EP0692009B1 - Verfahren zur verarbeitung von alt- oder abfallkunststoffen - Google Patents

Verfahren zur verarbeitung von alt- oder abfallkunststoffen Download PDF

Info

Publication number
EP0692009B1
EP0692009B1 EP94913053A EP94913053A EP0692009B1 EP 0692009 B1 EP0692009 B1 EP 0692009B1 EP 94913053 A EP94913053 A EP 94913053A EP 94913053 A EP94913053 A EP 94913053A EP 0692009 B1 EP0692009 B1 EP 0692009B1
Authority
EP
European Patent Office
Prior art keywords
phase
depolymerization
process according
condensate
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94913053A
Other languages
English (en)
French (fr)
Other versions
EP0692009A1 (de
Inventor
Rolf Holighaus
Klaus Niemann
Martin Rupp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Der Gruene Punkt Duales System Deutschland AG
Original Assignee
Veba Oel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veba Oel AG filed Critical Veba Oel AG
Publication of EP0692009A1 publication Critical patent/EP0692009A1/de
Application granted granted Critical
Publication of EP0692009B1 publication Critical patent/EP0692009B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/005Coking (in order to produce liquid products mainly)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste

Definitions

  • the invention relates to a method for processing old or waste plastics for the purpose of obtaining chemical raw materials and liquid fuel components.
  • the invention is based on a process for the hydrotreatment of carbon-containing material, in which polymers, in particular polymer wastes in comminuted or dissolved form, are added to a high-boiling oil and this mixture is hydrogenated in the presence of hydrogen in order to obtain fuel components and chemical raw materials (cf. DD 254 207 A1).
  • a process for converting used tires, rubber and / or other plastics into liquid, gaseous and solid products by depolymerizing treatment in a solvent under elevated pressure and elevated temperature has been described in DE-A-25 30 229.
  • no harmful substances such as SO 2 , soot or the like should enter the atmosphere in this process.
  • hydrogen tires were added to a hydrogenation reactor under hydrogenation at a hydrogen pressure of 150 bar and a temperature of 450 ° C. in the presence of substances catalyzing the cleavage and hydrogenation reactions.
  • DE-A-2 205 001 describes a process for the thermal treatment of waste and rubber, in which the waste is split at temperatures from 250 to 450 ° C. in the presence of an auxiliary phase which is liquid at the reaction temperature.
  • a method is also known in which polymer waste, in particular waste rubber, is dissolved in the residue products of petroleum processing. The resulting mixture is then coked to coke. Here there are gaseous and liquid products. The latter are suitable as fuel components when processed accordingly, cf. DD 0 144 171.
  • the polymer concentration in the hydrogenation feed is, for example, between 0.01 and 20% by weight according to the process according to DD 254 207.
  • the joint hydrogenating treatment of heavy oils with dissolved and / or suspended polymers is limited to hydrogenation processes in which the hydrogenation is carried out in tubular reactors with or without a suspended catalyst. If reactors were operated with fixedly arranged catalysts, the use of polymers was only possible to a limited extent, in particular if polymers were added which already depolymerize in the heating phase up to approximately 420 ° C. before the reactor enters.
  • Another task is to relieve or better utilize complex and capital-intensive process steps such as smoldering, gasification or bottom phase hydrogenation with regard to the required throughput quantities.
  • the invention consists in a process for processing waste or waste plastics for the purpose of obtaining chemical raw materials and liquid fuel components by depolymerizing the starting materials without adding hydrogen to a pumpable and a volatile phase, separating the volatile phase into a gas phase and a condensate which is subjected to the standard refinery procedures is, wherein the pumpable phase remaining after separation of the volatile phase is subjected to a bottom phase hydrogenation, gasification, smoldering or a combination of these process steps.
  • the resulting gaseous depolymerization products gas
  • the resulting condensable depolymerization products condensate
  • the pumpable, viscous depolymerization products containing, bottom phase depolymerized product
  • the process parameters are preferably selected so that the highest possible proportion of the so-called condensate is formed.
  • the plastics to be used in the present process are e.g. B. Mixed fractions from waste collections, including by Duale System Kunststoff GmbH (DSD). In these mixed fractions z. B. contain polyethylene, polypropylene, polyvinyl chloride, polystyrene, polymer blends such as ABS and polycondensates. Plastic production waste, commercial packaging waste made of plastic, residual, mixed and pure fractions from the plastic processing industry can also be used, the chemical composition of this plastic waste not being critical for the suitability for use in the present process. Suitable insert products are also elastomers, technical rubber articles or used tires in a suitable pre-shredded form.
  • the used plastics or waste plastics come from molded parts, laminates, composite materials, foils or synthetic fibers, for example.
  • halogen-containing plastics are chlorinated polyethylene (PEC), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), chloroprene rubber, to name just a few important representatives.
  • sulfur-containing plastics such as polysulfones or rubbers cross-linked with sulfur bridges, such as in old tires, are produced in large quantities and, if the appropriate equipment for pre-shredding and pre-sorting in plastic and metal components is used for depolymerization and further processing to obtain chemical raw materials or fuel components accessible.
  • thermoplastics this also includes thermosets and polyadducts and products based on cellulose such as cellulose and paper.
  • the products made from this include semi-finished products, individual parts, components, packaging, storage and transport containers and consumer goods.
  • the semi-finished products also include boards and boards (printed circuit boards) as well as laminated boards, some of which may still contain metal coatings and which, like the other products to be used, have been pre-shredded to particle or piece sizes of 0.5 to 50 mm, possibly of metal or glass. or ceramic components can be separated using suitable classification processes.
  • the old and waste plastics mentioned generally also contain inorganic secondary components such as pigments, glass fibers, fillers such as titanium or zinc oxide, flame retardants, pigment-containing printing inks, carbon black and also metals such as. B. metallic aluminum.
  • inorganic secondary components such as pigments, glass fibers, fillers such as titanium or zinc oxide, flame retardants, pigment-containing printing inks, carbon black and also metals such as. B. metallic aluminum.
  • the old and waste plastics mentioned, the z. B. from the collections of the DSD in mixtures or batches of different compositions can contain up to 10, possibly up to 20 wt .-% of inorganic minor components.
  • These plastic mixtures are usually used in shredded or preconditioned form z. B. used as granules or chips or the like in the present process:
  • the individual product streams in particular the condensate, can subsequently be processed in the course of further processing in the sense of raw material recycling, eg. B. used as raw materials for olefin production in ethylene plants.
  • An advantage of the process according to the invention is that inorganic secondary constituents of the old or waste plastics are concentrated in the sump phase, while the condensate not containing these constituents can be processed further by less complex processes.
  • by optimally setting the process parameters temperature and residence time it can be achieved that, on the one hand, a relatively high proportion of condensate is formed and, on the other hand, the viscous depolymerizate of the bottom phase remains pumpable under the process conditions.
  • a useful approximation is that an increase in temperature by 10 ° C. with an average residence time increases the yield of the products passing into the volatile phase by more than 50%.
  • the residence time dependency for two typical temperatures is shown in FIG. 3.
  • Typical of the present process is a condensate yield of about 50% by weight and more based on the total amount of the plastics used in the depolymerization. This advantageously considerably relieves the cost-intensive process stages of pressure gasification, bottom phase hydrogenation and smoldering (pyrolysis).
  • the preferred temperature range for the depolymerization for the process according to the invention is 150 to 470 ° C. A range from 250 to 450 ° C. is particularly suitable.
  • the residence time can be 0.1 to 20 hours. A range from 1 to 10 h has proven to be generally sufficient.
  • the pressure is in the invention Procedure a less critical size. So it may be preferable to carry out the process under negative pressure, e.g. B. if volatile components have to be deducted for procedural reasons. Relatively high pressures are also practicable, however, they require more equipment. In general, the pressure should be in the range from 0.01 to 300 bar, in particular 0.1 to 100 bar.
  • the method can preferably be good at normal pressure or slightly above z. B.
  • the depolymerization can preferably be carried out with the addition of a catalyst, for example a Lewis acid such as aluminum chloride, a radical-forming substance such as a peroxide or a metal compound, for example a zeolite impregnated with a heavy metal salt solution.
  • a catalyst for example a Lewis acid such as aluminum chloride, a radical-forming substance such as a peroxide or a metal compound, for example a zeolite impregnated with a heavy metal salt solution.
  • the depolymerization can take place under turbulent flow conditions, e.g. B. by mechanical stirrer, but also by pumping around the reactor contents.
  • inventions of the process consist of depolymerization under inert gas, ie gas which is essentially inert towards the starting materials and depolymerization products, e.g. B. N 2 , CO 2 , CO or hydrocarbons.
  • inert gas ie gas which is essentially inert towards the starting materials and depolymerization products, e.g. B. N 2 , CO 2 , CO or hydrocarbons.
  • stripping gases and stripping vapors such as nitrogen, water vapor or hydrocarbon gases.
  • Suitable liquid auxiliary phases or solvents or solvent mixtures are, for example, used organic solvents, that is to say waste solvents, incorrect production batches of organic liquids, waste oils or fractions from petroleum refining, for example vacuum residues.
  • the depolymerization can be carried out in a conventional reactor, e.g. B. a stirred tank reactor with external circulation, which is designed for the corresponding process parameters, such as pressure and temperature, and whose container material is resistant to the acidic components that may arise, such as hydrogen chloride.
  • a conventional reactor e.g. B. a stirred tank reactor with external circulation, which is designed for the corresponding process parameters, such as pressure and temperature, and whose container material is resistant to the acidic components that may arise, such as hydrogen chloride.
  • suitable "unit operations" methods can be considered, such as those used for the so-called visbreaking of heavy crude oils or of residual oils from mineral oil processing. Possibly. they must be adapted according to the requirements of the method according to the invention.
  • This process stage is advantageously designed for continuous operation, i. H. the plastic is continuously introduced into the liquid phase of the depolymerization reactor and the depolymerizate and top product are continuously removed.
  • the equipment required for depolymerization is comparatively low. This applies in particular if the process is carried out in the vicinity of normal pressure, ie in the range from 0.2 to 2 bar. In comparison to hydrogenating pretreatments, the expenditure on equipment is also significantly lower. With optimal depolymerization process control, the subsequent process steps can be relieved by up to 50% and more. At the same time, a large proportion of condensable hydrocarbons is deliberately produced in the depolymerization, which can be worked up to valuable products by known and comparatively inexpensive processes.
