addition). From the above results, it is recognized that by adding metallic zinc to the slurry to form the protective film 12, the cell-cell connecting member 1 in which the increase in electrical resistance with time is suppressed for a long period of time was obtained. ..

〔電子顕微鏡による断面観察〕
図6および7に、作成したサンプルの断面を電子顕微鏡で観察した画像を示す。図6は実験例2のサンプル、図7は実験例6のサンプルであり、いずれも熱処理の温度は800℃である。図6および図7の画像から、実験例7および8のいずれのサンプルにおいても、基板11の上に保護膜12が適切に形成されていると認められる。
[Cross-section observation with an electron microscope]
6 and 7 show images of the cross section of the prepared sample observed with an electron microscope. FIG. 6 is a sample of Experimental Example 2 and FIG. 7 is a sample of Experimental Example 6, both of which have a heat treatment temperature of 800 ° C. From the images of FIGS. 6 and 7, it is recognized that the protective film 12 is appropriately formed on the substrate 11 in any of the samples of Experimental Examples 7 and 8.

以上の実験例、性能評価および断面観察の結果から、金属亜鉛をスラリーに添加して保護膜12を形成することにより良好な保護膜12を形成できることが確認された。また、金属亜鉛をスラリーに添加すると、添加しない場合に比べて熱処理の温度を低くすることが可能であると確認された。 From the above experimental examples, performance evaluation, and cross-sectional observation results, it was confirmed that a good protective film 12 can be formed by adding metallic zinc to the slurry to form the protective film 12. It was also confirmed that when metallic zinc was added to the slurry, the temperature of the heat treatment could be lowered as compared with the case where it was not added.

本発明のセル間接続部材の製造方法および固体酸化物形燃料電池用セルの製造方法によれば、従来よりも低い温度で保護膜を焼結させることが可能となる。 According to the method for manufacturing a cell-to-cell connecting member and the method for manufacturing a cell for a solid oxide fuel cell of the present invention, it is possible to sinter the protective film at a lower temperature than before.

1 :セル間接続部材
2 :溝
2a :空気流路
2b :燃料流路
3 :単セル
4 :接合材
11 :基材
12 :保護膜
30 :電解質膜
31 :空気極
32 :燃料極
C :固体酸化物形燃料電池用セル
1: Cell-to-cell connecting member 2: Groove 2a: Air flow path 2b: Fuel flow path 3: Single cell 4: Bonding material 11: Base material 12: Protective film 30: Electrolyte film 31: Air electrode 32: Fuel electrode C: Solid Oxide fuel cell cell

Claims (12)

