EP0684324B1 - Verfahren zur Herstellung von Metallhydroxiden - Google Patents

Verfahren zur Herstellung von Metallhydroxiden Download PDF

Info

Publication number
EP0684324B1
EP0684324B1 EP95107172A EP95107172A EP0684324B1 EP 0684324 B1 EP0684324 B1 EP 0684324B1 EP 95107172 A EP95107172 A EP 95107172A EP 95107172 A EP95107172 A EP 95107172A EP 0684324 B1 EP0684324 B1 EP 0684324B1
Authority
EP
European Patent Office
Prior art keywords
metal
hydroxide
ions
process according
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95107172A
Other languages
English (en)
French (fr)
Other versions
EP0684324A1 (de
Inventor
Dirk Dr. Naumann
Armin Dr. Olbrich
Josef Dr. Schmoll
Wilfried Dr. Gutknecht
Bernd Bauer
Thomas Dipl.-Ing. Menzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Publication of EP0684324A1 publication Critical patent/EP0684324A1/de
Application granted granted Critical
Publication of EP0684324B1 publication Critical patent/EP0684324B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the present invention relates to a method for producing Metal hydroxides and / or metal oxide hydroxides from corresponding metal ions and hydroxide ions, the metal ions being in a membrane electrochemical Process by anodic dissolution of corresponding metals in the anode compartment and the hydroxide ions by cathodic reduction of water in one Anion exchange membrane and the cathode space are formed Hydroxide ions under the driving force of an electric field through the Anion exchange membrane are transferred to the anode compartment.
  • Metal hydroxides and metal oxide hydroxides are valuable intermediates for the Production of inorganic or organic salts of these metals, for which corresponding oxides or the pure metals themselves.
  • Cobalt hydroxide by calcining a cobalt oxide defined composition e.g. for use in electronics for the production of varistors or Manufacture in batteries or by reducing a cobalt metal powder defined particle size distribution.
  • Nickel hydroxides serve as pigments or are available with different dopings and particle structures for use in Batteries inserted.
  • Zinc hydroxides can serve as precursors for pigments and the copper compounds can be converted into catalytically active materials.
  • Cobalt metal powder made from cobalt hydroxide or Cobalt oxide hydroxide results from its particle size distribution and Particle structure after sintering together with tungsten carbide e.g. specific Carbide tools.
  • Nickel hydroxide particles with a Diameters between 1 and 100 ⁇ m are crystallized by a constant pH value and at constant temperature a nickel salt solution and an alkali hydroxide in solid or liquid form with intensive stirring be passed into a reaction vessel.
  • Be considered favorable test conditions a pH of 11 and a temperature of 48 ° C.
  • a sufficiently compact nickel hydroxide can be produced by precipitation in the presence of ammonia or an ammonium salt.
  • a nickel amine complex solution is prepared from nickel nitrate and aqueous ammonia solution, from which a nickel hydroxide is obtained by boiling at ordinary or reduced pressure or by treatment with steam, and which is significantly less specific than the nickel hydroxides which are precipitated in the absence of ammonia Surface area (13 to 20 m 2 / g).
  • the production of compact nickel hydroxides in the presence of ammonia or an ammonium salt is also evident from patent applications JP-A 53-6119 and JP-A 61-18107.
  • the first-mentioned patent application describes the precipitation of nickel hydroxide by adding an alkali metal hydroxide solution to a corresponding solution with a pH of at least 3.0. Electrochemical investigations on the material produced in this way revealed particularly high specific charge capacities in comparison to commercially available nickel hydroxides.
  • a nickel (II) tetrammine salt solution is prepared by dissolving nickel nitrate or nickel sulfate in dilute ammonia solution and decomposed by the controlled addition of sodium hydroxide solution in accordance with the following reaction: Ni (NH 3 ) 4 SO 4 + 2 NaOH ⁇ Ni (OH) 2 + Na 2 SO 4 + 4 NH 3
  • the reaction takes place at temperatures between 40 and 50 ° C and in the pH range between 11 and 13.
  • the pore volume decreases with decreasing pH. It is expressly stated that a pore-free product can only be crystallized at sufficiently slow reaction rates.
  • the nickel hydroxide produced by this process has a high crystallinity, a low specific surface area, a small pore volume and therefore a high physical density.
  • the disadvantages of this product due to the high density are also described.
  • the small specific surface area results in a lower proton conductivity and a higher current density, which promotes the formation of the undesired ⁇ -NiOOH, which leads to the swelling of the electrode.
  • the nickel hydroxide crystallized at low pH values has a high density, it tends to form ⁇ -NiOOH. By choosing an average pH value, a compromise can be found between the required high density and the porosity required to a certain extent.
  • This process produces a nickel hydroxide containing 3 to 10% zinc or 1 to 3% magnesium in solid solution. These doping counteract the formation of ⁇ -NiOOH.
  • a continuous process for crystallization is known from the patent JP Hei 4-68249 a nickel hydroxide with a spherical particle shape.
  • a nickel salt solution 0.5 to 3.5 mol / l
  • dilute alkali solution (1.25 to 10 mol / l)
  • an ammonia and / or ammonium salt solution continuously with vigorous stirring in an overflow pipe pumped heated cylindrical container
  • the ammonia too can be introduced in gaseous form.
  • the ammonia concentration is 10 to 28 wt .-% and the ammonium salt concentration with 3 to 7.5 mol / l.
  • To complex the nickel between 0.1 and 1.5 mol of ammonia are used Moles of nickel salt solution.
  • the system will reach after about 10 to 30 hours a steady state, after which a product with constant Quality can be carried out.
  • the dwell time in the container is between 0.5 and 5 hours.
  • An essential feature of this process is that the reaction is carried out at a defined pH, which is kept constant at ⁇ 0.1 pH levels in the range between 9 and 12 by pH-controlled supply of alkali metal hydroxide solution, and at a constant temperature in the range between 20 and 80 ° C, the temperature deviations should not be more than ⁇ 2 K.
  • the compact spherical particles with a particle size between 2 and 50 ⁇ m are obtained.
  • the particle size can be adjusted in particular by varying the NH 3 inflow, the residence time and the stirring speed. The particle size increases with decreasing backspeed or increasing NH 3 inflow. As the dwell time in the container increases, the product becomes coarser and the particle size distribution narrows. The crystals are then filtered, washed with water and dried.
  • the product produced by this process has the properties mentioned at the outset and does not need to be ground.
  • EP A 462 889 discloses a process for the production of nickel hydroxide.
  • the temperature range of the crystallization is above 80 ° C.
  • Nitrate or sulfate solutions doped with cobalt, cadmium and / or zinc are used.
  • the cobalt content is between 1 and 8% by weight and the cadmium and / or zinc contents are between 3 and 10% by weight.
  • Complexation takes place with the aid of an ammonium salt, the NH 3 / Ni molar ratio being between 0.3 and 0.6. This method maintains a pH of 9.2 ⁇ 0.1.
  • a three-bladed stirrer is used, the diameter of which is half the size of the container diameter and the speed of rotation is between 300 and 1000 min -1 .
  • the product is filtered, washed and dried.
  • nickel is used, for example Electrolysis dissolved anodically in a metal salt solution and by cathodically hydroxide ions formed precipitated as nickel hydroxide. After sedimentation and various subsequent washing stages for cleaning the precipitated product of salts which are still present or are included in the precipitation are obtained the pure product.
  • JP-A 63/247 385 describes the electrolytic production of metal hydroxides using a perfluorinated anion exchange membrane the Toyo Soda and the use of inert electrodes.
  • Electrolyte is the metal salt of the one to be produced on the anode side Related metal hydroxides. There is an alkaline solution in the cathode circuit used. In EP-A 0 559 590 this is described in a comparable arrangement Metal salt continuously added by anodic dissolution of the electrode. The Requirements for the process, especially the membranes to be used, the Electrolyte solutions and the test conditions are insufficiently specified.
  • JP-A-63 206 487 describes a process for the production of high-purity Metal hydroxides, with an anode made of the desired metal, for example Indium, dissolved in an electrolyte containing tetramethylammonium hydroxide becomes.
  • the cathode is made of platinum and the cell is through an anion exchange membrane divided. Even after electrolysis has ended, there is still one in the anolyte Metal salt solution before, after separation from the anode chamber by heating hydrated to the metal hydroxide.
  • DE-A-3 508 360 describes the anodic dissolution of metal mixtures in an ammonium chloride-containing electrolyte using an anion exchange membrane, wherein the metal ions formed on the anode with the im Electrolytes present halogen ions with the formation of halogen complex ions react.
  • a metal salt solution in the anolyte there is a metal salt solution in the anolyte.