  • the depolymerizate is easy to handle, since it remains pumpable and, in this form, is a good starting material for the subsequent process stages.
  • the depolymerized material and the condensate are worked up separately from one another.
  • the condensable depolymerization products are preferably subjected to a hydrogenating refining on fixed granular catalyst.
  • the condensate can be subjected to conventional hydrotreating using commercially available nickel / molybdenum or cobalt / molybdenum contacts at hydrogen partial pressures of 10 to 250 bar and temperatures of 200 to 430 ° C.
  • a guard bed for trapping entrained ash components or coke-forming components is expediently connected upstream.
  • the contact is arranged on solid trays as usual and the direction of flow of the condensate can be provided from the tray towards the top of the hydrotreating column or in the opposite direction.
  • acidic components such as hydrogen halide, hydrogen sulfide and. The like.
  • the feeding of water, alkali compounds and possibly corrosion inhibitors into the condensation part of appropriate separators is expedient.
  • the condensable depolymerization products or the condensate can also be subjected to hydrogenating refining on a moving catalyst or in a flowing catalyst bed.
  • the condensate obtained during the depolymerization is, for example, an excellent starting material for a steam cracker after it has passed through the hydrotreater.
  • the Z. B. liquid product obtained in the hydrotreater is processed as synthetic crude oil (syncrude) in conventional refinery structures for the production of fuel components or as a chemical raw material, for example for ethylene production in ethylene plants.
  • gaseous components obtained during hydrotreating are suitable, for example, to be added to the products used for steam reforming.
  • At least a partial stream of the depolymerizate is subjected to pressure gasification.
  • all entrained-flow carburettors (Texaco, Shell, Prenflo), fixed bed carburettors (Lurgi, Espag) and Ziwi carburettors are suitable as devices for pressure gasification.
  • Processes for the thermal decomposition of hydrocarbons with oxygen are particularly suitable, as are carried out in processes of oil gasification by partial oxidation of the hydrocarbons as a flame reaction in a combustion chamber. The reactions are autothermal - not catalytic.
  • the crude gas which essentially consists of CO and H 2 and is produced in the pressure gasification, can be worked up to synthesis gas or used to generate hydrogen.
  • At least a partial stream of the depolymerizate is fed to a bottom phase hydrogenation.
  • the bottom phase hydrogenation is particularly preferred when a high proportion of liquid hydrocarbons is to be obtained from the depolymerizate.
  • the bottom phase hydrogenation of the pumpable liquid-viscous depolymerizate is carried out, for example, in such a way that any petroleum-derived vacuum residue is mixed in and hydrogenation gas is added after compression to 300 bar.
  • the reaction material passes through heat exchangers connected in series, in which the heat exchange with product streams takes place, for example, a hot separator top product.
  • the reaction mixture which has been preheated to typically 400 ° C., is further heated to the desired reaction temperature and then fed to the reactor or a reactor cascade in which the bottom phase hydrogenation takes place.
  • the gaseous components at reaction temperature are separated from liquid and solid components under process pressure.
  • the latter also contain the inorganic minor components.
  • the heavier oil components are separated from the gaseous fraction in a separator, which can be fed to an atmospheric distillation after expansion.
  • the process gases are first removed from the uncondensed portion, which are worked up in a gas scrubber and recycled as recycle gas.
  • the remaining amount of the hot separator product is, for example, freed from the process water after further cooling and fed to an atmospheric column for further processing.
  • the bottom draw of the hot separator can expediently be expanded in two stages and subjected to vacuum distillation to remove residual oil.
  • the thickened residue which also contains the inorganic secondary constituents, can be fed to the gasification device in liquid or solid form for the purpose of generating synthesis gas.
  • the residues obtained in the bottom phase hydrogenation (hot separator residue) and the smoldering coke obtained when the depolymerizate smells, each containing the inorganic secondary constituents, can be utilized by a further thermal process step, the residues obtained there containing the inorganic secondary constituents e.g. B. can be further processed for the purpose of metal recovery.
  • the light and medium oil fractions obtained from the bottom phase hydrogenation can be used in refinery structures as valuable raw materials for the production of fuels or plastic precursors such as olefins or aromatics. If these products from the bottom phase hydrogenation should not be stable in storage, they can be subjected to the hydrotreating treatment provided for condensate or condensable components in the present process.
  • a preferred embodiment of the process according to the invention consists in that the pumpable viscous depolymerizate, after separating off the gaseous and condensable depolymerization products as a liquid product, is each divided into a partial gasification which is to be pressurized and also a partial stream to be fed to a bottom phase hydrogenation.
  • the division of the pumpable viscous depolymerizate according to the invention into one partial pressure gasification and one partial phase hydrogenation and possibly pyrolysis feed in connection with the separate processing of the condensable components in a hydrotreating step leads to one significantly improved plant utilization.
  • Devices such as those developed for the pressure gasification of solid fuels or for the thermal decomposition of hydrocarbons with oxygen or in plants for the sump phase hydrogenation of carbon-containing materials under high pressure are very capital-intensive plant parts, the throughput capacity of which is optimally used when it is used by Feed materials are relieved, as previously separated in the present process as a condensate stream and subjected to a separate workup in a hydrotreater under comparatively mild process conditions.
  • Another preferred option of the present method is to subject at least a partial stream of the depolymerization to a smoldering process to obtain smoldering gas, smoldering tar and smoldering coke.
  • the gaseous hydrogen chloride gas or condensable in the form of an aqueous solution during depolymerization can be used separately in the sense of material recycling. Remaining fractions which are not components of the gaseous depolymerization products which can be condensed as a liquid product yield and which u. a. chlorine-organic as well as sulfur- and nitrogen-containing compounds can be freed from the heteroatoms chlorine, sulfur, nitrogen or oxygen in the course of the bottom phase hydrogenation or the residue processing integrated into the same, which are separated off as hydrogen compounds.
  • the gaseous depolymerization products if appropriate freed from acidic components such as hydrogen halides, can preferably be fed to the hydrogen feed gas or the hydrogen cycle gas of the bottom phase hydrogenation.
  • the combination of depolymerization, hydrogenating treatment of the preferred distillate components, bottom phase hydrogenation, gasification (partial oxidation) and / or smoldering of the depolymerizate of the bottom phase means that the latter treatment stages, which are technologically particularly complex and complex but tolerate inorganic ingredients, can be relieved in terms of capacity.
  • the method according to the invention offers a high material recycling potential of the plastics used.
  • a flow chart for the system configuration according to FIG. 1 is given as follows in the sense of an exemplary embodiment for the specified feed products.
  • the appropriately comminuted, possibly washed and dried waste plastic is continuously fed to the depolymerization reactor 1, which is provided with heating, stirring, pressure-maintaining devices, associated inlet and outlet valves and measuring and control devices for checking the level.
  • 25.0% by weight of the bottom phase hydrogenation 3 and 25.0% by weight of the gasification device 4 are fed in from the depolymerizate.
  • 25.0% by weight of vacuum residue are fed to the bottom phase hydrogenation 3 as a recycle stream.
  • the reaction product of the gasification device consists in a typical procedure of 24.0% by weight of a synthesis gas and approximately 1.0% by weight of an ash-containing soot.
  • the product stream of the depolymerizate from reactor 1 can be partly fed to pyrolysis or smoldering plant 5 for the production of pyrolysis coke, smoldering tar and smoldering gas.
  • the pyrolysis coke is fed to the gasification device, the smoldering tar and the smoldering gas of the bottom phase hydrogenation.
  • the inorganic secondary constituents enriched in the depolymerizate are further concentrated in the subsequent workup. If the depolymerizate is fed to gasification, the inorganic secondary components are subsequently found in the discharged slag. In the case of the bottom phase hydrogenation, they are contained in the hydrogenation residue and in the smoldering in the smoked coke. If the hydrogenation residue and / or the smoked coke are also fed to the gasification, all of the inorganic secondary constituents entered in the process according to the invention leave the processing stage as gasification slag.
  • the old or waste plastic enters the silo 1 and from there into the reactor 2 via the conveying device 16.
  • the reactor contents are heated by means of a circulation system consisting of a circulation pump 4 and a furnace 3.
  • a stream is withdrawn from the circulation via the suspension pump 5, which flow into the insert container 6
  • Vacuum residue supplied via line 14 is mixed and then fed to further processing via high pressure pump 7.
  • the gases and condensable components formed in reactor 2 are passed through condenser 8 and separated. After passing through hydrochloric acid washer 9, the cleaned gases 10 are passed on for further use.
  • the acid components previously contained are removed after washing as aqueous hydrochloric acid 12.
  • the condensate separated in condenser 8 is fed from there for further use.
  • the plastic mixture was depolymerized in the reactor at temperatures between 360 ° C and 420 ° C. Four fractions were formed, the quantity distribution depending on the reactor temperature is shown in the following table:
  • the depolymerized material stream (III) was drawn off continuously and fed to a bottom phase hydrogenation plant together with petroleum-derived vacuum residue for further cleavage.
  • the viscosity of the depolymerizate was 200 mPas at 175 ° C.
  • the hydrocarbon condensates (stream II) were condensed in a separate plant and sent for further processing in a hydrotreater.
  • the gaseous hydrogen chloride (stream IV) was taken up with water and released as 30% aqueous hydrochloric acid.
  • the hydrocarbon gases (stream 1) were fed to the bottom phase hydrogenation plant for conditioning.
  • Condensate from a depolymerization plant which was obtained at a temperature between 400 and 420 ° C from a plastic mixture (DSD house collection), was freed of HCI by washing with ammoniacal solution. It then had a Cl content of 400 ppm.
  • This pretreated condensate was subjected to a catalytic dechlorination process in a continuously operating apparatus.
  • the condensate was first compressed to 50 bar and then subjected to hydrogen, so that a gas / condensate ratio of 1000 l / kg was maintained.
  • the mixture was heated and reacted in a fixed bed reactor over a NiMo catalyst. After leaving the reactor, the reaction mixture was quenched with ammoniacal water so that the HCl formed completely passed into the aqueous phase. Before the reaction mixture was let down, a gas / liquid phase separation was carried out so that the gas and liquid phases could be released separately. After relaxation, the liquid phase was broken down into an aqueous and an organic phase.
  • the organic phase which represented more than 90% by weight of the condensate used, showed the following Cl contents [ppm] depending on the chosen reaction conditions: Temperature [° C] WHSV [kg oil / kg cat./h] 0.5 1 2nd 370 - ⁇ 1 3rd 390 3rd ⁇ 1 ⁇ 1 410 ⁇ 1 ⁇ 1