固体酸化物形燃料電池用セルに用いられるセル間接続部材の製造方法であって、
コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)を主成分とする金属酸化物微粉末と金属亜鉛の微粉末とを含有するスラリーを用いて、セル間接続部材の基材に塗膜を湿式成膜する成膜ステップと、
塗膜を湿式形成した前記基材に900℃以下の温度で熱処理を施し、前記金属酸化物微粉末を焼結させて基材の表面に保護膜を形成する焼結ステップを有する、セル間接続部材の製造方法。
A method for manufacturing an inter-cell connection member used in a cell for a solid oxide fuel cell.
Cobalt-manganese-based oxide Co x Mn y O 4 with a slurry containing a fine powder (0 <x, y <3 , x + y = 3) metal oxide as a main component powder and metallic zinc, the cell A film forming step in which a coating film is wet-deposited on the base material of the connecting member,
Cell-to-cell connection having a sintering step in which the base material on which the coating film is wet-formed is heat-treated at a temperature of 900 ° C. or lower and the metal oxide fine powder is sintered to form a protective film on the surface of the base material. Manufacturing method of parts.
前記金属酸化物微粉末がCo1.5Mn1.54を主成分とするものである請求項1に記載のセル間接続部材の製造方法。 The method for manufacturing an inter-cell connecting member according to claim 1, wherein the metal oxide fine powder contains Co 1.5 Mn 1.5 O 4 as a main component. 前記スラリーに含有される前記金属亜鉛の微粉末の含有量が、前記金属酸化物微粉末と前記金属亜鉛の微粉末との総量に対して5重量%以上50重量%以下である請求項1または2に記載のセル間接続部材の製造方法。 Claim 1 or that the content of the fine powder of metallic zinc contained in the slurry is 5% by weight or more and 50% by weight or less with respect to the total amount of the fine powder of metal oxide and the fine powder of zinc metal. 2. The method for manufacturing an inter-cell connecting member according to 2. 前記スラリーに含有される前記金属亜鉛の微粉末の含有量が、前記金属酸化物微粉末と前記金属亜鉛の微粉末との総量に対して20重量%以上50重量%以下である請求項1または2に記載のセル間接続部材の製造方法。 Claim 1 or that the content of the fine powder of metallic zinc contained in the slurry is 20% by weight or more and 50% by weight or less with respect to the total amount of the fine powder of metal oxide and the fine powder of zinc metal. 2. The method for manufacturing an inter-cell connecting member according to 2. 前記焼結ステップにおける前記熱処理が、875℃以下の温度で行われる請求項1〜4のいずれか1項に記載のセル間接続部材の製造方法。 The method for manufacturing an inter-cell connecting member according to any one of claims 1 to 4, wherein the heat treatment in the sintering step is performed at a temperature of 875 ° C. or lower. 前記焼結ステップにおける前記熱処理が、800℃以上の温度で行われる請求項1〜5のいずれか1項に記載のセル間接続部材の製造方法。 The method for manufacturing an inter-cell connecting member according to any one of claims 1 to 5, wherein the heat treatment in the sintering step is performed at a temperature of 800 ° C. or higher. 前記焼結ステップにおける前記熱処理が、固体酸化物形燃料電池用セルの単セルと前記基材とを接合しない状態で行われる請求項1〜6のいずれか1項に記載のセル間接続部材の製造方法。 The cell-to-cell connecting member according to any one of claims 1 to 6, wherein the heat treatment in the sintering step is performed in a state where the single cell of the solid oxide fuel cell and the base material are not bonded. Production method. 前記焼結ステップにおける前記熱処理が、固体酸化物形燃料電池用セルの単セルと前記基材とが接合され、セルスタックが形成された状態で、875℃以下の温度で行われる請求項1〜6のいずれか1項に記載のセル間接続部材の製造方法。 Claims 1 to 1 that the heat treatment in the sintering step is performed at a temperature of 875 ° C. or lower in a state where a single cell of a solid oxide fuel cell and the base material are joined to form a cell stack. The method for manufacturing an inter-cell connecting member according to any one of 6. 前記焼結ステップにおける前記熱処理が大気雰囲気下で行われる請求項8に記載のセル間接続部材の製造方法。 The method for manufacturing an inter-cell connecting member according to claim 8, wherein the heat treatment in the sintering step is performed in an air atmosphere. 固体酸化物形燃料電池用セルの製造方法であって、
コバルトマンガン系酸化物CoxMny4(0<x、y<3、x+y=3)を主成分とする金属酸化物微粉末と金属亜鉛の微粉末とを含有するスラリーを用いて、セル間接続部材の基材に塗膜を湿式成膜する成膜ステップと、
固体酸化物形燃料電池用セルの単セルと塗膜を湿式成膜した前記基材とを接合してセルスタックを形成する接合ステップと、
前記セルスタックに900℃以下の温度で熱処理を施し、前記金属酸化物微粉末を焼結させて基材の表面に保護膜を形成する焼結ステップを有する、固体酸化物形燃料電池用セルの製造方法。
A method for manufacturing solid oxide fuel cell cells.
Cobalt-manganese-based oxide Co x Mn y O 4 with a slurry containing a fine powder (0 <x, y <3 , x + y = 3) metal oxide as a main component powder and metallic zinc, the cell A film forming step in which a coating film is wet-deposited on the base material of the connecting member,
A joining step of joining a single cell of a solid oxide fuel cell and the base material on which a coating film is wet-deposited to form a cell stack.
A cell for a solid oxide fuel cell having a sintering step in which the cell stack is heat-treated at a temperature of 900 ° C. or lower and the metal oxide fine powder is sintered to form a protective film on the surface of a base material. Production method.
前記焼結ステップにおける前記熱処理が、875℃以下の温度で行われる請求項10に記載の固体酸化物形燃料電池用セルの製造方法。 The method for producing a solid oxide fuel cell according to claim 10, wherein the heat treatment in the sintering step is performed at a temperature of 875 ° C. or lower. 前記焼結ステップにおける前記熱処理が大気雰囲気下で行われる請求項10または11に記載の固体酸化物形燃料電池用セルの製造方法。 The method for producing a solid oxide fuel cell according to claim 10 or 11, wherein the heat treatment in the sintering step is performed in an air atmosphere.
JP2017000743A 2016-02-24 2017-01-05 Manufacturing method of cell-to-cell connection member and manufacturing method of cell for solid oxide fuel cell Active JP6948791B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016033555 2016-02-24
JP2016033555 2016-02-24

