WO2023153378A1 - 架橋ゴムの分解方法 - Google Patents

架橋ゴムの分解方法 Download PDF

Info

Publication number
WO2023153378A1
WO2023153378A1 PCT/JP2023/003872 JP2023003872W WO2023153378A1 WO 2023153378 A1 WO2023153378 A1 WO 2023153378A1 JP 2023003872 W JP2023003872 W JP 2023003872W WO 2023153378 A1 WO2023153378 A1 WO 2023153378A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
decomposition
crosslinked rubber
decomposing
decomposition step
Prior art date
Application number
PCT/JP2023/003872
Other languages
English (en)
French (fr)
Inventor
将広 北條
明 奥野
毬乃 久野
宏典 森下
正洋 本間
敏明 吉岡
将吾 熊谷
Original Assignee
株式会社ブリヂストン
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン, 国立大学法人東北大学 filed Critical 株式会社ブリヂストン
Publication of WO2023153378A1 publication Critical patent/WO2023153378A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for decomposing crosslinked rubber.
  • Patent Literature 1 discloses a method of decomposing polyisoprene-based rubber with microorganisms.
  • an object of the present invention is to provide a method for decomposing crosslinked rubber that solves the above-described problems of the conventional technology and can improve the yield of monomers.
  • the gist and configuration of the method for decomposing crosslinked rubber of the present invention for solving the above problems is as follows.
  • a method for decomposing a crosslinked rubber comprising:
  • the rubber component of the crosslinked rubber contains isoprene units and/or butadiene units, The total proportion of the isoprene units and butadiene units in the rubber component is 40% by mass or more, Derived from the total mass (A) of the isoprene units and butadiene units in the rubber component and the isoprene units and/or butadiene units in the rubber component in the decomposition products obtained in the first decomposition step
  • the mass (B) of the aromatic compound is represented by the following formula (1): B/A ⁇ 100 ⁇ 50 (% by mass) (1) [In the formula, A is the total mass of isoprene units and butadiene units in the rubber component of the crosslinked rubber, and B is the isoprene in the rubber component of the crosslinked rubber in the decomposition product obtained in the first decomposition step. is the mass of aromatics derived from units and/or butadiene units. ], the method for decomposing a crosslinked rubber according to [1] or [2].
  • the liquid component of the decomposition product obtained in the first decomposition step is an oligomer having a weight average molecular weight of 100 to 50000, preferably 400 to 12000, more preferably 400 to 5000, still more preferably 400 to 1500.
  • the method for decomposing a crosslinked rubber according to any one of [1] to [3].
  • the decomposition product obtained in the second decomposition step contains 15% by mass or more, preferably 20% by mass or more, and more preferably 25% by mass or more of a hydrocarbon compound having 5 or less carbon atoms and limonene, [ 1] The method for decomposing a crosslinked rubber according to any one of [4].
  • the crosslinked rubber further contains carbon black,
  • FIG. 1 is a GPC chart of oligomers recovered in the first decomposition step of Example 1.
  • FIG. 4 is a graph showing the weight percentage of thermal decomposition products obtained in the second decomposition step of Example 1.
  • the method for decomposing the crosslinked rubber of the present invention comprises: a first decomposition step of thermally decomposing a crosslinked rubber containing a rubber component containing a diene rubber at 150° C. or higher and 400° C. or lower; a second decomposition step of further thermally decomposing the decomposition product obtained in the first decomposition step at 300° C. or higher and 450° C. or lower in an inert gas atmosphere and in the absence of a catalyst; characterized by comprising
  • the decomposition method of the crosslinked rubber of the present invention in the first decomposition step, thermal decomposition is performed at a relatively low temperature of 150° C. or higher and 400° C. or lower, so that gasification and aromatization of the decomposition products can be suppressed. Compared to the high-temperature thermal decomposition of , the retention rate of the monomer skeleton (isoprene skeleton, butadiene skeleton, etc.) in the diene rubber can be improved. Further, in the method for decomposing a crosslinked rubber of the present invention, in the second decomposition step, the decomposition product obtained in the first decomposition step is heated to 300° C. to 450° C.
  • the method for decomposing a crosslinked rubber of the present embodiment includes a first decomposition step of thermally decomposing a crosslinked rubber containing a rubber component containing a diene rubber at a temperature of 150°C or higher and 400°C or lower.
  • the crosslinked rubber to be decomposed by the decomposition method of the present embodiment contains a rubber component containing a diene rubber, and may further contain carbon black and the like.
  • the form of the crosslinked rubber is not particularly limited, and may be, for example, powdered rubber.
  • the powdered rubber can be obtained by cutting and pulverizing used rubber products such as waste tires.
  • the pulverization step may include a plurality of steps such as a preliminary pulverization step and a fine pulverization step, and after the pulverization step, the particle size of the powdered rubber to be used may be adjusted through a classification step.
  • the rubber component of the crosslinked rubber includes diene rubber.
  • the diene-based rubber is rubber containing units derived from diene-based monomers (diene-based units), and may further include units derived from copolymerizable comonomers.
  • the unit derived from the diene-based monomer enables cross-linking (vulcanization) of the diene-based rubber, and can exhibit rubber-like elongation and strength.
  • the diene rubber usually exists in a crosslinked state, but a part of the diene rubber may not be crosslinked.
  • diene-based monomers include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene and the like. , 3-butadiene and isoprene are preferred.
  • examples of the copolymerizable comonomer include aromatic vinyl compounds.
  • aromatic vinyl compound examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o,p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene and p-ethylstyrene. etc.
  • diene rubber examples include isoprene skeleton rubber, styrene-butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), and the like.
  • the isoprene-skeletal rubber is a rubber having isoprene units as a main skeleton, and specific examples thereof include natural rubber (NR), synthetic isoprene rubber (IR), and the like.
  • the rubber component preferably contains at least one selected from the group consisting of isoprene skeleton rubber, styrene-butadiene rubber, and butadiene rubber.
  • isoprene skeleton rubber styrene-butadiene rubber, and butadiene rubber
  • by applying the decomposition method of the present embodiment isoprene, butadiene, etc. can be reused.
  • a diene-based monomer that is easy to obtain is obtained.
  • the content of the rubber component in the crosslinked rubber is not particularly limited, and is, for example, in the range of 10 to 90 mass %, preferably in the range of 20 to 80 mass %.
  • the content of the diene rubber in the rubber component is not particularly limited, and is, for example, in the range of 50 to 100 mass %, preferably in the range of 80 to 100 mass %.
  • the rubber component of the crosslinked rubber preferably contains isoprene units and/or butadiene units. more preferably 100% by mass (that is, the rubber component may consist only of isoprene units and/or butadiene units).
  • the total proportion of isoprene units and butadiene units in the rubber component is 40% by mass or more, the yield of diene-based monomers such as isoprene and butadiene, which are easy to reuse, is improved.
  • the isoprene unit is a unit derived from isoprene
  • the butadiene unit is a unit derived from butadiene.
  • the expression that the rubber component of the crosslinked rubber contains isoprene units and/or butadiene units means that the rubber component of the crosslinked rubber contains diene-based rubbers containing isoprene-derived units (isoprene units) and butadiene-derived units (butadiene units). It refers to including at least one type of diene-based rubber containing isoprene-derived units (isoprene units) and diene-based rubbers containing units derived from butadiene (butadiene units). Examples of diene-based rubbers containing isoprene-derived units (isoprene units) include the above-mentioned isoprene skeleton rubbers, etc. Examples of diene-based rubbers containing butadiene-derived units (butadiene units) include styrene-butadiene rubber (SBR), butadiene rubber (BR) and the like.
  • SBR styrene-butadiene rubber
  • the crosslinked rubber may further contain carbon black.
  • the rubber component in the crosslinked rubber in the first decomposition step, can be decomposed to reduce the molecular weight of, for example, liquid polymers and liquid oligomers. Therefore, even if the crosslinked rubber contains carbon black, the carbon black can be easily separated and recovered by, for example, solid-liquid separation after the first decomposition step. By recovering the carbon black before thermal decomposition in the second decomposition step, deterioration of the carbon black can be suppressed and the carbon black can be reused as high-grade carbon black.
  • the content of carbon black in the crosslinked rubber is preferably 20% by mass or more, more preferably 30% by mass or more, and is preferably 40% by mass or less, further preferably 35% by mass or less.
  • a crosslinked rubber having a carbon black content of 20% by mass or more has excellent reinforcing properties, and by applying the decomposition method of the present embodiment to such a crosslinked rubber, the amount of carbon black that can be recovered is large. Become.
  • the crosslinked rubber includes various components commonly used in the rubber industry, such as fillers other than carbon black (silica, calcium carbonate, etc.), silane coupling agents, aging Contains inhibitors, softeners, processing aids, resins, surfactants, organic acids (stearic acid, etc.), zinc oxide (zinc oxide), vulcanization accelerators, cross-linking agents (sulfur, peroxide, etc.), etc. may
  • the first decomposition step is performed at 150° C. or higher and 400° C. or lower.
  • the rate of the decomposition reaction of the diene rubber in the rubber component of the crosslinked rubber is improved, and by performing the first decomposition step at 400°C or lower, decomposition Gasification and aromatization of the product can be suppressed, and after decomposition, the maintenance rate (selectivity) of the monomer skeleton of the diene rubber in the rubber component of the crosslinked rubber is improved.
  • carbon black is included, it can be recovered as high-grade carbon black and reused.
  • the temperature in the first decomposition step is preferably 175° C. or higher, more preferably 190° C. or higher.
  • the temperature is preferably 350° C. or lower, more preferably 300° C. or lower.
  • the first decomposition step is preferably performed under an inert gas atmosphere.
  • an inert gas atmosphere By performing the first decomposition step in an inert gas atmosphere, it is possible to suppress the oxidation and reduction of the decomposition products, and in particular, to suppress the hydrogenation of the double bonds in the oligomers and monomers in the decomposition products. can be done.
  • the crosslinked rubber contains carbon black, oxidation of the carbon black can also be suppressed.
  • inert gas include nitrogen, carbon dioxide, argon, and helium.
  • the atmosphere charged into the reactor may be an inert gas, and a flow reactor is used.
  • the atmosphere to be circulated in the reactor may be an inert gas.
  • hydrogen may be generated during the first decomposition process, the atmosphere of the first decomposition process does not consider the generated hydrogen.
  • the first decomposition step can be performed at any pressure, and can be performed under reduced pressure, normal pressure, or increased pressure, but is preferably performed under reduced pressure or normal pressure.
  • the reaction pressure in the first decomposition step is preferably 1000 kPa to 65 kPa.
  • the reaction time of the first decomposition step is not particularly limited.
  • the reaction time of the first decomposition step is preferably 1 minute to 180 minutes, more preferably 3 minutes to 60 minutes, and even more preferably 5 minutes to 30 minutes.
