JP4931423B2 - Heat-resistant conductive member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, fuel cell - Google Patents

Heat-resistant conductive member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, fuel cell Download PDF

Info

Publication number
JP4931423B2
JP4931423B2 JP2006009863A JP2006009863A JP4931423B2 JP 4931423 B2 JP4931423 B2 JP 4931423B2 JP 2006009863 A JP2006009863 A JP 2006009863A JP 2006009863 A JP2006009863 A JP 2006009863A JP 4931423 B2 JP4931423 B2 JP 4931423B2
Authority
JP
Japan
Prior art keywords
fuel cell
current collecting
heat
fuel
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006009863A
Other languages
Japanese (ja)
Other versions
JP2007194025A (en
Inventor
哲朗 藤本
昌彦 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006009863A priority Critical patent/JP4931423B2/en
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to US12/091,734 priority patent/US20090297917A1/en
Priority to CN2006800404013A priority patent/CN101300700B/en
Priority to CA002629878A priority patent/CA2629878A1/en
Priority to PCT/JP2006/321540 priority patent/WO2007049759A1/en
Priority to DE112006002956.8T priority patent/DE112006002956B4/en
Publication of JP2007194025A publication Critical patent/JP2007194025A/en
Application granted granted Critical
Publication of JP4931423B2 publication Critical patent/JP4931423B2/en
Priority to US13/846,635 priority patent/US8703350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、Crを含有する合金の表面を表面層により被覆してなる耐熱性導電部材、燃料電池用合金部材及び燃料電池用集電部並びにセルスタック、燃料電池に関する。   The present invention relates to a heat-resistant conductive member obtained by coating the surface of an alloy containing Cr with a surface layer, an alloy member for a fuel cell, a current collector for a fuel cell, a cell stack, and a fuel cell.

次世代エネルギーとして、近年、例えば、燃料電池セルのスタックを収納容器内に収容した燃料電池が種々提案されている。   In recent years, for example, various fuel cells in which a stack of fuel cells is accommodated in a storage container have been proposed as next-generation energy.

固体電解質形燃料電池は、複数の燃料電池セルを電気的に接続したセルスタックを収納容器内に収容して構成され、燃料電池セルの燃料極側に燃料ガス(水素)を流し、空気極側に空気(酸素)を流して600〜900℃の高温で発電される。燃料電池セル間を電気的に接続するためには、従来からフェルト状や板状の集電部材が用いられている。   A solid oxide fuel cell is configured by storing a cell stack in which a plurality of fuel cells are electrically connected in a storage container, and flowing a fuel gas (hydrogen) to the fuel electrode side of the fuel cell, and the air electrode side Power is generated at a high temperature of 600 to 900 ° C. by flowing air (oxygen) through the tube. In order to electrically connect the fuel cells, a felt-shaped or plate-shaped current collecting member has been conventionally used.

このような集電部材としては、導電率の高い合金が採用され、さらに高温下で使用されることから、耐熱合金が望ましく採用され、このような導電率の高い耐熱合金として、Crを10〜30質量%含有する合金が一般的に用いられる。   As such a current collecting member, an alloy having a high electrical conductivity is employed, and since it is used at a high temperature, a heat resistant alloy is desirably employed. As such a heat resistant alloy having a high electrical conductivity, Cr is 10 to 10. An alloy containing 30% by mass is generally used.

しかしながら、Crを含有する合金からなる集電部材を燃料電池セル間に介装し、複数の燃料電池セルを電気的に接続した場合、燃料電池を長期間発電させると、集電部材中のCrが集電部材の外部に拡散してしまい、拡散したCrは空気極と固体電解質との界面に達し、活性を劣化させてしまう。この現象はいわゆるCr被毒といわれ、燃料電池セルの発電能力低下をまねく結果につながることとなる。   However, when a current collecting member made of an alloy containing Cr is interposed between the fuel cells and a plurality of fuel cells are electrically connected, if the fuel cell generates power for a long time, Cr in the current collecting member Diffuses to the outside of the current collector, and the diffused Cr reaches the interface between the air electrode and the solid electrolyte and degrades the activity. This phenomenon is referred to as so-called Cr poisoning, and leads to a result that lowers the power generation capacity of the fuel cell.

このようなCr被毒を防止するため、従来、Crを含有する合金の表面をMn、Fe、Co、Niで被覆することが行われている(特許文献1参照)。
特表平11−501764号公報
In order to prevent such Cr poisoning, conventionally, the surface of an alloy containing Cr is coated with Mn, Fe, Co, and Ni (see Patent Document 1).
Japanese National Patent Publication No. 11-501764

しかしながら、上記特許文献1に記載されているように、Cr含有合金の表面をMn、Fe、Co、Niで被覆した場合、この表面層によりCr含有合金からのCrの拡散をある程度抑制することができるものの、未だCrの拡散量が多いという問題があった。   However, as described in Patent Document 1, when the surface of the Cr-containing alloy is coated with Mn, Fe, Co, Ni, this surface layer can suppress the diffusion of Cr from the Cr-containing alloy to some extent. Although it was possible, there was still a problem that the amount of Cr diffusion was still large.