Description

  • Die Erfindung betrifft ein Verfahren zur Verarbeitung von Alt- oder Abfallkunststoffen zwecks Gewinnung von Chemierohstoffen und flüssigen Kraftstoffkomponenten.
  • Die Erfindung geht aus von einem Verfahren zur Hydrobehandlung von kohlenstoffhaltigem Material, bei dem einem hochsiedenden Öl Polymere, insbesondere Polymerabfälle in zerkleinerter oder gelöster Form zugesetzt werden und dieses Gemisch in Gegenwart von Wasserstoff zur Gewinnung von Kraftstoffkomponenten und Chemierohstoffen hydrierend behandelt wird (vgl. DD 254 207 A1).
  • Ein Verfahren zur Umwandlung von Altreifen, Gummi und/oder anderen Kunststoffen in flüssige, gasförmige und feste Produkte durch depolymerisierende Behandlung in einem Lösungsmittel unter erhöhtem Druck und erhöhter Temperatur ist in DE-A-25 30 229 beschrieben worden. Insbesondere sollten bei diesem Verfahren keine schädlichen Stoffe wie SO2, Ruß oder dergleichen in die Atmosphäre gelangen. Beispielsweise Altreifen wurden nach Zerkleinerung und Vermischen mit einem Recycle-Öl aus dem Hydrierprodukt unter Wasserstoffanlagerung bei einem Wasserstoffdruck von 150 bar und einer Temperatur von 450 °C in Anwesenheit von die Spalt- und Hydrierreaktionen katalysierenden Stoffen einem Hydrierreaktor zugeführt.
  • In DE-A-2 205 001 ist ein Verfahren zur thermischen Aufbereitung von Abfällen und Kautschuk beschrieben, bei dem die Abfälle bei Temperaturen von 250 bis 450 °C in Gegenwart einer bei der Reaktionstemperatur flüssigen Hilfsphase gespalten werden.
  • Ferner wird verwiesen auf einen Aufsatz von Ronald H. Wolk, Michael C. Chervenak und Carmine A. Battista in Rubber Age, Juni 1974, Seiten 27 bis 38, betreffend die Hydrierung von Abfallreifen zwecks Gewinnung im Gasölbereich siedender flüssiger Produkte auf Kohlenwasserstoffbasis sowie von als Füllmittel wiederverwendbarem Kohlenstoffruß.
  • Weiterhin ist ein Verfahren bekannt, bei dem Polymerabfälle, insbesondere Altgummi, in den Rückstandsprodukten der Erdölverarbeitung aufgelöst werden. Das entstandene Gemisch wird danach einer Verkokung zu Koks unterworfen. Dabei fallen gasförmige und flüssige Produkte an. Letztere seien bei entsprechender Aufarbeitung als Kraftstoffkomponenten geeignet, vgl. DD 0 144 171.
  • Die Polymerkonzentration im Einsatzprodukt der Hydrierung liegt beispielsweise nach dem Verfahren gemäß DD 254 207 zwischen 0,01 bis 20 Gew.-%. Die gemeinsame hydrierende Behandlung von Schwerölen mit gelösten und/oder suspendierten Polymeren sei auf Hydrierverfahren beschränkt, bei denen die Hydrierung in Rohrreaktoren mit oder ohne suspendiertem Katalysator durchgeführt wird. Würden Reaktoren mit fest angeordneten Katalysatoren betrieben, so sei der Einsatz von Polymeren nur bedingt möglich, insbesondere dann, wenn Polymere zugesetzt würden, die schon in der Aufheizphase bis ca. 420 °C vor dem Reaktoreintritt depolymerisieren.
  • Hier setzt die Aufgabe an, sich bei Verfahren zur Verarbeitung von Altkunststoffen nicht nur auf Zusätze von bis zu 20 Gew.-% von Altkunststoffen zu raffinerieüblichen Verfahren der Schwerölkonversion zu beschränken.
  • Es stellt sich ferner das Problem, daß bei der chemischen Umwandlung kunststoffhaltiger Abfallprodukte auch chlorhaltige Kunststoffe mitverarbeitet werden müssen. Die bei der Depolymerisation gemäß den Verfahren nach dem Stand der Technik als gasförmige Spaltprodukte auftretenden korrosiven Halogenwasserstoffe erfordern besondere Vorkehrungen.
  • Ein weiteres Problem stellt sich dadurch, daß die eingesetzten Alt- oder Abfallkunststoffe zum Teil in nicht unerheblichem Maße anorganische Nebenbestandteile, wie Pigmente, Metalle und Füllstoffe enthalten, die bei einigen Depolymerisationsverfahren bzw. bei der Aufarbeitung von Depolymerisationsprodukten zu Schwierigkeiten führen können.
  • Es ist daher auch Aufgabe der vorliegenden Erfindung ein Verfahren zur Verfügung zu stellen, das diese Inhaltstoffe toleriert. Sie werden in einer Phase aufkonzentriert, von der sie dann diese Inhaltstoffe ebenfalls tolerierenden Aufarbeitungsverfahren zugeführt werden können, während andere Phasen, die frei von diesen anorganischen Nebenbestandteilen sind, weniger aufwendig aufgearbeitet werden müssen.
  • Eine weitere Aufgabe besteht darin, komplexe und kapitalintensive Verfahrensschritte wie Schwelung, Vergasung oder Sumpfphasenhydrierung hinsichtlich der geforderten Durchsatzmengen zu entlasten bzw. besser auszunutzen.
  • Die Erfindung besteht in einem Verfahren zur Verarbeitung von Alt- oder Abfallkunststoffen zwecks Gewinnung von Chemierohstoffen und flüssigen Kraftstoffkomponenten durch Depolymerisieren der Einsatzstoffe ohne Wasserstoffzugabe zu einer pumpbaren sowie einer flüchtigen Phase, Auftrennen der flüchtigen Phase in eine Gasphase und ein Kondensat, das die raffinerieüblichen Standardprozeduren unterworfen wird, wobei die nach Abtrennen der flüchtigen Phase verbleibende pumpbare Phase einer Sumpfphasenhydrierung, Vergasung, Schwelung oder einer Kombination dieser Verfahrensschritte unterworfen wird.
  • Bei diesem Verfahren werden die entstehenden gasförmigen Depolymerisationsprodukte (Gas), die entstehenden kondensierbaren Depolymerisationsprodukte (Kondensat) und die pumpbare, viskose Depolymerisationsprodukte enthaltende, Sumpfphase (Depolymerisat) in separaten Teilströmen abgezogen und Kondensat sowie Depolymerisat voneinander getrennt aufgearbeitet. Dabei werden vorzugsweise die Verfahrensparameter so gewählt, daß ein möglichst hoher Anteil an dem so genannten Kondensat entsteht.
  • Zusätzliche vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen beschrieben.
  • Die in dem vorliegenden Verfahren einzusetzenden Kunststoffe sind z. B. Mischfraktionen aus Abfallsammlungen, u. a. durch die Duale System Deutschland GmbH (DSD). In diesen Mischfraktionen sind z. B. Polyethylen, Polypropylen, Polyvinylchlorid, Polystyrol, Polymer-Blends wie ABS sowie Polykondensate enthalten. Einsetzbar sind auch Kunststoffproduktionsabfälle, gewerbliche Verpackungsabfälle aus Kunststoff, Rest-, Misch- und Reinfraktionen aus der kunststoffverarbeitenden Industrie, wobei für die Eignung, in dem vorliegenden Verfahren einsetzbar zu sein, die chemische Zusammensetzung dieser Kunststoffabfälle nicht kritisch ist. Geeignete Einsatzprodukte sind auch Elastomere, technische Gummiartikel oder Altreifen in geeignet vorzerkleinerter Form.
  • Die eingesetzten Alt- oder Abfallkunststoffe stammen beispielsweise aus Formteilen, Laminaten, Verbundwerkstoffen, Folien oder synthetischen Fasern. Beispiele für halogenhaltige Kunststoffe sind chloriertes Polyethylen (PEC), Polyvinylchlorid (PVC), Polyvinylidenchlorid (PVDC), Chloropren-Kautschuk, um nur einige wichtige Vertreter zu nennen. Aber auch insbesondere schwefelhaltige Kunststoffe, beispielsweise Polysulfone oder mit Schwefelbrücken vernetzte Kautschuke wie in Altreifen fallen in großen Mengen an und sind bei Vorhandensein der entsprechenden Ausrüstungen für die Vorzerkleinerung und Vorsortierung in Kunststoff- und Metallbestandteile einer Depolymerisation und weiteren Aufarbeitung zur Gewinnung von Chemierohstoffen oder auch Kraftstoffkomponenten zugänglich. Der bei diesen Vorbehandlungsstufen oder chemischen Umwandlungsverfahren unter Wasserstoffanlagerung im Verfahren anfallende sulfidische Schwefel geht ebenso wie der Chlorwasserstoff überwiegend in das Abgas über, das abgetrennt und einer weiteren Verwertung zugeführt wird.
  • Unter den in dem vorliegenden Verfahren einzusetzenden Alt- oder Abfallkunststoffen sind synthetische Kunststoffe, Elastomere, daneben aber auch abgewandelte Naturstoffe einsetzbar. Hierunter fallen neben den bereits erwähnten Polymerisaten, insbesondere Thermoplasten, auch Duroplaste und Polyaddukte sowie Produkte auf Basis von Cellulose wie Zellstoff und Papier. Die hieraus gefertigten Erzeugnisse umfassen Halbzeuge, Einzelteile, Bauelemente, Verpackungen, Lager- und Transportbehälter sowie Konsumwaren. Unter die Halbzeuge fallen auch Tafeln und Platten (Leiterplatten) sowie Schichtpreßstoffplatten, die teilweise noch Metallbeschichtungen enthalten können und die wie die übrigen einzusetzenden Produkte nach Vorzerkleinerung auf Teilchen- bzw. Stückgrößen von 0,5 bis 50 mm ggf. von Metall-, Glas- oder Keramikbestandteilen mittels geeigneter Klassierverfahren abgetrennt werden können.
  • Die genannten Alt- und Abfallkunststoffe enthalten in der Regel auch anorganische Nebenbestandteile wie Pigmente, Glasfasern, Füllstoffe wie Titan- oder Zinkoxyd, Flammschutzmittel, pigmententhaltende Druckfarben, Ruß und auch Metalle wie z. B. metallisches Aluminium. Die genannten Alt- und Abfallkunststoffe, die z. B. durch die Sammlungen des DSD in Gemischen oder Gemengen unterschiedlicher Zusammensetzung anfallen, können bis zu 10, ggf. bis zu 20 Gew.-% anorganische Nebenbestandteile enthalten. Üblicherweise werden diese Kunststoffgemische in zerkleinerter oder auch vorkonditionierter Form z. B. als Granulat oder Chips oder dgl. in das vorliegende Verfahren eingesetzt:
  • Die Verfahresprodukte der Depolymerisation werden im wesentlichen in drei Hauptproduktströme aufgeteilt:
    • 1.) Ein Depolymerisat in einer Menge zwischen 15 und 85 Gew.-%, bezogen auf die eingesetzte Kunststoffmischung, das je nach Zusammensetzung und den jeweiligen Erfordernissen in die der Sumpfphasenhydrierung, der Druckvergasung und/oder ggf. der Schwelung (Pyrolyse) zuzuführenden Produktteilströme aufgeteilt werden kann.
      Es handelt sich dabei überwiegend um > 480 °C siedende schwere Kohlenwasserstoffe, die alle mit den Alt- und Abfallkunststoffen in den Prozeß eingetragenen Inertstoffe, wie Aluminium-Folien, Pigmente, Füllstoffe, Glasfasern, enthalten.
    • 2.) Ein Kondensat in einer Menge von 10 bis 80, vorzugsweise 20 bis 50 Gew.-% , bezogen auf die eingesetzte Kunststoffmischung, das in einem Bereich zwischen 25 °C und 520 °C siedet und bis zu ca. 1.000 ppm organisch gebundenes Chlor enthalten kann.
      Das Kondensat läßt sich z. B. durch Hydrotreating an fest angeordneten handelsüblichen Co-Mo- oder Ni-Mo-Katalysatoren in ein hochwertiges synthetisches Rohöl (Syncrude) umwandeln oder auch direkt in Chlor tolerierende chemisch-technische oder raffinerieübliche Verfahren als kohlenwasserstoffhaltige Basissubstanz einbringen.
    • 3.) Ein Gas in Mengen von etwa 5 bis zu 20 Gew.-% bezogen auf die eingesetzte Kunststoff-Mischung, das neben Methan, Ethan, Propan und Butan auch gasförmige Halogenwasserstoffe, wie hauptsächlich Chlorwasserstoff sowie leichtflüchtige, chlorhaltige Kohlenwasserstoff-Verbindungen enthalten kann.
      Der Chlorwasserstoff läßt sich z. B. mit Wasser aus dem Gasstrom zur Gewinnung einer 30 %igen wäßrigen Salzsäure herauswaschen. Das Restgas kann hydrierend in einer Sumpfphasenhydrierung oder in einem Hydrotreater vom organisch gebundenen Chlor befreit und z. B. der Raffineriegas-Verarbeitung zugeführt werden.
  • Die einzelnen Produktströme, insbesondere das Kondensat, können im Zuge ihrer weiteren Aufarbeitung anschließend im Sinne einer rohstofflichen Wiederverwertung, z. B. als Rohstoffe für die Olefinherstellung in Ethylenanlagen eingesetzt werden.
  • Ein Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß anorganische Nebenbestandteile der Alt- bzw. Abfallkunststoffe in der Sumpfphase aufkonzentriert werden, während das diese Inhaltsstoffe nicht enthaltende Kondensat durch weniger aufwendige Verfahren weiter verarbeitet werden kann. Insbesondere über die optimale Einstellung der Prozeßparameter Temperatur und Verweilzeit kann erreicht werden, daß einerseits ein relativ hoher Anteil von Kondensat entsteht und andererseits das viskose Depolymerisat der Sumpfphase unter den Verfahrensbedingungen pumpbar bleibt. Als brauchbare Näherung kann dabei gelten, daß eine Erhöhung der Temperatur um 10 °C bei einer mittleren Verweilzeit die Ausbeute an den in die flüchtige Phase übergehenden Produkten um mehr als 50 % erhöht. Die Verweilzeitabhängigkeit für zwei typische Temperaturen zeigt Fig. 3.
