JP2015011958A - Protective film formation method - Google Patents

Protective film formation method Download PDF

Info

Publication number
JP2015011958A
JP2015011958A JP2013139059A JP2013139059A JP2015011958A JP 2015011958 A JP2015011958 A JP 2015011958A JP 2013139059 A JP2013139059 A JP 2013139059A JP 2013139059 A JP2013139059 A JP 2013139059A JP 2015011958 A JP2015011958 A JP 2015011958A
Authority
JP
Japan
Prior art keywords
film
protective film
coating
resin
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013139059A
Other languages
Japanese (ja)
Other versions
JP6173074B2 (en
Inventor
井上 修一
Shuichi Inoue
修一 井上
禎 齋藤
Tei Saito
禎 齋藤
英正 野中
Hidemasa Nonaka
英正 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2013139059A priority Critical patent/JP6173074B2/en
Publication of JP2015011958A publication Critical patent/JP2015011958A/en
Application granted granted Critical
Publication of JP6173074B2 publication Critical patent/JP6173074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique which allows for formation of a protective film that is less likely to cause cracking or peeling on the surface of an alloy containing Cr and used in a SOFC.SOLUTION: In a protective film formation method for forming a protective film on the surface of a base material, i.e., an alloy or an oxide containing Cr and used in a SOFC, by electrodeposition coating, an electrolytic polishing step is performed, and followed by a coating formation step, a calcination step of calcining the coating by charging a base material, having the coating on the surface, into a furnace held at a weight stable temperature (endothermic peak) or more where the endothermic amount incident to weight reduction when the resin heats the coating is maximized, and a sintering step of forming a protective film composed of a metal oxide by sintering the coating obtained by the calcination step.

Description

本発明は、固体酸化物形燃料電池(以下SOFCと称する)用セルに用いられるCrを含有する合金または酸化物からなる基材表面に、保護膜を形成する保護膜形成方法に関する。   The present invention relates to a protective film forming method for forming a protective film on the surface of a base material made of an alloy or oxide containing Cr used for a solid oxide fuel cell (hereinafter referred to as SOFC) cell.

かかるSOFC用セルは、電解質膜の一方面側に空気極を接合するとともに、同電解質膜の他方面側に燃料極を接合してなる単セルを、空気極または燃料極に対して電子の授受を行う一対の電子電導性の基材により挟み込んだ構造を有する。
そして、このようなSOFC用セルでは、たとえば700〜900℃程度の作動温度で作動し、空気極側から燃料極側への電解質膜を介した酸化物イオンの移動に伴って、一対の電極の間に起電力が発生し、その起電力を外部に取り出し利用することができる。セル間接部材にはインターコネクタやインターコネクタを介してセル間を電気的に接続する部材が該当する。
Such a SOFC cell has a single cell in which an air electrode is joined to one surface side of an electrolyte membrane and a fuel electrode is joined to the other surface side of the electrolyte membrane, and electrons are transferred to the air electrode or the fuel electrode. The structure is sandwiched between a pair of electronically conductive base materials that perform the above.
Such a SOFC cell operates at an operating temperature of, for example, about 700 to 900 ° C., and the oxide ions move from the air electrode side to the fuel electrode side through the electrolyte membrane. An electromotive force is generated in the meantime, and the electromotive force can be taken out and used. The cell indirect member corresponds to an interconnector or a member that electrically connects cells via the interconnector.

セル接続部材は燃料と空気の隔壁となる部材である。近年の開発の進展に伴い、SOFCの作動温度が下がってきている。従来のSOFCの作動温度は1000℃程度であり、耐熱性の観点からセル接続部材にはランタンクロマイトに代表される金属酸化物が使用されていたが、最近は作動温度が700℃〜800℃まで下がっており、合金が使用できるようになってきた。合金使用により、コストダウン、ロバスト性の向上が期待できる。   The cell connection member is a member that serves as a partition wall between fuel and air. With the progress of development in recent years, the operating temperature of SOFC is decreasing. The operating temperature of the conventional SOFC is about 1000 ° C., and metal oxides typified by lanthanum chromite have been used for the cell connection member from the viewpoint of heat resistance, but recently the operating temperature has increased from 700 ° C. to 800 ° C. It has been lowered and alloys can be used. The use of alloys can be expected to reduce costs and improve robustness.

前記合金としては、接合される金属酸化物の熱膨張率との整合性から、フェライト系ステンレス鋼が用いられることが多いが、耐熱性により優れたオーステナイト系ステンレス鋼であるFe−Cr−Ni合金や、ニッケル基合金であるNi−Cr合金などが用いられることもある。また、合金ではなく、(La,Ca)CrO3(カルシウムドープランタンクロマイト)に代表される金属酸化物が用いられることもある。 As the alloy, ferritic stainless steel is often used because of its consistency with the thermal expansion coefficient of the metal oxide to be joined, but an Fe-Cr-Ni alloy which is an austenitic stainless steel superior in heat resistance. In addition, a Ni-Cr alloy that is a nickel-based alloy may be used. In addition, instead of an alloy, a metal oxide typified by (La, Ca) CrO 3 (calcium dopeplank chromite) may be used.

これらの合金は、ほぼ例外なくCrを含んでおり、作動環境である高温大気雰囲気で表面にCr23やMnCr24の酸化被膜を形成する。この酸化被膜は経時的に膜厚が増大するとともに、作動環境である高温大気雰囲気で6価クロムの化合物として蒸発し、空気極を被毒させて劣化を引き起こすことが知られている。(Cr被毒と呼ばれる)また、(La,Ca)CrO3(カルシウムドープランタンクロマイト)を用いた場合でも合金を用いた場合よりも少ないが、Cr被毒が生じる場合がある。そこで、合金等の表面に耐熱性に優れた金属酸化物材料を被覆して保護膜を形成することにより劣化を抑制する試みがなされている。 These alloys almost always contain Cr, and form an oxide film of Cr 2 O 3 or MnCr 2 O 4 on the surface in a high-temperature air atmosphere that is an operating environment. This oxide film is known to increase in thickness over time, evaporate as a hexavalent chromium compound in a high-temperature atmospheric atmosphere as an operating environment, and poison the air electrode to cause deterioration. Even when (La, Ca) CrO 3 (calcium dope lanthanum chromite) is used, there is a case where Cr poisoning occurs although it is less than when an alloy is used. Therefore, attempts have been made to suppress deterioration by coating a surface of an alloy or the like with a metal oxide material having excellent heat resistance to form a protective film.

コーティング材料の候補としては、LaMO3(たとえばM=Mn,Fe,Co)中のLaの一部をアルカリ土類金属AE(AE=Sr,Ca)で置換した(La,AE)MO3のペロブスカイト型酸化物や、AB24で示されるスピネル型酸化物、具体的にはNiCo24,(ZnxCo1-x)Co24(0.45≦x≦1.00),FeMn24,NiMn24,CoMn24,MnFe24,MnNi24,MnCo24,Mn(Mn0.25Co0.7524,(Mn0.5Co.5)Co24,TiCo24,ZnFe24,FeCo24,CoFe24,MgCo24,Co34,などが挙げられる。 As a candidate for a coating material, a perovskite of (La, AE) MO 3 in which a part of La in LaMO 3 (for example, M = Mn, Fe, Co) is replaced with an alkaline earth metal AE (AE = Sr, Ca). Type oxide, spinel type oxide represented by AB 2 O 4 , specifically NiCo 2 O 4 , (Zn x Co 1-x ) Co 2 O 4 (0.45 ≦ x ≦ 1.00), FeMn 2 O 4 , NiMn 2 O 4 , CoMn 2 O 4 , MnFe 2 O 4 , MnNi 2 O 4 , MnCo 2 O 4 , Mn (Mn 0.25 Co 0.75 ) 2 O 4 , (Mn 0.5 Co .5 ) Co 2 Examples thereof include O 4 , TiCo 2 O 4 , ZnFe 2 O 4 , FeCo 2 O 4 , CoFe 2 O 4 , MgCo 2 O 4 , and Co 3 O 4 .

一般的にセル接続部材は複雑な形状をしていることが多く、酸化被膜の増大、Cr被毒の発生といった劣化を抑制するためには、劣化防止被膜を形成する必要がある。この劣化防止被膜は緻密で、均一な膜厚とすることが望ましい。膜厚が不均一になった場合、膜厚が大きすぎる部位は、起動停止に熱応力(接合する部材の熱膨張率の不一致に起因することが多い)が発生し、ひびや剥離が生じやすくなり、膜厚が小さすぎる部位は、劣化防止の機能(合金の酸化被膜の増大抑制、Cr被毒抑制)が十分発揮できず、その部位の劣化が抑制されにくくなるという問題が生じやすい。   In general, the cell connecting member often has a complicated shape, and in order to suppress deterioration such as an increase in the oxide film and the occurrence of Cr poisoning, it is necessary to form a deterioration preventing film. It is desirable that the deterioration preventing film is dense and has a uniform film thickness. When the film thickness is non-uniform, the part where the film thickness is too large is subject to thermal stress (often due to a mismatch in the thermal expansion coefficient of the members to be joined), and cracking or peeling is likely to occur. Therefore, the part where the film thickness is too small cannot sufficiently exert the function of preventing deterioration (suppression of the increase in the oxide film of the alloy, suppression of Cr poisoning), and the problem that the deterioration of the part is difficult to be suppressed is likely to occur.