本発明は、Cr拡散量が殆どない耐熱性導電部材、燃料電池用合金部材及び燃料電池用集電部材並びにセルスタック、燃料電池を提供することを目的とする。   An object of the present invention is to provide a heat-resistant conductive member, an alloy member for a fuel cell, a current collecting member for a fuel cell, a cell stack, and a fuel cell with little Cr diffusion.

本発明の耐熱性導電部材は、Crを10〜30質量%含有する耐熱性合金の表面を、Zn及びMnを含む酸化物からなる表面層により被覆してなることを特徴とする。
The heat-resistant conductive member of the present invention is characterized in that the surface of a heat-resistant alloy containing 10 to 30% by mass of Cr is covered with a surface layer made of an oxide containing Zn and Mn.

本発明の耐熱性導電部材は、Zn及びMnを含む酸化物からなる表面層の存在により、合金から表面層へのCrの拡散が抑制され、いわゆるCr被毒を抑制できる。その理由は明確ではないが、熱力学的な安定性により表面層にCrが固溶しにくいためと考えられる。   In the heat-resistant conductive member of the present invention, the diffusion of Cr from the alloy to the surface layer is suppressed by the presence of the surface layer made of an oxide containing Zn and Mn, and so-called Cr poisoning can be suppressed. The reason is not clear, but it is considered that Cr is difficult to dissolve in the surface layer due to thermodynamic stability.

本発明の耐熱性導電部材では、前記酸化物は熱力学的な安定性から、スピネル構造、コランダム構造、ウルツ鉱構造及び岩塩構造のうち少なくとも一種からなるもの、またはこれらと類似の構造を持つものが良い。例えばスピネル構造であれば組成式は(Zn,Mn)Mnなどで表され、コランダム構造であれば(Zn,Mn)で表され、ウルツ鉱構造や岩塩構造であればZnO−MnO固溶体となる。また、Cr拡散を抑制できる範囲内で、これら酸化物にFe、Ni、Co、Cuなどの金属が含有されても良く、このような本発明の耐熱性導電部材では、特に優れたCr拡散防止効果を得ることができる。 In the heat-resistant conductive member of the present invention, the oxide is composed of at least one of a spinel structure, a corundum structure, a wurtzite structure, and a rock salt structure, or a structure similar to these because of thermodynamic stability. Is good. For example, the composition formula is represented by (Zn, Mn) Mn 2 O 4 or the like for a spinel structure, (Zn, Mn) 2 O 3 for a corundum structure, or ZnO for a wurtzite structure or a rock salt structure. -MnO solid solution. In addition, these oxides may contain metals such as Fe, Ni, Co, and Cu within a range in which Cr diffusion can be suppressed. In such a heat-resistant conductive member of the present invention, particularly excellent Cr diffusion prevention An effect can be obtained.

尚、表面層は、(Zn,Mn)Mnからなるものであるが、主に(Zn,Mn)Mnからなるもので、ZnO−MnO固溶体が含まれる場合もある。 The surface layer is made of (Zn, Mn) Mn 2 O 4 , but is mainly made of (Zn, Mn) Mn 2 O 4 and may contain a ZnO—MnO solid solution.

本発明の燃料電池用合金部材は、上記耐熱性導電部材を燃料電池用として用いたことを特徴とする。このような燃料電池用合金部材では、合金としての導電性を有するとともに、表面層によりCr拡散を抑制し、いわゆるCr被毒を抑制できる。   The fuel cell alloy member of the present invention is characterized in that the heat-resistant conductive member is used for a fuel cell. Such an alloy member for a fuel cell has conductivity as an alloy, and suppresses Cr diffusion by the surface layer, thereby suppressing so-called Cr poisoning.

また、本発明の燃料電池用集電部材は、燃料電池セルからの集電を行う集電部材が、上記燃料電池用合金部材からなることを特徴とする。このような燃料電池用集電部材では、上記したように、合金としての良好な導電性を有するとともに、Crを含有する合金からなる集電部材からのCrの拡散が抑制され、Crが燃料電池セルの空気極と固体電解質との界面に達し、活性を劣化させることを防止できる。   Moreover, the current collecting member for a fuel cell according to the present invention is characterized in that the current collecting member for collecting current from the fuel cell comprises the above-mentioned alloy member for fuel cell. In such a current collector for a fuel cell, as described above, it has good conductivity as an alloy, and the diffusion of Cr from the current collector made of an alloy containing Cr is suppressed, so that Cr is a fuel cell. It is possible to prevent the activity from deteriorating by reaching the interface between the air electrode of the cell and the solid electrolyte.

さらに、本発明のセルスタックは、複数の燃料電池セル間に、上記燃料電池用集電部材を介装して、電気的に接続してなることを特徴とする。前記燃料電池セルと前記燃料電池用集電部材とは、導電性セラミック材料により接合され、電気的に接続されていることを特徴とする。このようなセルスタックを収納容器内に収納して燃料電池が構成される。   Furthermore, the cell stack of the present invention is characterized in that the fuel cell current collector is interposed between a plurality of fuel battery cells and electrically connected. The fuel cell and the fuel cell current collecting member are joined and electrically connected by a conductive ceramic material. Such a cell stack is stored in a storage container to constitute a fuel cell.