  • the first decomposition step may or may not use a catalyst, but preferably does not use a catalyst. Cost can be reduced by not using a catalyst in the first cracking step. In addition, when using a catalyst, any catalyst having an effect of promoting the decomposition reaction of the crosslinked rubber can be used.
  • a liquid oligomer, a liquid polymer, or the like is obtained as a decomposition product in the first decomposition step.
  • the rubber component of the crosslinked rubber contains isoprene units and/or butadiene units, and the total proportion of the isoprene units and butadiene units in the rubber component is 40% by mass or more.
  • the first decomposition step by performing the first decomposition step at 150° C. or higher and 400° C. or lower, aromatization of the decomposition products can be suppressed. Then, isoprene units and/or butadiene units in the rubber component of the crosslinked rubber in the decomposition product obtained in the first decomposition step with respect to the total mass (A) of the isoprene units and butadiene units in the rubber component of the crosslinked rubber.
  • the ratio (B/A ⁇ 100) of the mass (B) of the aromatic compound derived from is 50% by mass or less, it means that the aromatization of the decomposition products is suppressed.
  • the ratio (B/A ⁇ 100) is more preferably 40% by mass or less.
  • the rubber component of the crosslinked rubber contains an aromatic compound unit (styrene unit, etc.)
  • the aromatic compound in the decomposition product obtained in the first decomposition step Subtract the mass of the aromatic compound derived from the aromatic compound unit in the rubber component of the crosslinked rubber from the mass.
  • the ratio (B/A ⁇ 100) can be controlled by reaction conditions such as reaction temperature and reaction time in the first decomposition step.
  • the liquid component of the decomposition product obtained in the first decomposition step preferably has a weight average molecular weight of 100 to 50,000, more preferably 400 to 12,000, and still more preferably 400 to 400. 5000, even more preferably 400-1500 oligomers.
  • the crosslinked rubber (rubber component in the crosslinked rubber) having a weight average molecular weight of preferably 100 to 50000, more preferably 400 to 12000, even more preferably 400 to 5000, and even more preferably 400 to 1500 is decomposed into oligomers, the yield of the monomer can be further improved by the second decomposition step described later.
  • the liquid component of the decomposition product refers to a component that is liquid at normal temperature (23° C.), and the oligomer has a weight average molecular weight of 50000 or less and contains two or more monomer units. point to something
  • the weight-average molecular weight of the oligomer as the liquid component of the decomposition product can be controlled, for example, by the reaction conditions such as reaction temperature and reaction time in the first decomposition step. Also, the weight average molecular weight (Mw) can be measured by gel permeation chromatography (GPC).
  • the decomposition product obtained in the first decomposition step is further thermally decomposed at 300° C. or higher and 450° C. or lower in an inert gas atmosphere and in the absence of a catalyst.
  • a second decomposition step is included.
  • reaction conditions, etc. By performing the second decomposition step at 300° C. or higher, the decomposition reaction rate of the decomposition products obtained in the first decomposition step is improved, the yield of the monomer is improved, and the second decomposition is performed. By carrying out the process at 450° C. or lower, the gasification and aromatization of decomposition products can be remarkably suppressed, and the selectivity of products maintaining the monomer skeleton is remarkably improved.
  • the temperature is preferably 320°C or higher from the viewpoint of improving the decomposition reaction rate and the monomer yield, and the temperature is preferably 380°C or lower from the viewpoint of suppressing gasification and aromatization of the decomposition products. preferable.
  • the second decomposition step is performed under an inert gas atmosphere.
  • inert gas include nitrogen, carbon dioxide, argon, and helium.
  • the atmosphere charged into the reactor may be an inert gas, and a flow reactor is used.
  • the atmosphere to be circulated in the reactor may be an inert gas.
  • hydrogen may be generated during the second decomposition process, the atmosphere of the second decomposition process does not consider the generated hydrogen.
  • the second decomposition step can be performed at any pressure, and can be performed under reduced pressure, normal pressure, or increased pressure, but is preferably performed under reduced pressure or normal pressure.
  • the reaction pressure in the second decomposition step is preferably 1000 kPa to 67 kPa.
  • the reaction time of the second decomposition step is not particularly limited.
  • the reaction time of the second decomposition step is preferably 3 minutes to 60 minutes, more preferably 5 minutes to 30 minutes.
  • the second decomposition step is performed in the absence of a catalyst (that is, no catalyst is used). Cost can be reduced by not using a catalyst in the second cracking step.
  • "in the absence of a catalyst” means that a catalyst that promotes the decomposition reaction does not exist in the reaction system of the second decomposition step.
  • composition product In the method for decomposing a crosslinked rubber of the present embodiment, a monomer (especially a diene-based monomer) or the like is obtained as a decomposition product in the second decomposition step.
  • the decomposition products obtained in the second decomposition step include hydrocarbon compounds having 5 or less carbon atoms and limonene (especially hydrocarbon compounds having 2 to 4 carbon atoms, isoprene and limonene) is preferably 15% by mass or more, more preferably 20% by mass or more, and even more preferably 25% by mass or more.
  • hydrocarbon compounds having 5 or less carbon atoms and limonene especially hydrocarbon compounds with 2 to 4 carbon atoms, isoprene and limonene
  • the yield of reusable monomers is improved and decomposition The economic and environmental value of the process is further enhanced.
  • the decomposition products obtained in the second decomposition step contain 40% by mass or more of hydrocarbon compounds having 5 or less carbon atoms.
  • the total amount of hydrocarbon compounds having 5 or less carbon atoms and limonene (in particular, hydrocarbon compounds having 2 to 4 carbon atoms, isoprene and limonene) in the decomposition product obtained in the second decomposition step is In addition to the reaction conditions, it may also depend on the reactor used.
  • the preferred range of the total amount of the hydrocarbon compound having 5 or less carbon atoms and limonene is the preferred range when using the reaction device described in the examples described later, and the reaction device more suitable for the present invention is used.
  • the total amount of C5 or less hydrocarbon compounds and limonene can be even higher.
  • the hydrocarbon compound having 5 or less carbon atoms as a decomposition product varies depending on the type of rubber component in the crosslinked rubber to be decomposed. , 2,3-dimethyl-1,3-butadiene and the like, with 1,3-butadiene and isoprene being preferred.
  • the ratio of hydrocarbon compounds having 5 or less carbon atoms in the decomposition product can be controlled by the reaction conditions such as reaction temperature and reaction time in the second decomposition step.
  • the method for decomposing the crosslinked rubber of the present embodiment may further include another step in addition to the above-described first decomposition step and second decomposition step.
  • Examples of such a process include a pretreatment process for crosslinked rubber (for example, a cutting process, a pulverizing process), and the like.
  • the crosslinked rubber contains carbon black
  • the method for decomposing crosslinked rubber according to the present embodiment can be carried out in a batch reactor or a flow reactor.
  • the reaction temperature in the first decomposition step is 150° C. or higher and 400° C. or lower
  • the reaction temperature in the second decomposition step is 300° C. or higher and 450° C. or lower. Therefore, it is also advantageous in terms of the durability of the reactor to be used.
  • the decomposition products after the decomposition reaction can be separated and recovered by filtration, distillation, or the like, or can be recovered by precipitation using a poor solvent, and reused.
  • the monomers (in particular, diene-based monomers) finally obtained from the crosslinked rubber can be reused as raw materials for diene-based rubbers (polymers).
  • a rubber composition was prepared by heating and cross-linking the rubber composition to prepare a cross-linked rubber. The resulting crosslinked rubber was cut into pieces having sides of about 2 to 6 mm to prepare crosslinked rubber samples.
  • Example 1 Quartz wool was filled in the lower portion of the reaction site of the reaction tube having a sample inlet and a nitrogen introduction line on the upstream side. An ice-cold trap, a first liquid nitrogen trap, and a second liquid nitrogen trap are provided downstream of the reaction tube, and the gas that has passed through the second liquid nitrogen trap is returned to the gas back. recovered with 10 g of the crosslinked rubber sample obtained as described above was supplied to the reaction tube at a supply rate of 1 g/10 minutes, and a thermal decomposition reaction (first decomposition step ) was performed. Here, the supplied sample is placed on top of the quartz wool and undergoes a pyrolysis reaction.
  • FIG. 1 shows the results for the oligomers deposited in the reaction tube and the oligomers deposited in the trap.
  • the ratio of the mass of aromatic compounds derived from natural rubber in the decomposition product to the mass of natural rubber in the crosslinked rubber sample was 25% by mass. is.
  • carbon black derived from the crosslinked rubber sample was recovered. The amount of carbon black recovered was 6.1 g.
  • ⁇ Second decomposition step> The reaction site of the reaction tube was filled with 0.1 g of the oligomer obtained in the first decomposition step, and the upstream and downstream sides thereof were filled with quartz wool.
  • a helium introduction line is provided on the upstream side of the reaction tube, and a cooling trap filled with chloroform (60% ethylene glycol aqueous solution, ⁇ 20° C. for cooling) is provided on the downstream side. , the gas that has passed through the trap is recovered by the gas bag.
  • the second decomposition step is performed by heating the reaction site of the reaction tube at 400° C. for 30 minutes under the condition of helium flow rate: 50 mL/min.
  • GC gas chromatography
  • Example 2-9 is shown in order to clarify the conditions for obtaining higher amounts of isoprene and limonene.
  • First decomposition step An alumina boat was filled with 1.5 g of a vulcanized rubber sample cut into 2 mm squares and placed in an electric furnace (ROP-001PG) chamber. Thereafter, the electric furnace chamber was replaced with a nitrogen atmosphere by circulating nitrogen gas at 5 L/min. A thermal decomposition reaction (first decomposition step) was performed by heating the electric furnace to the temperature shown in Table 1 while circulating nitrogen gas at the same flow rate and maintaining the temperature shown in Table 1 for the time shown in Table 1.
  • solvent decomposition step To 20 mg of the heat-treated rubber obtained above, 2 g of deuterated chloroform as a solvent and 0.10 g of precisely weighed hexamethylenedisilazane were added and dispersed by ultrasonic waves. separated into minutes. The amount of polymer component remaining in the solid content is determined as the weight loss at 300-650°C by heating to 50-700°C in nitrogen by TGA. The decomposition yield of the polymer component was determined from the value obtained by subtracting the amount of the polymer component remaining in the solid content from the weight of the polymer component contained in the rubber.
  • the supernatant was subjected to 1 H-NMR measurement, and the yield of the isoprene skeleton component in the decomposed polymer component was determined from the amount of hydrogen at the ⁇ -position of the isoprene structure relative to the amount of hydrogen in hexamethylenedisilazane.