そこで、複雑な形状のセル接続部材に対して、均一な成膜が実現できる成膜法を検討する必要がある。
一般的な成膜法としては、下記のようなものが挙げられる。
たとえば、ウエットコーティング法あるいは、ドライコーティング法によって形成することができる。
ウエットコーティング法としては、スクリーン印刷法、ドクターブレード法、スプレーコート法、インクジェット法、スピンコート法、ディップコート、電気めっき法、無電解めっき法、電着塗装法等が例示できる。また、ドライコーティング法としては、たとえば蒸着法、スパッタリング法、イオンプレーティング法、化学気相成長(CVD)法、電気化学気相成長(EVD)法、イオンビーム法、レーザーアブレーション法、大気圧プラズマ成膜法、減圧プラズマ成膜法、溶射法等が例示できる。圧プラズマ成膜法、溶射法等が例示できる。
Therefore, it is necessary to study a film forming method capable of realizing uniform film formation on a cell connecting member having a complicated shape.
Examples of general film forming methods include the following.
For example, it can be formed by a wet coating method or a dry coating method.
Examples of the wet coating method include a screen printing method, a doctor blade method, a spray coating method, an ink jet method, a spin coating method, a dip coating, an electroplating method, an electroless plating method, and an electrodeposition coating method. Examples of dry coating methods include vapor deposition, sputtering, ion plating, chemical vapor deposition (CVD), electrochemical vapor deposition (EVD), ion beam, laser ablation, and atmospheric pressure plasma. Examples thereof include a film forming method, a low pressure plasma film forming method, and a thermal spraying method. Examples thereof include a pressure plasma film forming method and a thermal spraying method.

しかし、ドライコーティング法として、CVD・EVD法や溶射法等は、保護膜形成のためのプロセスが複雑となる、保護膜の組成が安定しない等の欠点があるため、これらの方法に代えて、レーザーアブレーション法により保護膜を形成することも考えられている。(特許文献1)
また、レーザーアブレーション法を採用すると、CVD・EVD法や溶射法に比べて、製造コストが高くなるため、現実的には、安価に保護膜を製造できる技術として、ウエットコーティング法が採用される場合が多い。
However, as a dry coating method, the CVD / EVD method, the thermal spraying method, and the like have drawbacks such as a complicated process for forming the protective film, and the composition of the protective film is not stable. It is also considered to form a protective film by a laser ablation method. (Patent Document 1)
In addition, if laser ablation is used, the manufacturing cost is higher than that of CVD / EVD or thermal spraying, so in reality, when wet coating is used as a technology that can manufacture a protective film at low cost. There are many.

以上述べてきたように、Cr被毒、基材の酸化劣化を抑制するため種々の材料が保護膜として用いられている。SOFCのセル接続部材に用いられる基材はプレス加工等の成型方法により、複雑な形状をしていることが多く、全面に均一な膜厚で、かつ緻密な保護膜できるかがポイントとなる。ドライコーティング法(スパッタリング、PLD、レーザーアブレーション)を採用すれば、比較的均一膜厚を実現することができる。ただし、成膜コストが比較的高くなってしまう。量産性を考慮した安価な成膜プロセスという観点では、ウエットコーティングが好ましい。   As described above, various materials are used as protective films in order to suppress Cr poisoning and oxidative deterioration of the substrate. The base material used for the SOFC cell connection member is often formed in a complicated shape by a molding method such as press working, and the point is whether a dense protective film can be formed on the entire surface with a uniform film thickness. If a dry coating method (sputtering, PLD, laser ablation) is employed, a relatively uniform film thickness can be realized. However, the film formation cost is relatively high. From the viewpoint of an inexpensive film formation process considering mass productivity, wet coating is preferable.

ウエットコーティング法としては、スクリーン印刷法、ドクターブレード法、スプレーコート法、インクジェット法、スピンコート法、ディップコート、電気めっき法、無電解めっき法、電着塗装法等が例示できる。   Examples of the wet coating method include a screen printing method, a doctor blade method, a spray coating method, an ink jet method, a spin coating method, a dip coating, an electroplating method, an electroless plating method, and an electrodeposition coating method.

ウエットコーティング法により金属酸化物被膜を成膜する場合、金属酸化物そのものには結着性がほとんどないので、金属酸化物微粒子と樹脂組成物との混合液を用いて、金属酸化物微粒子と樹脂からなる被膜を形成する被膜形成工程を行い、その被膜から樹脂成分を除去することにより金属酸化物を主成分とする手法が採用される。   When a metal oxide film is formed by a wet coating method, the metal oxide itself has almost no binding property, so a mixed solution of metal oxide fine particles and a resin composition is used to form metal oxide fine particles and a resin. A method in which a metal oxide is used as a main component is employed by performing a film forming step for forming a film made of and removing a resin component from the film.

ところが、このような手法では、まず、前記混合液より金属酸化物微粒子が樹脂により流動可能に分散した状態の被膜を生成する。そのため、その被膜の状態をそのまま維持して樹脂成分を焼成により除去することが好ましい。すなわち、混合液より均一な被膜を形成し、そのまま維持して焼成・焼結を行うことにより、均一な保護膜が形成されると考えられるのである。   However, in such a method, first, a coating film in which metal oxide fine particles are dispersed in a resin-flowable manner from the mixed solution is generated. Therefore, it is preferable to remove the resin component by baking while maintaining the state of the coating. That is, it is considered that a uniform protective film is formed by forming a uniform film from the mixed solution, maintaining it as it is, and performing firing and sintering.

しかし、実際には、このようにして均一な被膜を形成し、焼成・焼結したとしても、通常、得られた保護膜は、はじめの皮膜よりも不均一な膜厚分布になるという問題がある。特に複雑形状の基材の表面に前記被膜を形成すると、たとえば、もっとも膜厚の厚くなる基材の圧延面ともっとも薄くなる角部とにおける膜厚の比が大きくなるという実情があり、焼成、焼結を行う前後において膜厚比が増加しにくい保護膜の製造方法が求められている。
そこで、本発明者らは、特許文献2に記載のように、保護膜を焼成する際の昇温速度を制御することにより、膜厚比の増加を抑制する技術を提案している。
However, in practice, even if a uniform film is formed in this way and fired / sintered, the obtained protective film usually has a non-uniform film thickness distribution than the first film. is there. In particular, when the coating film is formed on the surface of a substrate having a complicated shape, for example, there is a fact that the ratio of the film thickness between the rolled surface of the base material with the thickest film thickness and the thinnest corner is increased, There is a need for a protective film manufacturing method in which the film thickness ratio is less likely to increase before and after sintering.
Therefore, the present inventors have proposed a technique for suppressing an increase in the film thickness ratio by controlling the rate of temperature rise when firing the protective film, as described in Patent Document 2.

特開平05−174853号公報Japanese Patent Laid-Open No. 05-174853 特開2012−204008号公報JP 2012-204008 A

上述のように、不均一で膜厚比が大きな保護膜は、ひびや剥離を起こしやすいという問題があり、これを解消するために、特許文献2に記載の技術を、実際に種々基材に適用したとしても、前記問題を解決することができない場合があることを、本発明者らは見出すに至った。   As described above, a non-uniform protective film having a large film thickness ratio has a problem that it easily causes cracking and peeling. To solve this problem, the technique described in Patent Document 2 is actually applied to various substrates. The present inventors have found that the problem cannot be solved even if applied.

そこで、ここにいう前記問題を解決することができない場合として保護膜にひびや剥離が生じる条件を詳細に検討したところ、前記基材の表面を電解研磨する電解研磨工程を行った後、金属酸化物微粒子と樹脂組成物との混合液を用いて、金属酸化物微粒子と樹脂からなる被膜を形成する被膜形成工程を行う場合に、特に保護膜にひびや剥離が発生しやすいことがわかり、電解研磨工程を行った場合であっても、保護膜にひびや剥離が生じにくくする技術が望まれている。   Therefore, when the above-mentioned problem cannot be solved, the conditions under which the protective film cracks and peels are examined in detail. After performing the electropolishing step of electropolishing the surface of the substrate, the metal oxide is oxidized. It is found that cracks and delamination are likely to occur in the protective film, especially when performing a film formation process that forms a film composed of metal oxide fine particles and a resin using a mixed liquid of material fine particles and a resin composition. Even when the polishing step is performed, a technique for making the protective film difficult to crack or peel off is desired.

上記実状に鑑み、本発明の目的は、SOFCに用いられるCrを含有する合金等の表面に、ひびや剥離の生じにくい保護膜を簡便に形成することができる技術を提供することにある。   In view of the above situation, an object of the present invention is to provide a technique capable of easily forming a protective film that is unlikely to be cracked or peeled on the surface of an alloy or the like containing Cr used in SOFC.

〔構成1〕
上記目的を達成するための本発明の保護膜形成方法の特徴構成は、
固体酸化物形燃料電池用セルに用いられるCrを含有する合金または酸化物の基材表面に、電着塗装法により保護膜を形成する保護膜形成方法であって、
前記基材の表面を電解研磨する電解研磨工程を行った後、
金属酸化物微粒子と樹脂組成物との混合液を用いて、金属酸化物微粒子と樹脂からなる被膜を形成する被膜形成工程を行い、
表面に前記被膜を形成してなる前記基材を、前記樹脂が前記被膜を加熱した際の重量減少に伴う吸熱量が最大となる重量安定温度(吸熱ピーク)以上に保持された炉内に投入して前記被膜を焼成する焼成工程を行い、
さらに前記焼成工程で得られた被膜を焼結させて金属酸化物からなる保護膜を形成する焼結工程を行う点にある。
[Configuration 1]
The characteristic configuration of the protective film forming method of the present invention for achieving the above object is as follows:
A protective film forming method for forming a protective film on a surface of a base material of an alloy or oxide containing Cr used for a solid oxide fuel cell by an electrodeposition coating method,
After performing an electropolishing step of electropolishing the surface of the substrate,
Using a mixed liquid of the metal oxide fine particles and the resin composition, a film forming step of forming a film made of the metal oxide fine particles and the resin is performed,
The base material having the coating film formed on the surface thereof is put into a furnace maintained at a temperature higher than a weight stable temperature (endothermic peak) at which the endotherm accompanying the weight reduction when the resin heats the coating film is maximized. And performing a firing step of firing the coating film,
Furthermore, it is in the point which performs the sintering process which forms the protective film which consists of a metal oxide by sintering the film obtained at the said baking process.

〔作用効果1〕
上記被膜形成工程を行うことにより、基材の表面には金属酸化物微粒子と樹脂組成物との混合液が付着した被膜が形成される。この被膜は、金属酸化物微粒子と樹脂組成物主成分となり、前記樹脂成分の重合に伴い、前記金属酸化物微粒子が凝集一体化されることにより形成されている。この被膜から樹脂成分を除去することによって、金属酸化物微粒子同士が凝集して被膜を形成した保護膜を形成することができる。
[Operation effect 1]
By performing the film forming step, a film in which a mixed liquid of metal oxide fine particles and a resin composition is adhered is formed on the surface of the base material. This coating film is formed by the metal oxide fine particles and the resin composition as main components, and the metal oxide fine particles are aggregated and integrated as the resin component is polymerized. By removing the resin component from the coating, a protective film in which the metal oxide fine particles aggregate to form a coating can be formed.