本発明のセルスタック及び燃料電池により、電圧低下の少ない長期信頼性に優れた燃料電池を得ることができる。   According to the cell stack and the fuel cell of the present invention, a fuel cell with a low voltage drop and excellent long-term reliability can be obtained.

本発明によれば、ZnとMnを含有する酸化物層により、Crを10〜30質量%含有する耐熱性合金からのCrの拡散を著しく抑制でき、空気極と固体電解質との界面に達する、いわゆるCr被毒を防止でき、燃料電池の経時的な発電能力低下を抑えることができる。
According to the present invention, the oxide layer containing Zn and Mn can significantly suppress the diffusion of Cr from the heat-resistant alloy containing 10 to 30% by mass of Cr, and reaches the interface between the air electrode and the solid electrolyte. So-called Cr poisoning can be prevented, and a decrease in power generation capacity over time of the fuel cell can be suppressed.

図1は本発明の燃料電池用集電部材20を示す斜視図であり、図2及び図3は図1に示す集電部材20の表面層の被覆状態を示す説明図であって、図2は図1に示すA−A線断面図、図3は図1に示すB−B線断面図である。   FIG. 1 is a perspective view showing a current collecting member 20 for a fuel cell according to the present invention, and FIGS. 2 and 3 are explanatory views showing a covering state of a surface layer of the current collecting member 20 shown in FIG. Is a cross-sectional view taken along line AA shown in FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB shown in FIG.

本発明の燃料電池用集電部材20は、図1に示すように、例えば耐熱性合金の板を櫛刃状に加工し、隣り合う刃を交互に反対側に折り曲げて構成されている。この集電部材20は、Crを含有する合金からなる集電本体201の表面に、Zn及びMnを含む材料からなる表面層202が設けられて構成されており、表面層202は外部に露出しており、集電部材20の最外層とされている。集電本体201の全表面はZn及びMnを含む酸化物からなる表面層202により被覆されている。尚、本発明の燃料電池用集電部材は、図1に示すような形状のものに限定されるものではなく、例えば、円筒状、メッシュ状のものであっても良い。
As shown in FIG. 1, the current collecting member 20 for a fuel cell according to the present invention is configured, for example, by processing a heat-resistant alloy plate into a comb blade shape and alternately bending adjacent blades to the opposite side. The current collecting member 20 is configured such that a surface layer 202 made of a material containing Zn and Mn is provided on the surface of a current collecting body 201 made of an alloy containing Cr, and the surface layer 202 is exposed to the outside. And is the outermost layer of the current collecting member 20. The entire surface of the current collector body 201 is covered with a surface layer 202 made of an oxide containing Zn and Mn. The current collecting member for a fuel cell of the present invention is not limited to the shape shown in FIG. 1, and may be, for example, a cylindrical shape or a mesh shape.

集電本体201としては、導電性及び耐熱性の高いCrを10〜30質量%含有する合金、例えばFe−Cr系合金、Ni−Cr系合金等が採用されている。また、表面層202は、ZnとMnを含む金属酸化物、例えば、(Zn,Mn)Mnであるが、ZnとMnを含む金属酸化物はCrを固溶しにくいために、Crの拡散を抑制する効果を有している。 As the current collector body 201, an alloy containing 10 to 30% by mass of Cr having high conductivity and heat resistance, such as an Fe—Cr alloy, a Ni—Cr alloy, or the like is employed. The surface layer 202 is a metal oxide containing Zn and Mn, for example, (Zn, Mn) Mn 2 O 4 , but the metal oxide containing Zn and Mn hardly dissolves Cr. Has the effect of suppressing the diffusion of.

集電本体201のCrはガス化し、空隙から拡散してしまうので、表面層202は、集電本体201の少なくとも表面全面を覆うように、緻密に設けられる必要がある。このとき、表面層202は、ディッピング(表面層用ペースト中に集電本体201を浸漬する浸漬塗布法)またはメッキや蒸着などの方法で被覆されるが、コスト的にはディッピングが望ましい。   Since Cr in the current collector body 201 is gasified and diffuses from the gap, the surface layer 202 needs to be densely provided so as to cover at least the entire surface of the current collector body 201. At this time, the surface layer 202 is coated by dipping (a dip coating method in which the current collector body 201 is immersed in the surface layer paste) or plating or vapor deposition, but dipping is desirable in terms of cost.

表面層202の厚みは集電本体の耐用時間にもよるが、ディッピングの場合、5〜100μmが好ましく、より好ましくは10〜50μmである。厚みを5μm以上とすることにより、エアーの巻き込みなどによる空隙発生を防止でき、50μm以下とすることにより、集電本体201との熱膨張差による内部応力を最小限に抑制することができ、表面層202作製も容易とすることができ、さらに、導電性低下も抑制できる。   The thickness of the surface layer 202 depends on the lifetime of the current collector body, but in the case of dipping, it is preferably 5 to 100 μm, more preferably 10 to 50 μm. By setting the thickness to 5 μm or more, generation of voids due to air entrainment can be prevented, and by setting the thickness to 50 μm or less, internal stress due to a difference in thermal expansion from the current collector body 201 can be suppressed to the minimum. The formation of the layer 202 can be facilitated, and the decrease in conductivity can be suppressed.

