EP0684324A1 - Verfahren zur Herstellung von Metallhydroxiden - Google Patents

Verfahren zur Herstellung von Metallhydroxiden Download PDF

Info

Publication number
EP0684324A1
EP0684324A1 EP95107172A EP95107172A EP0684324A1 EP 0684324 A1 EP0684324 A1 EP 0684324A1 EP 95107172 A EP95107172 A EP 95107172A EP 95107172 A EP95107172 A EP 95107172A EP 0684324 A1 EP0684324 A1 EP 0684324A1
Authority
EP
European Patent Office
Prior art keywords
metal
hydroxide
ions
anion exchange
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95107172A
Other languages
English (en)
French (fr)
Other versions
EP0684324B1 (de
Inventor
Dirk Dr. Naumann
Armin Dr. Olbrich
Josef Dr. Schmoll
Wilfried Dr. Gutknecht
Bernd Bauer
Thomas Dipl.-Ing. Menzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV, HC Starck GmbH filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0684324A1 publication Critical patent/EP0684324A1/de
Application granted granted Critical
Publication of EP0684324B1 publication Critical patent/EP0684324B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the present invention relates to a method for producing metal hydroxides and / or metal oxide hydroxides from corresponding metal ions and hydroxide ions, the metal ions being formed in a membrane electrochemical process by anodic dissolution of corresponding metals in the anode space and the hydroxide ions by cathodic reduction of water in the cathode space delimited by an anion exchange membrane and the hydroxide ions are transferred to the anode compartment through the anion exchange membrane under the driving force of an electric field.
  • Metal hydroxides and metal oxide hydroxides are valuable intermediates for the production of inorganic or organic salts of these metals, for the corresponding oxides or the pure metals themselves.
  • Cobalt hydroxide by calcining a cobalt oxide of defined composition e.g. for use in electronics for the production of varistors or in accumulators or by reducing a cobalt metal powder defined particle size distribution.
  • Nickel hydroxides serve as pigments or are used with various doping and particle structures for use in batteries.
  • Zinc hydroxides can serve as precursors for pigments and the copper compounds can be converted into catalytically active materials.
  • Cobalt metal powder made from cobalt hydroxide or Cobalt oxide hydroxide, due to its particle size distribution and particle structure after sintering, together with tungsten carbide, results in, for example, special hard metal tools.
  • Nickel hydroxide particles with a diameter between 1 and 100 microns are crystallized by continuously feeding a nickel salt solution and an alkali hydroxide in solid or liquid form into a reaction vessel at a constant pH and at a constant temperature with vigorous stirring. A pH of 11 and a temperature of 48 ° C are given as favorable test conditions.
  • a sufficiently compact nickel hydroxide can be produced by precipitation in the presence of ammonia or an ammonium salt.
  • a nickel amine complex solution is prepared from nickel nitrate and aqueous ammonia solution, from which a nickel hydroxide is obtained by boiling at ordinary or reduced pressure or by treatment with steam, and which is significantly less specific than the nickel hydroxides which are precipitated in the absence of ammonia Surface area (13 to 20 m2 / g).
  • the production of compact nickel hydroxides in the presence of ammonia or an ammonium salt is also evident from patent applications JP-A 53-6119 and JP-A 61-18107.
  • a nickel (II) tetrammine salt solution is prepared by dissolving nickel nitrate or nickel sulfate in dilute ammonia solution and decomposed by the controlled addition of sodium hydroxide solution in accordance with the following reaction: Ni (NH3) 4SO4 + 2 NaOH ⁇ Ni (OH) 2 + Na2SO4 + 4 NH3
  • the reaction takes place at temperatures between 40 and 50 ° C and in the pH range between 11 and 13.
  • the pore volume decreases with decreasing pH. It is expressly stated that a pore-free product can only be crystallized at sufficiently slow reaction rates.
  • the nickel hydroxide produced by this process has a high crystallinity, a low specific surface area, a small pore volume and therefore a high physical density.
  • the disadvantages of this product due to the high density are also described.
  • the low specific surface area results in a lower proton conductivity and a higher current density, which promotes the formation of the undesired ⁇ -NiOOH, which leads to the swelling of the electrode.
  • the nickel hydroxide crystallized at low pH values has a high density, it tends to form ⁇ -NiOOH. By choosing an average pH value, a compromise can be found between the required high density and the porosity required to a certain extent.
  • This process produces a nickel hydroxide containing 3 to 10% zinc or 1 to 3% magnesium in solid solution. These doping counteract the formation of ⁇ -NiOOH.
  • JP Hei 4-68249 discloses a continuous process for crystallizing a nickel hydroxide with a spherical particle shape.
  • a nickel salt solution 0.5 to 3.5 mol / l
  • dilute alkali metal hydroxide solution (1.25 to 10 mol / l)
  • an ammonia and / or ammonium salt solution are continuously heated with intensive stirring into a heated overflow pipe cylindrical container pumped, the ammonia can also be introduced in gaseous form.
  • the ammonia concentration is given as 10 to 28% by weight and the ammonium salt concentration as 3 to 7.5 mol / l.
  • To complex the nickel between 0.1 and 1.5 moles of ammonia are added per mole of nickel salt solution. After about 10 to 30 hours, the system reaches a steady state, after which a product of constant quality can be continuously discharged.