また、前記電解研磨工程を行うことにより、前記基材の圧延面の平滑性を保ったり、基材形状を成形する際にせん断力の働いた部分に生じるバリを削除したりすることができ、被膜の塗りムラを抑制することができる。バリや塗りムラが生じると劣化の原因となるため、電解研磨工程により耐久性の向上が期待できる。   In addition, by performing the electrolytic polishing step, it is possible to maintain the smoothness of the rolled surface of the base material, or to remove burrs that occur in the portion where the shear force worked when molding the base material shape, Uneven coating of the coating can be suppressed. If burrs or uneven coating occurs, it will cause deterioration, so that an improvement in durability can be expected by the electrolytic polishing process.

本発明者らによると、この被膜を焼成するにあたって、この被膜を前記樹脂成分が燃焼除去される温度域まで昇温する過程で、上述のもっとも膜厚の厚くなる基材の圧延面ともっとも薄くなる角部との膜厚比が増加する現象が観測されることが分かった。この現象は、前記被膜中の樹脂成分が、前記燃焼除去される温度域まで昇温される過程で、前記樹脂成分が軟化して流動化する温度域を通過する際に、前記樹脂成分が表面張力により基材上における樹脂成分の付着しやすい部分に集合するように移動することによるものと考えることができる。すなわち、基材の角部のように樹脂量に対する表面積の大きな部分から、基材の圧延面のように表面積に対して樹脂量の少ない部分に樹脂が移動することにより、全体として膜厚比の大きな、丸味を帯びた形状に変化するものと考えられる。   According to the present inventors, in firing this film, in the process of raising the temperature of the film to a temperature range where the resin component is burned and removed, the thinnest rolling surface of the substrate having the largest film thickness is the thinnest. It was found that the phenomenon of increasing the film thickness ratio with the corners was observed. This phenomenon occurs when the resin component in the coating passes through the temperature range where the resin component softens and fluidizes in the process of being heated to the temperature range where the combustion is removed. It can be considered that this is due to the movement of the resin component so as to gather in the portion where the resin component tends to adhere on the base due to tension. That is, the resin moves from a portion having a large surface area relative to the amount of resin such as a corner portion of the base material to a portion having a small amount of resin relative to the surface area such as a rolled surface of the base material. It is thought to change to a large, rounded shape.

しかし、上述のように、前記基材の表面を電解研磨する電解研磨工程を行った後、金属酸化物微粒子と樹脂組成物との混合液を用いて、金属酸化物微粒子と樹脂からなる被膜を形成する被膜形成工程を行った場合に、後続する焼成工程において特に保護膜にひびや剥離が発生しやすいことがわかった。そこで、本発明者らが鋭意検討した結果、焼成工程において、保護膜にピンホールが生じているような場合、そのピンホールを起点として、ひびや剥離が生じるという現象を見出すに至った。これは、焼成途中で、前記被膜が基材表面の電解研磨後の表面に結合する際に、焼成工程の途中のわずかな焼成度合いの違いからも、被膜と基材の密着度にムラを生じてしまい、被膜と基材の熱膨張、収縮度の違いから前記気泡を起点としてひびや剥離を生じることによるものと考えられる。   However, as described above, after performing the electropolishing step of electropolishing the surface of the base material, a coating composed of the metal oxide fine particles and the resin is formed using a mixed liquid of the metal oxide fine particles and the resin composition. It has been found that when the film forming process to be formed is performed, cracks and peeling are likely to occur particularly in the protective film in the subsequent baking process. Therefore, as a result of intensive studies by the present inventors, when a pinhole is generated in the protective film in the firing process, a phenomenon has been found in which cracking or peeling occurs starting from the pinhole. This is because during the firing, when the coating is bonded to the surface of the substrate surface after electropolishing, the adhesion between the coating and the substrate is uneven due to a slight difference in the degree of firing during the firing process. Therefore, it is considered that cracks and peeling occur starting from the bubbles due to the difference in thermal expansion and shrinkage between the coating and the substrate.

そこで、焼成工程の昇温条件を種々検討したところ、前記被膜を、前記樹脂が前記被膜を加熱した際の重量減少に伴う吸熱量が最大となる重量安定温度以上に昇温することにより、前記被膜が急速に加熱されて、樹脂成分が即座に燃焼除去される環境に移行するとともに、被膜と基材の密着度にムラを生じにくくかつ気泡を生じにくい条件で保護膜を形成することができるようになり、均一な膜厚の保護膜をひびや剥離の生じにくい条件で形成することができるようになった。   Therefore, various investigations were made on the temperature raising conditions in the firing step, and the film was heated to a temperature higher than the weight stable temperature at which the endothermic amount associated with the weight loss when the resin heated the film was maximized, The coating film is rapidly heated to shift to an environment in which the resin component is immediately burned and removed, and a protective film can be formed under the condition that the degree of adhesion between the coating film and the substrate is less likely to cause unevenness and less likely to generate bubbles. As a result, it has become possible to form a protective film having a uniform thickness under conditions where cracks and peeling are unlikely to occur.

また、前記重量安定温度としての前記樹脂が前記被膜を加熱した際の重量減少に伴う吸熱量が最大となる重量安定温度(吸熱ピーク)は、前記樹脂が軟化流動化する上限温度よりも高く、前記樹脂を前記被膜から燃焼除去可能な樹脂焼失温度よりやや高い温度域になり、樹脂を速やかに消失させて、加熱ムラを生じさせることなく被膜を迅速に焼成できる温度域となっている。   In addition, the weight stable temperature (endothermic peak) at which the endothermic amount accompanying the weight reduction when the resin as the weight stable temperature heats the coating is maximized is higher than the upper limit temperature at which the resin softens and fluidizes, The temperature is in a temperature range slightly higher than the resin burnout temperature at which the resin can be burned and removed from the coating, and the coating can be quickly baked without causing uneven heating and causing the resin to disappear quickly.

〔構成2〕
また、上記目的を達成するための本発明の保護膜形成方法の特徴構成は、
固体酸化物形燃料電池用セルに用いられるCrを含有する合金または酸化物の基材表面に、電着塗装法により保護膜を形成する保護膜形成方法であって、
前記基材の表面を電解研磨する電解研磨工程を行った後、
金属酸化物微粒子と樹脂組成物との混合液を用いて、金属酸化物微粒子と樹脂からなる被膜を形成する被膜形成工程を行い、
表面に前記被膜を形成してなる前記基材を、前記樹脂が前記被膜から燃焼除去される際の重量減少が安定する重量安定温度以上に保持された炉内に投入して前記被膜を焼成する焼成工程を行い、
さらに前記焼成工程で得られた被膜を焼結させて金属酸化物からなる保護膜を形成する焼結工程を行う点にある。
[Configuration 2]
In addition, the characteristic configuration of the protective film forming method of the present invention for achieving the above object is as follows:
A protective film forming method for forming a protective film on a surface of a base material of an alloy or oxide containing Cr used for a solid oxide fuel cell by an electrodeposition coating method,
After performing an electropolishing step of electropolishing the surface of the substrate,
Using a mixed liquid of the metal oxide fine particles and the resin composition, a film forming step of forming a film made of the metal oxide fine particles and the resin is performed,
The base material formed by forming the coating film on the surface thereof is put into a furnace maintained at a temperature higher than a weight stable temperature at which the weight loss when the resin is burned and removed from the coating film is stabilized, and the coating film is fired. Perform the firing process,
Furthermore, it is in the point which performs the sintering process which forms the protective film which consists of a metal oxide by sintering the film obtained at the said baking process.

〔作用効果2〕
また、前記重量安定温度としての前記樹脂が前記被膜から燃焼除去される際の重量減少が安定する重量安定温度は、前記樹脂が前記被膜を加熱した際の重量減少に伴う吸熱量が最大となる重量安定温度よりもさらに高い温度域になり、樹脂を速やかに消失させて、加熱ムラを生じさせることなく被膜を迅速に焼成できる温度域となっている。
[Operation effect 2]
In addition, the weight stabilization temperature at which the weight reduction when the resin is burned and removed from the coating as the weight stabilization temperature is the maximum endothermic amount due to the weight reduction when the resin heats the coating. The temperature range is higher than the weight stable temperature, and the resin is quickly lost, and the coating temperature can be quickly baked without causing uneven heating.

したがって、前記被膜がさらに急速に加熱されて、樹脂成分が即座に燃焼除去される環境に移行するとともに、被膜と基材の密着度にムラを生じにくくかつ気泡を生じにくい条件で保護膜を形成することができるようになり、均一な膜厚の保護膜をひびや剥離の生じにくい条件で形成することができるようになった。   Therefore, the coating film is heated more rapidly to shift to an environment where the resin component is immediately burned and removed, and a protective film is formed under the condition that the degree of adhesion between the coating film and the substrate is less likely to cause unevenness and less likely to generate bubbles. As a result, a protective film having a uniform thickness can be formed under conditions where cracks and peeling do not easily occur.

〔構成3〕
また、前記樹脂をアクリル樹脂とすることができる。
[Configuration 3]
The resin can be an acrylic resin.

〔作用効果3〕
前記樹脂としては、熱可塑性樹脂一般に同様の現象が発生するものと考えられ、バインダ、あるいは、電着塗装用の混合液に含まれる樹脂として軟化流動化するもの全般に対して適用することができるが、電着塗装用途で汎用されているアクリル樹脂が好適に用いられる。
[Operation effect 3]
As the resin, it is considered that the same phenomenon occurs in the thermoplastic resin in general, and it can be applied to any resin that softens and fluidizes as a resin contained in a mixed solution for electrodeposition coating. However, acrylic resins that are widely used in electrodeposition coating applications are preferably used.