Publications (2)

Publication Number Publication Date
JP2017152364A JP2017152364A (en) 2017-08-31
JP6948791B2 true JP6948791B2 (en) 2021-10-13

Family

ID=59742178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017000743A Active JP6948791B2 (en) 2016-02-24 2017-01-05 Manufacturing method of cell-to-cell connection member and manufacturing method of cell for solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP6948791B2 (en)

Also Published As

Publication number Publication date
JP2017152364A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP5607903B2 (en) Barrier coating for interconnect, related apparatus and forming method
KR101553270B1 (en) Cell for solid oxide fuel cell
US8993189B2 (en) Heat-resistant alloy, alloy member for fuel cell, fuel cell stack device, fuel cell module, and fuel cell device
US8349395B2 (en) Electrically conductive steel-ceramic composite and process to manufacture it
US9120683B2 (en) Method and device using a ceramic bond material for bonding metallic interconnect to ceramic electrode
JP5266930B2 (en) Solid oxide fuel cell stack and manufacturing method thereof
KR20160048809A (en) Metal supported solid oxide fuel cell
JP5770659B2 (en) Solid oxide fuel cell and inter-cell connecting member
JP5289190B2 (en) Fuel cell stack device, fuel cell module and fuel cell device
JP7080060B2 (en) Cell-to-cell connection member, solid oxide fuel cell cell, solid oxide fuel cell, SOFC monogeneration system, and SOFC cogeneration system
JP6910172B2 (en) Manufacturing method of cell-to-cell connection member
JP6584097B2 (en) Inter-cell connecting member joining method and method for producing solid oxide fuel cell
JP2012038586A (en) Structure of fuel cell
JP2015088446A (en) Intercell connecting member joining structure and intercell connecting member joining method
WO2011138915A1 (en) High-temperature structural material, structural body for solid electrolyte fuel cell, and solid electrolyte fuel cell
JP5778711B2 (en) Method for manufacturing inter-cell connecting member, inter-cell connecting member, and solid oxide fuel cell
JP6948791B2 (en) Manufacturing method of cell-to-cell connection member and manufacturing method of cell for solid oxide fuel cell
JP5215443B2 (en) Solid oxide fuel cell
JP6358921B2 (en) Method for producing solid oxide fuel cell and method for joining cells
WO2017145451A1 (en) Fuel cell power generation unit and fuel cell stack
JP6906310B2 (en) Manufacturing method of solid oxide fuel cell
JP6742104B2 (en) Method for producing inter-cell connecting member, and method for producing solid oxide fuel cell cell
JP6188372B2 (en) Solid oxide fuel cell and inter-cell connecting member for fuel cell
JP6967894B2 (en) Manufacturing method of cell-to-cell connection member
JP2009266582A (en) Unit cell for solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210921

R150 Certificate of patent or registration of utility model

Ref document number: 6948791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150