  • the residence time in the container is between 0.5 and 5 hours.
  • An essential feature of this process is that the reaction is carried out at a defined pH, which is kept constant at ⁇ 0.1 pH levels in the range between 9 and 12 by pH-controlled supply of alkali metal hydroxide solution, and at a constant temperature in the range between 20 and 80 ° C, the temperature deviations should not be more than ⁇ 2 K.
  • the compact spherical particles with a particle size between 2 and 50 ⁇ m are obtained.
  • the particle size can be adjusted in particular by varying the NH3 inflow, the residence time and the stirring speed. With decreasing back speed or increasing NH3 inflow, the particle size increases. As the dwell time in the container increases, the product becomes coarser and the particle size distribution narrows. The crystals are then filtered, washed with water and dried.
  • the product produced by this process has the properties mentioned at the outset and does not need to be ground.
  • EP A 462 889 discloses a process for the production of nickel hydroxide.
  • the temperature range of the crystallization is above 80 ° C.
  • Nitrate or sulfate solutions doped with cobalt, cadmium and / or zinc are used.
  • the cobalt content is between 1 and 8% by weight and the cadmium and / or zinc contents are between 3 and 10% by weight.
  • Complexation takes place with the help of an ammonium salt, the molar ratio NH3 / Ni is between 0.3 and 0.6. This method maintains a pH of 9.2 ⁇ 0.1.
  • a three-bladed stirrer the diameter of which is half the size of the container diameter and the speed of which is between 300 and 1000 rpm, is used.
  • the product is filtered, washed and dried.
  • nickel is anodically dissolved in a metal salt solution by means of electrolysis and precipitated as nickel hydroxide by the hydroxide ions formed cathodically. After sedimentation and various subsequent washing stages to clean the precipitated product from salts that are still present or are included in the precipitation, the pure product is obtained.
  • the object of this invention is to provide a process for producing metal hydroxides and / or metal oxide hydroxides which does not have the disadvantages of the prior art described.
  • This object is achieved by a process for producing metal hydroxides and / or metal oxide hydroxides from corresponding metal ions and hydroxide ions, the metal ions being formed in a membrane electrochemical process by anodic dissolution of corresponding metals in the anode space and the hydroxide ions by cathodic reduction of water in the cathode space delimited by an anion exchange membrane and the hydroxide ions are transferred under the driving force of an electric field through the anion exchange membrane into the anode compartment, the dissolution of the metals being carried out in the presence of a complexing agent at a pH> 7.
  • Ammonia and / or organic mono- and / or diamines with a chain length of 1 to 6 carbon atoms are preferably used as complexing agents in the sense of this invention.
  • Metals are in particular one or more from the group Co, Ni, Cu, Fe In, Mn, Sn, Zn, Zr, Ti, Al, Cd and Ni. Co and / or Ni are particularly preferred.
  • the process according to the invention is also described below for the case of the production of nickel hydroxide, without restricting the invention thereby.
  • the configuration which results in principle for a membrane electrolysis cell and is suitable for carrying out the method according to the invention is shown below.
  • the cathode and anode compartments of the electrolytic cell are separated by an anion exchange membrane, so that two separate circuits result.
  • the circuit on the side of the cathode is called catholyte, that on the anode side is called anolyte.
  • Alkaline solutions such as sodium hydroxide solution or potassium hydroxide solution can preferably be used as the catholyte.
  • the solution itself has a high conductivity and the cation of the alkali used is also used on the anode side.
  • the cathode itself can be made from tempered steel, platinized titanium, nickel or a nickel alloy.
  • the composition of the anolyte results from the starting materials for the production of nickel hydroxide, i.e. Ammonia, sodium chloride and small amounts of nickel sulfate.
  • the sodium chloride primarily serves to increase the conductivity of the solution and the small addition of sulfate improves the anodic dissolution of the nickel electrode. Particularly good results are achieved if chloride and / or sulfate ions are present in the anolyte.
  • the anode itself consists of pure nickel, preferably an electrochemically produced anode.
  • the anode When producing other metal hydroxides and / or metal oxide hydroxides, the anode consists of the corresponding metals. Basically, a sacrificial anode is used.
  • Ni (OH) 2 Under active transport conditions due to the external potential applied, nickel dissolves as a Ni2+ ion, releasing electrons.
  • ammonia prevents spontaneous precipitation of Ni (OH) 2 under alkaline conditions and leads to a divalent nickel-amine complex via various intermediates.
  • the reaction at the cathode supplies hydrogen, which escapes in gaseous form, and hydroxide ions, which are transported according to their charge via the anion exchange membrane into the anode circuit.
  • the nickel hydroxide then forms and precipitates in the anolyte when the solubility limit is exceeded.
  • the precipitation follows one dynamic equilibrium, where a ligand exchange (ammonia for hydroxide) takes place.
  • the formation of the spherical product is essentially determined by the crystallization conditions, i.e. determines the concentration of the individual components and the temperature control in the anode circuit.
  • the precipitated product is then continuously separated from the anolyte circuit.
  • the separation can be carried out in a sedimentation container that is easy to implement in terms of process technology, owing to the large difference in density of the product formed and the solvent.