  • Durch die weiteren bevorzugten Verfahrensmaßnahmen des Zusatzes von Katalysatoren, des Strippens mit Wasserdampf, Leichtsiedern oder Kohlenwasserstoffgasen, turbulenten Rührens oder Umpumpens kann die Kondensatausbeute zusätzlich optimiert werden.
  • Typisch für das vorliegende Verfahren ist eine Kondensatausbeute von etwa 50 Gew.-% und mehr bezogen auf die Gesamtmenge der bei der Depolymerisation eingesetzten Kunststoffe. Dadurch wird vorteilhafterweise eine erhebliche Entlastung der kostenintensiven Verfahrensstufen Druckvergasung, Sumpfphasenhydrierung sowie Schwelung (Pyrolyse) erreicht.
  • Der für das erfindungsgemäße Verfahren bevorzugte Temperaturbereich für die Depolymerisation beträgt 150 bis 470 °C. Besonders geeignet ist ein Bereich von 250 bis 450 °C. Die Verweilzeit kann 0,1 bis 20 h betragen. Als im allgemeinen ausreichend hat sich ein Bereich von 1 bis 10 h erwiesen. Der Druck ist bei dem erfindungsgemäßen Verfahren eine weniger kritische Größe. So kann es durchaus bevorzugt sein, das Verfahren bei Unterdruck durchzuführen, z. B. wenn flüchtige Bestandteile aus verfahrensbedingten Gründen abgezogen werden müssen. Aber auch relativ hohe Drücke sind praktikabel, erfordern jedoch einen höheren apparativen Aufwand. Im allgemeinen dürfte der Druck im Bereich von 0,01 bis 300 bar, insbesondere 0,1 bis 100 bar liegen. Das Verfahren läßt sich vorzugsweise gut bei Normaldruck oder leicht darüber z. B. bis etwa 2 bar ausführen, was den apparativen Aufwand deutlich reduziert. Um das Depolymerisat möglichst vollständig zu entgasen und um den Kondensatanteil noch zu erhöhen, wird das Verfahren vorteilhafterweise bei leichtem Unterdruck bis herunter zu etwa 0,2 bar durchgeführt.
  • Das Depolymerisieren kann vorzugsweise unter Zusatz eines Katalysators, beispielsweise einer Lewis-Säure wie Aluminiumchlorid, einer radikalbildenden Substanz wie eines Peroxids oder einer Metallverbindung, beispielsweise eines mit einer Schwermetallsalzlösung imprägnierten Zeoliths, erfolgen.
  • Das Depolymerisieren kann unter turbulenten Strömungsbedingungen, z. B. mittels mechanischer Rührer, aber auch durch Umpumpen des Reaktorinhalts durchgeführt werden.
  • Weitere bevorzugte Ausgestaltungen des Verfahrens bestehen in der Depolymerisation unter Inertgas, d. h. Gas, das sich gegenüber den Einsatzstoffen und Depolymerisationsprodukten im wesentlichen inert verhält, z. B. N2, CO2, CO oder Kohlenwasserstoffe. Das Verfahren kann auch unter Einleitung von Strippgasen und Strippdämpfen, wie Stickstoff, Wasserdampf oder Kohlenwasserstoffgasen durchgeführt werden.
  • Grundsätzlich kann es als ein Vorteil des Verfahrens angesehen werden, daß in diesem Verfahrensschritt kein Wasserstoff zugesetzt wird.
  • Als flüssige Hilfsphase bzw. Lösungsmittel oder Lösungsmittelgemisch eignen sich beispielsweise gebrauchte organische Lösungsmittel, also Lösungsmittelabfälle, Produktionsfehlchargen organischer Flüssigkeiten, Altöle oder Fraktionen aus der Erdölraffination, beispielsweise Vakuumrückstand.
  • Auf die Zugabe von Lösungsmitteln oder Fremdölen oder rezirkulierten Eigenölen kann aber auch verzichtet werden.
  • Die Depolymerisation kann in einem üblichen Reaktor, z. B. einem Rührkessel-reaktor mit externem Umlauf, durchgeführt werden, der auf die entsprechenden Prozeßparameter, wie Druck und Temperatur, ausgelegt ist und dessen Behältermaterial gegen die eventuell entstehenden sauren Bestandteile wie Chlorwasserstoff resistent ist. Insbesondere wenn das Depolymerisieren unter Zusatz eines Katalysators erfolgt, können als hierfür geeignete "unit operations" Verfahren in Betracht kommen, wie sie zum sogenannten Visbreaking schwerer Rohöle oder von Rückstandsölen der Mineralölverarbeitung in Gebrauch sind. Ggf. müssen sie entsprechend den Anforderungen des erfindungsgemäßen Verfahren angepaßt werden. Mit Vorteil wird diese Verfahrensstufe für eine kontinuierliche Betriebsweise ausgelegt, d. h. der Kunststoff wird kontinuierlich in die Flüssigphase des Depolymerisationsreaktors eingebracht und es wird kontinuierlich Depolymerisat sowie Kopfprodukt entnommen.
  • Im Vergleich zu den nachfolgenden Aufarbeitungsschritten Schwelung, Sumpfphasenhydrierung oder Vergasung, ist der apparative Aufwand für das Depolymerisieren vergleichsweise gering. Dies gilt insbesondere, wenn das Verfahren in Nähe des Normaldrucks, also im Bereich von 0,2 bis 2 bar, ausgeführt wird. Auch im Vergleich zu hydrierenden Vorbehandlungen ist der apparative Aufwand deutlich geringer. Bei optimaler Prozeßführung der Depolymerisation können die nachfolgenden Verfahrensschritte um bis zu 50 % und mehr entlastet werden. Gleichzeitig entsteht bei der Depolymerisation gewollt ein hoher Anteil kondensierbarer Kohlenwasserstoffe, der durch bekannte und vergleichsweise wenig aufwendige Verfahren zu wertvollen Produkten aufgearbeitet werden kann.
  • Das Depolymerisat ist nach Abtrennung von Gas und Kondensat einfach zu handhaben, da es pumpbar bleibt und in dieser Form ein gutes Einsatzmaterial für die nachfolgenden Verfahrensstufen darstellt.
  • Erfindungsgemäß werden Depolymerisat und Kondensat getrennt voneinander aufgearbeit.
  • Die kondensierbaren Depolymerisationsprodukte werden vorzugsweise einer hydrierenden Raffination an fest angeordnetem körnigen Katalysator unterworfen. So kann das Kondensat beispielsweise einem üblichen Hydrotreating unter Verwendung handelsüblicher Nickel/Molybdän- oder Cobalt/Molybdän-Kontakte bei Wasserstoffpartialdrucken von 10 bis 250 bar und Temperaturen von 200 bis 430°C unterworfen werden. Hierbei wird zweckmäßig in Abhängigkeit von der Zusammensetzung des angefallenen Kondensats ein Guard-Bett zum Abfangen mitgerissener Aschebestandteile oder koksbildender Bestandteile vorgeschaltet. Der Kontakt ist wie üblich auf festen Böden angeordnet und die Fließrichtung des Kondensats kann vom Boden in Richtung Kopf der Hydrotreating-Kolonne oder auch in umgekehrter Richtung vorgesehen werden. Zur Eliminierung von sauren Bestandteilen wie Halogenwasserstoff, Schwefelwasserstoff u. dgl. ist die Einspeisung von Wasser, Alkaliverbindungen und evtl. Korrosionsinhibitoren in den Kondensationsteil entsprechender Abscheider zweckmäßig.
  • Die kondensierbaren Depolymerisationsprodukte bzw. das Kondensat können anstatt einem üblichen Hydrotreating auch einer hydrierenden Raffination an einem bewegten Katalysator oder in einem wallenden Katalysatorbett unterworfen werden.
  • Das bei der Depolymerisation anfallende Kondensat stellt nach Durchlaufen durch den Hydrotreater beispielsweise einen vorzüglichen Einsatzstoff für einen Steamcracker dar.
  • Das z. B. im Hydrotreater gewonnene Flüssigprodukt wird als synthetisches Rohöl (Syncrude) in üblichen Raffineriestrukturen zur Gewinnung von Kraftstoffkomponenten weiterverarbeitet oder als Chemierohstoff, beispielsweise zur Ethylenerzeugung in Ethylenanlagen eingesetzt.
  • Die beim Hydrotreating anfallenden gasförmigen Bestandteile sind geeignet beispielsweise den Einsatzprodukten für das Steam-Reforming beigegeben zu werden.
  • In einer weiteren bevorzugten Ausführungsform wird zumindest ein Teilstrom des Depolymerisats einer Druckvergasung unterworfen.
  • Als Einrichtungen zur Druckvergasung geeignet sind prinzipiell alle Flugstrom-Vergaser (Texaco, Shell, Prenflo), Festbettvergaser (Lurgi, Espag) sowie Ziwi-Vergaser. Insbesondere sind geeignet Verfahren zur thermischen Spaltung von Kohlenwasserstoffen mit Sauerstoff wie sie bei Verfahren der Ölvergasung durch partielle Oxidation der Kohlenwasserstoffe als Flammenreaktion in einer Brennkammer durchgeführt werden. Die Reaktionen verlaufen autotherm - nicht katalytisch.
  • Das bei der Druckvergasung anfallende im wesentlichen aus CO und H2 bestehende Rohgas kann zu Synthesegas aufgearbeitet oder zur Wasserstofferzeugung herangezogen werden.
  • In einer weiteren bevorzugten Ausführungsform wird zumindestens ein Teilstrom des Depolymerisats einer Sumpfphasenhydrierung zugeführt. Die Sumpfphasenhydrierung ist insbesondere dann bevorzugt, wenn aus dem Depolymerisat ein hoher Anteil flüssiger Kohlenwasserstoffe gewonnen werden soll. Hinsichtlich einer ausführlichen Beschreibung der Anwendung einer Sumpfphasenhydrierung zur Herstellung von Benzing und gegenenfalls von Dieselöl aus Rohöl wird verwiesen auf dei deutsche Patentschrift Nr. 933 826.
  • Die Sumpfphasenhydrierung des pumpbaren flüssig-viskosen Depolymerisats wird beispielsweise so durchgeführt, daß ggf. erdölstämmiger Vakuumrückstand zugemischt wird und nach Kompression auf 300 bar Hydriergas zugesetzt wird. Zur Vorwärmung durchläuft das Reaktionsgut hintereinandergeschaltete Wärmeaustauscher, in denen der Wärmeaustausch gegen Produktströme beispielsweise Heißabscheider-Kopfprodukt erfolgt.
  • Die auf typisch 400°C vorgewärmte Reaktionsmischung wird weiter bis auf die gewünschte Reaktionstemperatur aufgeheizt und anschließend dem Reaktor oder einer Reaktorkaskade, worin die Sumpfphasenhydrierung abläuft, zugeführt.
  • In einem nachgeschalteten Heißabscheider erfolgt unter Prozeßdruck die Abtrennung der bei Reaktionstemperatur gasförmigen Komponenten von flüssigen und festen Bestandteilen. Letztere enthalten auch die anorganischen Nebenbestandteile.
  • Aus der gasförmigen Fraktion werden zunächst die schwereren Ölkomponenten in einem Abscheider abgetrennt, die nach Entspannung einer atmosphärischen Destillation zugeführt werden können.
  • Aus dem dabei nicht kondensierten Anteil werden in einem nachgeschalteten Abscheidersystem zunächst die Prozeßgase entfernt, die in einer Gaswäsche aufgearbeitet und als Kreislaufgas zurückgeführt werden. Die Restmenge des Heißabscheiderproduktes wird beispielsweise nach weiterer Abkühlung vom Prozeßwasser befreit und einer atmosphärischen Kolonne zur weiteren Aufarbeitung zugeführt.
  • Der Sumpfabzug des Heißabscheiders kann zweckmäßig zweistufig entspannt und zur Restölabtrennung einer Vakuumdestillation unterworfen werden. Der eingedickte Rückstand, der auch die anorganischen Nebenbestandteile enthält, kann in flüssiger oder fester Form zwecks Synthesegaserzeugung der Vergasungseinrichtung zugeführt werden.
  • Die bei der Sumpfphasenhydrierung anfallenden Rückstände (Heißabscheiderrückstand) sowie der bei einer Schwelung des Depolymerisats anfallende Schwelkoks, jeweils die anorganischen Nebenbestandteile enthaltend, können durch einen weiteren thermischen Verfahrensschritt verwertet werden, wobei die dort anfallenden die anorganischen Nebenbestandteile enthaltenden Rückstände z. B. zwecks Metallrückgewinnung weiter aufgearbeitet werden können.
  • Die gewonnenen Leicht- und Mittelölfraktionen aus der Sumpfphasenhydrierung können in raffinerieüblichen Strukturen als wertvolle Rohstoffe für die Erzeugung von Kraftstoffen oder von Kunststoffvorläufern wie Olefine oder Aromaten dienen. Soweit diese Produkte aus der Sumpfphasenhydrierung nicht lagerstabil sein sollten, können sie der in dem vorliegenden Verfahren für Kondensat bzw. kondensierbare Bestandteile vorgesehenen Hydrotreating-Behandlung unterworfen werden.
  • Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, daß das pumpbare viskose Depolymerisat nach Abtrennung der gasförmigen und kondensierbaren Depolymerisationsprodukte als Flüssigprodukt je in einen einer Druckvergasung sowie in einen einer Sumpfphasenhydrierung zuzuführenden Teilstrom aufgeteilt wird.