前記アクリル樹脂は、上記焼成工程で燃焼除去されるまで問題となる物性変化を起こすことなく安定に存在し、約260℃で成形加工可能な程度に軟化流動化することが知られている。また、350℃〜500℃程度の適度な温度で焼失するとともに、前記樹脂が400℃以上で、前記被膜を加熱した際の重量減少に伴う吸熱量が最大となる重量安定温度に達するとともに、500℃以上で、前記被膜から燃焼除去される際の重量減少が安定するので、取り扱い上好ましいと言える。   It is known that the acrylic resin exists stably without causing a problem of physical properties until it is burned and removed in the baking step, and is softened and fluidized to a degree that can be molded at about 260 ° C. In addition, the resin is burned out at an appropriate temperature of about 350 ° C. to 500 ° C., and the resin reaches 400 ° C. or more. It can be said that it is preferable in terms of handling since the weight loss when being burned and removed from the coating is stable at a temperature of 0 ° C. or higher.

先の構成を例に説明すると、アクリル樹脂を含有したアニオン電着塗装で得られた被膜は、急速に500℃以上に昇温することで速やかに焼結された被膜になり、基材に強固に密着するため、ひびや剥離の生じにくい被膜となる。ここで昇温すべき重量安定温度は、通常の樹脂では、多少のばらつきをもってほぼ同様の温度域にあるが、500℃を超える温度としても、十分速やかに被膜を昇温し、焼結することができる。ただし、室温から急激に高い温度に入れることによるアニオン電着塗装を備えた部材へのヒートショック、焼成用電気炉へのダメージなどを考慮すると、750℃以下が望ましいと考えられる。   Explaining the above configuration as an example, the film obtained by anionic electrodeposition coating containing an acrylic resin becomes a rapidly sintered film by rapidly raising the temperature to 500 ° C. or more, and is strong on the substrate. Since it adheres closely to the film, it becomes a film that does not easily crack or peel off. The weight stable temperature to be raised here is almost the same temperature range with some variations in ordinary resins, but the temperature of the coating should be raised sufficiently quickly and sintered even if the temperature exceeds 500 ° C. Can do. However, in consideration of heat shock to the member provided with the anion electrodeposition coating by being rapidly brought to a high temperature from room temperature, damage to the firing furnace, etc., it is considered that 750 ° C. or lower is desirable.

〔構成4〕
なお、前記金属酸化物微粒子としては、(ZnxCo1-x)Co24(0.45≦x≦1.00)からなるZn−Co系スピネル系酸化物、あるいは、CoMn24、MnCo24,Mn(Mn0.25Co0.7524,(Mn0.5Co.5)Co24,から選ばれるCo−Mn系スピネル系酸化物の微粒子を採用することができる。
[Configuration 4]
The metal oxide fine particles include Zn—Co-based spinel oxides made of (Zn x Co 1-x ) Co 2 O 4 (0.45 ≦ x ≦ 1.00), or CoMn 2 O 4. Co-Mn spinel oxide fine particles selected from MnCo 2 O 4 , Mn (Mn 0.25 Co 0.75 ) 2 O 4 , and (Mn 0.5 Co .5 ) Co 2 O 4 can be used.

〔作用効果4〕
金属酸化物微粒子としては、(Zn0.15Co0.8534を用いたが、LaMO3(たとえばM=Mn,Fe,Co)中のLaの一部をアルカリ土類金属AE(AE=Sr,Ca)で置換した(La,AE)MO3のペロブスカイト型酸化物や、AB24で示されるスピネル型酸化物、具体的にはNiCo24,(ZnxCo1-x)Co24(0.45≦x≦1.00),FeMn24,NiMn24,CoMn24,MnFe24,MnNi24,MnCo24,Mn(Mn0.25Co0.7524,(Mn0.5Co.5)Co24,TiCo24,ZnFe24,FeCo24,CoFe24,MgCo24,Co34,などを用いることができるが、
特に(ZnxCo1-x)Co24(0.45≦x≦1.00)からなるZn−Co系スピネル系酸化物、あるいは、CoMn24、MnCo24,Mn(Mn0.25Co0.7524,(Mn0.5Co.5)Co24,から選ばれるCo−Mn系スピネル系酸化物の微粒子とすることが好ましい。
この場合、形成される保護膜が緻密で高強度であるとともに、基材に対する密着性が高く、基材に含まれるCrの飛散防止効果が高いという利点がある。
[Operation effect 4]
As the metal oxide fine particles, (Zn 0.15 Co 0.85 ) 3 O 4 was used, but a part of La in LaMO 3 (for example, M = Mn, Fe, Co) was replaced with alkaline earth metal AE (AE = Sr, (La, AE) MO 3 perovskite oxide substituted with Ca), spinel oxide represented by AB 2 O 4 , specifically NiCo 2 O 4 , (Zn x Co 1-x ) Co 2 O 4 (0.45 ≦ x ≦ 1.00), FeMn 2 O 4 , NiMn 2 O 4 , CoMn 2 O 4 , MnFe 2 O 4 , MnNi 2 O 4 , MnCo 2 O 4 , Mn (Mn 0.25 Co 0.75 ) 2 O 4 , (Mn 0.5 Co .5 ) Co 2 O 4 , TiCo 2 O 4 , ZnFe 2 O 4 , FeCo 2 O 4 , CoFe 2 O 4 , MgCo 2 O 4 , Co 3 O 4 , etc. Can
In particular, a Zn—Co-based spinel oxide made of (Zn x Co 1-x ) Co 2 O 4 (0.45 ≦ x ≦ 1.00), or CoMn 2 O 4 , MnCo 2 O 4 , Mn (Mn Co—Mn spinel oxide fine particles selected from 0.25 Co 0.75 ) 2 O 4 and (Mn 0.5 Co .5 ) Co 2 O 4 are preferable.
In this case, there is an advantage that the protective film to be formed is dense and has high strength, high adhesion to the base material, and high effect of preventing scattering of Cr contained in the base material.

したがって、SOFC用セルに用いられるCrを含有する合金または酸化物の基材の表面に、電解研磨を行っても、緻密で膜厚の均一な耐久性の高い、剥離の少ない保護膜を簡便に形成する提供することができるようになった。   Therefore, even if electrolytic polishing is performed on the surface of a Cr-containing alloy or oxide base material used for SOFC cells, a dense, uniform and durable protective film with little peeling can be easily obtained. Now available to form.

固体酸化物燃料電池の概略図Schematic diagram of solid oxide fuel cell 固体酸化物燃料電池のセル接続部材の使用形態を示す図The figure which shows the usage condition of the cell connection member of a solid oxide fuel cell 保護膜を形成したセル接続部材試験片の断面図Sectional view of cell connection member test piece with protective film formed 各実施例および比較例の昇温過程を示すグラフThe graph which shows the temperature rising process of each Example and a comparative example 焼成による被膜の重量変動及び熱フローのTG/DTA分析結果TG / DTA analysis results of coating weight fluctuation and heat flow due to firing 各比較例および実施例における保護膜の外観平面図External plan view of protective film in each comparative example and example

以下に、本発明のSOFCに用いられるCrを含有する合金または酸化物からなる基材の表面に、保護膜を形成する保護膜形成方法およびSOFC用セル接続部材およびSOFC用セルを説明する。なお、以下に好適な実施例を記すが、これら実施例は、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Hereinafter, a protective film forming method, a SOFC cell connecting member, and a SOFC cell for forming a protective film on the surface of a base material made of an alloy or oxide containing Cr used in the SOFC of the present invention will be described. Preferred examples are described below, but these examples are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

<固体酸化物型燃料電池>
本発明にかかるSOFC用セル接続部材およびその製造方法の実施の形態について、図面に基づいて説明する。
図1および図2に示すSOFC用セルCは、酸化物イオン電導性の固体酸化物の緻密体からなる電解質膜30の一方面側に、酸化物イオンおよび電子電導性の多孔体からなる空気極31を接合するとともに、同電解質膜30の他方面側に電子電導性の多孔体からなる燃料極32を接合してなる単セル3を備える。
<Solid oxide fuel cell>
Embodiments of a cell connection member for SOFC and a method for manufacturing the same according to the present invention will be described with reference to the drawings.
The SOFC cell C shown in FIG. 1 and FIG. 2 has an air electrode made of an oxide ion and an electron conductive porous body on one side of an electrolyte membrane 30 made of a dense oxide oxide conductive solid oxide. 31 and a single cell 3 formed by joining a fuel electrode 32 made of an electron conductive porous body to the other surface side of the electrolyte membrane 30.

さらに、SOFC用セルCは、この単セル3を、空気極31または燃料極32に対して電子の授受を行うとともに空気および水素を供給するための溝2が形成された一対の電子電導性の合金または酸化物からなる基材11に保護膜12を形成してあるセル接続部材1(図3に形状が断面長方形の単純形状である場合の模式図を示す)により、適宜外周縁部においてガスシール体を挟持した状態で挟み込んだ構造を有する。そして、空気極31側の上記溝2が、空気極31とセル接続部材1とが密着配置されることで、空気極31に空気を供給するための空気流路2aとして機能し、一方、燃料極32側の上記溝2が、燃料極32とセル接続部材1とが密着配置されることで、燃料極32に水素を供給するための燃料流路2bとして機能する。   Further, the SOFC cell C exchanges electrons with the single cell 3 with respect to the air electrode 31 or the fuel electrode 32, and at the same time, a pair of electronically conductive elements in which grooves 2 for supplying air and hydrogen are formed. The cell connecting member 1 in which the protective film 12 is formed on the base material 11 made of an alloy or oxide (a schematic diagram in the case where the shape is a simple shape having a rectangular cross section is shown in FIG. 3) is appropriately gas at the outer peripheral edge. It has a structure in which the sealing body is sandwiched. And the said groove | channel 2 by the side of the air electrode 31 functions as the air flow path 2a for supplying air to the air electrode 31, because the air electrode 31 and the cell connection member 1 are closely_contact | adhered, on the other hand, fuel The groove 2 on the electrode 32 side functions as a fuel flow path 2 b for supplying hydrogen to the fuel electrode 32 by arranging the fuel electrode 32 and the cell connecting member 1 in close contact with each other.