  • the separation takes place via a filtration stage (microfiltration).
  • microfiltration microfiltration
  • the anion exchange membrane to be used meets the following requirements: It must be alkali-stable, in particular chemically stable in the adjacent solutions (against NH3 to saturation concentration), oxidation-stable (Ni2+ / Ni3+; Cl ⁇ , ClO3 ⁇ ), temperature-stable up to 80 ° C, it must have a high permselectivity, a low membrane resistance have high mechanical strength and dimensional stability and sufficient long-term stability.
  • ion exchange membranes usually have a micro-heterogeneous and / or an interpolymer morphology. This is intended to ensure that the mechanical and electrochemical properties can be set in a decoupled manner.
  • a membrane is constructed from a matrix polymer, a fabric or a binder, and from a polyelectrolyte or an ionomer.
  • a distinction is made according to the degree of heterogeneity of the ion exchange membrane between homogeneous membranes, interpolymer membranes, micro-heterogeneous graft or block copolymer membranes and heterogeneous membranes.
  • the polymer network can be constructed differently in order to have sufficiently good electrical and mechanical properties for most applications.
  • Polyvinyl chloride and polyacrylate are usually used as the charge-neutral matrix polymer.
  • Polyethylene, polypropylene or polysulfone can also be used as further matrix polymers, only these having long-term chemical stability under alkaline conditions.
  • an anion exchange membrane based on polyethylene, polypropylene, polyether ketone, polysulfone, polyphenyl oxide and / or sulfide.
  • the ion-conducting polyelectrolytes of an anion exchange membrane consist of a network with a positive excess charge and mobile, negatively charged counterions.
  • the anion exchange membrane used in the process according to the invention particularly preferably has exchange groups composed of alkylated polyvinylimidazole, polyvinylpyridine and / or alkylated 1,4-diazabicyclo [2.2.2] octane.
  • the type and concentration of fusions mainly determines the permselectivity and the electrical resistance of the membrane, but can also affect the mechanical properties, in particular the swelling of the membrane due to the concentration of fusions.
  • the strongly basic quaternary ammonium group is dissociated at all pH values, while the primary ammonium group is only dissociated black. For this reason, quaternary ammonium groups are mostly incorporated into commercial anion exchange membranes, except that a membrane with certain properties is to be produced.
  • the fabric should consist of temperature, alkali and oxidation stable polymers (polypropylene, polyethylene, polyether ketone) and have a chemically stable quaternary ammonium salt (vinylimidazole, 4,4'-diaza-bicyclo [2.2.2] octane) as a fixed charge.
  • alkali and oxidation stable polymers polypropylene, polyethylene, polyether ketone
  • quaternary ammonium salt vinyllimidazole, 4,4'-diaza-bicyclo [2.2.2] octane
  • Suitable membranes are described in DE-A 44 21 1266.
  • the process according to the invention is particularly preferably carried out continuously, the metal hydroxide and / or metal oxide hydroxide formed being separated from the anolyte and the complexing agent being returned to the anode compartment.
  • the electrolytic cell is composed of two nickel cathodes, two spacers made of polyethylene, two membranes and the cobalt sacrificial anode and four frames of different thicknesses.
  • the cell is constructed so that the nickel cathodes represent the outer sides of the cell with an area of 120 x 200 mm2 effective electrode area.
  • the electrical contact is made on protruding electrode surfaces.
  • the cobalt anode consists of pure cobalt with a thickness of 20 mm.
  • the entire structure is pressed together in a liquid-tight manner using a holder.
  • a PE grid is inserted between the cathodes and the membrane, which prevents contact between the cathode and the membrane.
  • the frames that separate the anode and membrane are provided with holes through which the anolyte is fed in and out.
  • the cathodes are also provided with feed lines so that a uniform flow of the catholyte is ensured in the entire cathode space.
  • the catholyte and anolyte each contain 100 g / l NaCl, the catholyte also 40 g / l NaOH.
  • the catholyte is repumped at a rate of 100 l / h, which corresponds to a residence time of the electrolyte of 9 seconds in the cathode compartment.
  • the anolyte is pumped during the electrolysis at a rate of 650 l / h, which corresponds to an average residence time of 2.7 seconds in the anode compartment.
  • the temperature of the anolyte is 50 ° C.
  • the ammonia concentration in the anolyte is set to 2 mol / l and losses due to evaporation are compensated for by adding ammonia to the anolyte circuit.
  • the stationary solid concentration of cobalt hydroxides formed is 80 g / l with an average residence time of 4 h.
  • the electrolysis conditions are chosen so that a current of 12 A corresponding to 500 A / m2 flows, 21 g of cobalt hydroxide in the form of Co (OH) 2 being formed every hour, which are removed from the circuit in 0.26 l suspension and by filtration be separated. After washing with water, a clean cobalt hydroxide is obtained.
  • the hydrogen formed gases from the catholyte pre-container. pH anolyte: 10.5 - 11.5
  • Membrane Neosepta® AMH, manufacturer Tokuyama Soda
  • Cobalt hydroxide mixture of Co (OH) 2 with CoOOH in the ratio 80/20 after analysis
  • Bulk density 1.6 g / cm3
  • Cobalt content 63.5% Colour: Dark brown
  • nickel is dissolved electrochemically in the presence of ammonia and the amine complex formed is decomposed to nickel hydroxide.