  • Die erfindungsgemäße Aufteilung des pumpbaren viskosen Depolymerisats je in einen einer Druckvergasung sowie in einen einer Sumpfphasenhydrierung und ggf. einer Pyrolyse zuzuführenden Teilstrom in Verbindung mit der getrennten Aufarbeitung der kondensierbaren Bestandteile in einem Hydrotreating-Schritt führt zu einer erheblich verbesserten Anlagennutzung. Bei Einrichtungen, wie sie zur Druckvergasung fester Brennstoffe oder zur thermischen Spaltung von Kohlenwasserstoffen mit Sauerstoff entwickelt worden sind bzw. bei Anlagen zur Sumpfphasenhydrierung von kohlenstoffenthaltenden Materialien unter hohem Druck handelt es sich um sehr kapitalintensive Anlagenteile, deren Durchsatzkapazität dann optimal ausgenutzt wird, wenn sie von Einsatzmaterialien entlastet sind, wie sie bei dem vorliegenden Verfahren als Kondensatstoffstrom vorher abgetrennt und einer gesonderten Aufarbeitung in einem Hydrotreater unter vergleichsweise milden Verfahrensbedingungen unterworfen werden.
  • Eine weitere bevorzugte Option des vorliegenden Verfahrens besteht darin, von dem Depolymerisat zumindest einen Teilstrom einer Schwelung unter Gewinnung von Schwelgas, Schwelteer und Schwelkoks zu unterwerfen.
  • Das beim Depolymerisieren anfallende gasförmige bzw. in Form einer wäßrigen Lösung kondensierbare Chlorwasserstoffgas kann einer gesonderten Verwendung im Sinne einer stofflichen Verwertung zugeführt werden. Restliche Fraktionen, die nicht Bestandteile der gasförmig übergehenden und als Flüssigproduktausbeute kondensierbaren Depolymerisationsprodukte sind und die u. a. chlororganische sowie schwefel- und stickstoffhaltige Verbindungen enthalten können, werden im Zuge der Sumpfphasenhydrierung bzw. der in dieselbe integrierten Rückstandsaufarbeitung von den Heteroatomen Chlor, Schwefel, Stickstoff oder auch Sauerstoff befreit, die als Wasserstoffverbindungen abgetrennt werden.
  • Wegen des teilweise signifikanten Halogengehalts der eingesetzten Altkunststoffe ist es vorteilhaft, die abgezogenen gasförmigen Depolymerisationsprodukte einer Wäsche zu unterziehen, wobei insbesondere die gebildeten Halogenwasserstoffe als wäßrige Halogenwasserstoffsäuren abgetrennt und einer stofflichen Verwertung zugeführt werden können.
  • Die ggf. von sauren Bestandteilen wie Halogenwasserstoffen befreiten gasförmigen Depolymerisationsprodukte können vorzugsweise dem Wasserstoffeinsatzgas oder dem Wasserstoffkreislaufgas der Sumpfphasenhydrierung zugeführt werden. Das gleiche gilt für die bei einer Schwelung abgetrennten Schwelgase.
  • Durch die Kombination von Depolymerisation, hydrierender Behandlung der bevorzugt erzeugten Destillatbestandteile, Sumpfphasenhydrierung, Vergasung (partielle Oxidation) und/oder Schwelung des Depolymerisats der Sumpfphase können die letztgenannten technologisch besonders aufwendigen und komplexen aber anorganische Inhaltsstoffe tolerierenden Behandlungsstufen kapazitätsmäßig entlastet werden. Das erfindungsgemäße Verfahren bietet ein hohes stoffliches Wiederverwertungspotential der eingesetzten Kunststoffe.
  • So kann bei geeigneter Kombination der beschriebenen Verfahrensschritte eine praktisch vollständige stoffliche Verwertung des in den eingesetzten Kunststoffen enthaltenen organischen Kohlenstoffs erreicht werden. Zum großen Teil wird sogar der Erhalt und die stoffliche Verwertung der in den eingesetzten Kunststoffabfällen enthaltenen Kohlenstoff- bzw. Kohlenwasserstoffketten realisiert. Selbst die verbleibenden anorganischen Bestandteile können einer Wiederverwertung, z. B. einer Metallrückgewinnung, zugeführt werden. Sie können auch zumindest teilweise in aufgemahlener Form als Katalysatoren wieder in die Sumpfphasenhydrierung eingesetzt werden.
  • Das erfindungsgemäße Verfahren mit den Hauptanlagenteilen einer Depolymerisationseinrichtung, eines Hydrotreaters, einer Druckvergasung, einer Sumpfphasenhydrierung einer Schwelanlage und den Anlagenteilen für die Aufarbeitung der gasförmigen Depolymerisationsprodukte ist in dem Schema der Figur 1 veranschaulicht. In der Figur ist die Anlagenkonfiguration mit einer Schwelanlage als wahlweise vorzusehender Anlagenbestandteil gestrichelt dargestellt. Die Aufteilung der zugehörigen Stoffströme ist mittels der dargestellten Leitungsführung schematisch veranschaulicht. Die Bezugszeichen in Fig. 1 haben folgende Bedeutung:
  • 1
    Depolymerisationsreaktor
    2
    Hydrotreater
    3
    Sumpfphasenhydrierung
    4
    Veraasunasanlage
    5
    Schwelanlage
    6
    Altkunststoff
    7
    Vakuumrückstand
    8
    Salzsäure
    9
    Gase (Methan, Ethan, Propan, H2, etc.)
    10
    Kondensat
    11
    Depolymerisat
    12
    Gase (Methan, Ethan, Propan, H2S, NH3, H2, etc.), (z. B. zum Steam-Reforming)
    13
    Syncrude II (z. B. zur Olefinanlage)
    14
    Synthesegas (CO/H2)
    15
    Schlacke, Ruß (z. B. zur Metallrückgewinnung)
    16
    Gase (Methan, Ethan, Propan, H2S, NH3, H2, etc.), (z. B. zum Steam-Reforming)
    17
    Syncrude I (z. B. zur Raffinerie)
    18
    Hydrierrückstand (z. B. zur Vergasungsanlage)
    19
    Gase (z. B. zur Sumpfphasenhydrierung)
    20
    Teer (z. B. zur Sumpfphasenhydrierung)
    21
    Koks (z. B. zur Vergasungsanlage)
  • Ein Mengenschema für die Anlagenkonfiguration gemäß Figur 1 wird im Sinne eines Ausführungsbeispiels für die angegebenen Einsatzprodukte wie folgt angegeben.
  • Der entsprechend zerkleinerte, ggf. gewaschene und getrocknete Altkunststoff wird Depolymerisationsreaktor 1, der mit Heizungs-, Rühr-, Druckhaltevorrichtungen, zugehörigen Ein- und Auslaßventilen sowie Meß- und Regeleinrichtungen für die Standkontrolle versehen ist, kontinuierlich zugeführt.
  • In einer typischen Variante werden, bezogen auf das gesamte Reaktionsprodukt, 50,0 Gew.-% Depolymerisat, 40,0 Gew.-% Kondensat, 5,0 Gew.-% gasförmiger Chlorwasserstoff und 5,0 Gew.-% sonstiger Gase abgezogen. Das Kondensat wird Hydrotreater 2 zugeführt, von welchem über Kopf 35,0 Gew.-% eines Syncrudes, das einer Olefinanlage zugeführt wird, sowie 5,0 Gew.-% gasförmiger Reaktionsprodukte, die einem Steamreforming zugeführt werden, abgezogen werden.
  • Von dem Depolymerisat werden 25,0 Gew.-% der Sumpfphasenhydrierung 3 und 25,0 Gew.-% der Vergasungseinrichtung 4 zugeführt. Der Sumpfphasenhydrierung 3 werden noch 25,0 Gew.-% Vakuumrückstand als Recyclestrom zugeführt. Es werden 10,0 Gew.-% gasförmiger Reaktionsprodukte, die dem Steamreforming zugeführt werden, 40,0 Gew.-% eines Syncrudes, das einer üblichen Raffineriestruktur zugeführt wird und 5,0 Gew.-% Rückstand, der der Vergasung 4 zugeführt werden kann, abgezogen. Das Reaktionsprodukt der Vergasungseinrichtung besteht in einer typischen Fahrweise zu 24,0 Gew.-% eines Synthesegases sowie etwa 1,0 Gew.-% eines aschehaltigen Rußes.
  • Wahlweise kann der Produktstrom des Depolymerisats aus Reaktor 1 teilweise Pyrolyse- bzw. Schwel-Anlage 5 zur Gewinnung von Pyrolysekoks, Schwelteer und Schwelgas zugeführt werden. Der Pyrolysekoks wird der Vergasungseinrichtung, der Schwelteer und das Schwelgas der Sumpfphasenhydrierung zugeführt.
  • Die im Depolymerisat angereicherten anorganischen Nebenbestandteile werden in der anschließenden Aufarbeitung noch weiter aufkonzentriert. Wird das Depolymerisat einer Vergasung zugeführt, finden sich die anorganischen Nebenbestandteile anschließend in der ausgetragenen Schlacke. Bei der Sumpfphasenhydrierung sind sie im Hydrierrückstand und bei der Schwelung im Schwelkoks enthalten. Werden Hydrierrückstand und/oder Schwelkoks ebenfalls der Vergasung zugeführt, verlassen sämtliche in das erfindungsgemäße Verfahren eingetragenen anorganischen Nebenbestandteile die Aufarbeitung als Vergaserschlacke.
  • In der Figur 2 ist eine vorzugsweise Ausgestaltung des Eintragteils für die Alt- oder Abfallkunststoffe in die Depolymerisationsanlage mit zugehörigem Aufarbeitungsteil für die gasförmigen sowie die kondensierbaren Depolymerisationsprodukte gezeigt. Die Bezugszeichen in Fig. 2 haben folgende Bedeutung:
  • 1
    Silo für Altkunststoff
    2
    Depolymerisationsreaktor
    3
    Ofen
    4
    Umlaufpumpe
    5
    Suspensionspumpe
    6
    Einsatzbehälter
    7
    Hochdruckpumpe
    8
    Kondensator
    9
    Salzsäure-Wäscher
    10
    Gase
    11
    Frisch-Wasser
    12
    Wäßrige Salzsäure
    13
    Kondensat, (z. B. zum Hydrotreater)
    14
    Vakuumrückstand
    15
    Mischung Depolymerisat/Vakuumrückstand (z. B. zur Sumpfphasenhydrierung)
    16
    Fördervorrichtung
  • Über Fördervorrichtung 16 gelangt der Alt- oder Abfallkunststoff in Silo 1 und von dort in Reaktor 2. Die Aufheizung des Reaktorinhalts erfolgt über ein Umlaufsystem bestehend aus Umlaufpumpe 4 und Ofen 3. Über Suspensionspumpe 5 wird diesem Umlauf ein Strom entnommen, der in Einsatzbehälter 6 mit über Leitung 14 zugeführtem Vakuumrückstand vermischt und dann über Hochdruckpumpe 7 einer weiteren Verarbeitung zugeführt wird. Die in Reaktor2 entstehenden Gase und kondensierbaren Anteile werden über Kondensator 8 geleitet und aufgetrennt. Nach Durchlaufen von Salzsäurewäscher 9 werden die gereinigten Gase 10 der weiteren Verwendung zugeführt. Die vorher enthaltenen sauren Bestandteile werden nach der Wäsche als wäßrige Salzsäure 12 entfernt. Das in Kondensator 8 abgeschiedene Kondensat wird von dort der weiteren Verwendung zugeführt.
  • Beispiel 1 Depolymerisation von Altkunststoffen
  • In einen Rührkessel-Reaktor mit 80 m3 Inhalt, der mit einem Umlaufsystem mit einer Kapazität von 150 m3/h versehen ist, wurden kontinuierlich 5 t/h gemischte agglomerierte Kunststoff-Partikel mit einem mittleren Korndurchmesser von 8 mm pneumatisch eingetragen. Bei dem Mischkunststoff handelte es sich um Material, das aus der Haushaltssammlung des Dualen Systems Deutschland stammt und typischerweise 8 % PVC enthielt.
  • Das Kunststoffgemisch wurde im Reaktor bei Temperaturen zwischen 360 °C und 420 °C depolymerisiert. Es entstanden dabei vier Fraktionen, deren Mengenverteilung in Abhängigkeit von der Reaktortemperatur in nachfolgender Tabelle zusammengestellt ist:
    Figure imgb0001
    Figure imgb0002
  • Der Depolymerisat-Strom (III) wurde kontinuierlich abgezogen und zusammen mit Erdöl-stämmigem Vakuumrückstand einer Sumpfphasenhydrieranlage zur weiteren Spaltung zugeführt. Die Viskosität des Depolymerisats lag bei 200 mPas bei 175 °C.
  • In einer separaten Anlage wurden die Kohlenwasserstoff-Kondensate (Strom II) kondensiert und einer geeigneten Weiterverarbeitung in einem Hydrotreater zugeführt. Der gasförmige Chlorwasserstoff (Strom IV) wurde mit Wasser aufgenommen und als 30 %ige wäßrige Salzsäure abgegeben. Die Kohlenwasserstoffgase (Strom l) wurden der Sumpfphasenhydrieranlage zur Konditionierung zugeführt.
  • Beispiel 2 Dechlorierung des Kondensates
  • Kondensat aus einer Depolymerisationsanlage, das bei einer Temperatur zwischen 400 und 420 °C aus einer Kunststoff-Mischung (DSD-Haussammlung) gewonnen wurde, wurde durch Waschen mit ammoniakalischer Lösung von HCI befreit. Es wies anschließend einen Cl-Gehalt von 400 ppm auf.
  • Dieses so vorbehandelte Kondensat wurde in einer kontinuierlich arbeitenden Apparatur einem katalytischen Dechlorierungsprozeß unterworfen. Dabei wurde das Kondensat zunächst auf 50 bar verdichtet und anschließend mit Wasserstoff beaufschlagt, so daß ein Gas / Kondensat-Verhältnis von 1000 l/kg eingehalten wurde. Das Gemisch wurde aufgeheizt und in einem Festbett-Reaktor an einem NiMo-Katalysator umgesetzt. Nach Verlassen des Reaktors wurde das Reaktionsgemisch mit ammoniakalischem Wasser gequencht, so daß das gebildete HCI vollständig in die wäßrige Phase überging. Vor dem Entspannen des Reaktionsgemisches wurde eine Gas-/ Flüssig-Phasentrennung durchgeführt, so daß Gas- und Flüssigphase getrennt entspannt werden konnten. Die flüssige Phase wurde nach dem Entspannen in eine wäßrige und eine organische Phase zerlegt.
  • Die organische Phase, die mengenmäßig mehr als 90 Gew.-% des eigesetzten Kondensates repräsentierte, zeigte in Abhängigkeit von den gewählten Reaktionsbedingungen folgende Cl-Gehalte [ppm]:
    Temperatur [°C] WHSV [kg Öl/kg Kat./h]
    0,5 1 2
    370 - < 1 3
    390 3 < 1 < 1
    410 < 1 < 1
  • Diese Kondensatqualitäten entsprechen bei allen Reaktionsbedingungen den Eingangsspezifikationen einer Mineralölraffinerie und können dort der Top-Destillation oder spezifischen Verarbeitungsanlagen (z. B. einem Steamcracker) zugeführt werden.