  • the object of this invention is to provide a method for the production of metal hydroxides and / or metal oxide hydroxides, which has the disadvantages of described prior art does not have.
  • This object is achieved by a process for the production of metal hydroxides and / or metal oxide hydroxides from corresponding metal ions and Hydroxide ions, the metal ions in a membrane electrochemical process by anodic dissolution of corresponding metals in the anode compartment and the Hydroxide ions by cathodic reduction of water in an anion exchange membrane limited cathode space are formed and the Hydroxide ions under the driving force of an electric field through the Anion exchange membrane can be transferred to the anode compartment characterized in that the dissolution of the metals in the presence of a complexing agent is carried out at a pH> 7 and the formation and precipitation of Metal hydroxide takes place when the solubility limit in the anolyte is exceeded, and the process is carried out continuously, the metal hydroxide formed from Anolyte is separated and the complexing agent is returned to the anode compartment.
  • Ammonia is preferred as complexing agent in the sense of this invention and / or organic mono- and / or diamines with a chain length of 1 to 6 carbon atoms used.
  • Metals are in particular one or more of the Group Co, Ni, Cu, Fe In, Mn, Sn, Zn, Zr, Ti, Al, Cd and Ni. Especially Co and / or Ni are preferred. The following is the inventive Process further described for the case of the production of nickel hydroxide without thereby restricting the invention.
  • the basic configuration for a membrane electrolysis cell the suitable for carrying out the method according to the invention is described below shown.
  • the cathode and anode space of the electrolytic cell separated by an anion exchange membrane so that two separate ones Result in cycles.
  • the circuit on the side of the cathode is filled with catholyte labeled with anolyte on the anode side.
  • the catholyte can be preferred alkaline solutions such as Sodium hydroxide solution or potassium hydroxide solution can be used.
  • the solution itself has a high conductivity and the cation of the alkali used is also used on the anode side.
  • the cathode itself can be made tempered steel, platinum-plated titanium, nickel or a nickel alloy.
  • the composition of the anolyte results from the starting materials for the production of nickel hydroxide, i.e. Ammonia, sodium chloride and small amounts of Nickel sulfate.
  • the sodium chloride primarily serves to increase the conductivity the solution and by the slight addition of sulfate the anodic Resolution of the nickel electrode improved. Particularly good results will be achieved when chloride and / or sulfate ions are present in the anolyte.
  • the anode itself consists of pure nickel, preferably an electrochemically produced one Anode.
  • Ni (OH) 2 Under active transport conditions due to the applied external potential, nickel as Ni 2+ ion dissolves with the release of electrons. The presence of ammonia prevents spontaneous precipitation of Ni (OH) 2 under alkaline conditions and leads to a divalent nickel-amine complex via various intermediates.
  • the reaction at the cathode produces hydrogen, the electron uptake gaseous escapes and hydroxide ions, which according to their charge over the Anion exchange membrane are transported into the anode circuit. in the Anolyte then helps to form and precipitate the nickel hydroxide The solubility limit is exceeded. The precipitation follows one dynamic equilibrium, with a ligand exchange (ammonia for Hydroxide) takes place.
  • the formation of the spherical product is essentially determined by the crystallization conditions, i.e. the concentration of the individual components and the temperature control determined in the anode circuit.
  • the precipitated product will then continuously separated from the anolyte cycle.
  • the separation can be done in one procedurally easy to carry out sedimentation tank due to the large difference in density of the product formed and the solvent be performed.
  • For separating a product of uniform grain size separation takes place via a filtration stage (microfiltration).
  • microfiltration stage microfiltration
  • ion exchange membranes usually have one micro-heterogeneous and / or an interpolymer morphology. This is supposed to be achieved that the mechanical and electrochemical properties are decoupled can be adjusted.
  • a membrane is constructed accordingly from a matrix polymer, a fabric or a binder, and from one Polyelectrolytes or an ionomer. According to the degree of Heterogeneity of the ion exchange membrane between homogeneous membranes, Interpolymer membranes, micro-heterogeneous graft or block copolymer membranes and heterogeneous membranes.
  • the polymer network can be constructed differently in order for the Sufficiently good electrical and mechanical properties in most applications to show.
  • a charge neutral matrix polymer is usually Polyvinyl chloride and polyacrylate are used.
  • Can be used as further matrix polymers still polyethylene, polypropylene or polysulfone can be used, whereby only these have long-term chemical stability under alkaline conditions.
  • an anion exchange membrane one based on polyethylene, polypropylene, polyether ketone, Polysulfone, polyphenyl oxide and / or sulfide used.
  • the ion-conducting polyelectrolytes of an anion exchange membrane consist of a network with a positive excess charge and mobile, negatively charged counterions.
  • the anion exchange membrane used in the process according to the invention particularly preferably has exchange groups composed of alkylated polyvinylimidazole, polyvinylpyridine and / or alkylated 1,4-diazabicyclo [2.2.2] octane.
  • the type and concentration of partitions mainly determines that Permselectivity and the electrical resistance of the membrane, however, can also on the mechanical properties, especially on the swelling of the Impact membrane due to the concentration of fixations.
  • the strongly basic quaternary ammonium group is dissociated at all pH values, while the primary ammonium group is only black dissociated. For this reason mostly quaternary ammonium groups in commercial anion exchange membranes built in, except that a membrane with certain properties to be manufactured.
  • the fabric should be made of temperature, alkali and oxidation stable polymers (Polypropylene, polyethylene, polyether ketone) exist and as a fixed charge chemically stable quaternary ammonium salt (Vinylimidazole, 4,4'-diaza-bicyclo [2.2.2] octane).
  • Suitable membranes are described in DE-A 44 21 126.
  • the electrolytic cell is composed of two nickel cathodes, two spacers made of polyethylene, two membranes and the cobalt sacrificial anode and four frames of different thicknesses.
  • the cell is constructed in such a way that the nickel cathodes represent the outer sides of the cell with an area of 120 x 200 mm 2 effective electrode area.
  • the electrical contact is made on protruding electrode surfaces.
  • the cobalt anode consists of pure cobalt with a thickness of 20 mm.
  • the entire structure is pressed together in a liquid-tight manner using a holder.
  • a PE grid is inserted between the cathodes and the membrane, which prevents contact between the cathode and the membrane.
  • the frames that separate the anode and membrane are provided with holes through which the anolyte is fed in and out.
  • the cathodes are also provided with feed lines so that a uniform flow of the catholyte is ensured in the entire cathode space.
  • the catholyte and anolyte each contain 100 g / l NaCl, the catholyte also 40 g / l NaOH.
  • the catholyte is repumped at a rate of 100 l / h, which is one Residence time of the electrolyte in the cathode compartment corresponds to 9 seconds.
  • the anolyte is circulated during electrolysis at a speed of 650 l / h pumped, which corresponds to an average residence time of 2.7 seconds in the anode compartment.
  • the temperature of the anolyte is 50 ° C.
  • the ammonia concentration in the Anolyte is adjusted to 2 mol / l and losses due to evaporation Addition of ammonia in the anolyte circuit balanced.
  • the stationary solid concentration of cobalt hydroxides formed is 80 g / l with an average residence time of 4 h.
  • the electrolysis conditions are selected so that a current of 12 A corresponding to 500 A / m 2 flows, 21 g of cobalt hydroxide of the form Co (OH) 2 being formed every hour, which are discharged from the circuit in 0.26 l suspension and through Filtration can be separated. After washing with water, a clean cobalt hydroxide is obtained.
  • Cobalt hydroxide mixture of Co (OH) 2 with CoOOH in the ratio 80/20 after analysis
  • Bulk density 1.6 g / cm 3
  • Cobalt content 63.5% colour Dark brown
  • an electrolytic cell which is comparable to a stack of electrodes and membranes with the electrode spaces in between is nickel dissolved electrochemically in the presence of ammonia and the formed Ammine complex decomposed to nickel hydroxide.
  • Electrolyte composition Anolyte 16.5 mmol / l NiSO 4 220 ml NH 3 (25%) / l 2 mol / l NaCl Catholyte 1 mol / l NaOH anode Pure nickel cathode platinum-plated titanium temperature Electrolysis 40 ° C Decomposition of the complex 70 ° C Current density 1000 A / m 2 Distance electrodes / membrane 2 mm Overflow speed > 10 cm / s pH anolyte 10.5 - 11.5 membrane Neosepta® AMH, manufacturer Tokuyama Soda