  • Electrolyte composition Anolyte: 16.5 mmol / l NiSO4 220 ml of NH3 (25%) / l 2 mol / l NaCl Catholyte: 1 mol / l NaOH
  • Anode Pure nickel
  • Cathode platinum-plated titanium
  • Temperature Electrolysis 40 ° C decomposition of the complex 70 ° C
  • Current density 1000 A / m2 Distance electrodes / membrane: 2 mm
  • Overflow speed > 10 cm / s pH anolyte: 10.5 - 11.5
  • Membrane Neosepta® AMH, manufacturer Tokuyama Soda
  • the amine complex formed in the electrolysis is decomposed by increasing the temperature of the electrolyte in a reactor to give nickel hydroxide.
  • a) Production of a compact, spherical nickel hydroxide The amine complex is decomposed in a stirred reactor, the decomposition product agglomerating into compact, spherical particles.
  • the agglomerated material is continuously separated from the circulation of the anolyte via an overflow as a suspension.
  • Nickel hydroxide from overflow Bulk density: 1.35 g / cm3 average particle size: 10 ⁇ m b)
  • substrates such as fibers made of nickel or a spherical ion exchange resin with an average particle size of 200 ⁇ m are placed in the decomposition reactor, a uniform layer of nickel hydroxide is deposited on the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Metallhydroxiden und/oder Metalloxidhydroxiden aus entsprechenden Metallionen und Hydroxidionen, wobei die Metallionen in einem membranelektrochemischen Verfahren, in dem die Metalionendurch anodische Auflösung entsprechender Metalle im Anodenraum und die Hydroxidionen durch kathodische Reduktion von Wasser im durch eine Anionenaustauschermembran getrennten Kathodenraum gebildet werden und die Hydroxidionen unter der treibenden Kraft eines elektrischen Feldes durch die Anionenaustauschermembran in den Anodenraum überführt werden.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Metallhydroxiden und/oder Metalloxidhydroxiden aus entsprechenden Metallionen und Hydroxidionen, wobei die Metallionen in einem membranelektrochemischen Verfahren durch anodische Auflösung entsprechender Metalle im Anodenraum und die Hydroxidionen durch kathodische Reduktion von Wasser im von einer Anionenaustauschermembran begrenzten Kathodenraum gebildet werden und die Hydroxidionen unter der treibenden Kraft eines elektrischen Feldes durch die Anionenaustauschermembran in den Anodenraum überführt werden.
  • Metallhydroxide und Metalloxidhydroxide sind wertvolle Zwischenprodukte für die Herstellung von anorganischen oder organischen Salzen dieser Metalle, für die entsprechenden Oxide oder der reinen Metalle selbst. So läßt sich z.B. Cobalthydroxid durch Calcinierung ein Cobaltoxid definierter Zusammensetzung z.B. für die Anwendung in der Elektronik für die Herstellung von Varistoren oder in Akkumulatoren herstellen oder durch Reduktion ein Cobaltmetallpulver definierter Partikelgrößenverteilung. Nickelhydroxide dienen als Pigmente oder werden mit verschiedenen Dotierungen und Partikelstrukturen für den Einsatz in Batterien eingesetzt. Zinkhydroxide können als Vorstoffe für Pigmente dienen und die Kupferverbindungen lassen sich in katalytisch aktive Materialien umwandeln.
  • Bei der Herstellung der Hydroxide für verschiedene Anwendungen steht das Ziel im Vordergrund, möglichst kompaktes und fließfähiges Material für die weitere Verarbeitung herzustellen. Cobaltmetallpulver, hergestellt aus Cobalthydroxid bzw. Cobaltoxidhydroxid, ergibt durch seine Partikelgrößenverteilung und Partikelstruktur nach seiner Sinterung gemeinsam mit Wolframcarbid z.B. spezielle Hartmetallwerkzeuge.
  • Für die neuentwickelten Schaumanoden, die insbesondere in Nickelhydridspeicherzellen eingesetzt werden, wird ein Nickelhydroxid benötigt, dessen physikalische Eigenschaften sowohl bezüglich des Anwendungszweckes als auch der angewendeten Verarbeitungstechnik optimiert sind. Die Anwendung in Hochleistungsakkumulatoren mit Nickel-Schaumelektroden auf Basis der Pasten-Technologie verlangt ein Material mit hoher Fließfähigkeit, gedrungener Teilchenform, enger Kornverteilung und konstanter Qualität. Ferner soll sich das Produkt gut mit den üblicherweise eingesetzten Zusätzen wie z.B. Cobalt-Metallpulver und Cobaltoxid mischen lassen.
  • Ein entsprechendes Material und Grundzüge des Herstellungsverfahrens sind in dem Patent JP Hei 4-80513 beschrieben. Nickelhydroxidteilchen mit einem Durchmesser zwischen 1 und 100 µm werden dabei kristallisiert, indem bei einem konstanten pH-Wert und bei konstanter Temperatur kontinuierlich eine Nickelsalzlösung und ein Alkalihydroxid in fester oder flüssiger Form unter intensivem Rühren in ein Reaktionsgefäß geleitet werden. Als günstige Versuchsbedingungen werden ein pH-Wert von 11 und eine Temperatur von 48°C angegeben.