Claims (10)

  1. Verfahren zur Verarbeitung von Alt- oder Abfallkunststoffen zwecks Gewinnung von Chemierohstoffen und flüssigen Kraftstoffkomponenten durch Depolymerisieren der Einsatzstoffe ohne Wasserstoffzugabe zu einer pumpbaren sowie einer flüchtigen Phase, Auftrennen der flüchtigen Phase in eine Gasphase und ein Kondensat das raffinerieüblichen Standardprozeduren unterworfen wird, wobei die nach Abtrennen der flüchtigen Phase verbleibende pumpbare Phase einer Sumpfphasenhydrierung, Vergasung, Schwelung oder einer Kombination dieser Verfahrensschritte unterworfen wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Depolymerisation bei einem Druck von 0.01 bis 300 bar, vorzugsweise 0,1 bis 100 bar, insbesondere 0.2 bis 2 bar, einer Temperatur von 150 bis 470 °C, vorzugsweise 250 bis 450 °C und einer Verweilzeit von 0,1 bis 10 h, vorzugsweise 0,5 bis 5 h durchgeführt wird und drei Teilströme in Mengen von 1.) 15 bis 85,0 Gew.-% eines Depolymerisats, von 2.) 10,0 bis 80,0 Gew.-% eines Kondensats sowie von 3.) 5,0 bis 20,0 Gew.-% eines Gasgemisches, jeweils bezogen auf die eingesetzte Kunststoffmischung, abgezogen werden.
  3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Depolymerisation unter Zusatz eines Katalysators durchgeführt wird.
  4. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Depolymerisation unter turbulenten Strömungsbedingungen durchgeführt wird.
  5. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Depolymerisation unter Inertgas durchgeführt wird.
  6. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Depolymerisation unter Einsatz von Strippmedien wie Stickstoff, Wasserdampf, kohlenwasserstoffhaltigen Gasen oder anderen Leichtsiedern durchgeführt wird.
  7. Verfahren nach mindestens einem der vorstehenden Ansprüche dadurch gekennzeichnet, daß den eingesetzten Alt- oder Abfallkunststoien eine flüssige Hilfsphase zugesetzt wird.
  8. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Kondensat einer hydrierenden Raffination an einem Festbettkatalysator unterworfen wird.
  9. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet. daß das Kondensat einer hydrierenden Raffination an einem bewegten Katalysator oder in einem wallenden Katalysatorbett unterworfen wird.
  10. Verfahren nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die gasförmigen Depolymerisationsprodukte, ggf. unter Zwischenschaltung einer Wäsche zum Entfernen von sauren Bestandteilen wie Chlorwasserstoff, der Sumpfphasenhydrierung zugeführt werden.
EP94913053A 1993-04-03 1994-03-25 Verfahren zur verarbeitung von alt- oder abfallkunststoffen Expired - Lifetime EP0692009B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4311034A DE4311034A1 (de) 1993-04-03 1993-04-03 Verfahren zur Gewinnung von Chemierohstoffen und Kraftstoffkomponenten aus Alt- oder Abfallkunststoff
DE4311034 1993-04-03
PCT/EP1994/000954 WO1994022979A1 (de) 1993-04-03 1994-03-25 Verfahren zur verarbeitung von alt- oder abfallkunststoffen

Publications (2)

Publication Number Publication Date
EP0692009A1 EP0692009A1 (de) 1996-01-17
EP0692009B1 true EP0692009B1 (de) 1997-05-28

Family

ID=6484696

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94913053A Expired - Lifetime EP0692009B1 (de) 1993-04-03 1994-03-25 Verfahren zur verarbeitung von alt- oder abfallkunststoffen

Country Status (23)

Country Link
US (1) US5849964A (de)
EP (1) EP0692009B1 (de)
JP (2) JP3385025B2 (de)
KR (2) KR100293752B1 (de)
CN (1) CN1049237C (de)
AT (1) ATE153692T1 (de)
AU (1) AU681652B2 (de)
BG (1) BG62572B1 (de)
CA (1) CA2158032A1 (de)
CZ (1) CZ292837B6 (de)
DE (3) DE4311034A1 (de)
DK (1) DK0692009T3 (de)
ES (1) ES2104375T3 (de)
FI (1) FI954685A0 (de)
GR (1) GR3024422T3 (de)
HU (1) HU218853B (de)
NO (1) NO953758L (de)
NZ (1) NZ265043A (de)
PL (1) PL178639B1 (de)
RU (1) RU2127296C1 (de)
SK (1) SK280953B6 (de)
UA (2) UA39203C2 (de)
WO (1) WO1994022979A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005010151B3 (de) * 2005-03-02 2006-09-14 Clyvia Technology Gmbh Verfahren zum katalytischen Depolymerisieren von kohlenwasserstoffhaltigen Rückständen sowie Vorrichtung zum Durchführen dieses Verfahrens
DE102008021629B4 (de) * 2008-04-25 2017-09-14 Technische Werke Ludwigshafen Ag Vorrichtung zur Herstellung von Roh-, Brenn- und Kraftstoffen aus organischen Substanzen