尚、図2、図3では、Crを含有する集電本体201の表面が、Zn及びMnを含む酸化物からなる表面層202により被覆されており、表面層202が露出しているが、その表面層202の一部の表面に、取扱上の観点、保護の観点等から酸化物からなる層を形成することもできる。   2 and 3, the surface of the current collector body 201 containing Cr is covered with a surface layer 202 made of an oxide containing Zn and Mn, and the surface layer 202 is exposed. A layer made of an oxide can be formed on a part of the surface layer 202 from the viewpoints of handling, protection, and the like.

ZnO、MnO粉末を用いて、予め主に(Zn,Mn)Mnを含む粉末を作製し、この粉末をディッピング用の表面層用ペーストに用いることができる。また、主に(Zn,Mn)Mnからなる粉末を形成するように、所定の比率に混合したZnO、MnO粉末を、ディッピング用の表面層用ペーストに用いることができる。 A powder containing mainly (Zn, Mn) Mn 2 O 4 is prepared in advance using ZnO and MnO powder, and this powder can be used as a surface layer paste for dipping. Further, ZnO and MnO powder mixed in a predetermined ratio so as to form a powder mainly composed of (Zn, Mn) Mn 2 O 4 can be used as a surface layer paste for dipping.

以上のように構成された燃料電池用集電部材では、下記のような作用効果を発揮できる。即ち、固体電解質形燃料電池では発電させるために600〜1000℃程度の高温とする必要があり、集電部材20も600〜1000℃の高温下で使用されることとなるが、このとき集電本体201からはCrがCrガスとなって拡散しようとする。しかしながら、集電本体201の表面にZnとMnを含む材料からなる表面層202が設けられた本発明の場合には、この表面層202によりCrの外部への拡散が抑制できる。これにより、Crガスが空気極と固体電解質との界面にまで達する、いわゆるCr被毒を防止できる。   The fuel cell current collector configured as described above can exhibit the following effects. That is, in order to generate electric power in the solid oxide fuel cell, it is necessary to set the temperature to about 600 to 1000 ° C., and the current collecting member 20 is also used at a high temperature of 600 to 1000 ° C. From the main body 201, Cr is going to diffuse as Cr gas. However, in the case of the present invention in which the surface layer 202 made of a material containing Zn and Mn is provided on the surface of the current collector body 201, the diffusion of Cr to the outside can be suppressed by the surface layer 202. Thereby, the so-called Cr poisoning in which the Cr gas reaches the interface between the air electrode and the solid electrolyte can be prevented.

尚、上記形態では、櫛歯状の集電部材20について説明したが、本発明では、集電部材の形状は限定されるものではなく、種種の形状を採用することができる。   In the above embodiment, the comb-shaped current collecting member 20 has been described. However, in the present invention, the shape of the current collecting member is not limited, and various shapes can be adopted.

(セルスタック、燃料電池)
本発明の集電部材20を用いて作製したセルスタック、燃料電池について説明する。図4に燃料電池セルを、図5に燃料電池セルを集電部材により電気的に接続したセルスタックを示す。
(Cell stack, fuel cell)
A cell stack and a fuel cell produced using the current collecting member 20 of the present invention will be described. FIG. 4 shows a fuel cell, and FIG. 5 shows a cell stack in which the fuel cell is electrically connected by a current collecting member.

本発明の燃料電池用集電部材20は、図5に示すように、図4の燃料電池セル間に配置され、複数の燃料電池セルを電気的に接続して本発明のセルスタックが構成されている。先ず、燃料電池セルについて説明する。   As shown in FIG. 5, the current collecting member 20 for a fuel cell of the present invention is disposed between the fuel cells of FIG. 4, and a plurality of fuel cells are electrically connected to form a cell stack of the present invention. ing. First, the fuel cell will be described.

燃料電池セル1は、図4に示すように、内部に幅方向に適当な間隔で設けられ、複数の燃料ガス通路16が軸長方向に延設された平板状の支持基板10を備え、この支持基板10上に各種の部材が設けられた構造を有している。   As shown in FIG. 4, the fuel battery cell 1 includes a flat plate-like support substrate 10 provided therein at appropriate intervals in the width direction and having a plurality of fuel gas passages 16 extending in the axial direction. It has a structure in which various members are provided on the support substrate 10.