Abstract

本発明の課題は、モノマーの収率を向上させることが可能な架橋ゴムの分解方法を提供することであり、その解決手段は、ジエン系ゴムを含有するゴム成分を含む架橋ゴムを、150℃以上400℃以下で熱分解する、第1の分解工程と、前記第1の分解工程で得られる分解生成物を、不活性ガス雰囲気下、かつ、触媒非存在下、300℃以上450℃以下で更に熱分解する、第2の分解工程と、を含むことを特徴とする、架橋ゴムの分解方法である。前記第1の分解工程は、不活性ガス雰囲気下で行うことが好ましい。

Description

架橋ゴムの分解方法
 本発明は、架橋ゴムの分解方法に関するものである。
 従来、加硫ゴム等の架橋されたゴムを主たる材料とするゴム製品は、再利用し難く、製品寿命後は、特にセメント工場等を中心として燃料として再利用される場合が多い。しかしながら、昨今、環境問題の高まりと共に、ゴム製品を燃料として燃やすのではなく、ゴム製品を分解して得た材料を再利用する方法の開発が求められている。
 架橋ゴムを分解する方法としては、種々の方法があり、例えば、架橋ゴムを高温で熱分解する技術が知られている。また、下記特許文献1には、微生物によりポリイソプレン系ゴムを分解する方法が開示されている。
特開2009-247241号公報
 上記の通り、架橋ゴムを分解する方法としては、種々の方法があるが、架橋ゴムのリサイクル性をより高める観点からは、分解により得られるモノマーの収率を上げることが重要である。
 しかしながら、上記のように、架橋ゴムを高温で熱分解すると、分解生成物がガス化又は芳香族化しやすく、モノマーの収率を十分高められないだけでなく、炭化反応も進みチャーとしてカーボンブラック表面に炭化層が形成されるため、リサイクル時のカーボンブラックの補強性が低下してしまう。また、上記特許文献1に開示の技術のように、微生物を用いて架橋ゴムを分解する場合、分解に長い時間を要し、更には、モノマーの収率が低いという課題がある。
 そこで、本発明は、上記従来技術の問題を解決し、モノマーの収率を向上させることが可能な架橋ゴムの分解方法を提供することを課題とする。
 上記課題を解決する本発明の架橋ゴムの分解方法の要旨構成は、以下の通りである。
[1] ジエン系ゴムを含有するゴム成分を含む架橋ゴムを、150℃以上400℃以下で熱分解する、第1の分解工程と、
 前記第1の分解工程で得られる分解生成物を、不活性ガス雰囲気下、かつ、触媒非存在下、300℃以上450℃以下で更に熱分解する、第2の分解工程と、
 を含むことを特徴とする、架橋ゴムの分解方法。
[2] 前記第1の分解工程を、不活性ガス雰囲気下で行う、[1]に記載の架橋ゴムの分解方法。
[3] 前記架橋ゴムのゴム成分が、イソプレン単位及び/又はブタジエン単位を含み、
 前記ゴム成分中の前記イソプレン単位及びブタジエン単位の総割合が、40質量%以上であり、
 前記ゴム成分中の前記イソプレン単位及びブタジエン単位の総質量(A)と、前記第1の分解工程で得られる分解生成物中の、前記ゴム成分中の前記イソプレン単位及び/又はブタジエン単位に由来する芳香族化合物の質量(B)とが、下記式(1):
   B/A×100≦50 (質量%) ・・・ (1)
[式中、Aは、架橋ゴムのゴム成分中のイソプレン単位及びブタジエン単位の総質量であり、Bは、第1の分解工程で得られる分解生成物中の、架橋ゴムのゴム成分中のイソプレン単位及び/又はブタジエン単位に由来する芳香族化合物の質量である。]の関係を満たす、[1]又は[2]に記載の架橋ゴムの分解方法。
[4] 前記第1の分解工程で得られる分解生成物の液状成分は、重量平均分子量が100~50000、好ましくは400~12000、更に好ましくは400~5000、より一層好ましくは400~1500のオリゴマーである、[1]~[3]のいずれか一つに記載の架橋ゴムの分解方法。
[5] 前記第2の分解工程で得られる分解生成物は、炭素数5以下の炭化水素化合物及びリモネンを15質量%以上、好ましくは20質量%以上、更に好ましくは25質量%以上含む、[1]~[4]のいずれか一つに記載の架橋ゴムの分解方法。
[6] 前記ゴム成分が、イソプレン骨格ゴム、スチレン-ブタジエンゴム、及びブタジエンゴムからなる群から選択される少なくとも1種を含む、[1]~[5]のいずれか一つに記載の架橋ゴムの分解方法。
[7] 前記架橋ゴムが、更にカーボンブラックを含み、
 前記架橋ゴム中の前記カーボンブラックの含有率が、20質量%以上である、[1]~[6]のいずれか一つに記載の架橋ゴムの分解方法。
 本発明によれば、モノマーの収率を向上させることが可能な架橋ゴムの分解方法を提供することができる。
実施例1の第1の分解工程で回収したオリゴマーのGPCチャートである。 実施例1の第2の分解工程で得た熱分解生成物の重量割合を示すグラフである。
 以下に、本発明の架橋ゴムの分解方法を、その実施形態に基づき、詳細に例示説明する。
 本発明の架橋ゴムの分解方法は、
 ジエン系ゴムを含有するゴム成分を含む架橋ゴムを、150℃以上400℃以下で熱分解する、第1の分解工程と、
 前記第1の分解工程で得られる分解生成物を、不活性ガス雰囲気下、かつ、触媒非存在下、300℃以上450℃以下で更に熱分解する、第2の分解工程と、
 を含むことを特徴とする。
 本発明の架橋ゴムの分解方法は、第1の分解工程において、150℃以上400℃以下の比較的低い温度で熱分解することで、分解生成物のガス化や芳香族化を抑制でき、通常の高温熱分解に比べて、ジエン系ゴム中のモノマー骨格(イソプレン骨格、ブタジエン骨格等)の維持率を向上させることができる。
 また、本発明の架橋ゴムの分解方法は、第2の分解工程で、第1の分解工程で得られる分解生成物を、不活性ガス雰囲気下、かつ、触媒非存在下、300℃以上450℃以下で熱分解することで、モノマー骨格中の二重結合の水素化や分解生成物の酸化を抑制しつつ、分解生成物(中間分解生成物)をモノマー(特には、ジエン系モノマー)に分解することができる。
 従って、本発明の架橋ゴムの分解方法によれば、架橋ゴムから最終的に得られるモノマーの収率を向上させることができる。
<第1の分解工程>
 本実施形態の架橋ゴムの分解方法は、ジエン系ゴムを含有するゴム成分を含む架橋ゴムを、150℃以上400℃以下で熱分解する、第1の分解工程を含む。
(架橋ゴム)
 本実施形態の分解方法の分解対象である架橋ゴムは、ジエン系ゴムを含有するゴム成分を含み、更に、カーボンブラック等を含有してもよい。
 なお、前記架橋ゴムの形態は、特に限定されず、例えば、粉ゴム等であってもよい。該粉ゴムは、廃タイヤ等の使用済ゴム製品を裁断、粉砕して、得ることができる。粉砕工程は、予備粉砕工程、微粉砕工程等の複数の工程を含んでもよく、また、粉砕工程の後に、分級工程を経て、使用する粉ゴムの粒径を調整してもよい。
--ゴム成分--
 前記架橋ゴムのゴム成分は、ジエン系ゴムを含む。該ジエン系ゴムは、ジエン系モノマー由来の単位(ジエン系単位)を含むゴムであり、更に、共重合可能なコモノマー由来の単位を含んでもよい。