  • Es ist weiterhin bekannt, daß die Herstellung eines hinreichend kompakten Nickelhydroxids durch Fällung in Gegenwart von Ammoniak oder eines Ammoniumsalzes erfolgen kann. So wird gemäß Trans. Faraday Soc. 51(1955) 961 aus Nickelnitrat und wäßriger Ammoniaklösung eine Nickelamminkomplexlösung hergestellt, aus der durch Kochen bei gewöhnlichem oder vermindertem Druck oder durch Behandlung mit Wasserdampf ein Nickelhydroxid erhalten wird und das gegenüber den Nickelhydroxiden, die in Abwesenheit von Ammoniak gefällt werden, eine wesentlich geringere spezifische Oberfläche aufweist (13 bis 20 m²/g). Die Herstellung kompakter Nickelhydroxide in Gegenwart von Ammoniak oder einem Ammoniumsalz geht auch aus den Patentanmeldungen JP-A 53-6119 und JP-A 61-18107 hervor. In der zuerst genannten Patentanmeldung wird die Fällung von Nickelhydroxid durch Zugabe einer Alkalilauge zu einer entsprechenden Lösung mit einem pH-Wert von mindestens 3,0 beschrieben. Elektrochemische Untersuchungen an dem auf diese Weise hergestellten Material ergaben im Vergleich zu handelsüblichen Nickelhydroxiden besonders hohe spezifische Ladungskapazitäten.
  • Derartige Produkte erfüllen jedoch noch nicht die oben genannten Anforderungen an Teilchenform, Kornverteilung und Fließfähigkeit.
  • Wesentliche Merkmale des Verfahrens zur Herstellung eines kompakten Nickelhydroxids und dessen Verwendung in alkalischen Batterien werden in der EP-A 353 837 beschrieben. Eine Nickel(II)-tetramminsalzlösung wird durch Auflösung von Nickelnitrat oder Nickelsulfat in verdünnter Aminoniaklösung hergestellt und durch kontrollierte Zugabe von Natronlauge entsprechend der folgenden Reaktion zersetzt:



            Ni(NH₃)₄SO₄ + 2 NaOH ⇒ Ni(OH)₂ + Na₂SO₄ + 4 NH₃



    Die Reaktion läuft bei Temperaturen zwischen 40 und 50°C und im pH-Bereich zwischen 11 und 13 ab. Dabei nimmt das Porenvolumen mit sinkendem pH-Wert ab. Es wird ausdrücklich festgestellt, daß ein porenfreies Produkt nur bei hinreichend geringen Reaktionsgeschwindigkeiten kristallisiert werden kann. Weiterhin hat das nach diesem Verfahren hergestellte Nickelhydroxid eine hohe Kristallinität, eine geringe spezifische Oberfläche, ein geringes Porenvolumen und daher eine hohe physikalische Dichte. Auch die Nachteile dieses Produkts, die auf die hohe Dichte zurückzuführen sind, werden beschrieben. Die geringe spezifische Oberfläche resultiert in einer geringeren Protonenleitfähigkeit und in einer höheren Stromdichte, die die Entstehung des unerwünschten γ-NiOOH, das zur Quellung der Elektrode führt, fördert. Zwar hat das bei niedrigen pH-Werten kristallisierte Nickelhydroxid eine hohe Dichte, doch neigt es stärker zur Bildung von γ-NiOOH. Durch die Wahl eines mittleren pH-Wertes läßt sich ein Kompromiß zwischen der geforderten hohen Dichte und der in gewissem Maße notwendigen Porosität finden. Nach diesem Verfahren wird ein Nickelhydroxid hergestellt, das 3 bis 10 % Zink oder 1 bis 3 % Magnesium in fester Lösung enthält. Diese Dotierungen wirken der Entstehung des γ-NiOOH entgegen.
  • Aus dem Patent JP Hei 4-68249 geht ein kontinuierliches Verfahren zur Kristallisation eines Nickelhydroxids mit sphärischer Teilchenform hervor. Dabei werden mittels Dosierpumpen eine Nickelsalzlösung (0,5 bis 3,5 mol/l), verdünnte Alkalilauge (1,25 bis 10 mol/l) und eine Ammoniak- und/oder Ammoniumsalzlösung kontinuierlich unter intensivem Rühren in einen mit einem Überlaufrohr versehenen beheizten zylindrischen Behälter gepumpt, wobei der Ammoniak auch gasförmig eingeleitet werden kann. Die Ammoniakkonzentration wird mit 10 bis 28 Gew.-% und die Ammoniumsalzkonzentration mit 3 bis 7,5 mol/l angegeben. Um das Nickel zu komplexieren, werden zwischen 0,1 und 1,5 mol Ammoniak je Mol Nickelsalzlösung zugeführt. Nach etwa 10 bis 30 Stunden erreicht das System einen stationären Zustand, wonach kontinuierlich ein Produkt mit konstanter Qualität ausgetragen werden kann. Die Verweilzeit im Behälter beträgt zwischen 0,5 und 5 Stunden.