支持基板10は多孔質、導電性であり、横断面が平坦部と平坦部の両端の弧状部とからなっている。平坦部の対向する一対の面の一方とその両側の弧状部を覆うように多孔質の燃料極層2が設けられており、さらに、この燃料極層2を覆うように、緻密質な固体電解質層3が積層されており、この固体電解質層3の上には、燃料極層2に対応するように、多孔質な導電性セラミックからなる空気極層4が積層されている。また、燃料極層2及び固体電解質層3が積層されていない平坦部の他方の面には、緻密なインターコネクタ5が形成されている。このインターコネクタ5の表面には、空気極材料からなる空気極材料層14が形成されている。尚、この空気極材料層14については必ずしも形成する必要はない。図4から明らかな通り、燃料極層2及び固体電解質層3は、インターコネクタ5の両サイドにまで延びており、支持基板10の表面が外部に露出しないように構成されている。   The support substrate 10 is porous and conductive, and the cross section is composed of a flat portion and arc-shaped portions at both ends of the flat portion. A porous fuel electrode layer 2 is provided so as to cover one of a pair of opposed surfaces of the flat portion and arc-shaped portions on both sides thereof, and further, a dense solid electrolyte so as to cover the fuel electrode layer 2 A layer 3 is laminated, and an air electrode layer 4 made of a porous conductive ceramic is laminated on the solid electrolyte layer 3 so as to correspond to the fuel electrode layer 2. A dense interconnector 5 is formed on the other surface of the flat portion where the fuel electrode layer 2 and the solid electrolyte layer 3 are not laminated. An air electrode material layer 14 made of an air electrode material is formed on the surface of the interconnector 5. The air electrode material layer 14 is not necessarily formed. As is clear from FIG. 4, the fuel electrode layer 2 and the solid electrolyte layer 3 extend to both sides of the interconnector 5 and are configured so that the surface of the support substrate 10 is not exposed to the outside.

このような構造の燃料電池セル1では、燃料極層2の空気極層4と対面している部分が燃料極として作動して発電する。即ち、空気極層4の外側に空気等の酸素含有ガスを流し、且つ支持基板10内のガス通路16に燃料ガス(水素)を流し、所定の作動温度まで加熱することにより、空気極層4で下記式(1)の電極反応を生じ、また燃料極層2の燃料極となる部分では例えば下記式(2)の電極反応を生じることによって発電する。   In the fuel cell 1 having such a structure, the portion of the fuel electrode layer 2 facing the air electrode layer 4 operates as a fuel electrode to generate electric power. That is, an oxygen-containing gas such as air is allowed to flow outside the air electrode layer 4, and a fuel gas (hydrogen) is allowed to flow through the gas passage 16 in the support substrate 10, and is heated to a predetermined operating temperature. Then, an electrode reaction of the following formula (1) is generated, and power is generated by generating an electrode reaction of the following formula (2), for example, in the portion that becomes the fuel electrode of the fuel electrode layer 2.

空気極: 1/2O+2e → O2− (固体電解質) …(1)
燃料極: O2− (固体電解質)+ H → HO+2e…(2)
かかる発電によって生成した電流は、支持基板10に取り付けられているインターコネクタ5を介して集電される。
Air electrode: 1 / 2O 2 + 2e → O 2− (solid electrolyte) (1)
Fuel electrode: O 2− (solid electrolyte) + H 2 → H 2 O + 2e (2)
The current generated by the power generation is collected through the interconnector 5 attached to the support substrate 10.

このような複数の燃料電池セルの間には、図5に示すように、本発明の集電部材20が介装され、電気的に接続され、これによりセルスタックが構成されている。即ち、一方の燃料電池セル1の空気極層4に集電部材20が多孔質の導電性セラミックからなる導電性接合材25により接合され、また集電部材20は、隣設する他方の燃料電池セル1の空気極材料層14に導電性接合材25により接合され、これにより、複数の燃料電池セル1が電気的に直列に接続され、セルスタックが構成されている。導電性接合材25としては、通常、空気極材料が用いられ、例えばLa−Co系等の導電性ペロブスカイト型複合酸化物や、Ag、Ag−Pd等が用いられる。   As shown in FIG. 5, the current collecting member 20 of the present invention is interposed between the plurality of fuel cells as described above, and is electrically connected to form a cell stack. That is, the current collecting member 20 is joined to the air electrode layer 4 of one fuel cell 1 by the conductive joining material 25 made of porous conductive ceramic, and the current collecting member 20 is connected to the other fuel cell adjacent thereto. It joins to the air electrode material layer 14 of the cell 1 with the electroconductive joining material 25, Thereby, the some fuel cell 1 is electrically connected in series, and the cell stack is comprised. As the conductive bonding material 25, an air electrode material is usually used, and for example, La-Co-based conductive perovskite complex oxide, Ag, Ag-Pd, or the like is used.

このようなセルスタックは、図示しないが燃料ガスが供給されるマニホールドに配置され、マニホールド内に供給された燃料ガスが燃料電池セル1のガス通路16内を上方に通過していくことになる。   Although not shown, such a cell stack is arranged in a manifold to which fuel gas is supplied, and the fuel gas supplied into the manifold passes through the gas passage 16 of the fuel cell 1 upward.

燃料電池は、上記したセルスタックを収納容器内に収容し、この収納容器に、都市ガス等の燃料ガスを供給する燃料ガス導入管、空気を供給するための空気導入管を配設することにより構成される。   In the fuel cell, the cell stack described above is accommodated in a storage container, and a fuel gas introduction pipe for supplying fuel gas such as city gas and an air introduction pipe for supplying air are disposed in the storage container. Composed.