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4323320C2 (de) * 1993-07-06 2003-05-08 Hendrickx Heinz Verfahren zur Trennung, Reinigung, Sortierung und zum Recycling von Mischungen und/oder Verbunden von Kunststoffen untereinander und/oder mit anderen Werkstoffen mit Lösungsmittelverfahren
DE4328188C2 (de) * 1993-08-21 1996-04-18 Hoechst Ag Verfahren zur Herstellung von Synthesegas
DE4344311A1 (de) * 1993-12-23 1995-06-29 Linde Ag Verfahren und Vorrichtung zur thermischen Depolymerisation von Kunststoffen
DE4428355A1 (de) * 1994-05-20 1996-02-15 Veba Oel Ag Vorrichtung zur Depolymerisation von Alt- und Abfallkunststoffen
RO118134B1 (ro) * 1994-10-04 2003-02-28 Veba Oel Ag Procedeu pentru obtinerea unor materii prime chimice si componente combustibile lichide
DE19504595A1 (de) * 1995-02-11 1996-08-14 Basf Ag Verfahren zur gemeinsamen Hydrierung von kohlenwasserstoffhaltigen Gasen und Kondensaten
DE19516379A1 (de) * 1995-05-04 1996-11-07 Veba Oel Ag Verfahren zur Verarbeitung von Alt- oder Abfallkunststoffen
NL1006179C2 (nl) * 1997-05-30 1998-12-01 Alcoa Nederland Bv Werkwijze voor het verwerken van materiaal uit aluminium en kunststof.
HU218968B (hu) * 1997-12-05 2001-01-29 Tvk-Ecocenter Kft. Eljárás vegyes műanyaghulladék átalakítására
NL1007710C2 (nl) * 1997-12-05 1999-06-08 Gibros Pec Bv Werkwijze voor het verwerken van afval- respectievelijk biomassamateriaal.
KR100322663B1 (ko) * 2000-03-20 2002-02-07 곽호준 폐플라스틱을 이용한 휘발유, 등유 및 경유의 연속식제조방법 및 그 시스템
CA2411490A1 (en) * 2000-07-27 2002-02-07 E. I. Du Pont De Nemours And Company Transformation of polymers to useful chemicals by oxidation
DE10049377C2 (de) * 2000-10-05 2002-10-31 Evk Dr Oberlaender Gmbh & Co K Katalytische Erzeugung von Dieselöl und Benzinen aus kohlenwasserstoffhaltigen Abfällen und Ölen
PL351272A1 (en) * 2001-12-19 2003-06-30 Igor Skworcow Method of and an apparatus for obtaining ronnage carbon and engine fuel while processing used tyres and other polymeric wastes
US6774272B2 (en) 2002-04-18 2004-08-10 Chevron U.S.A. Inc. Process for converting heavy Fischer Tropsch waxy feeds blended with a waste plastic feedstream into high VI lube oils
US6822126B2 (en) * 2002-04-18 2004-11-23 Chevron U.S.A. Inc. Process for converting waste plastic into lubricating oils
US6703535B2 (en) * 2002-04-18 2004-03-09 Chevron U.S.A. Inc. Process for upgrading fischer-tropsch syncrude using thermal cracking and oligomerization
DE10356245B4 (de) * 2003-12-02 2007-01-25 Alphakat Gmbh Verfahren zur Erzeugung von Dieselöl aus kohlenwasserstoffhaltigen Reststoffen sowie eine Vorrichtung zur Durchführung dieses Verfahrens
EA010464B1 (ru) * 2004-02-26 2008-08-29 Игорь Антонович Рожновский Устройство для переработки углеродсодержащих отходов
CN1942557A (zh) 2004-03-14 2007-04-04 欧兹默技术集团有限公司 用于将废材料转化为液体燃料的方法和设备
DE102004038220B4 (de) 2004-08-05 2009-07-23 Proton Technology Gmbh I.Gr. Thermische Biomassenverölung
WO2008015424A2 (en) * 2006-08-01 2008-02-07 Reclaim Resources Limited Recycling of waste material
US7758729B1 (en) 2006-08-24 2010-07-20 Plas2Fuel Corporation System for recycling plastics
US8193403B2 (en) 2006-08-24 2012-06-05 Agilyx Corporation Systems and methods for recycling plastic
US8192586B2 (en) 2010-03-31 2012-06-05 Agilyx Corporation Devices, systems, and methods for recycling plastic
WO2008055149A2 (en) * 2006-10-30 2008-05-08 University Of Utah Research Foundation Blending plastic and cellulose waste products for alternative uses
ITBO20070104A1 (it) * 2007-02-21 2008-08-22 Kdvsistemi Brevetti S R L Apparato per la produzione di combustibile sintetico
US20080295390A1 (en) * 2007-05-04 2008-12-04 Boykin Jack W System for the production of synthetic fuels
US7626062B2 (en) 2007-07-31 2009-12-01 Carner William E System and method for recycling plastics
ITBO20070770A1 (it) * 2007-11-22 2009-05-23 Vuzeta Brevetti S R L Metodo e apparato per il trattamento di materiali di rifiuto
DE102008003837B4 (de) * 2008-01-04 2010-10-07 Wolf Eberhard Nill Verfahren zur Reinigung von organischen Reststoffen in einer Vorstufe der Thermolyse und Vorrichtung zur Durchführung des Verfahrens
ATE516129T1 (de) 2008-01-25 2011-07-15 Ekotoner Ltd Verfahren und anlage zur behandlung von tonerbehältern und kartuschen als gefährlicher büroabfall zum zweck einer wiederverwertung
GB0801787D0 (en) * 2008-01-31 2008-03-05 Reclaim Resources Ltd Apparatus and method for treating waste
US20090299110A1 (en) * 2008-05-30 2009-12-03 Moinuddin Sarker Method for Converting Waste Plastic to Lower-Molecular Weight Hydrocarbons, Particularly Hydrocarbon Fuel Materials, and the Hydrocarbon Material Produced Thereby
PL218781B1 (pl) 2009-05-25 2015-01-30 Bl Lab Spółka Z Ograniczoną Odpowiedzialnością Sposób wytwarzania wysokowartościowych produktów węglowodorowych z odpadowych tworzyw sztucznych i układ do sposobu wytwarzania wysokowartościowych produktów węglowodorowych z odpadowych tworzyw sztucznych
FR2946054B1 (fr) * 2009-06-02 2012-09-28 Alfyma Ind Procede de transformation de granulats de caoutchouc pour produire du carbonisat semi-actif et du plastifiant.
WO2011077419A1 (en) * 2009-12-22 2011-06-30 Cynar Plastics Recycling Limited Conversion of waste plastics material to fuel
WO2011123145A1 (en) * 2010-03-31 2011-10-06 Agilyx Corporation Systems and methods for recycling plastic
IES20110203A2 (en) * 2010-04-23 2011-11-23 Regenerative Sciences Patents Ltd Method and system for hydrocarbon extraction
US8664458B2 (en) * 2010-07-15 2014-03-04 Greenmantra Recycling Technologies Ltd. Method for producing waxes and grease base stocks through catalytic depolymerisation of waste plastics
US20130118075A1 (en) * 2010-07-19 2013-05-16 Get Patent B.V. System And Method For Thermal Conversion Of Carbon Based Materials
RU2556934C2 (ru) * 2010-08-26 2015-07-20 Ахд Вадьонкезелё Эш Таначадо Кфт, Способ термического разложения отходов, содержащих поливинилхлорид
US8969638B2 (en) * 2010-11-02 2015-03-03 Fina Technology, Inc. Depolymerizatin of plastic materials
US8480880B2 (en) 2011-01-18 2013-07-09 Chevron U.S.A. Inc. Process for making high viscosity index lubricating base oils
MY150550A (en) * 2011-07-22 2014-01-30 Shamsul Bahar Bin Mohd Nor Thermal de-polymerization process of plastic waste materials
DE202011105051U1 (de) 2011-08-31 2011-10-28 Georg Bogdanow Anlage zur Konvertierung von Wertstoffen
DE102011111526B4 (de) 2011-08-31 2014-06-26 Georg Bogdanow Verfahren zur Konvertierung von Wertstoffen
WO2014106650A2 (de) 2013-01-03 2014-07-10 EZER, Argun Verfahren und vorrichtungen zur verölung von kohlenwasserstoffhaltigem eingangsmaterial
CA2898257C (en) 2013-01-17 2021-10-05 Greenmantra Recycling Technologies Ltd. Catalytic depolymerisation of polymeric materials
WO2014165859A1 (en) 2013-04-06 2014-10-09 Agilyx Corporation Systems and methods for conditioning synthetic crude oil
PL229433B1 (pl) 2014-09-05 2018-07-31 Realeco Spolka Z Ograniczona Odpowiedzialnoscia Addytyw mineralny, zwłaszcza do stosowania w procesie ciągłego przetwarzania odpadowych tworzyw sztucznych, sposób, w którym wykorzystuje się ten addytyw oraz urządzenie do realizacji tego sposobu
WO2016142805A1 (en) * 2015-03-10 2016-09-15 Sabic Global Technologies, B.V. Process for dechlorination of hydrocarbon streams and pyrolysis oils
WO2016142808A1 (en) * 2015-03-10 2016-09-15 Sabic Global Technologies, B.V. An integrated process for conversion of waste plastics to final petrochemical products
WO2016142809A1 (en) * 2015-03-10 2016-09-15 Sabic Global Technologies, B.V. A robust integrated process for conversion of waste plastics to final petrochemical products
WO2016142806A1 (en) * 2015-03-10 2016-09-15 Sabic Global Technologies, B.V. Process for hydrocracking of hydrocarbon streams and pyrolysis oils
WO2016142807A1 (en) * 2015-03-10 2016-09-15 Sabic Global Technologies, B.V. Process for preparation of hydrocracking catalyst for use in hydrocracking of hydrocarbon streams
SI3040638T1 (en) 2015-07-23 2018-06-29 Hoval Aktiengesellschaft Heat transfer tube and boiler for heating with such a heat transfer tube
RU2617213C2 (ru) * 2015-08-18 2017-04-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный технический университет" (ТвГТУ) Способ утилизации полимерных отходов методом низкотемпературного каталитического пиролиза
US10472487B2 (en) 2015-12-30 2019-11-12 Greenmantra Recycling Technologies Ltd. Reactor for continuously treating polymeric material
JP6880051B2 (ja) 2016-02-13 2021-06-02 グリーンマントラ リサイクリング テクノロジーズ リミテッド ワックス添加剤を含むポリマー改質アスファルト
WO2017161463A1 (en) 2016-03-24 2017-09-28 Greenmantra Recycling Technologies Ltd. Wax as a melt flow modifier and processing aid for polymers
JP6999637B2 (ja) * 2016-07-13 2022-01-18 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 炭素数9以上の芳香族化合物類の選択的水素化脱アルキル化を達成しつつ、混合プラスチック熱分解からの熱分解油の脱塩化水素と水素化クラッキングを同時に行う方法
JP6952105B2 (ja) * 2016-08-01 2021-10-20 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ 脱揮押出および塩化物掃去剤を用いた混合プラスチック熱分解油の脱塩素
US10717936B2 (en) * 2016-08-01 2020-07-21 Sabic Global Technologies B.V. Catalytic process of simultaneous pyrolysis of mixed plastics and dechlorination of the pyrolysis oil
CA3036136A1 (en) 2016-09-29 2018-04-05 Greenmantra Recycling Technologies Ltd. Reactor for treating polystyrene material
CN109844070B (zh) * 2016-10-11 2022-01-04 沙特基础全球技术有限公司 由混合塑料生产烯烃和芳烃的方法
MX2019008111A (es) 2017-01-06 2019-12-09 Smart Tire Recycling Inc Reciclaje continuo de polimeros organicos y de caucho utilizando sistema cerrado de oxidacion supercritica de agua.
PL231852B1 (pl) * 2017-05-03 2019-04-30 Handerek Adam Tech Recyklingu Sposób wytwarzania paliw węglowodorowych z odpadowych tworzyw poliolefinowych
ES2696756A1 (es) 2017-07-17 2019-01-17 Hidalgo Navas Jeronimo Procedimiento de recuperación y transformación de plástico líquido ABS
CN108203588B (zh) * 2018-01-30 2021-02-09 中国石油大学(华东) 一种氮气氛围低温热解处理废轮胎的方法
NO345506B1 (en) * 2018-07-06 2021-03-15 Quantafuel As Production of hydrocarbon fuels from waste plastic
US10723858B2 (en) 2018-09-18 2020-07-28 Greenmantra Recycling Technologies Ltd. Method for purification of depolymerized polymers using supercritical fluid extraction
DE102019001696A1 (de) * 2019-03-11 2020-09-17 Olaf Heimbürge Anlage und Verfahren zur katalytischen Herstellung von Dieselölen aus organischen Materialien
EP4093838A4 (de) 2019-12-23 2024-01-03 Chevron Usa Inc Kreislaufwirtschaft für kunststoffabfälle zu polyethylen und schmieröl über rohöl- und isomerisierungsentparaffinierungseinheiten
MX2022007242A (es) 2019-12-23 2022-10-27 Chevron Usa Inc Economia circular para residuos plasticos en polietileno a traves de craqueo catalitico de fluidos (fcc) de refineria y unidades de alquilacion.
CN114867821B (zh) 2019-12-23 2023-12-12 雪佛龙美国公司 通过炼油厂fcc单元将塑料废物转化为聚丙烯的循环经济
US11174436B2 (en) 2019-12-23 2021-11-16 Chevron U.S.A. Inc. Circular economy for plastic waste to polyethylene via refinery crude unit
KR20220119404A (ko) 2019-12-23 2022-08-29 셰브런 유.에스.에이.인크. 정제 fcc 및 이성질체화 탈왁스 장치를 통한 플라스틱 폐기물의 폴리프로필렌 및 윤활유로의 순환 경제
JP2023508354A (ja) 2019-12-23 2023-03-02 シェブロン ユー.エス.エー. インコーポレイテッド 精製fcc及びアルキレーションユニットを介したポリプロピレンへの廃プラスチックのサーキュラーエコノミー
US11518943B2 (en) 2019-12-23 2022-12-06 Chevron U.S.A. Inc. Circular economy for plastic waste to polyethylene and chemicals via refinery crude unit
CN115244120A (zh) * 2020-01-23 2022-10-25 普莱米尔塑料公司 用于解聚废塑料的方法和系统
US11306253B2 (en) 2020-03-30 2022-04-19 Chevron U.S.A. Inc. Circular economy for plastic waste to polyethylene via refinery FCC or FCC/alkylation units
US11566182B2 (en) 2020-03-30 2023-01-31 Chevron U.S.A. Inc. Circular economy for plastic waste to polyethylene via refinery FCC feed pretreater and FCC units
KR20230004713A (ko) 2020-04-22 2023-01-06 셰브런 유.에스.에이.인크. 열분해 오일의 여과 및 금속 산화물 처리가 있는 오일 정제를 통한 플라스틱 폐기물의 폴리에틸렌으로의 순환 경제
KR20230004715A (ko) 2020-04-22 2023-01-06 셰브런 유.에스.에이.인크. 열분해 오일의 여과 및 금속 산화물 처리가 있는 오일 정제를 통한 플라스틱 폐기물의 폴리프로필렌으로의 순환 경제
US11518942B2 (en) 2020-09-28 2022-12-06 Chevron Phillips Chemical Company Lp Circular chemicals or polymers from pyrolyzed plastic waste and the use of mass balance accounting to allow for crediting the resultant products as circular
CA3201352A1 (en) 2020-12-10 2022-06-16 Sean Crawford Systems and methods for recycling waste plastics
FI130067B (fi) 2020-12-30 2023-01-31 Neste Oyj Menetelmä nesteytettyjen jätepolymeerien prosessoimiseksi
FI130057B (fi) 2020-12-30 2023-01-13 Neste Oyj Menetelmä nesteytettyjen jätepolymeerien prosessoimiseksi
CN116355643A (zh) * 2021-12-29 2023-06-30 深圳世纪星源股份有限公司 水热处理聚烯烃塑料的方法
IT202200000365A1 (it) * 2022-01-12 2023-07-12 Itelyum Regeneration S P A Procedimento per lo smaltimento di pneumatici
US11939532B2 (en) 2022-01-25 2024-03-26 Braskem S.A. Methods and systems for co-feeding waste plastics into a refinery
JP2023109380A (ja) * 2022-01-27 2023-08-08 Eneos株式会社 化成品の製造方法
JP2023109381A (ja) * 2022-01-27 2023-08-08 Eneos株式会社 化成品及び炭化物の製造方法
WO2023153381A1 (ja) * 2022-02-08 2023-08-17 株式会社ブリヂストン 架橋ゴムの分解方法
WO2023153378A1 (ja) * 2022-02-08 2023-08-17 株式会社ブリヂストン 架橋ゴムの分解方法
WO2023153377A1 (ja) * 2022-02-08 2023-08-17 株式会社ブリヂストン 架橋ゴムの分解方法
GB2618830A (en) * 2022-05-19 2023-11-22 Quantafuel Asa Processing of plastic
US11802250B1 (en) * 2022-11-10 2023-10-31 Chevron Phillips Chemical Company Lp Systems and processes for processing pyrolysis oil