 前記ジエン系モノマー由来の単位は、ジエン系ゴムの架橋(加硫)を可能とし、また、ゴムの様な伸びや強度を発現することができる。なお、架橋ゴム中においてジエン系ゴムは、通常は架橋された状態で存在するが、一部が架橋されていなくてもよい。ジエン系モノマー(ジエン系化合物)として、具体的には、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられ、これらの中でも、1,3-ブタジエン及びイソプレンが好ましい。
 一方、前記共重合可能なコモノマーとしては、芳香族ビニル化合物等が挙げられる。該芳香族ビニル化合物として、具体的には、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン等が挙げられる。
 また、前記ジエン系ゴムとして、具体的には、イソプレン骨格ゴム、スチレン-ブタジエンゴム(SBR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)等が挙げられる。ここで、イソプレン骨格ゴムは、イソプレン単位を主たる骨格とするゴムであり、具体的には、天然ゴム(NR)、合成イソプレンゴム(IR)等が挙られる。
 前記ゴム成分は、イソプレン骨格ゴム、スチレン-ブタジエンゴム、及びブタジエンゴムからなる群から選択される少なくとも1種を含むことが好ましい。ゴム成分が、イソプレン骨格ゴム、スチレン-ブタジエンゴム、及びブタジエンゴムからなる群から選択される少なくとも1種を含む場合、本実施形態の分解方法を適用することで、イソプレンやブタジエン等の再利用し易いジエン系モノマーが得られる。
 前記架橋ゴム中の前記ゴム成分の含有率は、特に限定されず、例えば、10~90質量%の範囲であり、20~80質量%の範囲が好ましい。
 また、前記ゴム成分中の前記ジエン系ゴムの含有率は、特に限定されず、例えば、50~100質量%の範囲であり、80~100質量%の範囲が好ましい。
 前記架橋ゴムのゴム成分は、イソプレン単位及び/又はブタジエン単位を含むことが好ましく、ゴム成分中のイソプレン単位及びブタジエン単位の総割合は、40質量%以上であることが好ましく、60質量%以上であることが更に好ましく、また、100質量%であってもよい(即ち、ゴム成分が、イソプレン単位及び/又はブタジエン単位のみから構成されていてもよい)。ゴム成分中のイソプレン単位及びブタジエン単位の総割合が40質量%以上であると、イソプレンやブタジエン等の再利用し易いジエン系モノマーの収率が向上する。
 ここで、イソプレン単位とは、イソプレン由来の単位であり、また、ブタジエン単位とは、ブタジエン由来の単位である。また、架橋ゴムのゴム成分がイソプレン単位及び/又はブタジエン単位を含むとは、架橋ゴムのゴム成分が、イソプレン由来の単位(イソプレン単位)を含むジエン系ゴム、ブタジエン由来の単位(ブタジエン単位)を含むジエン系ゴム、及びイソプレン由来の単位(イソプレン単位)とブタジエン由来の単位(ブタジエン単位)を含むジエン系ゴムの一種以上を含むことを指す。イソプレン由来の単位(イソプレン単位)を含むジエン系ゴムとしては、上述のイソプレン骨格ゴム等が挙げられ、ブタジエン由来の単位(ブタジエン単位)を含むジエン系ゴムとしては、スチレン-ブタジエンゴム(SBR)、ブタジエンゴム(BR)等が挙げられる。
--カーボンブラック--
 前記架橋ゴムは、更にカーボンブラックを含んでいてもよい。本発明の架橋ゴムの分解方法は、第1の分解工程において、架橋ゴム中のゴム成分を分解して、例えば、液状のポリマー、液状のオリゴマーまで、低分子量化できる。そのため、架橋ゴムがカーボンブラックを含んでいても、第1の分解工程の後に、例えば、固液分離により、カーボンブラックを容易に分離・回収することができる。第2の分解工程の熱分解の前にカーボンブラックを回収することで、カーボンブラックの劣化を抑制でき、高品位のカーボンブラックとして、再利用することができる。
 前記架橋ゴム中のカーボンブラックの含有率は、20質量%以上が好ましく、30質量%以上が更に好ましく、また、40質量%以下が好ましく、35質量%以下が更に好ましい。カーボンブラックの含有率が20質量%以上である架橋ゴムは、補強性に優れ、また、かかる架橋ゴムに対して、本実施形態の分解方法を適用することで、回収できるカーボンブラックの量が多くなる。
--その他の成分--
 前記架橋ゴムは、上述のゴム成分、カーボンブラックの他にも、ゴム工業界で通常使用される各種成分、例えば、カーボンブラック以外の充填剤(シリカ、炭酸カルシウム等)、シランカップリング剤、老化防止剤、軟化剤、加工助剤、樹脂、界面活性剤、有機酸(ステアリン酸等)、酸化亜鉛(亜鉛華)、加硫促進剤、架橋剤(硫黄、パーオキサイド等)等を含有していてもよい。
(反応条件等)
 前記第1の分解工程は、150℃以上400℃以下で行う。第1の分解工程を150℃以上で行うことで、架橋ゴムのゴム成分中のジエン系ゴムの分解反応の速度が向上し、また、第1の分解工程を400℃以下で行うことで、分解生成物のガス化や芳香族化を抑制でき、また、分解後において、架橋ゴムのゴム成分中のジエン系ゴムのモノマー骨格の維持率(選択率)が向上し、また、例えば、架橋ゴムがカーボンブラックを含む場合、高品位のカーボンブラックとして回収し、再利用することができる。第1の分解工程は、ゴム成分の分解反応速度の向上の観点から、175℃以上が好ましく、190℃以上が更に好ましい。また、モノマー骨格を維持した生成物の選択率の向上の観点から、350℃以下が好ましく、300℃以下が更に好ましい。
 前記第1の分解工程は、不活性ガス雰囲気下で行うことが好ましい。第1の分解工程を不活性ガス雰囲気下で行うことで、分解生成物の酸化や還元を抑制でき、特には、分解生成物中のオリゴマーやモノマー中の二重結合の水素化を抑制することができる。また、架橋ゴムがカーボンブラックを含む場合は、該カーボンブラックの酸化も抑制できる。ここで、不活性ガスとしては、例えば、窒素、二酸化炭素、アルゴン、ヘリウム等が挙げられる。
 前記第1の分解工程を不活性ガス雰囲気下で行うには、例えば、バッチ式反応器を使用する場合は、反応器に仕込む雰囲気を不活性ガスとすればよく、流通式反応器を使用する場合は、反応器に流通させる雰囲気を不活性ガスとすればよい。なお、第1の分解工程の際に水素が生成することがあるが、第1の分解工程の雰囲気には、生成する水素は考慮しない。
 前記第1の分解工程は、任意の圧力で実施でき、減圧下でも、常圧でも、加圧下でも、実施できるが、減圧下又は常圧で行うことが好ましい。一例として、第1の分解工程の反応圧力は、1000kPa~65kPaが好ましい。減圧下又は常圧で第1の分解工程を行うことで、分解生成物中のオリゴマーやモノマーの重合(再重合)を抑制できる。
 前記第1の分解工程の反応時間は、特に限定されない。一例として、第1の分解工程の反応時間は、1分~180分が好ましく、3分~60分がより好ましく、5分~30分が更に好ましい。