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Metallhydroxiden und/oder Metalloxidhydroxiden aus entsprechenden Metallionen und Hydroxidionen, wobei die Metallionen in einem membranelektrochemischen Verfahren durch anodische Auflösung entsprechender Metalle im Anodenraum und die Hydroxidionen durch kathodische Reduktion von Wasser im von einer Anionenaustauschermembran begrenzten Kathodenraum gebildet werden und die Hydroxidionen unter der treibenden Kraft eines elektrischen Feldes durch die Anionenaustauschermembran in den Anodenraum überführt werden.
Metallhydroxide und Metalloxidhydroxide sind wertvolle Zwischenprodukte für die Herstellung von anorganischen oder organischen Salzen dieser Metalle, für die entsprechenden Oxide oder der reinen Metalle selbst. So läßt sich z.B. Cobalthydroxid durch Calcinierung ein Cobaltoxid definierter Zusammensetzung z.B. für die Anwendung in der Elektronik für die Herstellung von Varistoren oder in Akkumulatoren herstellen oder durch Reduktion ein Cobaltmetallpulver definierter Partikelgrößenverteilung. Nickelhydroxide dienen als Pigmente oder werden mit verschiedenen Dotierungen und Partikelstrukturen für den Einsatz in Batterien eingesetzt. Zinkhydroxide können als Vorstoffe für Pigmente dienen und die Kupferverbindungen lassen sich in katalytisch aktive Materialien umwandeln.
Bei der Herstellung der Hydroxide für verschiedene Anwendungen steht das Ziel im Vordergrund, möglichst kompaktes und fließfähiges Material für die weitere Verarbeitung herzustellen. Cobaltmetallpulver, hergestellt aus Cobalthydroxid bzw. Cobaltoxidhydroxid, ergibt durch seine Partikelgrößenverteilung und Partikelstruktur nach seiner Sinterung gemeinsam mit Wolframcarbid z.B. spezielle Hartmetallwerkzeuge.
Für die neuentwickelten Schaumanoden, die insbesondere in Nickelhydridspeicherzellen eingesetzt werden, wird ein Nickelhydroxid benötigt, dessen physikalische Eigenschaften sowohl bezüglich des Anwendungszweckes als auch der angewendeten Verarbeitungstechnik optimiert sind. Die Anwendung in Hochleistungsakkumulatoren mit Nickel-Schaumelektroden auf Basis der Pasten-Technologie verlangt ein Material mit hoher Fließfähigkeit, gedrungener Teilchenform, enger Kornverteilung und konstanter Qualität. Ferner soll sich das Produkt gut mit den üblicherweise eingesetzten Zusätzen wie z.B. Cobalt-Metallpulver und Cobaltoxid mischen lassen.
Ein entsprechendes Material und Grundzüge des Herstellungsverfahrens sind in dem Patent JP Hei 4-80513 beschrieben. Nickelhydroxidteilchen mit einem Durchmesser zwischen 1 und 100 µm werden dabei kristallisiert, indem bei einem konstanten pH-Wert und bei konstanter Temperatur kontinuierlich eine Nickelsalzlösung und ein Alkalihydroxid in fester oder flüssiger Form unter intensivem Rühren in ein Reaktionsgefäß geleitet werden. Als günstige Versuchsbedingungen werden ein pH-Wert von 11 und eine Temperatur von 48°C angegeben.
Es ist weiterhin bekannt, daß die Herstellung eines hinreichend kompakten Nickelhydroxids durch Fällung in Gegenwart von Ammoniak oder eines Ammoniumsalzes erfolgen kann. So wird gemäß Trans. Faraday Soc. 51 (1955) 961 aus Nickelnitrat und wäßriger Ammoniaklösung eine Nickelamminkomplexlösung hergestellt, aus der durch Kochen bei gewöhnlichem oder vermindertem Druck oder durch Behandlung mit Wasserdampf ein Nickelhydroxid erhalten wird und das gegenüber den Nickelhydroxiden, die in Abwesenheit von Ammoniak gefällt werden, eine wesentlich geringere spezifische Oberfläche aufweist (13 bis 20 m2/g). Die Herstellung kompakter Nickelhydroxide in Gegenwart von Ammoniak oder einem Ammoniumsalz geht auch aus den Patentanmeldungen JP-A 53-6119 und JP-A 61-18107 hervor. In der zuerst genannten Patentanmeldung wird die Fällung von Nickelhydroxid durch Zugabe einer Alkalilauge zu einer entsprechenden Lösung mit einem pH-Wert von mindestens 3,0 beschrieben. Elektrochemische Untersuchungen an dem auf diese Weise hergestellten Material ergaben im Vergleich zu handelsüblichen Nickelhydroxiden besonders hohe spezifische Ladungskapazitäten.
Derartige Produkte erfüllen jedoch noch nicht die oben genannten Anforderungen an Teilchenform, Kornverteilung und Fließfähigkeit.
Wesentliche Merkmale des Verfahrens zur Herstellung eines kompakten Nickelhydroxids und dessen Verwendung in alkalischen Batterien werden in der EP-A 353 837 beschrieben. Eine Nickel(II)-tetramminsalzlösung wird durch Auflösung von Nickelnitrat oder Nickelsulfat in verdünnter Ammoniaklösung hergestellt und durch kontrollierte Zugabe von Natronlauge entsprechend der folgenden Reaktion zersetzt: Ni(NH3)4SO4 + 2 NaOH ⇒ Ni(OH)2 + Na2SO4 + 4 NH3 Die Reaktion läuft bei Temperaturen zwischen 40 und 50°C und im pH-Bereich zwischen 11 und 13 ab. Dabei nimmt das Porenvolumen mit sinkendem pH-Wert ab. Es wird ausdrücklich festgestellt, daß ein porenfreies Produkt nur bei hinreichend geringen Reaktionsgeschwindigkeiten kristallisiert werden kann. Weiterhin hat das nach diesem Verfahren hergestellte Nickelhydroxid eine hohe Kristallinität, eine geringe spezifische Oberfläche, ein geringes Porenvolumen und daher eine hohe physikalische Dichte. Auch die Nachteile dieses Produkts, die auf die hohe Dichte zurückzuführen sind, werden beschrieben. Die geringe spezifische Oberfläche resultiert in einer geringeren Protonenleitfähigkeit und in einer höheren Stromdichte, die die Entstehung des unerwünschten γ-NiOOH, das zur Quellung der Elektrode führt, fördert. Zwar hat das bei niedrigen pH-Werten kristallisierte Nickelhydroxid eine hohe Dichte, doch neigt es stärker zur Bildung von γ-NiOOH. Durch die Wahl eines mittleren pH-Wertes läßt sich ein Kompromiß zwischen der geforderten hohen Dichte und der in gewissem Maße notwendigen Porosität finden. Nach diesem Verfahren wird ein Nickelhydroxid hergestellt, das 3 bis 10 % Zink oder 1 bis 3 % Magnesium in fester Lösung enthält. Diese Dotierungen wirken der Entstehung des γ-NiOOH entgegen.
Aus dem Patent JP Hei 4-68249 geht ein kontinuierliches Verfahren zur Kristallisation eines Nickelhydroxids mit sphärischer Teilchenform hervor. Dabei werden mittels Dosierpumpen eine Nickelsalzlösung (0,5 bis 3,5 mol/l), verdünnte Alkalilauge (1,25 bis 10 mol/l) und eine Ammoniak- und/oder Ammoniumsalzlösung kontinuierlich unter intensivem Rühren in einen mit einem Überlaufrohr versehenen beheizten zylindrischen Behälter gepumpt, wobei der Ammoniak auch gasförmig eingeleitet werden kann. Die Ammoniakkonzentration wird mit 10 bis 28 Gew.-% und die Ammoniumsalzkonzentration mit 3 bis 7,5 mol/l angegeben. Um das Nickel zu komplexieren, werden zwischen 0,1 und 1,5 mol Ammoniak je Mol Nickelsalzlösung zugeführt. Nach etwa 10 bis 30 Stunden erreicht das System einen stationären Zustand, wonach kontinuierlich ein Produkt mit konstanter Qualität ausgetragen werden kann. Die Verweilzeit im Behälter beträgt zwischen 0,5 und 5 Stunden.