  • Ein wesentliches Merkmal dieses Verfahrens ist die Durchführung der Reaktion bei einem definierten pH-Wert, der im Bereich zwischen 9 und 12 durch pH-gesteuerte Zufuhr von Alkalilauge auf ± 0,1 pH-Stufen konstant gehalten wird, und bei konstanter Temperatur im Bereich zwischen 20 und 80°C, wobei die Temperaturabweichungen nicht mehr als ± 2 K betragen sollten. Bei diesen Bedingungen werden die kompakten sphärischen Partikel mit einer Teilchengröße zwischen 2 und 50 µm erhalten. Die Teilchengröße läßt sich insbesondere durch Variation des NH₃-Zuflusses, der Verweilzeit und der Rührgeschwindigkeit einstellen. Mit abnehmender Rückgeschwindigkeit bzw. zunehmendem NH₃-Zufluß nimmt die Teilchengröße zu. Mit zunehmender Verweilzeit im Behälter wird das Produkt gröber, die Teilchengrößenverteilung enger. Das Kristallisat wird anschließend filtriert, mit Wasser gewaschen und getrocknet. Das nach diesem Verfahren hergestellte Produkt weist die eingangs genannten Eigenschaften auf, wobei es nicht gemahlen zu werden braucht.
  • In der EP A 462 889 wird ein Verfahren zur Herstellung von Nickelhydroxid offenbart. Dabei liegt der Temperaturbereich der Kristallisation oberhalb 80°C. Es werden mit Cobalt, Cadmium und/oder Zink dotierte Nitrat- oder Sulfatlösungen eingesetzt. Der Cobalt-Gehalt liegt zwischen 1 und 8 Gew.-%, und die Gehalte an Cadmium und/oder Zink betragen zwischen 3 und 10 Gew.-%. Komplexierung erfolgt mit Hilfe eines Ammoniumsalzes, wobei das Molverhältnis NH₃/Ni zwischen 0,3 und 0,6 beträgt. Bei diesem Verfahren wird ein pH-Wert von 9,2 ± 0,1 eingehalten. Ferner wird ein dreiflügeliger Rührer, dessen Durchmesser halb so groß wie der Behälterdurchmesser ist und dessen Drehzahl zwischen 300 und 1000 min⁻¹ liegt, eingesetzt.
  • Wie in den bereits beschriebenen Verfahren wird das Produkt filtriert, waschen und getrocknet.
  • Die Nachteile dieser Verfahren sind einerseits die zwangsläufig anfallenden großen Mengen von Neutralsalzen, die bei mindestens der doppelten stöchiometrischen Menge des Nickelhydroxid liegen und ins Abwasser abgegeben werden. Andererseits enthält dieses Abwasser neben geringen Mengen komplex gelösten Nickels noch große Mengen Ammoniak, die entsorgt werden müssen.
  • Beim chemischen Verfahren der Fällungskristallisation zur Herstellung von sphärischem Nickelhydroxid fallen zwangsläufig 2 Mol Natriumchlorid pro Mol Nickelhydroxid an. Im Hinblick auf strengere Umweltrichtlinien und Grenzwerte für Abwässer einerseits und wirtschaftliche Aspekte bedingt durch den hohen Verbrauch an Lauge und resultierende Deponiekosten für das anfallende Salz andererseits müssen geschlossene Produktionskreisläufe entwickelt werden.
  • Bei einer derartigen Verfahrensführung wird beispielsweise Nickel mittels Elektrolyse anodisch in einer Metallsalzlösung aufgelöst und durch die kathodisch gebildeten Hydroxidionen als Nickelhydroxid gefällt. Nach der Sedimentation und verschiedenen, nachfolgenden Waschstufen zur Reinigung des gefällten Produktes von noch vorhandenen bzw. bei der Fällung eingeschlossenen Salzen erhält man das reine Produkt.
  • Verfahren zur Herstellung von Metallhydroxiden sind in folgenden Patentschriften bereits beschrieben. In der JP-A 63/247 385 wird die elektrolytische Herstellung von Metallhydroxiden unter Verwendung einer perfluorierten Anionenaustauschermembran der Toyo Soda und dem Einsatz inerter Elektroden ausgeführt. Als Elektrolyt wird dabei auf der Anodenseite das Metallsalz des herzustellenden Metallhydroxides verwandt. Im Kathodenkreislauf wird eine alkalische Lösung eingesetzt. In der EP-A 0 559 590 wird in einer vergleichbaren Anordnung das Metallsalz durch anodische Auflösung der Elektrode kontinuierlich zugegeben. Die Anforderungen an den Prozeß, insbesondere der zu verwendenden Membranen, der Elektrolytlösungen und der Versuchsbedingungen sind nur unzureichend präzisiert.
  • Aufgabe dieser Erfindung ist die Bereitstellung eines Verfahrens zur Herstellung von Metallhydroxiden und/oder Metalloxidhydroxiden, welches die Nachteile des beschriebenen Standes der Technik nicht aufweist.
  • Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von Metallhydroxiden und/oder Metalloxidhydroxiden aus entsprechenden Metallionen und Hydroxidionen, wobei die Metallionen in einem membranelektrochemischen Verfahren durch anodische Auflösung entsprechender Metalle im Anodenraum und die Hydroxidionen durch kathodische Reduktion von Wasser im von einer Anionenaustauschermembran begrenzten Kathodenraum gebildet werden und die Hydroxidionen unter der treibenden Kraft eines elektrischen Feldes durch die Anionenaustauschermembran in den Anodenraum überführt werden, wobei die Auflösung der Metalle in Gegenwart eines Komplexbildners bei einem pH >7 durchgeführt wird.
  • Als Komplexbildner im Sinne dieser Erfindung werden bevorzugt Ammoniak und/oder organische Mono- und/oder Diamine mit einer Kettenlänge von 1 bis 6 C-Atomen eingesetzt. Metalle sind insbesondere eines oder mehrere aus der Gruppe Co, Ni, Cu, Fe In, Mn, Sn, Zn, Zr, Ti, Al, Cd und Ni. Besonders bevorzugt sind dabei Co und/oder Ni. Im folgenden wird das erfindungsgemäße Verfahren weiterhin für den Fall der Herstellung von Nickelhydroxid beschrieben, ohne die Erfindung hierdurch einzuschränken.
  • Die sich prinzipiell ergebende Konfiguration für eine Membranelektrolysezelle, die zur Durchführung des erfindungsgemäßen Verfahrens geeignet ist, wird im folgenden dargestellt. Der Kathoden- und der Anodenraum der Elektrolysezelle werden durch eine Anionenaustauschermembran getrennt, so daß sich zwei getrennte Kreisläufe ergeben. Der Kreislauf auf der Seite der Kathode wird mit Katholyt, der auf der Anodenseite mit Anolyt bezeichnet. Als Katholyt können bevorzugt alkalische Lösungen wie z.B. Natronlauge oder Kalilauge eingesetzt werden. Für die Wirtschaftlichkeit des Verfahrens ist es dabei von Vorteil, wenn die Lösung selbst eine hohe Leitfähigkeit besitzt und das Kation der verwendeten Lauge ebenfalls auf der Anodenseite eingesetzt wird. Die Kathode selbst kann aus vergütetem Stahl, platiniertem Titan, Nickel oder einer Nickellegierung bestehen.
  • Die Zusammensetzung des Anolyten ergibt sich aus den Edukten zur Herstellung von Nickelhydroxid, d.h. Ammoniak, Natriumchlorid und geringe Mengen an Nickelsulfat. Das Natriumchlorid dient in erster Linie zur Erhöhung der Leitfähigkeit der Lösung und durch die geringe Zugabe von Sulfat wird die anodische Auflösung der Nickelelektrode verbessert. Besonders gute Ergebnisse werden erzielt, wenn im Anolyten Chlorid und/oder Sulfationen vorliegen. Die Anode selbst besteht aus Reinnickel, vorzugsweise aus einer elektrochemisch hergestellten Anode.
  • Bei der Herstellung anderer Metallhydroxide und/oder Metalloxidhydroxide besteht die Anode aus den entsprechenden Metallen. Grundsätzlich wird also eine Opferanode eingesetzt.
  • Unter aktiven Transportbedingungen aufgrund des angelegten äußeren Potentiales geht Nickel als Ni²⁺-Ion unter Abgabe von Elektronen in Lösung. Die Anwesenheit des Ammoniak verhindert dabei eine spontane Ausfällung des Ni(OH)₂ unter alkalischen Bedingungen und führt über verschiedene Zwischenstufen zu einem zweiwertigen Nickel-Aminkomplex.
    Figure imgb0001
  • Die Reaktion an der Kathode liefert unter Elektronenaufnahme Wasserstoff, der gasförmig entweicht und Hydroxidionen, die entsprechend ihrer Ladung über die Anionenaustauschermembran in den Anodenkreislauf transportiert werden. Im Anolyt findet dann die Bildung und Ausfällung des Nickelhydroxides bei Überschreiten der Löslichkeitsgrenze statt. Die Fällung folgt dabei einem dynamischen Gleichgewicht, wobei ein Ligandenaustausch (Ammoniak gegen Hydroxid) stattfindet.
  • Die Bildung des sphärischen Produktes wird dabei wesentlich durch die Kristallisationsbedingungen, d.h. die Konzentration der Einzelkomponenten und die Temperaturführung im Anodenkreislauf bestimmt. Das gefällte Produkt wird dann kontinuierlich aus dem Anolytkreislauf abgetrennt. Die Abtrennung kann in einem verfahrenstechnisch einfach auszuführenden Sedimentationsbehälter aufgrund des großen Dichteunterschiedes des gebildeten Produktes und des Lösungsmittels durchgeführt werden. Zur Abtrennung eines Produktes einheitlicher Korngröße erfolgt die Abtrennung über eine Filtrationsstufe (Mikrofiltration). Der wesentliche Vorteil dieser Verfahrensvariante ist, daß zusätzliche, einzelne Verfahrensschritte zur Rückgewinnung der verschiedenen Edukte entfallen, da sie im Anolytkreislauf gehalten werden.