なお、上記SOFC用セルCを構成する各要素で利用される一般的な材料について説明を加えると、たとえば、上記空気極31の材料としては、LaMO3(たとえばM=Mn,Fe,Co)中のLaの一部をアルカリ土類金属AE(AE=Sr,Ca)で置換した(La,AE)MO3のペロブスカイト型酸化物を利用することができ、上記燃料極32の材料としては、Niとイットリア安定化ジルコニア(YSZ)とのサーメットを利用することができ、さらに、電解質膜30の材料としては、イットリア安定化ジルコニア(YSZ)を利用することができる。 In addition, when a general material used in each element constituting the SOFC cell C is described, for example, the material of the air electrode 31 is LaMO 3 (for example, M = Mn, Fe, Co). A perovskite oxide of (La, AE) MO 3 in which a part of La of Al is substituted with an alkaline earth metal AE (AE = Sr, Ca) can be used. And yttria-stabilized zirconia (YSZ) can be used, and yttria-stabilized zirconia (YSZ) can be used as the material of the electrolyte membrane 30.

さらに、これまで説明してきたSOFC用セルCでは、セル接続部材1の材料としては、電子電導性および耐熱性の優れた材料であるLaCrO3系等のペロブスカイト型酸化物や、フェライト系ステンレス鋼であるFe−Cr合金や、オーステナイト系ステンレス鋼であるFe−Cr−Ni合金や、ニッケル基合金であるNi−Cr合金などのように、Crを含有する合金または酸化物が利用されている。 Furthermore, in the SOFC cell C described so far, the material of the cell connection member 1 is a perovskite oxide such as LaCrO 3 which is excellent in electronic conductivity and heat resistance, or ferritic stainless steel. Alloys or oxides containing Cr are used, such as certain Fe—Cr alloys, Fe—Cr—Ni alloys that are austenitic stainless steels, and Ni—Cr alloys that are nickel-based alloys.

そして、複数のSOFC用セルCが積層配置された状態で、複数のボルトおよびナットにより積層方向に押圧力を与えて挟持され、セルスタックとなる。
このセルスタックにおいて、積層方向の両端部に配置されたセル接続部材1は、燃料流路2bまたは空気流路2aの一方のみが形成されるものであればよく、その他の中間に配置されたセル接続部材1は、一方の面に燃料流路2bが形成され他方の面に空気流路2aが形成されるものを利用することができる。なお、かかる積層構造のセルスタックでは、上記セル接続部材1をセパレータと呼ぶ場合がある。
このようなセルスタックの構造を有するSOFCを一般的に平板型SOFCと呼ぶ。本実施形態では、一例として平板型SOFCについて説明するが、本願発明は、その他の構造のSOFCについても適用可能である。
In a state where a plurality of SOFC cells C are arranged in a stacked manner, a pressing force is applied in the stacking direction by a plurality of bolts and nuts to form a cell stack.
In this cell stack, the cell connecting members 1 disposed at both ends in the stacking direction may be any one as long as only one of the fuel flow path 2b or the air flow path 2a is formed, and the cells disposed in the other middle. The connecting member 1 may be one in which the fuel flow path 2b is formed on one surface and the air flow path 2a is formed on the other surface. In the cell stack having such a laminated structure, the cell connecting member 1 may be called a separator.
An SOFC having such a cell stack structure is generally called a flat-plate SOFC. In the present embodiment, a flat SOFC will be described as an example. However, the present invention is applicable to SOFCs having other structures.

そして、このようなSOFC用セルCを備えたSOFCの作動時には、図2に示すように、空気極31に対して隣接するセル接続部材1に形成された空気流路2aを介して空気を供給するとともに、燃料極32に対して隣接するセル接続部材1に形成された燃料流路2bを介して水素を供給し、たとえば800℃程度の作動温度で作動する。すると、空気極31においてO2が電子e-と反応してO2-が生成され、そのO2-が電解質膜30を通って燃料極32に移動し、燃料極32において供給されたH2がそのO2-と反応してH2Oとe-とが生成されることで、一対のセル接続部材1の間に起電力Eが発生し、その起電力Eを外部に取り出し利用することができる。 When the SOFC having such a SOFC cell C is operated, air is supplied through the air flow path 2a formed in the cell connection member 1 adjacent to the air electrode 31, as shown in FIG. In addition, hydrogen is supplied through the fuel flow path 2b formed in the cell connection member 1 adjacent to the fuel electrode 32, and the fuel electrode 32 operates at an operating temperature of, for example, about 800 ° C. Then, the air electrode 31 O 2 electrons e - are reacting with O 2- is generated, the O 2- passes through the electrolyte membrane 30 to move to the fuel electrode 32, H 2 supplied in the fuel electrode 32 Reacts with the O 2− to generate H 2 O and e , so that an electromotive force E is generated between the pair of cell connecting members 1, and the electromotive force E is taken out and used. Can do.

<セル接続部材>
前記セル接続部材1の基材としては、図1、図3に示すように、各単セル3の間に空気流路2a、燃料流路2bを形成しつつ接続可能にする溝板状に形成してあるものを用いる。このような基材表面の加工を行う方法としては、棒状あるいは板状の基材を圧延加工する、エッチング加工する、等種々公知の工程を採用することができる。
<Cell connection member>
As shown in FIGS. 1 and 3, the base material of the cell connection member 1 is formed in a groove plate shape that allows connection while forming the air flow path 2a and the fuel flow path 2b between the single cells 3. Use what you have. As a method of processing such a substrate surface, various known processes such as rolling or etching a rod-like or plate-like substrate can be employed.

また、形状加工された基材は、電解研磨液槽中で、前記基材を陽極とし、対極を不溶性金属板とし、一定時間電解することにより、前記基材表面を電解研磨する。   The shaped substrate is electropolished in an electropolishing liquid bath by using the base as an anode and the counter electrode as an insoluble metal plate and performing electrolysis for a certain period of time.

そして、電解研磨された基材表面に、保護膜を設けてセル接続部材1とする。   Then, a protective film is provided on the surface of the electropolished base material to form the cell connection member 1.

前記保護膜12は、導電性セラミック材料を含有する塗膜形成用材料を、前記基材11に電着塗装することにより保護膜12を厚膜として形成してある。   The protective film 12 is formed as a thick film by electrodeposition-coating a base material 11 with a film forming material containing a conductive ceramic material.

<保護膜>
前記保護膜12は、たとえば、Crを22%含むフェライト系ステンレス鋼等からなる前記基材11の表面に凹凸面を形成するエッチング工程を行うとともに、その基材表面に電解研磨を施す電解研磨工程を行ったのち、たとえば、ZnCo24や(Zn0.15Co0.8534やCo−Mn系スピネル等の金属酸化物微粒子と樹脂とを含んでなる被膜を形成し、その被膜を焼成して前記電着塗膜中の樹脂成分を焼失させた焼成被膜を形成する焼成工程を行い、さらに前記焼成被膜を焼結させて金属酸化物からなる保護膜12を形成する焼結工程を行うことにより形成されている。前記被膜を形成するにはアニオン電着塗装法により電着塗膜を形成する電着工程を採用することができ、樹脂としてはポリアクリル酸等のアニオン型樹脂を、金属酸化物微粒子との混合比(質量比)で(金属酸化物微粒子:アニオン型樹脂)=(0.5:1)〜(3:1)の割合で含有している混合液を用いることができる。
<Protective film>
The protective film 12 is, for example, an etching process for forming an uneven surface on the surface of the base material 11 made of ferritic stainless steel containing 22% Cr, and an electropolishing process for performing electropolishing on the surface of the base material. For example, a film containing metal oxide fine particles such as ZnCo 2 O 4 , (Zn 0.15 Co 0.85 ) 3 O 4, and Co—Mn spinel and a resin is formed, and the film is baked. Performing a firing process for forming a fired film in which the resin component in the electrodeposition coating film is burned off, and further performing a sintering process for sintering the fired film to form a protective film 12 made of a metal oxide. It is formed by. An electrodeposition process for forming an electrodeposition coating film by an anion electrodeposition coating method can be employed to form the film. An anionic resin such as polyacrylic acid is mixed with metal oxide fine particles as the resin. A mixed liquid containing (metal oxide fine particles: anionic resin) = (0.5: 1) to (3: 1) in a ratio (mass ratio) can be used.

以下に前記保護膜12の具体的な製造方法を詳述するが、本発明は、以下の実施例に限定されるものではない。   Although the specific manufacturing method of the said protective film 12 is explained in full detail below, this invention is not limited to a following example.

<比較例1>
まず、比較例として、基材にエッチング加工により凹凸面を形成するとともに、電解研磨を行うことなく
<Comparative Example 1>
First, as a comparative example, an uneven surface is formed on the base material by etching, and without electropolishing.

(電着塗装)
(Zn0.15Co0.8534[粒子径0.5μm]等の金属酸化物微粒子を電着液1リットル当り100gになるように分散し、ポリアクリル酸等のアニオン型樹脂とを含有している混合液を用いて電着塗装を行った。ここでは、(金属酸化物微粒子:アニオン型樹脂)=(1:1)(質量比)とした。
(Electrodeposition coating)
Metal oxide fine particles such as (Zn 0.15 Co 0.85 ) 3 O 4 [particle diameter 0.5 μm] are dispersed so as to be 100 g per liter of electrodeposition liquid, and contain an anionic resin such as polyacrylic acid. Electrodeposition coating was performed using the mixed solution. Here, (metal oxide fine particles: anionic resin) = (1: 1) (mass ratio).

前記混合液を用い、基材11をプラス、対極としてSUS304の極板にマイナスの極性として通電を行うことによって、基材11表面に未硬化の電着塗膜が形成される。   An uncured electrodeposition coating film is formed on the surface of the base material 11 by energizing the electrode plate of the SUS304 with a negative polarity using the mixed solution as a positive electrode and the base material 11 as a counter electrode.