Ein wesentliches Merkmal dieses Verfahrens ist die Durchführung der Reaktion bei einem definierten pH-Wert, der im Bereich zwischen 9 und 12 durch pH-gesteuerte Zufuhr von Alkalilauge auf ± 0,1 pH-Stufen konstant gehalten wird, und bei konstanter Temperatur im Bereich zwischen 20 und 80°C, wobei die Temperaturabweichungen nicht mehr als ± 2 K betragen sollten. Bei diesen Bedingungen werden die kompakten sphärischen Partikel mit einer Teilchengröße zwischen 2 und 50 µm erhalten. Die Teilchengröße läßt sich insbesondere durch Variation des NH3-Zuflusses, der Verweilzeit und der Rührgeschwindigkeit einstellen. Mit abnehmender Rückgeschwindigkeit bzw. zunehmendem NH3-Zufluß nimmt die Teilchengröße zu. Mit zunehmender Verweilzeit im Behälter wird das Produkt gröber, die Teilchengrößenverteilung enger. Das Kristallisat wird anschließend filtriert, mit Wasser gewaschen und getrocknet. Das nach diesem Verfahren hergestellte Produkt weist die eingangs genannten Eigenschaften auf, wobei es nicht gemahlen zu werden braucht.
In der EP A 462 889 wird ein Verfahren zur Herstellung von Nickelhydroxid offenbart. Dabei liegt der Temperaturbereich der Kristallisation oberhalb 80°C. Es werden mit Cobalt, Cadmium und/oder Zink dotierte Nitrat- oder Sulfatlösungen eingesetzt. Der Cobalt-Gehalt liegt zwischen 1 und 8 Gew.-%, und die Gehalte an Cadmium und/oder Zink betragen zwischen 3 und 10 Gew.-%. Komplexierung erfolgt mit Hilfe eines Ammoniumsalzes, wobei das Molverhältnis NH3/Ni zwischen 0,3 und 0,6 beträgt. Bei diesem Verfahren wird ein pH-Wert von 9,2 ± 0,1 eingehalten. Ferner wird ein dreiflügeliger Rührer, dessen Durchmesser halb so groß wie der Behälterdurchmesser ist und dessen Drehzahl zwischen 300 und 1000 min-1 liegt, eingesetzt.
Wie in den bereits beschriebenen Verfahren wird das Produkt filtriert, gewaschen und getrocknet.
Die Nachteile dieser Verfahren sind einerseits die zwangsläufig anfallenden großen Mengen von Neutralsalzen, die bei mindestens der doppelten stöchiometrischen Menge des Nickelhydroxid liegen und ins Abwasser abgegeben werden. Andererseits enthält dieses Abwasser neben geringen Mengen komplex gelösten Nickels noch große Mengen Ammoniak, die entsorgt werden müssen.
Beim chemischen Verfahren der Fällungskristallisation zur Herstellung von sphärischem Nickelhydroxid fallen zwangsläufig 2 Mol Natriumchlorid pro Mol Nickelhydroxid an. Im Hinblick auf strengere Umweltrichtlinien und Grenzwerte für Abwässer einerseits und wirtschaftliche Aspekte bedingt durch den hohen Verbrauch an Lauge und resultierende Deponiekosten für das anfallende Salz andererseits müssen geschlossene Produktionskreisläufe entwickelt werden.
Bei einer derartigen Verfahrensführung wird beispielsweise Nickel mittels Elektrolyse anodisch in einer Metallsalzlösung aufgelöst und durch die kathodisch gebildeten Hydroxidionen als Nickelhydroxid gefällt. Nach der Sedimentation und verschiedenen, nachfolgenden Waschstufen zur Reinigung des gefällten Produktes von noch vorhandenen bzw. bei der Fällung eingeschlossenen Salzen erhält man das reine Produkt.
Verfahren zur Herstellung von Metallhydroxiden sind in folgenden Patentschriften bereits beschrieben. In der JP-A 63/247 385 wird die elektrolytische Herstellung von Metallhydroxiden unter Verwendung einer perfluorierten Anionenaustauschermembran der Toyo Soda und dem Einsatz inerter Elektroden ausgeführt. Als Elektrolyt wird dabei auf der Anodenseite das Metallsalz des herzustellenden Metallhydroxides verwandt. Im Kathodenkreislauf wird eine alkalische Lösung eingesetzt. In der EP-A 0 559 590 wird in einer vergleichbaren Anordnung das Metallsalz durch anodische Auflösung der Elektrode kontinuierlich zugegeben. Die Anforderungen an den Prozeß, insbesondere der zu verwendenden Membranen, der Elektrolytlösungen und der Versuchsbedingungen sind nur unzureichend präzisiert.
Die JP-A-63 206 487 beschreibt ein Verfahren zur Herstellung von hochreinen Metallhydroxiden, wobei eine Anode aus dem gewünschten Metall, beispielsweise Indium, in einem Elektrolyten enthaltend Tetramethylammoniumhydroxid aufgelöst wird. Die Kathode besteht aus Platin und die Zelle ist durch eine Anionenaustauschermembran geteilt. Auch nach beendigter Elektrolyse liegt im Anolyt eine Metallsalzlösung vor, die nach Abtrennung aus der Anodenkammer durch Erhitzen zum Metallhydroxid hydratisiert wird.
Die DE-A-3 508 360 beschreibt die anodische Auflösung von Metallgemischen in einem ammoniumchloridhaltigen Elektrolyten unter Verwendung einer Anionenaustauschermembran, wobei die an der Anode gebildeten Metallionen mit den im Elektrolyten vorliegenden Halogenionen unter Ausbildung von Halogenkomplexionen reagieren. Auch hier liegt somit im Anolyten eine Metallsalzlösung vor.
Aufgabe dieser Erfindung ist die Bereitstellung eines Verfahrens zur Herstellung von Metallhydroxiden und/oder Metalloxidhydroxiden, welches die Nachteile des beschriebenen Standes der Technik nicht aufweist.
Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von Metallhydroxiden und/oder Metalloxidhydroxiden aus entsprechenden Metallionen und Hydroxidionen, wobei die Metallionen in einem membranelektrochemischen Verfahren durch anodische Auflösung entsprechender Metalle im Anodenraum und die Hydroxidionen durch kathodische Reduktion von Wasser im von einer Anionenaustauschermembran begrenzten Kathodenraum gebildet werden und die Hydroxidionen unter der treibenden Kraft eines elektrischen Feldes durch die Anionenaustauschermembran in den Anodenraum überführt werden, dadurch gekennzeichnet, daß die Auflösung der Metalle in Gegenwart eines Komplexbildners bei einem pH >7 durchgeführt wird und die Bildung und Ausfällung des Metallhydroxides bei Überschreiten der Löslichkeitsgrenze im Anolyt stattfindet, und das Verfahren kontinuierlich durchgeführt wird, wobei das gebildete Metallhydroxid vom Anolyten abgetrennt wird und der Komplexbildner in den Anodenraum zurückgeführt wird.