 前記第1の分解工程は、触媒を使用してもよいし、触媒を使用しなくてもよいが、触媒を使用しないことが好ましい。第1の分解工程に触媒を使用しないことで、コストを削減できる。なお、触媒を使用する場合、架橋ゴムの分解反応を促進する作用を有する任意の触媒を使用できる。
(分解生成物(中間分解生成物))
 本実施形態の架橋ゴムの分解方法においては、第1の分解工程により、分解生成物として、液状のオリゴマーや液状のポリマー等が得られる。
 本実施形態の架橋ゴムの分解方法においては、前記架橋ゴムのゴム成分が、イソプレン単位及び/又はブタジエン単位を含み、前記ゴム成分中の前記イソプレン単位及びブタジエン単位の総割合が、40質量%以上であり、前記ゴム成分中の前記イソプレン単位及びブタジエン単位の総質量(A)と、前記第1の分解工程で得られる分解生成物中の、前記ゴム成分中の前記イソプレン単位及び/又はブタジエン単位に由来する芳香族化合物の質量(B)とが、下記式(1):
   B/A×100≦50 (質量%) ・・・ (1)
[式中、Aは、架橋ゴムのゴム成分中のイソプレン単位及びブタジエン単位の総質量であり、Bは、第1の分解工程で得られる分解生成物中の、架橋ゴムのゴム成分中のイソプレン単位及び/又はブタジエン単位に由来する芳香族化合物の質量である。]の関係を満たすことが好ましい。
 本実施形態の架橋ゴムの分解方法においては、第1の分解工程を150℃以上400℃以下で行うことで、分解生成物の芳香族化を抑制できる。そして、架橋ゴムのゴム成分中のイソプレン単位及びブタジエン単位の総質量(A)に対する、第1の分解工程で得られる分解生成物中の、架橋ゴムのゴム成分中のイソプレン単位及び/又はブタジエン単位に由来する芳香族化合物の質量(B)の割合(B/A×100)が50質量%以下であることは、分解生成物の芳香族化が抑制されていることを意味し、この場合、イソプレンやブタジエン等の再利用し易いジエン系モノマーの収率が向上する。分解生成物の芳香族化の抑制の観点からは、前記割合(B/A×100)は、40質量%以下であることが更に好ましい。
 ここで、架橋ゴムのゴム成分が芳香族化合物単位(スチレン単位等)を含む場合は、式(1)の左辺の算出において、第1の分解工程で得られる分解生成物中の芳香族化合物の質量から、架橋ゴムのゴム成分中の芳香族化合物単位に由来する芳香族化合物の質量を差し引く。また、前記割合(B/A×100)は、例えば、第1の分解工程の反応温度や反応時間等の反応条件で制御することができる。
 本実施形態の架橋ゴムの分解方法において、前記第1の分解工程で得られる分解生成物の液状成分は、重量平均分子量が好ましくは100~50000、より好ましくは400~12000、更に好ましくは400~5000、より一層好ましくは400~1500のオリゴマーである。第1の分解工程により、架橋ゴム(架橋ゴム中のゴム成分)を、重量平均分子量が好ましくは100~50000、より好ましくは400~12000、更に好ましくは400~5000、より一層好ましくは400~1500のオリゴマーに分解することで、後述する第2の分解工程により、モノマーの収率を更に向上させることができる。
 ここで、本明細書において、分解生成物の液状成分とは、常温(23℃)で液状の成分を指し、また、オリゴマーとは、重量平均分子量が50000以下で、モノマー単位を2つ以上含むものを指す。該分解生成物の液状成分としてのオリゴマーの重量平均分子量は、例えば、第1の分解工程の反応温度や反応時間等の反応条件で制御することができる。また、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定することができる。
<第2の分解工程>
 本実施形態の架橋ゴムの分解方法は、前記第1の分解工程で得られる分解生成物を、不活性ガス雰囲気下、かつ、触媒非存在下、300℃以上450℃以下で更に熱分解する、第2の分解工程を含む。
(反応条件等)
 前記第2の分解工程を300℃以上で行うことで、第1の分解工程で得られる分解生成物の分解反応の速度が向上して、モノマーの収率が向上し、また、第2の分解工程を450℃以下で行うことで、分解生成物のガス化や芳香族化を顕著に抑制でき、また、モノマー骨格を維持した生成物の選択率が顕著に向上する。第2の分解工程は、分解反応速度の向上、モノマー収率の向上の観点から、320℃以上が好ましく、また、分解生成物のガス化や芳香族化の抑制の観点から、380℃以下が好ましい。
 前記第2の分解工程は、不活性ガス雰囲気下で行う。第2の分解工程を不活性ガス雰囲気下で行うことで、分解生成物の酸化や還元を抑制でき、特には、分解生成物中のモノマー中の二重結合の水素化を抑制することができる。ここで、不活性ガスとしては、例えば、窒素、二酸化炭素、アルゴン、ヘリウム等が挙げられる。
 前記第2の分解工程を不活性ガス雰囲気下で行うには、例えば、バッチ式反応器を使用する場合は、反応器に仕込む雰囲気を不活性ガスとすればよく、流通式反応器を使用する場合は、反応器に流通させる雰囲気を不活性ガスとすればよい。なお、第2の分解工程の際に水素が生成することがあるが、第2の分解工程の雰囲気には、生成する水素は考慮しない。
 前記第2の分解工程は、任意の圧力で実施でき、減圧下でも、常圧でも、加圧下でも、実施できるが、減圧下又は常圧で行うことが好ましい。一例として、第2の分解工程の反応圧力は、1000kPa~67kPaが好ましい。減圧下又は常圧で第2の分解工程を行うことで、分解生成物中のモノマーの重合(再重合)を抑制できる。
 前記第2の分解工程の反応時間は、特に限定されない。一例として、第2の分解工程の反応時間は、3分~60分が好ましく、5分~30分が更に好ましい。
 前記第2の分解工程は、触媒非存在下で行う(即ち、触媒を使用しない)。第2の分解工程に触媒を使用しないことで、コストを削減できる。ここで、触媒非存在下とは、第2の分解工程の反応系に、分解反応を促進する作用を有する触媒が存在しないことを意味する。
(分解生成物)
 本実施形態の架橋ゴムの分解方法においては、第2の分解工程により、分解生成物として、モノマー(特には、ジエン系モノマー)等が得られる。
 本実施形態の架橋ゴムの分解方法において、前記第2の分解工程で得られる分解生成物は、炭素数5以下の炭化水素化合物及びリモネン(特には、炭素数2~4の炭化水素化合物、イソプレン及びリモネン)を15質量%以上含むことが好ましく、20質量%以上含むことがより好ましく、25質量%以上含むことが更に好ましい。炭素数5以下の炭化水素化合物及びリモネン(特には、炭素数2~4の炭化水素化合物、イソプレン及びリモネン)の収率が向上することで、再利用可能なモノマーの収率が向上し、分解方法の経済面及び環境面での価値が更に向上する。なお、再利用可能なモノマーの収率の観点から、第2の分解工程で得られる分解生成物は、炭素数5以下の炭化水素化合物を40質量%以上含むことが更に好ましい。