電着塗装は、公知の方法に従い、たとえば、前記混合液を満たした通電槽中に基材11を完全にまたは部分的に浸漬して陽極とし、通電することにより実施される。
電着塗装条件も特に制限されず、基材11である金属の種類、前記混合液の種類、通電槽の大きさおよび形状、得られるセル接続部材1の用途などの各種条件に応じて広い範囲から適宜選択できるが、通常は、浴温度(前記混合液温度)10〜40℃程度、印加電圧10〜450V程度、電圧印加時間1〜10分程度、前記混合液の液温10〜40℃とすればよい。
なお、電着電圧、電着時間を変更することにより電着塗膜の膜厚をコントロールできる。また、基材に対して、種々前処理を行うこともできる。
The electrodeposition coating is carried out according to a known method, for example, by immersing the base material 11 completely or partially in an energization tank filled with the mixed solution as an anode and energizing.
Electrodeposition coating conditions are not particularly limited, and a wide range is available depending on various conditions such as the type of metal that is the substrate 11, the type of the mixed solution, the size and shape of the current-carrying tank, and the use of the resulting cell connection member 1. Usually, the bath temperature (mixed solution temperature) is about 10 to 40 ° C., the applied voltage is about 10 to 450 V, the voltage application time is about 1 to 10 minutes, and the liquid temperature of the mixed solution is 10 to 40 ° C. do it.
In addition, the film thickness of the electrodeposition coating film can be controlled by changing the electrodeposition voltage and the electrodeposition time. Various pretreatments can also be performed on the substrate.

この未硬化の電着塗膜が形成された基材11に加熱処理することによって、基材11表面に硬化した電着塗膜が形成される。   By heating the substrate 11 on which the uncured electrodeposition coating film is formed, a cured electrodeposition coating film is formed on the surface of the substrate 11.

加熱処理は、電着塗膜を乾燥させる予備乾燥と、電着塗膜を硬化させる硬化加熱とを含み、予備乾燥後に硬化加熱が行われる。   The heat treatment includes preliminary drying for drying the electrodeposition coating film and curing heating for curing the electrodeposition coating film, and curing heating is performed after the preliminary drying.

(加熱処理、焼成工程および焼結工程)
前記混合液として(Zn0.15Co0.8534微粒子:樹脂=1:1(質量比)のものを用いて形成した電着塗膜を、350℃の電気炉に投入し、1hr保持し、前記電着塗膜を乾燥硬化させた。次に500℃まで1hrで昇温し、2hr保持して、前記電着塗膜中の樹脂成分を焼失させた(焼成工程)。さらに、1000℃まで2hrで昇温し、2hrその温度で保持して前記電着塗膜中の金属酸化物微粒子を焼結させて、その後電気炉電源をOFFして徐冷した。すなわち、図4(1)に太実線で示す昇温過程を経て、加熱処理、焼成工程および焼結工程を行った。これにより、基材11に対して密着力があり、かつ緻密な保護膜12を形成したセル接続部材試験片を得た。この場合、前記基材を前記樹脂が軟化流動化する下限温度よりも低い硬化状態維持温度から、前記樹脂が軟化流動化する上限温度よりも高く、前記樹脂を前記被膜から燃焼除去可能な樹脂焼失温度に達するまでに極めて短時間(1分以内)で昇温過程が完了し、前記樹脂成分が焼失しはじめることになっている。
(Heat treatment, firing process and sintering process)
An electrodeposition coating film formed using (Zn 0.15 Co 0.85 ) 3 O 4 fine particles: resin = 1: 1 (mass ratio) as the mixed solution was put into an electric furnace at 350 ° C. and held for 1 hr. The electrodeposition coating film was dried and cured. Next, the temperature was raised to 500 ° C. for 1 hour and held for 2 hours to burn off the resin component in the electrodeposition coating film (firing step). Furthermore, the temperature was raised to 1000 ° C. for 2 hours, and the temperature was maintained at that temperature for 2 hours to sinter the metal oxide fine particles in the electrodeposition coating film, and then the electric furnace power was turned off and gradually cooled. That is, a heat treatment, a firing process, and a sintering process were performed through a temperature raising process indicated by a thick solid line in FIG. Thereby, the cell connection member test piece which had the adhesive force with respect to the base material 11 and formed the dense protective film 12 was obtained. In this case, the base material is burned and removed from the coating film from the cured state maintaining temperature lower than the lower limit temperature at which the resin softens and fluidizes, and higher than the upper temperature limit at which the resin softens and fluidizes. The temperature raising process is completed in a very short time (within 1 minute) until the temperature is reached, and the resin component starts to burn out.

また、比較例1における基材の圧延加工面およびエッチング加工面はともに剥離が少なく、電解研磨を行わない場合には、ひび・剥離のない保護膜を簡便に形成する提供することができることがわかる(図6(c)参照)。しかし、エッチング加工に伴い発生する鋭利なバリが存在する場合は均一成膜性の高い電着塗装と言えども均一な膜を形成することが難しく、実用十分な耐久性を確保することが難しいことがある。   Further, it can be seen that both the rolled surface and the etched surface of the base material in Comparative Example 1 are less peeled, and when electropolishing is not performed, it is possible to provide a protective film that is free from cracks and peeling. (See FIG. 6 (c)). However, if there are sharp burrs that occur during etching, it is difficult to form a uniform film, even with electrodeposition coating with high uniform film formation, and it is difficult to ensure sufficient durability for practical use. There is.

(比較例2)
上記比較例1で用いた基材に対して、電解研磨処理を行い、同様に試験を行った。
電解処理により、図3(a)に示す電解処理のない鋭利なバリを有する状態から、圧延面、エッチング面ともに滑らかになり、図3(b)のようにエッジ部分においても尖った部分がなく、なめらかな面が形成される。
(Comparative Example 2)
The substrate used in Comparative Example 1 was subjected to an electrolytic polishing treatment and similarly tested.
By the electrolytic treatment, the rolled surface and the etched surface are smoothed from the state having the sharp burr without the electrolytic treatment shown in FIG. 3A, and there is no sharp portion in the edge portion as shown in FIG. 3B. A smooth surface is formed.

電解研磨処理は、前記基材を陽極として、定法にしたがって、表面を20μmを溶解した。   In the electrolytic polishing treatment, 20 μm of the surface was dissolved according to a conventional method using the base material as an anode.

(電着塗装)
(Zn0.15Co0.8534[粒子径0.5μm]等の金属酸化物微粒子を電着液1リットル当り100gになるように分散し、ポリアクリル酸等のアニオン型樹脂とを含有している混合液を用いて電着塗装を行った。ここでは、(金属酸化物微粒子:アニオン型樹脂)=(1:1)(質量比)とした。
前記混合液を用い、基材11をプラス、対極としてSUS304の極板にマイナスの極性として通電を行うことによって、基材11表面に未硬化の電着塗膜が形成される。
電着塗装は、公知の方法に従い、たとえば、前記混合液を満たした通電槽中に基材11を完全にまたは部分的に浸漬して陽極とし、通電することにより実施される。
電着塗装条件も特に制限されず、基材11である金属の種類、前記混合液の種類、通電槽の大きさおよび形状、得られるセル接続部材1の用途などの各種条件に応じて広い範囲から適宜選択できるが、通常は、浴温度(前記混合液温度)10〜40℃程度、印加電圧10〜450V程度、電圧印加時間1〜10分程度、前記混合液の液温10〜40℃とすればよい。
なお、電着電圧、電着時間を変更することにより電着塗膜の膜厚をコントロールできる。また、基材に対して、種々前処理を行うこともできる。
この未硬化の電着塗膜が形成された基材11に加熱処理することによって、基材11表面に硬化した電着塗膜が形成される。
加熱処理は、電着塗膜を乾燥させる予備乾燥と、電着塗膜を硬化させる硬化加熱とを含み、予備乾燥後に硬化加熱が行われる。
(Electrodeposition coating)
Metal oxide fine particles such as (Zn 0.15 Co 0.85 ) 3 O 4 [particle diameter 0.5 μm] are dispersed so as to be 100 g per liter of electrodeposition liquid, and contain an anionic resin such as polyacrylic acid. Electrodeposition coating was performed using the mixed solution. Here, (metal oxide fine particles: anionic resin) = (1: 1) (mass ratio).
An uncured electrodeposition coating film is formed on the surface of the base material 11 by energizing the electrode plate of the SUS304 with a negative polarity using the mixed solution as a positive electrode and the base material 11 as a counter electrode.
The electrodeposition coating is carried out according to a known method, for example, by immersing the base material 11 completely or partially in an energization tank filled with the mixed solution as an anode and energizing.
Electrodeposition coating conditions are not particularly limited, and a wide range is available depending on various conditions such as the type of metal that is the substrate 11, the type of the mixed solution, the size and shape of the current-carrying tank, and the use of the resulting cell connection member 1. Usually, the bath temperature (mixed solution temperature) is about 10 to 40 ° C., the applied voltage is about 10 to 450 V, the voltage application time is about 1 to 10 minutes, and the liquid temperature of the mixed solution is 10 to 40 ° C. do it.
In addition, the film thickness of the electrodeposition coating film can be controlled by changing the electrodeposition voltage and the electrodeposition time. Various pretreatments can also be performed on the substrate.
By heating the substrate 11 on which the uncured electrodeposition coating film is formed, a cured electrodeposition coating film is formed on the surface of the substrate 11.
The heat treatment includes preliminary drying for drying the electrodeposition coating film and curing heating for curing the electrodeposition coating film, and curing heating is performed after the preliminary drying.