Als Komplexbildner im Sinne dieser Erfindung werden bevorzugt Ammoniak und/oder organische Mono- und/oder Diamine mit einer Kettenlänge von 1 bis 6 C-Atomen eingesetzt. Metalle sind insbesondere eines oder mehrere aus der Gruppe Co, Ni, Cu, Fe In, Mn, Sn, Zn, Zr, Ti, Al, Cd und Ni. Besonders bevorzugt sind dabei Co und/oder Ni. Im folgenden wird das erfindungsgemäße Verfahren weiterhin für den Fall der Herstellung von Nickelhydroxid beschrieben, ohne die Erfindung hierdurch einzuschränken.
Die sich prinzipiell ergebende Konfiguration für eine Membranelektrolysezelle, die zur Durchführung des erfindungsgemäßen Verfahrens geeignet ist, wird im folgenden dargestellt. Der Kathoden- und der Anodenraum der Elektrolysezelle werden durch eine Anionenaustauschermembran getrennt, so daß sich zwei getrennte Kreisläufe ergeben. Der Kreislauf auf der Seite der Kathode wird mit Katholyt, der auf der Anodenseite mit Anolyt bezeichnet. Als Katholyt können bevorzugt alkalische Lösungen wie z.B. Natronlauge oder Kalilauge eingesetzt werden. Für die Wirtschaftlichkeit des Verfahrens ist es dabei von Vorteil, wenn die Lösung selbst eine hohe Leitfähigkeit besitzt und das Kation der verwendeten Lauge ebenfalls auf der Anodenseite eingesetzt wird. Die Kathode selbst kann aus vergütetem Stahl, platiniertem Titan, Nickel oder einer Nickellegierung bestehen.
Die Zusammensetzung des Anolyten ergibt sich aus den Edukten zur Herstellung von Nickelhydroxid, d.h. Ammoniak, Natriumchlorid und geringe Mengen an Nickelsulfat. Das Natriumchlorid dient in erster Linie zur Erhöhung der Leitfähigkeit der Lösung und durch die geringe Zugabe von Sulfat wird die anodische Auflösung der Nickelelektrode verbessert. Besonders gute Ergebnisse werden erzielt, wenn im Anolyten Chlorid und/oder Sulfationen vorliegen. Die Anode selbst besteht aus Reinnickel, vorzugsweise aus einer elektrochemisch hergestellten Anode.
Bei der Herstellung anderer Metallhydroxide und/oder Metalloxidhydroxide besteht die Anode aus den entsprechenden Metallen. Grundsätzlich wird also eine Opferanode eingesetzt.
Unter aktiven Transportbedingungen aufgrund des angelegten äußeren Potentiales geht Nickel als Ni2+-Ion unter Abgabe von Elektronen in Lösung. Die Anwesenheit des Ammoniak verhindert dabei eine spontane Ausfällung des Ni(OH)2 unter alkalischen Bedingungen und führt über verschiedene Zwischenstufen zu einem zweiwertigen Nickel-Aminkomplex.
Figure 00080001
Die Reaktion an der Kathode liefert unter Elektronenaufnahme Wasserstoff, der gasförmig entweicht und Hydroxidionen, die entsprechend ihrer Ladung über die Anionenaustauschermembran in den Anodenkreislauf transportiert werden. Im Anolyt findet dann die Bildung und Ausfällung des Nickelhydroxides bei Überschreiten der Löslichkeitsgrenze statt. Die Fällung folgt dabei einem dynamischen Gleichgewicht, wobei ein Ligandenaustausch (Ammoniak gegen Hydroxid) stattfindet.
Die Bildung des sphärischen Produktes wird dabei wesentlich durch die Kristallisationsbedingungen, d.h. die Konzentration der Einzelkomponenten und die Temperaturführung im Anodenkreislauf bestimmt. Das gefällte Produkt wird dann kontinuierlich aus dem Anolytkreislauf abgetrennt. Die Abtrennung kann in einem verfahrenstechnisch einfach auszuführenden Sedimentationsbehälter aufgrund des großen Dichteunterschiedes des gebildeten Produktes und des Lösungsmittels durchgeführt werden. Zur Abtrennung eines Produktes einheitlicher Korngröße erfolgt die Abtrennung über eine Filtrationsstufe (Mikrofiltration). Der wesentliche Vorteil dieser Verfahrensvariante ist, daß zusätzliche, einzelne Verfahrensschritte zur Rückgewinnung der verschiedenen Edukte entfallen, da sie im Anolytkreislauf gehalten werden.
Zur Umsetzung des beschriebenen elektrochemischen Membranverfahrens muß sichergestellt sein, daß die einzusetzende Anionenaustauschermembran folgende Anforderungen erfüllt:
Sie muß alkalistabil sein, insbesondere chemisch stabil in den angrenzenden Lösungen (gegen NH3 bis zur Sättigungskonzentration), oxidationsstabil (Ni2+/Ni3+; Cl-, ClO3-), temperaturstabil bis 80°C, sie muß eine hohe Permselektivität, einen niedrigen Membranwiderstand aufweisen bei hoher mechanischer Festigkeit und Formbeständigkeit und ausreichende Langzeitstabilität.
Technisch relevante Ionenaustauschermembranen weisen üblicherweise eine mikroheterogene- und/oder eine Interpolymermorphologie auf. Damit soll erreicht werden, daß die mechanischen und elektrochemischen Eigenschaften entkoppelt eingestellt werden können. Dementsprechend erfolgt der Aufbau einer Membran aus einem Matrixpolymeren, einem Gewebe oder einem Binder, sowie aus einem Polyelektrolyten bzw. einem Ionomer. Dabei wird entsprechend des Grades der Heterogenität der Ionenaustauschermembran zwischen homogenen Membranen, Interpolymermembranen, mikroheterogenen Pfropf- oder Blockcopolymermembranen und heterogenen Membranen unterschieden.
Das polymere Netzwerk kann dabei unterschiedlich aufgebaut sein, um für die meisten Anwendungsfälle ausreichend gute elektrische und mechanische Eigenschaften aufzuweisen. Als ladungsneutrales Matrixpolymer wird üblicherweise Polyvinylchlorid und Polyacrylat eingesetzt. Als weitere Matrixpolymere können noch Polyethylen, Polypropylen oder Polysulfon verwendet werden, wobei nur diese eine chemische Langzeitstabilität unter alkalischen Bedingungen aufweisen.
Bevorzugt wird somit beim erfindungsgemäßen Verfahren als Anionenaustauschermembran eine solche auf Basis von Polyethylen, Polypropylen, Poyletherketon, Polysulfon, Polyphenyloxid- und/oder -sulfid eingesetzt.
Die ionenleitenden Polyelektrolyte einer Anionenaustauschermembranen bestehen aus einem Netzwerk mit einer positiven Überschußladung und beweglichen, negativ geladenen Gegenionen. Das Festionengerüst kann durch schwach basische Amino- und Iminogruppen aufgebaut sein, wie auch aus stark basischen Immonium- und quartären Ammonium-Gruppen: -NH3 +    -RNH2 +    -R3N+    = R2N+ Besonders bevorzugt weist die im erfindungsgemäßen Verfahren eingesetzte Anionenaustauschermembran Austauschgruuppen aus alkyliertem Polyvinylimidazol, Polyvinylpyridin und/oder alkyliertem 1,4-Diazabicyclo[2.2.2]octan auf.
Besonders geeignete Membranen sind in der DE-A 42 11 266 beschrieben.