 ここで、第2の分解工程で得られる分解生成物中の炭素数5以下の炭化水素化合物及びリモネン(特には、炭素数2~4の炭化水素化合物、イソプレン及びリモネン)の総量は、上述の反応条件の他、使用する反応装置にも依存し得る。本実施形態における、炭素数5以下の炭化水素化合物及びリモネンの総量の好適範囲は、後述する実施例に記載の反応装置を使用した場合の好適範囲であり、本発明に更に好適な反応装置を使用した場合、炭素数5以下の炭化水素化合物及びリモネンの総量は、更に大きくなり得る。
 また、分解生成物としての前記炭素数5以下の炭化水素化合物は、分解対象である架橋ゴム中のゴム成分の種類により変化するが、例えば、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられ、1,3-ブタジエン及びイソプレンが好ましい。該分解生成物中の炭素数5以下の炭化水素化合物の割合は、例えば、第2の分解工程の反応温度や反応時間等の反応条件で制御することができる。
<その他>
 本実施形態の架橋ゴムの分解方法は、上述の第1の分解工程、第2の分解工程の他に、更に別の工程を含んでもよい。かかる工程としては、架橋ゴムの前処理工程(例えば、裁断工程、粉砕工程)等が挙げられる。
 また、架橋ゴムがカーボンブラックを含む場合は、第1の分解工程と第2の分解工程との間に、分解生成物(中間分解生成物)からのカーボンブラックの回収工程を含むことが好ましい。
 また、本実施形態の架橋ゴムの分解方法は、バッチ式反応器でも、流通式反応器でも、実施できる。なお、本実施形態の架橋ゴムの分解方法は、第1の分解工程の反応温度が150℃以上400℃以下で、第2の分解工程の反応温度が300℃以上450℃以下と、比較的温和なため、使用する反応器の耐久性の点でも有利である。
 また、分解反応後の分解生成物は、濾過、蒸留等で分離・回収したり、貧溶媒を用いて沈殿させる等して回収して、再利用することができる。また、架橋ゴムから最終的に得られるモノマー(特には、ジエン系モノマー)は、ジエン系ゴム(ポリマー)の原料として再利用できる。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
<重量平均分子量(Mw)>
 ゲルパーミエーションクロマトグラフィー[GPC:東ソー社製HLC-8321GPC/HT、カラム:昭和電工社製HT-806M×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、分解生成物(中間分解生成物)のポリスチレン換算の重量平均分子量(Mw)を求めた。なお、測定温度は40℃である。
<架橋ゴム試料の調製>
 天然ゴム100.1質量部に対して、カーボンブラック50.0質量部、老化防止剤6PPD[N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン]1.0質量部、ステアリン酸2.0質量部、酸化亜鉛2.5質量部、加硫促進剤(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)1.5質量部、及び硫黄4.5質量部を配合してゴム組成物を調製し、該ゴム組成物を加熱架橋させて架橋ゴムを調製した。得られた架橋ゴムを一辺が約2~6mmになるように裁断して、架橋ゴム試料を作製した。
(実施例1)
<第1の分解工程>
 上流側に試料投入口と窒素導入ラインを設けた反応管の反応部位の下部にクオーツウールを充填した。なお、該反応管の下流側には、氷冷トラップと、第1の液体窒素トラップと、第2の液体窒素トラップとが設けられており、第2の液体窒素トラップを通過したガスをガスバックで回収した。
 反応管に、上記のようにして得た架橋ゴム試料10gを、供給速度:1g/10分で供給し、窒素流量:600mL/分の条件下、330℃で熱分解反応(第1の分解工程)を行った。ここで、供給した試料は、クオーツウールの上部に配置されて、熱分解反応を受けることとなる。
 試料供給完了10分後に、反応管を冷却し、反応管及びトラップに析出した高粘性物(オリゴマー)を直接回収した。回収したオリゴマーは、濃茶色で、高粘性であり、その回収量は2.4gであった。GPC分析によって回収したオリゴマーの分子量を測定した。反応管に析出したオリゴマーと、トラップに析出したオリゴマーのそれぞれの結果を図1に示す。なお、試験規格:IP391に準拠して液体クロマトグラフィーで測定すると、架橋ゴム試料中の天然ゴムの質量に対する、分解生成物中の天然ゴムに由来する芳香族化合物の質量の割合は、25質量%である。
 また、同時に、架橋ゴム試料由来のカーボンブラックを回収した。カーボンブラックの回収量は6.1gであった。
<第2の分解工程>
 反応管の反応部位に、第1の分解工程で得たオリゴマー0.1gを充填し、その上流側及び下流側にクオーツウールを充填した。なお、該反応管の上流側には、ヘリウム導入ラインが設けられており、下流側には、クロロホルムを充填した冷却トラップ(60%エチレングリコール水溶液、-20℃、により冷却)が設けられており、トラップを通過したガスをガスバックで回収する。
 ヘリウム流量:50mL/分の条件下、400℃で30分間反応管の反応部位を加熱して、第2の分解工程を行う。
 反応終了後に、反応管を冷却し、反応管及びトラップに析出した生成物を回収し、また、ガスバックで気体生成物を回収する。各生成物の重量割合を図2に示す。
 更に、ガスクロマトグラフィー(GC)により、生成物中の芳香族成分と脂肪族成分の収率、並びに、生成物中の炭素数2~4の炭化水素化合物、イソプレン及びリモネンの収率を測定すると、総量は22質量%である。
(実施例2-9)
 次にイソプレン、リモネン量をより高く取得する条件を明確化するため、実施例2-9を示す。
<第1分解工程>
 2mm角に裁断した加硫ゴム試料1.5gをアルミナボートに充填し、電気炉(ROP-001PG)チャンバー内に設置した。その後、電気炉チャンバー内に5L/分の窒素ガスを流通することで窒素雰囲気に置換した。同流量の窒素ガスを流通しながら電気炉を表1に示す温度まで加熱し表1に示す時間保持することで熱分解反応(第1の分解工程)を行った。
(溶媒分解工程)
 上記で得られた熱処理ゴム20mgに、溶媒として重クロロホルム2g、精秤したヘキサメチレンジシラザン0.10gを加え、超音波により分散した後、遠心分離機により固液分離を行い、上澄み液と固形分に分離した。
 固形分に残るポリマー成分量をTGAで窒素中50-700℃まで加熱し、300-650℃での減量分として求める。ゴム中に含まれるポリマー成分の重量から、固形分に残るポリマー成分量を引いた値からポリマー成分の分解収率を求めた。
 上澄み液をH-NMR測定し、ヘキサメチレンジシラザンの水素量対比のイソプレン構造のα位の水素量から分解ポリマー成分中のイソプレン骨格成分収率を求めて、表1に示した。
<第2分解工程>
 実施例1と同様に実施すると想定し、実施例1でのイソプレン及びリモネンの収率に基づいて、実施例2-9で得られたイソプレン骨格成分収率から、イソプレン及びリモネンの収率を推定した。
 結果をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (7)