尚、上記形態では、本発明の燃料電池用合金部材を集電部材20として用いた場合について説明したが、収納容器内に収容される他の耐熱性合金からなる部品、例えば、上記したマニホールド用として、また改質器用として用いることができる。   In the above embodiment, the case where the fuel cell alloy member of the present invention is used as the current collecting member 20 has been described. However, a component made of another heat-resistant alloy housed in the housing container, for example, for the above-described manifold And can be used for a reformer.

また、本発明の耐熱性導電部材を燃料電池用として用いた場合について説明したが、例えば、酸素センサのリード部等の高温雰囲気で導電性を有するもの、具体的には、従来高温雰囲気で導電性を示すものとして使用されていたPtの代用として使用することができる。因みに、酸素センサ等のリード部では、高温で導電性を確保するため、Pt等の貴金属を用いており、高価であったが、本発明の耐熱性導電部材を用いることにより、安価とすることができる。   Moreover, although the case where the heat-resistant conductive member of the present invention is used for a fuel cell has been described, for example, those having conductivity in a high temperature atmosphere such as a lead portion of an oxygen sensor, specifically, conductive in a conventional high temperature atmosphere. It can be used as a substitute for Pt, which has been used to show sex. By the way, lead parts such as oxygen sensors use precious metals such as Pt in order to ensure conductivity at high temperatures, and are expensive. However, by using the heat-resistant conductive member of the present invention, the lead parts should be made inexpensive. Can do.

まず、平均粒径0.6μmのZnMn粉末、平均粒径0.4μmのFe粉末、平均粒径0.5μmのCo粉末、平均粒径0.5μmのNiO粉末と、アクリル系バインダーと、希釈材としてのミネラルスピリッツとを重量比で100:5:72になるように調合し、表面層のディッピング液を作製した。 First, ZnMn 2 O 4 powder with an average particle size of 0.6 μm, Fe 2 O 3 powder with an average particle size of 0.4 μm, Co 3 O 4 powder with an average particle size of 0.5 μm, NiO powder with an average particle size of 0.5 μm Then, an acrylic binder and a mineral spirit as a diluent were blended in a weight ratio of 100: 5: 72 to prepare a surface layer dipping solution.

この後、厚さ0.4mmで幅20mm、長さ120mmのFe−Cr系耐熱性合金板(Fe75質量%含有、残部Cr、Mn、Ni含有)からなる集電本体を、ディッピング液との濡れ性を高めるべく、大気中1050℃で熱処理し、この後、ディッピング液中に浸漬し、集電本体全面に塗布し、乾燥させた。この後、130℃で1時間、500℃で2時間脱バインダー処理した後、1050℃で2時間、炉内で焼付を行い、厚みが15μmの表面層を形成した。   Thereafter, a current collector body made of a Fe—Cr heat-resistant alloy plate (containing 75% by mass of Fe, containing the remaining Cr, Mn, and Ni) having a thickness of 0.4 mm, a width of 20 mm, and a length of 120 mm is wetted with the dipping solution. In order to improve the properties, the film was heat-treated at 1050 ° C. in the atmosphere, then immersed in a dipping solution, applied to the entire surface of the current collector body, and dried. Thereafter, the binder was removed at 130 ° C. for 1 hour and at 500 ° C. for 2 hours, and then baked at 1050 ° C. for 2 hours to form a surface layer having a thickness of 15 μm.

そして、平均粒径0.5μmのLa0.6Sr0.4Co0.2Fe0.8(LSCF)粉末と、アクリル系バインダーと、グリコール系溶剤を添加して得られたスラリー中に、表面層が形成された集電部材を浸漬し、表面層表面に、厚さ15μmのLSCF膜を形成し、テストピース(試料)を作製した。 In a slurry obtained by adding La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 (LSCF) powder having an average particle size of 0.5 μm, an acrylic binder, and a glycol solvent. Then, the current collecting member on which the surface layer was formed was dipped, and a LSCF film having a thickness of 15 μm was formed on the surface layer surface to prepare a test piece (sample).

このテストピースを、作製後、及び850℃で20%水蒸気を含む大気雰囲気に100時間晒した後、LSCF膜の断面をEPMA(波長分散型X線マイクロアナライザー)により確認した。EPMAの分析は日本電子製のJXA−8100を用い、測定条件として、加電圧15kV、プローブ電流2.0×10−7A、分析エリア50μm×50μmとした。また、分光結晶をLiFとした。表面層とLSCF層との界面からLSCF層側に10μmのところで、Crの含有量に比例するカウントを測定し、その結果を表1に記載する。また、Feからなる表面層でのCrのカウントを基準とし、1.0とし、それぞれの表面層のCrのカウントとの比を求め、表1中の括弧内に記載した。
This test piece was manufactured and exposed to an air atmosphere containing 20% water vapor at 850 ° C. for 100 hours, and then the cross section of the LSCF film was confirmed by EPMA (wavelength dispersive X-ray microanalyzer). EPMA analysis using JXA-8100 manufactured by JEOL, as the measurement condition, accelerating voltage 15kV, probe current 2.0 × 10 -7 A, was analyzed area 50 [mu] m × 50 [mu] m. The spectroscopic crystal was LiF. A count proportional to the Cr content was measured at 10 μm from the interface between the surface layer and the LSCF layer toward the LSCF layer, and the results are shown in Table 1. Further, based on the count of Cr in the surface layer made of Fe 2 O 3 , the ratio was set to 1.0, and the ratio with the count of Cr in each surface layer was determined and described in parentheses in Table 1.