(加熱処理、焼成工程および焼結工程)
前記混合液として(Zn0.15Co0.8534微粒子:樹脂=1:1(質量比)のものを用いて形成した電着塗膜を、350℃の電気炉に投入し、1hr保持し、前記電着塗膜を乾燥硬化させた。次に500℃まで1hrで昇温し、2hr保持して、前記電着塗膜中の樹脂成分を焼失させた(焼成工程)。さらに、1000℃まで2hrで昇温し、2hrその温度で保持して前記電着塗膜中の金属酸化物微粒子を焼結させて、その後電気炉電源をOFFして徐冷した。すなわち、図4(1)に太実線で示す昇温過程を経て、加熱処理、焼成工程および焼結工程を行った。これにより、基材11に対して密着力があり、かつ緻密な保護膜12を形成したセル接続部材試験片を得た。この場合、前記基材を前記樹脂が軟化流動化する下限温度よりも低い硬化状態維持温度から、前記樹脂が軟化流動化する上限温度よりも高く、前記樹脂を前記被膜から燃焼除去可能な樹脂焼失温度に達するまでに極めて短時間(1分以内)で昇温過程が完了し、前記樹脂成分が焼失しはじめることになっている。
(Heat treatment, firing process and sintering process)
An electrodeposition coating film formed using (Zn 0.15 Co 0.85 ) 3 O 4 fine particles: resin = 1: 1 (mass ratio) as the mixed solution was put into an electric furnace at 350 ° C. and held for 1 hr. The electrodeposition coating film was dried and cured. Next, the temperature was raised to 500 ° C. for 1 hour and held for 2 hours to burn off the resin component in the electrodeposition coating film (firing step). Furthermore, the temperature was raised to 1000 ° C. for 2 hours, and the temperature was maintained at that temperature for 2 hours to sinter the metal oxide fine particles in the electrodeposition coating film, and then the electric furnace power was turned off and gradually cooled. That is, a heat treatment, a firing process, and a sintering process were performed through a temperature raising process indicated by a thick solid line in FIG. Thereby, the cell connection member test piece which had the adhesive force with respect to the base material 11 and formed the dense protective film 12 was obtained. In this case, the base material is burned and removed from the coating film from the cured state maintaining temperature lower than the lower limit temperature at which the resin softens and fluidizes, and higher than the upper temperature limit at which the resin softens and fluidizes. The temperature raising process is completed in a very short time (within 1 minute) until the temperature is reached, and the resin component starts to burn out.

その結果、圧延面、エッチング面ともに約10μm厚の被膜を形成することはできたものの、焼結工程において、保護膜の剥離している部位が多数観察された。(図6(b), (d)参照)保護膜の剥離状況をさらに拡大して観察すると、焼成時に被膜に生じたピンホールを起点に焼結された保護膜にひびや剥離が入り、保護膜の層が割れ、剥離に至っている状況が観察できた。(図6(d),(e)参照)   As a result, although a film having a thickness of about 10 μm could be formed on both the rolled surface and the etched surface, many sites where the protective film was peeled were observed in the sintering process. (See Fig. 6 (b) and (d)) If the peeling state of the protective film is further enlarged and observed, cracks and peeling will enter the sintered protective film starting from the pinholes generated in the coating during firing. It was possible to observe the situation where the film layer was cracked and peeled. (See Fig. 6 (d) and (e))

比較例1と、比較例2とを比較すると、電解研磨処理の有無によって被膜の焼結結果が大きく異なり、電解研磨処理を行うことによって、保護膜の基材に対する密着性が大きく低下し、十分な強度を有する保護膜が得られにくくなっていることが分かった。   Comparing Comparative Example 1 and Comparative Example 2, the result of sintering the coating is greatly different depending on the presence or absence of the electropolishing treatment. By performing the electropolishing treatment, the adhesion of the protective film to the substrate is greatly reduced, It has been found that it is difficult to obtain a protective film having a sufficient strength.

(実施例)
上記比較例2で用いた基材を、図4(2)に示す昇温過程を経て、加熱処理、焼成工程および焼結工程を行った。すなわち、電着塗膜を形成した基材を、500℃の電気炉に投入し、2時間保持し、前記電着塗膜を乾燥硬化させるとともに、前記電着塗膜中の樹脂成分を焼失させた(焼成工程)。さらに、1000℃まで2hrで昇温し、2hrその温度で保持して前記電着塗膜中の金属酸化物微粒子を焼結させて、その後電気炉電源をOFFして徐冷した。これにより、保護膜12を形成したセル接続部材を得た。
(Example)
The base material used in Comparative Example 2 was subjected to a heating process, a firing process, and a sintering process through a temperature raising process shown in FIG. That is, the base material on which the electrodeposition coating film is formed is put into an electric furnace at 500 ° C. and held for 2 hours, the electrodeposition coating film is dried and cured, and the resin component in the electrodeposition coating film is burned out. (Firing process). Furthermore, the temperature was raised to 1000 ° C. for 2 hours, and the temperature was maintained at that temperature for 2 hours to sinter the metal oxide fine particles in the electrodeposition coating film, and then the electric furnace power was turned off and gradually cooled. Thereby, the cell connection member in which the protective film 12 was formed was obtained.

その結果、圧延面、エッチング部位ともに、ひび、割れ、剥離、浮き等のなく、基材11に対して密着力があり、かつ緻密な保護膜が形成されていることが確認された(図6(b),(f)参照)。また、このときの保護膜12の形成状態は、表2のようになっており、比較例1同様均一な膜厚で、強固な保護膜が得られていることが分かった。   As a result, it was confirmed that both the rolled surface and the etched portion had no adhesion, no cracks, no peeling, no float, etc., and had a close contact with the substrate 11 and a dense protective film was formed (FIG. 6). (See (b) and (f)). Moreover, the formation state of the protective film 12 at this time is as shown in Table 2, and it was found that a strong protective film was obtained with a uniform film thickness as in Comparative Example 1.

(確認実験)
上記実施例における加熱処理温度の違いにより保護膜の性質が大きく変化する要因を検証する実験を行った。
実施例と同様にして基材表面に被膜を形成する際の重量変動及び熱フローをTG/DTA分析した結果を図5に示す。なお、実験は空気中で行い、昇温速度は10℃/分とした。
(Confirmation experiment)
An experiment was conducted to verify the factors that greatly change the properties of the protective film due to the difference in the heat treatment temperature in the above examples.
FIG. 5 shows the results of TG / DTA analysis of weight fluctuation and heat flow when forming a film on the substrate surface in the same manner as in the example. The experiment was performed in air, and the rate of temperature increase was 10 ° C./min.

図より、加熱にしたがって被膜の乾燥が進行するとともに250℃程度から被膜中の樹脂成分が流動し、熱分解しはじめるとともに、大きく吸熱し始め、樹脂が軟化流動化する上限温度よりも高く、前記樹脂を前記被膜から燃焼除去可能な樹脂焼失温度に達するものと考えられる(図4中Aに示す領域)。さらに350℃〜400℃に昇温すると、被膜を加熱した際の重量減少に伴う吸熱量が最大となる重量安定温度に達し、熱分解、ガス化が進行しているものと考えられる(図4中Bに示す領域)。その後も被膜の重量減少は続くが、500℃において樹脂成分は完全に消失し、被膜から燃焼除去される際の重量減少が安定する重量安定温度に達することが読み取れる(図4中Cに示す領域)。   From the figure, as the drying of the coating proceeds with heating, the resin component in the coating flows from about 250 ° C., begins to thermally decompose, begins to absorb a large amount of heat, and is higher than the upper limit temperature at which the resin softens and fluidizes, It is considered that the resin reaches the resin burning temperature at which the resin can be burned and removed from the coating (region indicated by A in FIG. 4). When the temperature is further raised to 350 ° C. to 400 ° C., it reaches a weight stable temperature at which the endothermic amount accompanying the weight reduction when the coating is heated is maximized, and it is considered that pyrolysis and gasification are progressing (FIG. 4). Region shown in middle B). After that, although the weight of the coating continues to decrease, it can be seen that the resin component disappears completely at 500 ° C. and reaches a weight stable temperature at which the weight reduction when being burned and removed from the coating reaches a stable temperature (region indicated by C in FIG. 4). ).

このような状況および実験データから考察すると、樹脂成分を消失させるために要する時間が短いほうがひびや剥離が生じにくい傾向があることがわかる。電着塗装の被膜は体積比では大半が樹脂成分で構成されており、消失する際に大きな応力が生じると推測される。
なお、ひびや剥離は、被膜中に含まれる気泡成分を起点に生じると思われるが、樹脂を消失する時間が短い時、ひびや剥離が進展するために必要な時間よりも十分短く、そのために良好な被膜が得られると推測される。
Considering this situation and experimental data, it can be seen that cracking and peeling tend not to occur as the time required to eliminate the resin component is shorter. The electrodeposition coating film is mostly composed of a resin component in a volume ratio, and it is assumed that a large stress is generated when it disappears.
In addition, cracks and peeling are thought to occur starting from the bubble component contained in the coating, but when the time to disappear the resin is short, it is sufficiently shorter than the time required for cracks and peeling to progress. It is estimated that a good film can be obtained.

すなわち、重量安定温度としては、350℃〜400℃の「被膜を加熱した際の重量減少に伴う吸熱量が最大となる重量安定温度」や、500℃を超える「被膜から燃焼除去される際の重量減少が安定する重量安定温度」において、本願の保護膜形成方法を良好に実現することができることがわかる。   That is, as the weight stabilization temperature, 350 ° C. to 400 ° C. “the weight stabilization temperature at which the endothermic amount accompanying the weight reduction when the coating is heated is the maximum” or 500 ° C. It can be seen that the protective film forming method of the present application can be satisfactorily realized at “weight stable temperature at which weight reduction is stable”.

なお、上記実施の形態においては金属酸化物微粒子としては、(Zn0.15Co0.8534を用いたが、LaMO3(たとえばM=Mn,Fe,Co)中のLaの一部をアルカリ土類金属AE(AE=Sr,Ca)で置換した(La,AE)MO3のペロブスカイト型酸化物や、AB24で示されるスピネル型酸化物、具体的にはNiCo24,(ZnxCo1-x)Co24(0.45≦x≦1.00),FeMn24,NiMn24,CoMn24,MnFe24,MnNi24,MnCo24,Mn(Mn0.25Co0.7524,(Mn0.5Co.5)Co24,TiCo24,ZnFe24,FeCo24,CoFe24,MgCo24,Co34,などを用いることができる。 In the above embodiment, (Zn 0.15 Co 0.85 ) 3 O 4 is used as the metal oxide fine particles, but a part of La in LaMO 3 (for example, M = Mn, Fe, Co) is replaced with alkaline earth. Perovskite oxide of (La, AE) MO 3 substituted with metal AE (AE = Sr, Ca), spinel oxide represented by AB 2 O 4 , specifically NiCo 2 O 4 , (Zn x Co 1-x ) Co 2 O 4 (0.45 ≦ x ≦ 1.00), FeMn 2 O 4 , NiMn 2 O 4 , CoMn 2 O 4 , MnFe 2 O 4 , MnNi 2 O 4 , MnCo 2 O 4 , Mn (Mn 0.25 Co 0.75 ) 2 O 4 , (Mn 0.5 Co .5 ) Co 2 O 4 , TiCo 2 O 4 , ZnFe 2 O 4 , FeCo 2 O 4 , CoFe 2 O 4 , MgCo 2 O 4 , Co 3 O 4 , etc. can be used.