  1.  ジエン系ゴムを含有するゴム成分を含む架橋ゴムを、150℃以上400℃以下で熱分解する、第1の分解工程と、
     前記第1の分解工程で得られる分解生成物を、不活性ガス雰囲気下、かつ、触媒非存在下、300℃以上450℃以下で更に熱分解する、第2の分解工程と、
     を含むことを特徴とする、架橋ゴムの分解方法。
  2.  前記第1の分解工程を、不活性ガス雰囲気下で行う、請求項1に記載の架橋ゴムの分解方法。
  3.  前記架橋ゴムのゴム成分が、イソプレン単位及び/又はブタジエン単位を含み、
     前記ゴム成分中の前記イソプレン単位及びブタジエン単位の総割合が、40質量%以上であり、
     前記ゴム成分中の前記イソプレン単位及びブタジエン単位の総質量(A)と、前記第1の分解工程で得られる分解生成物中の、前記ゴム成分中の前記イソプレン単位及び/又はブタジエン単位に由来する芳香族化合物の質量(B)とが、下記式(1):
       B/A×100≦50 (質量%) ・・・ (1)
    [式中、Aは、架橋ゴムのゴム成分中のイソプレン単位及びブタジエン単位の総質量であり、Bは、第1の分解工程で得られる分解生成物中の、架橋ゴムのゴム成分中のイソプレン単位及び/又はブタジエン単位に由来する芳香族化合物の質量である。]の関係を満たす、請求項1又は2に記載の架橋ゴムの分解方法。
  4.  前記第1の分解工程で得られる分解生成物の液状成分は、重量平均分子量が100~50000のオリゴマーである、請求項1~3のいずれか一項に記載の架橋ゴムの分解方法。
  5.  前記第2の分解工程で得られる分解生成物は、炭素数5以下の炭化水素化合物及びリモネンを15質量%以上含む、請求項1~4のいずれか一項に記載の架橋ゴムの分解方法。
  6.  前記ゴム成分が、イソプレン骨格ゴム、スチレン-ブタジエンゴム、及びブタジエンゴムからなる群から選択される少なくとも1種を含む、請求項1~5のいずれか一項に記載の架橋ゴムの分解方法。
  7.  前記架橋ゴムが、更にカーボンブラックを含み、
     前記架橋ゴム中の前記カーボンブラックの含有率が、20質量%以上である、請求項1~6のいずれか一項に記載の架橋ゴムの分解方法。
PCT/JP2023/003872 2022-02-08 2023-02-06 架橋ゴムの分解方法 WO2023153378A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-018303 2022-02-08
JP2022018303 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023153378A1 true WO2023153378A1 (ja) 2023-08-17