尚、LSCF膜は、Crと容易に反応して反応生成物を形成するため、表面層から外部にCrが拡散した場合には、必ずLSCF膜でCrの反応生成物を形成する。従って、LSCF膜の断面中におけるCrのカウントが小さいほど、表面層から外部へのCr拡散量が少ないことになる。   The LSCF film easily reacts with Cr to form a reaction product. Therefore, when Cr diffuses from the surface layer to the outside, the LSCF film always forms a reaction product of Cr. Therefore, the smaller the Cr count in the cross section of the LSCF film, the smaller the amount of Cr diffusion from the surface layer to the outside.

また、形成された表面層についてTEM(透過電子顕微鏡)にて分析することにより、それぞれ用いたZnMn粉末、Fe粉末、Co粉末、NiO粉末がそのまま結晶として存在していることを確認した。また、FIB(収束イオンビーム加工装置)を用いて切り出した表面層をTEM(透過電子顕微鏡)にて3万倍に拡大したところ、表面層にはボイドがなく、緻密であることを確認した。尚、TEMの分析には日本電子製のJEM2010Fを用い、加速電圧200kVで観察した。

Figure 0004931423
In addition, by analyzing the formed surface layer with a TEM (transmission electron microscope), the ZnMn 2 O 4 powder, Fe 2 O 3 powder, Co 3 O 4 powder, and NiO powder used respectively existed as crystals. Confirmed that. Moreover, when the surface layer cut out using FIB (focused ion beam processing apparatus) was expanded 30,000 times with TEM (transmission electron microscope), it was confirmed that the surface layer had no voids and was dense. For the analysis of TEM, JEM2010F manufactured by JEOL Ltd. was used and observed at an acceleration voltage of 200 kV.
Figure 0004931423

この表1からわかるように、ZnMn粉末を表面層に用いたもの(試料No.2)は作製後、100時間後(850℃、20%水蒸気を含む大気下で100時間曝した後)ともカウント比が0.05と小さく、本発明の燃料電池用合金部材ではCr拡散が非常に小さいことが判る。 As can be seen from Table 1, the sample using ZnMn 2 O 4 powder (sample No. 2) was 100 hours after production (after exposure to 850 ° C. in an atmosphere containing 20% water vapor for 100 hours) The count ratio is as small as 0.05, and it can be seen that Cr diffusion is very small in the fuel cell alloy member of the present invention.

本発明の表面層被覆された集電部材の一例を示す斜視図である。It is a perspective view which shows an example of the current collection member coat | covered with the surface layer of this invention. 図1に示すA−A線に沿った断面図である。It is sectional drawing along the AA line shown in FIG. 図1に示すB−B線に沿った断面図である。It is sectional drawing along the BB line shown in FIG. 燃料電池セルの断面斜視図である。It is a cross-sectional perspective view of a fuel battery cell. 本発明の燃料電池セルスタックの説明図である。It is explanatory drawing of the fuel cell stack of this invention.

符号の説明Explanation of symbols

20・・・集電部材
201・・・集電本体
202・・・表面層
20 ... Current collecting member 201 ... Current collecting body 202 ... Surface layer

Claims (7)