Der Typ und die Konzentration an Festionen bestimmt hauptsächlich die Permselektivität und den elektrischen Widerstand der Membran, kann sich aber auch auf die mechanischen Eigenschaften, insbesondere auf die Quellung der Membran aufgrund der Konzentration an Festionen auswirken. Die stark basische quartäre Ammonium-Gruppe ist bei allen pH-Werten dissoziert, während die primäre Ammonium-Gruppe nur schwar dissoziiert ist. Aus diesen Grund werden meistens quartäre Ammonium-Gruppen in kommerziellen Anionenaustauschermembranen eingebaut, außer, daß eine Membran mit bestimmten Eigenschaften hergestellt werden soll.
Systeme auf Basis von chlormethyliertem Polystyrol, Styrol/Divinylbenzol-Copolymeren und Styrol/Butadien-Copolymeren unter nachträglicher Quarternisierung mit Trimethylamin finden den häufigsten Einsatz.
Die chemische Langzeitstabilität der Anionenaustauschermembranen kann nur durch folgende Faktoren beeinflußt werden:
  • Zerstörung der Polymermatrix (unzureichende Stabilität des Matrix- oder Interpolymers in alkalischer Lösung)
  • morphologische Veränderung des Systems Festionengerüst/Polymermatrix
  • chemischer Abbau der Festionen unter alkalischen oder oxidativen Bedingungen
Zur Auswahl einer Anionenaustauschermembran für den Einsatz bei der Herstellung von sphärischem Nickelhydroxid mittels Membranelektrolyse aus ammoniakalischer Lösung müssen sowohl die elektrochemischen, die mechanischen und die chemischen Eigenschaften in gleicher Weise optimiert sein. Dies bedeutet, daß Vorgaben hinsichtlich Membran- bzw. Materialauswahl und den vom Hersteller dargestellten physikochemischen Eigenschaften erstellt und evaluiert werden müssen. Diese Vorgaben lassen sich für die erfindungsgemäß eingesetzten Membranen wie folgt zusammenfassen:
Bezüglich der elektrochemischen Eigenschaften sollte der
elektrische Widerstand <10Ω-cm2,
die Permselektivität >92 %,
die Quellung <25 % und
die Ionenaustauscherkapazität >1,2 mmol · g-1 betragen.
Bezüglich der mechanischen Eigenschaften sollte das Gewebe aus
   temperatur-, alkali- und oxidationsstabilen Polymeren
   (Polypropylen, Polyethylen, Polyetherketon) bestehen
und als Festladung
   chemisch stabilies quartäres Ammoniumsalz
   (Vinylimidazol, 4,4'-Diaza-bicyclo[2.2.2]-octan) aufweisen.
Geeignete Membranen sind in der DE-A 44 21 126 beschrieben.
Im folgenden wird die Erfindung beispielhaft erläutert, ohne daß hierin eine Einschränkung zu sehen ist.
Beispiel 1 Herstellung von Cobalthydroxiden Prinzipieller Aufbau der Elektrolysezelle
Die Elektrolysezelle ist aus zwei Nickelkathoden, zwei Abstandhaltern aus Polyethylen, zwei Membranen und der Cobalt-Opferanode und vier Rahmen unterschiedlicher Dicke zusammengesetzt. Die Zelle ist so aufgebaut, daß die Nickelkathoden die äußeren Seiten der Zelle mit einer Fläche von 120 x 200 mm2 effektiver Elektrodenfläche darstellen. Die elektrische Kontaktierung erfolgt an überstehenden Elektrodenflächen. Auf den Kathoden liegt ein PE-Rahmen von 5 mm Dicke, auf dem wiederum die Membran aufliegt. Mit einem weiteren Rahmen von 10 mm Dicke wird der Abstand zur Cobalt-Anode gehalten, die über den Rahmen übersteht und mit den elektrischen Zuleitungen versehen ist. Die Cobalt-Anode besteht aus Reincobalt bei einer Dicke von 20 mm. Der gesamte Aufbau wird über eine Halterung flüssigkeitsdicht zusammengepreßt. Zwischen den Kathoden und der Membran ist ein PE-Gitter eingelegt, das eine Berührung von Kathode und Membran verhindert. Die Rahmen, die Anode und Membran trennen, sind mit Bohrungen versehen, durch die der Anolyt zu- und wieder abgeleitet wird. Die Kathoden sind ebenfalls mit Zuleitungen versehen, so daß im gesamten Kathodenraum eine gleichmäßige Durchströmung mit dem Katholyten gewährleistet ist.
Katholyt und Anolyt enthalten je 100 g/l NaCl, der Katholyt außerdem 40 g/l NaOH.
Der Katholyt wird mit einer Geschwindigkeit von 100 l/h umgepunpt, was einer Verweilzeit des Elektrolyten von 9 sec im Kathodenraum entspricht. Der Anolyt wird während der Elektrolyse mit einer Geschwindigkeit von 650 l/h im Kreislauf gepumpt, was einer mittleren Verweilzeit von 2,7 sec im Anodenraum entspricht. Die Temperatur des Anolyten beträgt 50°C. Die Ammoniakkonzentration im Anolyten wird auf 2 mol/l eingestellt und Verluste durch Verdampfung durch Zugabe von Ammoniak in den Anolytkreislauf ausgeglichen.
Die stationäre Feststoffkonzentration von gebildeten Cobalthydroxiden ist 80 g/l bei einer mittleren Verweilzeit von 4 h.
Die Elektrolysebedingungen sind so gewählt, daß ein Strom von 12 A entsprechend 500 A/m2 fließt, wobei 21 g Cobalthydroxid der Form Co(OH)2 in jeder Stunde gebildet werden, die in 0,26 l Suspension aus dem Kreislauf ausgeschleust und durch Filtration abgetrennt werden. Nach Waschen mit Wasser wird ein sauberes Cobalthydroxid gewonnen. Der gebildete Wasserstoff gast aus dem Katholyt-Vorratsbehälter aus.
pH-Anolyt 10,5 - 11,5
Membran Neosepta® AMH, Hersteller Tokuyama Soda
Zusammensetzung des Endproduktes
Cobalthydroxid, Mischung aus Co(OH)2 mit CoOOH im Verhältnis 80/20 nach Analyse
Schüttdichte 1,6 g/cm3
Cobalt-Gehalt 63,5 %
Farbe Dunkelbraun
Beispiel 2 Herstellung von Nickelhydroxid
In einer Elektrolysezelle, die in vergleichbarer Weise als Stapel von Elektroden und Membranen mit den Elektrodenräumen dazwischen aufgebaut ist, wird Nickel elektrochemisch in Gegenwart von Ammoniak aufgelöst und der gebildete Amminkomplex zu Nickelhydroxid zersetzt.
Elektrolytzusammensetzung:
Anolyt 16,5 mmol/l NiSO4
220 ml NH3 (25 %ig)/l
2 mol/l NaCl
Katholyt 1 mol/l NaOH
Anode Reinstnickel
Kathode platiniertes Titan
Temperatur Elektrolyse 40°C
Zersetzung des Komplexes 70°C
Stromdichte 1000 A/m2
Abstand Elektroden/Membran 2 mm
Überströmgeschwindigkeit >10 cm/s
pH-Anolyt 10,5 - 11,5
Membran Neosepta® AMH, Hersteller Tokuyama Soda
Die Zersetzung des in der Elektrolyse gebildeten Amminkomplexes erfolgt durch Temperaturerhöhung des Elektrolyten in einem Reaktor zu Nickelhydroxid.
  • a) Herstellung eines kompakten, kugelförmigen Nickelhydroxid
    Der Amminkomplex wird in einem Rührreaktor zersetzt, wobei das Zersetzungsprodukt zu kompakten, sphärischen Partikeln agglomeriert. Das agglomerierte Material wird kontinuierlich über einen Überlauf als Suspension aus dem Kreislauf des Anolyten abgetrennt.
    Nickelhydroxid aus Überlauf:
    Schüttdichte 1,35 g/cm3
    mittlere Partikelgröße 10 µm
  • b) Bei Vorlage von Substraten wie Fasern aus Nickel oder einem kugelförmigen Ionenaustauscherharz mit der mittleren Partikelgröße von 200 µm lagert sich im Zersetzungsreaktor eine gleichmäßige Schicht von Nickelhydroxid auf dem Substrat ab.
  • Claims (8)