本発明の保護膜形成方法によれば、耐久性が高く長期にわたって安定して使用することができるセル接続部材、SOFC用セルを備えた燃料電池を提供することができる。   According to the method for forming a protective film of the present invention, it is possible to provide a fuel cell equipped with a cell connection member and a SOFC cell that are highly durable and can be used stably over a long period of time.

1 :セル接続部材
2 :溝
2a :空気流路
2b :燃料流路
3 :単セル
11 :基材
12 :保護膜
30 :電解質膜
31 :空気極
32 :燃料極
C :SOFC用セル
1: Cell connecting member 2: Groove 2a: Air flow path 2b: Fuel flow path 3: Single cell 11: Base material 12: Protective film 30: Electrolyte film 31: Air electrode 32: Fuel electrode C: Cell for SOFC

Claims (4)

固体酸化物形燃料電池用セルに用いられるCrを含有する合金または酸化物の基材表面に、電着塗装法により保護膜を形成する保護膜形成方法であって、
前記基材の表面を電解研磨する電解研磨工程を行った後、
金属酸化物微粒子と樹脂組成物との混合液を用いて、金属酸化物微粒子と樹脂からなる被膜を形成する被膜形成工程を行い、
表面に前記被膜を形成してなる前記基材を、前記樹脂が前記被膜を加熱した際の重量減少に伴う吸熱量が最大となる重量安定温度(吸熱ピーク)以上に保持された炉内に投入して前記被膜を焼成する焼成工程を行い、
さらに前記焼成工程で得られた被膜を焼結させて金属酸化物からなる保護膜を形成する焼結工程を行う保護膜形成方法。
A protective film forming method for forming a protective film on a surface of a base material of an alloy or oxide containing Cr used for a solid oxide fuel cell by an electrodeposition coating method,
After performing an electropolishing step of electropolishing the surface of the substrate,
Using a mixed liquid of the metal oxide fine particles and the resin composition, a film forming step of forming a film made of the metal oxide fine particles and the resin is performed,
The base material having the coating film formed on the surface thereof is put into a furnace maintained at a temperature higher than a weight stable temperature (endothermic peak) at which the endotherm accompanying the weight reduction when the resin heats the coating film is maximized. And performing a firing step of firing the coating film,
Furthermore, the protective film formation method which performs the sintering process which sinters the film obtained at the said baking process and forms the protective film which consists of metal oxides.
固体酸化物形燃料電池用セルに用いられるCrを含有する合金または酸化物の基材表面に、電着塗装法により保護膜を形成する保護膜形成方法であって、
前記基材の表面を電解研磨する電解研磨工程を行った後、
金属酸化物微粒子と樹脂組成物との混合液を用いて、金属酸化物微粒子と樹脂からなる被膜を形成する被膜形成工程を行い、
表面に前記被膜を形成してなる前記基材を、前記樹脂が前記被膜から燃焼除去される際の重量減少が安定する重量安定温度以上に保持された炉内に投入して前記被膜を焼成する焼成工程を行い、
さらに前記焼成工程で得られた被膜を焼結させて金属酸化物からなる保護膜を形成する焼結工程を行う保護膜形成方法。
A protective film forming method for forming a protective film on a surface of a base material of an alloy or oxide containing Cr used for a solid oxide fuel cell by an electrodeposition coating method,
After performing an electropolishing step of electropolishing the surface of the substrate,
Using a mixed liquid of the metal oxide fine particles and the resin composition, a film forming step of forming a film made of the metal oxide fine particles and the resin is performed,
The base material formed by forming the coating film on the surface thereof is put into a furnace maintained at a temperature higher than a weight stable temperature at which the weight loss when the resin is burned and removed from the coating film is stabilized, and the coating film is fired. Perform the firing process,
Furthermore, the protective film formation method which performs the sintering process which sinters the film obtained at the said baking process and forms the protective film which consists of metal oxides.
前記樹脂がアクリル樹脂である請求項1または2に記載の保護膜形成方法。   The protective film forming method according to claim 1, wherein the resin is an acrylic resin. 前記金属酸化物微粒子が、(ZnxCo1-x)Co24(0.45≦x≦1.00)からなるZn−Co系スピネル系酸化物、あるいは、CoMn24、MnCo24,Mn(Mn0.25Co0.7524,(Mn0.5Co.5)Co24,から選ばれるCo−Mn系スピネル系酸化物の微粒子である請求項1〜3のいずれか一項に記載の保護膜形成方法。 The metal oxide fine particles are Zn—Co based spinel oxides composed of (Zn x Co 1-x ) Co 2 O 4 (0.45 ≦ x ≦ 1.00), or CoMn 2 O 4 , MnCo 2. 4. The fine particle of a Co—Mn spinel oxide selected from O 4 , Mn (Mn 0.25 Co 0.75 ) 2 O 4 , (Mn 0.5 Co .5 ) Co 2 O 4 . The method for forming a protective film according to Item.
JP2013139059A 2013-07-02 2013-07-02 Method for forming protective film Active JP6173074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013139059A JP6173074B2 (en) 2013-07-02 2013-07-02 Method for forming protective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013139059A JP6173074B2 (en) 2013-07-02 2013-07-02 Method for forming protective film

Publications (2)

Publication Number Publication Date
JP2015011958A true JP2015011958A (en) 2015-01-19
JP6173074B2 JP6173074B2 (en) 2017-08-02

Family

ID=52304932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013139059A Active JP6173074B2 (en) 2013-07-02 2013-07-02 Method for forming protective film

Country Status (1)

Country Link
JP (1) JP6173074B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105565781A (en) * 2015-12-28 2016-05-11 广东新劲刚新材料科技股份有限公司 Infrared radiation ceramic powder for thermal spraying and preparation method thereof
JP2016195101A (en) * 2015-03-31 2016-11-17 大阪瓦斯株式会社 Fuel battery member and manufacturing method for the same
JP2022081854A (en) * 2020-11-20 2022-06-01 森村Sofcテクノロジー株式会社 Manufacturing method for electrochemical reaction cell stacks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192546A (en) * 2010-03-15 2011-09-29 Osaka Gas Co Ltd Manufacturing method of interconnector for fuel cell
JP2012204008A (en) * 2011-03-23 2012-10-22 Osaka Gas Co Ltd Protective film forming method
JP2012212651A (en) * 2011-03-22 2012-11-01 Osaka Gas Co Ltd Protective film formation method, cell connection member and solid oxide fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192546A (en) * 2010-03-15 2011-09-29 Osaka Gas Co Ltd Manufacturing method of interconnector for fuel cell
JP2012212651A (en) * 2011-03-22 2012-11-01 Osaka Gas Co Ltd Protective film formation method, cell connection member and solid oxide fuel cell
JP2012204008A (en) * 2011-03-23 2012-10-22 Osaka Gas Co Ltd Protective film forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195101A (en) * 2015-03-31 2016-11-17 大阪瓦斯株式会社 Fuel battery member and manufacturing method for the same
CN105565781A (en) * 2015-12-28 2016-05-11 广东新劲刚新材料科技股份有限公司 Infrared radiation ceramic powder for thermal spraying and preparation method thereof
JP2022081854A (en) * 2020-11-20 2022-06-01 森村Sofcテクノロジー株式会社 Manufacturing method for electrochemical reaction cell stacks
JP7254755B2 (en) 2020-11-20 2023-04-10 森村Sofcテクノロジー株式会社 Manufacturing method of electrochemical reaction cell stack

Also Published As

Publication number Publication date
JP6173074B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6800297B2 (en) Electrochemical devices, solid oxide fuel cell cells, and methods for manufacturing them
JP5785135B2 (en) Method for producing current collecting member for solid oxide fuel cell and current collecting member for solid oxide fuel cell
JP5572146B2 (en) Protective film forming method, cell connecting member, and solid oxide fuel cell
JP2014209452A (en) Cell connection member, cell for solid oxide fuel cell and electrodeposition paint for use in production thereof
JP6289170B2 (en) Inter-cell connecting member joining structure and inter-cell connecting member joining method
JPH1092446A (en) Solid electrolyte type fuel cell
JP6173074B2 (en) Method for forming protective film
US20120064436A1 (en) Interconnecting plate for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell using the interconnecting plate
JP6735568B2 (en) Cell stack manufacturing method
JP7080060B2 (en) Cell-to-cell connection member, solid oxide fuel cell cell, solid oxide fuel cell, SOFC monogeneration system, and SOFC cogeneration system
JP2017063012A (en) Method for manufacturing fuel cell member
JP5832405B2 (en) Method for forming protective film, method for manufacturing cell connecting member, and method for manufacturing cell for solid oxide fuel cell
JP2016066581A (en) Cell-to-cell connection member joining method, cell-to-cell connection member joining structure, and manufacturing method of solid oxide fuel battery cell
JP6486107B2 (en) Manufacturing method of fuel cell member
JP5778711B2 (en) Method for manufacturing inter-cell connecting member, inter-cell connecting member, and solid oxide fuel cell
JP5654915B2 (en) Method for forming protective film
JP7357577B2 (en) Inter-cell connection member, solid oxide fuel cell, SOFC monogeneration system, SOFC cogeneration system, and method for manufacturing inter-cell connection member
JP6268209B2 (en) Fuel cell power generation unit and fuel cell stack
JP2011165652A (en) Method of manufacturing interconnector for fuel cell, and interconnector for fuel cell
JP6358921B2 (en) Method for producing solid oxide fuel cell and method for joining cells
JP6165051B2 (en) Manufacturing method of fuel cell member
JP2012142241A (en) Method for manufacturing single cell for solid oxide fuel cell
JP6906310B2 (en) Manufacturing method of solid oxide fuel cell
JP6742104B2 (en) Method for producing inter-cell connecting member, and method for producing solid oxide fuel cell cell
KR102707813B1 (en) Solid oxide fuel cells and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170704

R150 Certificate of patent or registration of utility model

Ref document number: 6173074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150