Crを10〜30質量%含有する耐熱性合金の表面を、Zn及びMnを含む酸化物からなる表面層により被覆してなることを特徴とする耐熱性導電部材。 A heat-resistant conductive member obtained by coating the surface of a heat-resistant alloy containing 10 to 30% by mass of Cr with a surface layer made of an oxide containing Zn and Mn. 前記表面層が、(Zn,Mn)Mnからなることを特徴とする請求項1記載の耐熱性導電部材。 The heat-resistant conductive member according to claim 1, wherein the surface layer is made of (Zn, Mn) Mn 2 O 4 . 請求項1又は2記載の耐熱性導電部材を燃料電池用として用いたことを特徴とする燃料電池用合金部材。   An alloy member for a fuel cell, wherein the heat-resistant conductive member according to claim 1 or 2 is used for a fuel cell. 燃料電池セルからの集電を行う集電部材が、請求項3記載の燃料電池用合金部材からなることを特徴とする燃料電池用集電部材。   A current collecting member for a fuel cell, wherein the current collecting member for collecting current from the fuel cell comprises the alloy member for a fuel cell according to claim 3. 複数の燃料電池セル間に、請求項4記載の燃料電池用集電部材を介装して、電気的に接続してなることを特徴とするセルスタック。   A cell stack, wherein the fuel cell current collector is interposed between a plurality of fuel cells and electrically connected. 前記燃料電池セルと前記燃料電池用集電部材とが、導電性セラミック材料により接合され、電気的に接続されていることを特徴とする請求項5記載のセルスタック。   6. The cell stack according to claim 5, wherein the fuel cell and the current collecting member for the fuel cell are joined and electrically connected by a conductive ceramic material. 請求項5又は6記載のセルスタックを収納容器内に収納してなることを特徴とする燃料電池。   7. A fuel cell comprising the cell stack according to claim 5 or 6 in a storage container.
JP2006009863A 2005-10-27 2006-01-18 Heat-resistant conductive member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, fuel cell Active JP4931423B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006009863A JP4931423B2 (en) 2006-01-18 2006-01-18 Heat-resistant conductive member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, fuel cell
CN2006800404013A CN101300700B (en) 2005-10-27 2006-10-27 Heat resistant alloy member for fuel cell, power collecting member for fuel cell, cell stack and fuel cell
CA002629878A CA2629878A1 (en) 2005-10-27 2006-10-27 Heat resistant alloy member, alloy member for fuel cell, power collecting member for fuel cell, cell stack and fuel cell
PCT/JP2006/321540 WO2007049759A1 (en) 2005-10-27 2006-10-27 Heat resistant alloy member, alloy member for fuel cell, power collecting member for fuel cell, cell stack and fuel cell
US12/091,734 US20090297917A1 (en) 2005-10-27 2006-10-27 Heat-resistant alloy member, alloy member for fuel cell, collector member for fuel cell, cell stack, and fuel cell apparatus
DE112006002956.8T DE112006002956B4 (en) 2005-10-27 2006-10-27 Heat-resistant alloy element, collector element for a fuel cell, cell stack and fuel cell device
US13/846,635 US8703350B2 (en) 2005-10-27 2013-03-18 Heat-resistant alloy member, alloy member for fuel cell, collector member for fuel cell, cell stack, and fuel cell apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009863A JP4931423B2 (en) 2006-01-18 2006-01-18 Heat-resistant conductive member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, fuel cell

Publications (2)

Publication Number Publication Date
JP2007194025A JP2007194025A (en) 2007-08-02
JP4931423B2 true JP4931423B2 (en) 2012-05-16

Family

ID=38449567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009863A Active JP4931423B2 (en) 2005-10-27 2006-01-18 Heat-resistant conductive member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, fuel cell

Country Status (1)

Country Link
JP (1) JP4931423B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260937B2 (en) * 2007-10-29 2013-08-14 京セラ株式会社 Fuel cell stack and fuel cell
JP6268209B2 (en) 2016-02-26 2018-01-24 日本特殊陶業株式会社 Fuel cell power generation unit and fuel cell stack
JP6906310B2 (en) * 2016-03-31 2021-07-21 大阪瓦斯株式会社 Manufacturing method of solid oxide fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08185870A (en) * 1994-12-27 1996-07-16 Tonen Corp Separator for solid electrolyte fuel cell
JP4310723B2 (en) * 2001-09-27 2009-08-12 日立金属株式会社 Steel for solid oxide fuel cell separator
KR100730870B1 (en) * 2003-06-10 2007-06-20 수미도모 메탈 인더스트리즈, 리미티드 Steel for hydrogen gas environment, structural hardware member and method for producing same

Also Published As

Publication number Publication date
JP2007194025A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP4818069B2 (en) Heat-resistant conductive member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, fuel cell
JP5377519B2 (en) Heat-resistant alloy, alloy member for fuel cell, fuel cell stack device, fuel cell module and fuel cell device
JP5607903B2 (en) Barrier coating for interconnect, related apparatus and forming method
WO2007049759A1 (en) Heat resistant alloy member, alloy member for fuel cell, power collecting member for fuel cell, cell stack and fuel cell
JP5839756B1 (en) Fuel cell stack structure
JP5080749B2 (en) Current collecting member for fuel cell, cell stack, and fuel cell
JP5230812B2 (en) Composite, current collecting member, gas tank and fuel cell device
JP6483837B2 (en) Conductive member, cell stack, module, and module housing device
WO2020218431A1 (en) Cell, cell stack device, module, and module housing device
JP2010033747A (en) Solid-oxide fuel cell stack and method of manufacturing the same
JP5013750B2 (en) Cell stack and fuel cell
JPWO2013077445A1 (en) Composite, current collecting member, fuel cell device, and fuel cell device
JP4932307B2 (en) Heat-resistant alloy member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, and fuel cell
JP4931423B2 (en) Heat-resistant conductive member, alloy member for fuel cell, current collecting member for fuel cell, cell stack, fuel cell
JP2006092837A (en) Current collecting member for fuel cell, its manufacturing method, fuel cell stack using it and the fuel cell
JP6160386B2 (en) Fuel cell
JP4352447B2 (en) Solid oxide fuel cell separator with excellent conductivity
JP4849774B2 (en) Solid electrolyte fuel cell and solid electrolyte fuel cell
JP4136062B2 (en) Separator material
JP2015122303A (en) Metal member for solid oxide type fuel battery
JP2008059797A (en) Heat-resistant alloy member, current collecting member for fuel cell, fuel cell cell stack, and fuel cell
JP2019087370A (en) Collector
Yang et al. Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells
JP2019121567A (en) Collector
JP2019175567A (en) Collector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Ref document number: 4931423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3