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE597086C (de) * 1932-08-24 1934-05-16 I G Farbenindustrie Akt Ges Verfahren zur Herstellung von hochmolekularen Hydrierungsprodukten von natuerlichem oder synthetischem Kautschuk, Cyclokautschuk, Polymerisationsprodukten von Olefinen, natuerlichen oder kuenstlichen Harzen oder aehnlichen hochpolymeren Stoffen von fester bzw. hochviskoser bis schmieroelartiger Beschaffenheit
DE2530229A1 (de) * 1975-07-07 1977-01-27 Helmut Dr Ing Wuerfel Verfahren zur umwandlung von altreifen, gummi und/oder anderen kunststoffen
US4384150A (en) * 1981-08-20 1983-05-17 Lyakhevich Genrikh D Method of making either a softener for rubber mixtures or a furnace fuel oil
FR2512032B1 (fr) * 1981-09-01 1983-12-16 Bruss Ti Kirova Procede d'obtention d'un ramollissant pour melanges caoutchoucs et de mazout
DE3442506A1 (de) * 1984-11-22 1986-05-22 Union Rheinische Braunkohlen Kraftstoff AG, 5000 Köln Verfahren zur aufarbeitung von kohlenstoff enthaltenden abfaellen und biomasse
DE3602041C2 (de) * 1986-01-24 1996-02-29 Rwe Entsorgung Ag Verbessertes Verfahren zur Aufarbeitung von Kohlenstoff enthaltenden Abfällen
US5079385A (en) * 1989-08-17 1992-01-07 Mobil Oil Corp. Conversion of plastics
US5070109A (en) * 1989-12-20 1991-12-03 Rubber Waste, Inc. Recovery of hydrocrabon products from elastomers
DE4107046A1 (de) * 1991-03-06 1992-09-10 Menges Georg Verfahren und vorrichtung zum verwerten von organischen abfaellen
DE4129885A1 (de) * 1990-12-06 1993-03-11 Georg Menges Verfahren zur herstellung und verarbeitung von pulvern und granalien aus polymerabfaellen
EP0502618B1 (de) * 1991-03-05 1996-08-14 BP Chemicals Limited Kracken von Polymeren
US5158983A (en) * 1991-10-04 1992-10-27 Iit Research Institute Conversion of automotive tire scrap to useful oils

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005010151B3 (de) * 2005-03-02 2006-09-14 Clyvia Technology Gmbh Verfahren zum katalytischen Depolymerisieren von kohlenwasserstoffhaltigen Rückständen sowie Vorrichtung zum Durchführen dieses Verfahrens
DE102008021629B4 (de) * 2008-04-25 2017-09-14 Technische Werke Ludwigshafen Ag Vorrichtung zur Herstellung von Roh-, Brenn- und Kraftstoffen aus organischen Substanzen

Also Published As

Publication number Publication date
KR100293752B1 (ko) 2001-10-24
WO1994022979A1 (de) 1994-10-13
US5849964A (en) 1998-12-15
BG100108A (bg) 1996-07-31
BG62572B1 (bg) 2000-02-29
CN1120347A (zh) 1996-04-10
CZ292837B6 (cs) 2003-12-17
JPH08508520A (ja) 1996-09-10
DE4435238A1 (de) 1996-04-11
ATE153692T1 (de) 1997-06-15
SK121695A3 (en) 1996-05-08
DK0692009T3 (da) 1997-07-14
GR3024422T3 (en) 1997-11-28
AU681652B2 (en) 1997-09-04
CN1049237C (zh) 2000-02-09
EP0692009A1 (de) 1996-01-17
PL310893A1 (en) 1996-01-08
KR960701970A (ko) 1996-03-28
NZ265043A (en) 1997-06-24
AU6536194A (en) 1994-10-24
ES2104375T3 (es) 1997-10-01
CZ254695A3 (en) 1996-03-13
HU9502874D0 (en) 1995-11-28
DE59402926D1 (de) 1997-07-03
CA2158032A1 (en) 1994-10-13
UA39203C2 (uk) 2001-06-15
JP3385025B2 (ja) 2003-03-10
KR100390236B1 (ko) 2003-10-04
DE4311034A1 (de) 1994-10-06
UA48954C2 (uk) 2002-09-16
JP2003129066A (ja) 2003-05-08
KR970706371A (ko) 1997-11-03
FI954685A (fi) 1995-10-02
SK280953B6 (sk) 2000-10-09
FI954685A0 (fi) 1995-10-02
NO953758D0 (no) 1995-09-22
RU2127296C1 (ru) 1999-03-10
HU218853B (hu) 2001-02-28
NO953758L (no) 1995-09-22
PL178639B1 (pl) 2000-05-31

Similar Documents

Publication Publication Date Title
EP0692009B1 (de) Verfahren zur verarbeitung von alt- oder abfallkunststoffen
EP0710270B1 (de) Verfahren zum recyclen von kunststoffabfällen in einem steamcracker
EP0182309B1 (de) Verfahren zur hydrierenden Aufarbeitung von Kohlenstoff enthaltenden Abfällen synthetischen bzw. überwiegend synthetischen Ursprungs
EP0132612B1 (de) Verfahren zur Herstellung flüssiger Kohlenwasserstoffe
DE112020000884B4 (de) Ein Verfahren zur maximalen Produktion von Ethylen oder Propylen
EP0759962B1 (de) Vorrichtung zur depolymerisation von alt- und abfallkunststoffen
EP0372276B1 (de) Verfahren zur Aufarbeitung kontaminierter Öle
EP0784661B1 (de) Verfahren zur gewinnung von chemierohstoffen und kraftstoffkomponenten aus alt- oder abfallkunststoffen
EP0568791B1 (de) Verfahren zur Aufbereitung von Verpackungsmaterialien
EP0713906B1 (de) Verfahren zum Recyclen von Kunststoffen in einem Steamcracker
DE4344311A1 (de) Verfahren und Vorrichtung zur thermischen Depolymerisation von Kunststoffen
DE19512029A1 (de) Verfahren zur Herstellung von Paraffinen, Wachsen und Basisölen
EP0123161B1 (de) Verfahren zur Hydrierung von Kohle
US4146459A (en) Treatment of coal liquefaction effluent
CN114507541A (zh) 一种废塑料制备低碳烯烃的方法和系统
EP0291698B1 (de) Verbessertes Verfahren zur hydrierenden Spaltung Kohlenstoff enthaltender synthetischer Abfälle
DE3715158C1 (de) Verfahren zur Gewinnung von Schweloel
DE4417721A1 (de) Vorrichtung zur Depolymerisation von Alt- und Abfallkunststoffen
DD214749A3 (de) Verfahren zur hydrierenden spaltung von altgummi und gummiabfaellen
WO2023279019A1 (en) Systems and methods for processing mixed plastic waste
DD254207A1 (de) Verfahren zur hydrobehandlung von kohlenstoffhaltigem material
DD285988A5 (de) Verfahren zur verarbeitung von wirbelschichtteer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960701

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 153692

Country of ref document: AT

Date of ref document: 19970615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970528

REF Corresponds to:

Ref document number: 59402926

Country of ref document: DE

Date of ref document: 19970703

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19970528

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2104375

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3024422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20000120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20000210

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20000303

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20000308

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20000310

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000530

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20010930

NLS Nl: assignments of ep-patents

Owner name: DER GRUENE PUNKT-DUALES SYSTEM DEUTSCHLAND A.G.;RO

BECA Be: change of holder's address

Owner name: *DUALES SYSTEM DEUTDCHLAND A.G.FRANKFURTER STRASSE

Effective date: 20030225

BECH Be: change of holder

Owner name: *DUALES SYSTEM DEUTDCHLAND A.G.

Effective date: 20030225

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030317

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030318

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20030321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030324

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20030325

Year of fee payment: 10

Ref country code: ES

Payment date: 20030325

Year of fee payment: 10

Ref country code: DE

Payment date: 20030325

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030326

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040325

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040326

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040913

Year of fee payment: 11

BERE Be: lapsed

Owner name: *DUALES SYSTEM DEUTDCHLAND A.G.

Effective date: 20040331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20041001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050325

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050325

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040326

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050325