Family

ID=87564339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003872 WO2023153378A1 (ja) 2022-02-08 2023-02-06 架橋ゴムの分解方法

Country Status (1)

Country Link
WO (1) WO2023153378A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997803A (ja) * 1973-01-05 1974-09-17
JPS51100103A (en) * 1975-02-28 1976-09-03 Takasago Perfumery Co Ltd Tankasuisonoseizoho oyobi sonoseizosochi
JPS59203683A (ja) * 1983-05-02 1984-11-17 Ryozo Hotta 廃タイヤの乾留装置
JPH0797578A (ja) * 1993-03-12 1995-04-11 Koden Chin 廃却ゴムタイヤの分解方法
JPH08508520A (ja) * 1993-04-03 1996-09-10 フェバー・エール・アクチェンゲゼルシャフト 使用済みまたは廃プラスチックの加工方法
JP2012162672A (ja) * 2011-02-08 2012-08-30 Bridgestone Corp 高分子系廃棄物の熱分解方法および熱分解装置
WO2014115437A1 (ja) * 2013-01-23 2014-07-31 積水化学工業株式会社 リサイクル材料の製造方法、タイヤ及びタイヤの製造方法
JP2015151412A (ja) * 2014-02-10 2015-08-24 遠藤 康之 合成ゴムを含有する有機物の乾留処理方法及び乾留処理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997803A (ja) * 1973-01-05 1974-09-17
JPS51100103A (en) * 1975-02-28 1976-09-03 Takasago Perfumery Co Ltd Tankasuisonoseizoho oyobi sonoseizosochi
JPS59203683A (ja) * 1983-05-02 1984-11-17 Ryozo Hotta 廃タイヤの乾留装置
JPH0797578A (ja) * 1993-03-12 1995-04-11 Koden Chin 廃却ゴムタイヤの分解方法
JPH08508520A (ja) * 1993-04-03 1996-09-10 フェバー・エール・アクチェンゲゼルシャフト 使用済みまたは廃プラスチックの加工方法
JP2012162672A (ja) * 2011-02-08 2012-08-30 Bridgestone Corp 高分子系廃棄物の熱分解方法および熱分解装置
WO2014115437A1 (ja) * 2013-01-23 2014-07-31 積水化学工業株式会社 リサイクル材料の製造方法、タイヤ及びタイヤの製造方法
JP2015151412A (ja) * 2014-02-10 2015-08-24 遠藤 康之 合成ゴムを含有する有機物の乾留処理方法及び乾留処理装置

Similar Documents

Publication Publication Date Title
JP2630677B2 (ja) タイヤトレッド用組成物
Stavely Coral Rubber—A Cis-1, 4-Polyisoprene
US6103808A (en) High aromatic oil and rubber composition and oil extended synthetic rubber using the same
RU2540088C2 (ru) Шины и протекторы, изготовленные из смолы, полученной полимеризацией фенольных, ароматических и терпеновых соединений
CN113150578B (zh) 一种新型改性裂解炭黑及其制备方法
EP1435372A1 (en) Devulcanization of cured rubber
JPH06239909A (ja) 共役ジエン系重合体の製造方法及び共役ジエン系ゴム組成物
WO2000069953A1 (fr) Procedes de separation de caoutchouc, vulcanise ou non vulcanise, et composite en caoutchouc ; composition de caoutchouc renfermant du caoutchouc ou du noir de carbone recuperes et procede d'obtention de noir de carbone
US3822218A (en) Production of activated carbon from rubber and a carbonaceous binder
WO2023153378A1 (ja) 架橋ゴムの分解方法
WO2023153377A1 (ja) 架橋ゴムの分解方法
Zhang et al. Influence of a novel coupling agent on the performance of recovered carbon black filled natural rubber
Crane et al. Scrap Tire Disposal Process
CN115160657B (zh) 一种橡胶母炼胶及其制备方法
JPS6236437A (ja) タイヤトレツド用ゴム組成物
WO2023153381A1 (ja) 架橋ゴムの分解方法
WO2011161932A1 (ja) ゴム補強用炭素材料及びその製造方法
JP7236430B2 (ja) ゴム組成物製造方法
JP2020070329A (ja) ゴム組成物およびそれを用いた空気入りタイヤ
EP4004103B1 (en) Tire incorporating a rubber composition including a specific hydrocarbon resin
JP5693057B2 (ja) 炭化物及びその製造方法、並びにゴム組成物及びタイヤ
JP3430245B2 (ja) 液状炭化水素及びカーボンブラックの製造方法
JPH05112674A (ja) 優れた転動抵抗を有するゴム組成物
JP2001226520A (ja) 回収カーボンブラックを用いたゴム組成物
JP2002097386A (ja) 加硫ゴムから良質なカーボンブラックを回収する方法、およびそのカーボンブラックを用いたゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752842

Country of ref document: EP

Kind code of ref document: A1