    1. Verfahren zur Herstellung von Metallhydroxiden und/oder Metalloxidhydroxiden aus entsprechenden Metallionen und Hydroxidionen, wobei die Metallionen in einem membranelektrochemischen Verfahren durch anodische Auflösung entsprechender Metalle im Anodenraum und die Hydroxidionen durch kathodische Reduktion von Wasser im von einer Anionenaustauschermembran begrenzten Kathodenraum gebildet werden und die Hydroxidionen unter der treibenden Kraft eines elektrischen Feldes durch die Anionentauschermembran in den Anodenraum überführt werden, dadurch gekennzeichnet, daß die Auflösung der Metalle in Gegenwart eines Komplexbildners bei einem pH > 7 durchgeführt wird und die Bildung und Ausfällung des Metallhydroxides bei Überschreiten der Löslichkeitsgrenze im Anolyt stattfindet und das Verfahren kontinuierlich durchgeführt wird, wobei das gebildete Metallhydroxid und/oder Metalloxidhydroxid vom Anolyten abgetrennt wird und der Komplexbildner in den Anodenraum zurückgeführt wird.
    2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß als Komplexbildner Ammoniak und/oder organische Mono- und/oder Diamine mit einer Kettenlänge von 1 bis 6 C-Atomen eingesetzt werden.
    3. Verfahren gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß als Metall eines oder mehrere aus der Gruppe Co, Ni, Cu, Fe, In, Mn, Sn, Zn, Zr, Ti, Al, Cd und U eingesetzt werden.
    4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß als Metall Co und/oder Ni eingesetzt wird.
    5. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Katholyt eine wäßrige Alkalilauge eingesetzt wird.
    6. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß im Anolyten Chlorid- und/oder Sulfationen vorgelegt werden.
    7. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als Anionenaustauschermembran eine solche auf Basis von Polyethylen, Polypropylen, Polyetherketon, Polysulfon, Polyphenyloxid- und/oder -sulfid eingesetzt wird.
    8. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Anionenaustauschermembran Austauschgruppen aus alkyliertem Polyvinylimidazol, Polyvinylpyridin und/oder alkyliertem 1,4-Diazabicyclo[2.2.2]-octan aufweist.
    EP95107172A 1994-05-24 1995-05-11 Verfahren zur Herstellung von Metallhydroxiden Expired - Lifetime EP0684324B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE4418067A DE4418067C1 (de) 1994-05-24 1994-05-24 Verfahren zur Herstellung von Metallhydroxiden und/oder Metalloxidhydroxiden
    DE4418067 1994-05-24

    Publications (2)

    Publication Number Publication Date
    EP0684324A1 EP0684324A1 (de) 1995-11-29
    EP0684324B1 true EP0684324B1 (de) 1998-09-09

    Family

    ID=6518828

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95107172A Expired - Lifetime EP0684324B1 (de) 1994-05-24 1995-05-11 Verfahren zur Herstellung von Metallhydroxiden

    Country Status (12)

    Country Link
    EP (1) EP0684324B1 (de)
    JP (1) JPH0841668A (de)
    KR (1) KR950032715A (de)
    CN (1) CN1060823C (de)
    AT (1) ATE170936T1 (de)
    CA (1) CA2149857A1 (de)
    DE (2) DE4418067C1 (de)
    ES (1) ES2120106T3 (de)
    FI (1) FI952484A (de)
    NO (1) NO309332B1 (de)
    RU (1) RU2153538C2 (de)
    TW (1) TW396212B (de)

    Families Citing this family (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5984982A (en) * 1997-09-05 1999-11-16 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide
    DE19921313A1 (de) 1999-05-07 2000-11-09 Starck H C Gmbh Co Kg Verfahren zur Herstellung von Nickelhydroxiden
    DE10030093C1 (de) 2000-06-19 2002-02-21 Starck H C Gmbh Verfahren und Vorrichtung zur Herstellung von Metallhydroxiden oder basischen Metallcarbonaten
    JP4593038B2 (ja) * 2001-09-21 2010-12-08 古河機械金属株式会社 硫酸コバルト溶液の製造方法
    US7892447B2 (en) 2006-08-11 2011-02-22 Aqua Resources Corporation Nanoplatelet metal hydroxides and methods of preparing same
    US8822030B2 (en) 2006-08-11 2014-09-02 Aqua Resources Corporation Nanoplatelet metal hydroxides and methods of preparing same
    CN103184466B (zh) * 2013-01-10 2015-06-17 昆明贵千新型材料技术研究有限公司 高纯金属氧化物制备新工艺
    CN107190274A (zh) * 2017-05-10 2017-09-22 东北大学 一种氯化镍电转化直接制备氢氧化镍的方法
    JP7259389B2 (ja) * 2018-05-16 2023-04-18 住友金属鉱山株式会社 硫酸溶液の製造方法
    CN110983399A (zh) * 2019-11-29 2020-04-10 深圳市裕展精密科技有限公司 金属制品及金属制品的制备方法
    DE102020109690A1 (de) 2020-04-07 2021-10-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Selektive Modifizierung von Ionenaustauschmembranen mit Iridiumoxid durch pH gesteuerte Fällung von IrOx-Spezies an der Phasengrenze
    CN112877746A (zh) * 2021-01-12 2021-06-01 北京科技大学 一种制备高纯镥铝石榴石前驱体的方法
    CN114016048B (zh) * 2021-12-16 2023-08-01 西北师范大学 一种微纳米结构的Zn(OH)2和ZnO的可控制备方法
    WO2023137553A1 (en) * 2022-01-20 2023-07-27 The University Of British Columbia Methods and apparatus for converting metal carbonate salts to metal hydroxides
    CN115821284A (zh) * 2022-09-29 2023-03-21 西南医科大学 一种增强水解离促进碱性电解水制氢的复合催化电极材料

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS536119B2 (de) * 1975-01-28 1978-03-04
    GB1600750A (en) * 1978-05-24 1981-10-21 Assoun C D Process and apparatus for the production of hydroxides of metallic or semi-conductor elements
    US4597957A (en) * 1984-03-06 1986-07-01 Japan Metals And Chemicals Co., Ltd. Process for electrolytically producing metallic oxide for ferrite
    JPS63206487A (ja) * 1987-02-23 1988-08-25 Tosoh Corp 金属水酸化物の電解製法
    JPS63247385A (ja) * 1987-04-03 1988-10-14 Tosoh Corp 金属水酸化物の製造法
    DE68917045T2 (de) * 1988-07-19 1995-03-16 Yuasa Battery Co Ltd Nickelelektrode für eine alkalische Batterie.
    DE69105367T2 (de) * 1990-06-18 1995-04-06 Accumulateurs Fixes Verfahren zur Herstellung eines metallischen Hydroxidpulvers und auf diese Weise hergestellte Pulver.
    US5135622A (en) * 1991-12-02 1992-08-04 At&T Bell Laboratories Electrochemical synthesis of palladium hydroxide compounds
    FR2688235B1 (fr) * 1992-03-05 1995-06-23 Sorapec Procede d'obtention d'hydroxydes metalliques.
    DE4211266C2 (de) * 1992-04-03 1996-12-19 Fraunhofer Ges Forschung Nicht-poröse, flächige oder faserförmige Polymergebilde mit hydrophiler Oberfläche und deren Verwendung als Membranen für die Dialyse oder Elektrodialyse
    JP2819488B2 (ja) * 1992-10-06 1998-10-30 日本電信電話株式会社 電界センサの製造方法

    Also Published As

    Publication number Publication date
    CN1121964A (zh) 1996-05-08
    RU2153538C2 (ru) 2000-07-27
    JPH0841668A (ja) 1996-02-13
    DE59503494D1 (de) 1998-10-15
    NO952035L (no) 1995-11-27
    CA2149857A1 (en) 1995-11-25
    EP0684324A1 (de) 1995-11-29
    KR950032715A (ko) 1995-12-22
    ES2120106T3 (es) 1998-10-16
    FI952484A (fi) 1995-11-25
    RU95108225A (ru) 1997-05-10
    FI952484A0 (fi) 1995-05-22
    NO952035D0 (no) 1995-05-23
    ATE170936T1 (de) 1998-09-15
    NO309332B1 (no) 2001-01-15
    DE4418067C1 (de) 1996-01-25
    TW396212B (en) 2000-07-01
    CN1060823C (zh) 2001-01-17

    Similar Documents

    Publication Publication Date Title
    EP0684324B1 (de) Verfahren zur Herstellung von Metallhydroxiden
    DE4418440C1 (de) Elektrochemisches Verfahren und Vorrichtung zur Herstellung von Metallhydroxiden und/oder Metalloxidhydroxiden
    DE3342713C2 (de) Verfahren zur Bildung eines quaternären Ammoniumsalzes
    EP2235236B1 (de) Galvanisches bad, verfahren zur galvanischen abscheidung und verwendung einer bipolaren membran zur separation in einem galvanischen bad
    EP1297199B1 (de) Verfahren zur herstellung von metallhydroxiden oder basischen metallcarbonaten
    DE2940186A1 (de) Verfahren zur herstellung von nitriten
    DE60107239T2 (de) Kathode für die elektrochemische regenerierung einer permanganat-ätzlösung
    EP1145346B1 (de) Nickel-mischhydroxid, verfahren zu dessen herstellung und dessen verwendung als kathodenmaterial in alkalischen batterien
    EP0599136B1 (de) Verfahren zur Herstellung von reinem Nickelhydroxid sowie dessen Verwendung
    EP1190114B1 (de) Verfahren zur herstellung von nickelhydroxiden
    EP0658514B1 (de) Verfahren zur Herstellung von Metallhydroxiden
    DE10101494A1 (de) Tetramethylammoniumhydroxid-Synthese
    DE60036100T2 (de) Verfahren zur herstellung von polysulfiden durch anwendung elektrolytischer oxidation
    DE2451846A1 (de) Verfahren zur elektrolytischen herstellung von metallhydroxidloesungen
    EP2573213B1 (de) Sauerstoffverzehrelektrode und verfahren zu ihrer herstellung
    DE3036066C2 (de)
    DE68928338T2 (de) Zelle und Verfahren zum Betrieb einer elektrochemischen Zelle vom Typ flüssig-gasförmig
    DE2419857A1 (de) Verfahren zur elektrolyse von alkalimetallchloriden
    EP0588149B1 (de) Verfahren zur elektrochemischen Spaltung von Alkalisulfaten und Ammoniumsulfat in die freien Laugen und Schwefelsäure bei gleichzeitiger anodischer Oxidation von Schwefeldioxid
    WO2023030917A1 (de) Verfahren zur herstellung von alkalimetallalkoholaten in einer elektrolysezelle
    WO2024200100A1 (de) Verfahren zur herstellung einer lithiumhaltigen elektrode und elektrochemische zelle
    DE4110617A1 (de) Verfahren zur herstellung aromatischer nitroverbindungen mit hilfe dreiwertiger titanverbindungen
    EP4399347A1 (de) Verfahren zur herstellung von alkalimetallalkoholaten in einer elektrolysezelle
    DE2929357A1 (de) Verfahren zur gleichzeitigen herstellung von stickstoffmonoxid und alkalihydroxid
    JP2001122627A (ja) 四酸化三マンガン超微粒子の製造法

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

    17P Request for examination filed

    Effective date: 19951221

    17Q First examination report despatched

    Effective date: 19961206

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: H.C. STARCK GMBH & CO. KG

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

    REF Corresponds to:

    Ref document number: 170936

    Country of ref document: AT

    Date of ref document: 19980915

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: E. BLUM & CO. PATENTANWAELTE

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59503494

    Country of ref document: DE

    Date of ref document: 19981015

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2120106

    Country of ref document: ES

    Kind code of ref document: T3

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19981127

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20010412

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20010418

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20010509

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20010510

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20010514

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20010517

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20010523

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20010530

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20010531

    Year of fee payment: 7

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020511

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020511

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020512

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020512

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020531

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020531

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021203

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20020511

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030131

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20021201

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20030611

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050511