  • Zur Umsetzung des beschriebenen elektrochemischen Membranverfahrens muß sichergestellt sein, daß die einzusetzende Anionenaustauschermembran folgende Anforderungen erfüllt:
    Sie muß alkalistabil sein, insbesondere chemisch stabil in den angrenzenden Lösungen (gegen NH₃ bis zur Sättigungskonzentration), oxidationsstabil (Ni²⁺/Ni³⁺; Cl⁻, ClO³⁻), temperaturstabil bis 80°C, sie muß eine hohe Permselektivität, einen niedrigen Membranwiderstand aufweisen bei hoher mechanischer Festigkeit und Formbeständigkeit und ausreichende Langzeitstabilität.
  • Technisch relevante Ionenaustauschermembranen weisen üblicherweise eine mikroheterogene- und/oder eine Interpolymermorphlogie auf. Damit soll erreicht werden, daß die mechanischen und elektrochemischen Eigenschaften entkoppelt eingestellt werden können. Dementsprechend erfolgt der Aufbau einer Membran aus einem Matrixpolymeren, einem Gewebe oder einem Binder, sowie aus einem Polyelektrolyten bzw. einem Ionomer. Dabei wird entsprechend des Grades der Heterogenität der Ionenaustauschermembran zwischen homogenen Membranen, Interpolymermembranen, mikroheterogenen Pfropf- oder Blockcopolymermembranen und heterogenen Membranen unterschieden.
  • Das polymere Netzwerk kann dabei unterschiedlich aufgebaut sein, um für die meisten Anwendungsfalle ausreichend gute elektrische und mechanische Eigenschaften aufzuweisen. Als ladungsneutrales Matrixpolymer wird üblicherweise Polyvinylchlorid und Polyacrylat eingesetzt. Als weitere Matrixpolymere können noch Polyethylen, Polypropylen oder Polysulfon verwendet werden, wobei nur diese eine chemische Langzeitstabilität unter alkalischen Bedingungen aufweisen.
  • Bevorzugt wird somit beim erfindungsgemäßen Verfahren als Anionenaustauschermembran eine solche auf Basis von Polyethylen, Polypropylen, Poyletherketon, Polysulfon, Polyphenyloxid- und/oder -sulfid eingesetzt.
  • Die ionenleitenden Polyelektrolyte einer Anionenaustauschermembranen bestehen aus einem Netzwerk mit eienr positiven Überschußladung und beweglichen, negativ geladenen Gegenionen. Das Festionengerüst kann durch schwach basische Amino- und Iminogruppen aufgebaut sein, wie auch aus stark basischen Immonium- und quartären Ammonium-Gruppen:



            -NH₃⁺ -RNH₂⁺ -R₃N⁺ = R₂N⁺



    Besonders bevorzugt weist die im erfindungsgemäßen Verfahren eingesetzte Anionenaustauschermembran Austauschgruuppen aus alkyliertem Polyvinylimidazol, Polyvinylpyridin und/oder alkyliertem 1,4-Diazabicyclo[2.2.2]octan auf.
  • Besonders geeignete Membranen sind in der DE-A 42 11 266 beschrieben.
  • Der Typ und die Konzentration an Festionen bestimmt hauptsächlich die Permselektivität und den elektrischen Widerstand der Membran, kann sich aber auch auf die mechanischen Eigenschaften, insbesondere auf die Quellung der Membran aufgrund der Konzentration an Festionen auswirken. Die stark basische quartäre Ammonium-Gruppe ist bei allen pH-Werten dissoziert, während die primäre Ammonium-Gruppe nur schwar dissoziiert ist. Aus diesen Grund werden meistens quartäre Ammonium-Gruppen in kommerziellen Anionenaustauschermembranen eingebaut, außer, daß eine Membran mit bestimmten Eigenschaften hergestellt werden soll.
  • Systeme auf Basis von chlormethyliertem Polystyrol, Styrol/Divinylbenzol-Copolymeren und Styrol/Butadien-Copolymeren unter nachträglicher Quarternisierung mit Trimethylamin finden den häufigsten Einsatz.
  • Die chemische Langzeitstabilität der Anionenaustauschermembranen kann nur durch folgende Faktoren beeinflußt werden:
    • Zerstörung der Polymermatrix (unzureichende Stabilität des Matrix- oder Interpolymers in alkalischer Lösung)
    • morphologische Veränderung des Systems Festionengerüst/Polymermatrix
    • chemischer Abbau der Festionen unter alkalischen oder oxidativen Bedingungen
    Zur Auswahl einer Anionenaustauschermembran für den Einsatz bei der Herstellung von sphärischem Nickelhydroxid mittels Membranelektrolyse aus ammoniakalischer Lösung müssen sowohl die elektrochemischen, die mechanischen und die chemischen Eigenschaften in gleicher Weise optimiert sein. Dies bedeutet, daß Vorgaben hinsichtlich Membran- bzw. Materialauswahl und den vom Hersteller dargestellten physikochemischen Eigenschaften erstellt und evaluiert werden müssen. Diese Vorgaben lassen sich für die erfindungsgemäß eingesetzten Membranen wie folgt zusammenfassen:
    Bezüglich der elektrochemischen Eigenschaften sollte der
    elektrische Widerstand <10Ω-cm²,
    die Permselektivität >92 %,
    die Quellung <25 % und
    die Ionenaustauscherkapazität >1,2 mmol g⁻¹ betragen.
  • Bezüglich der mechanischen Eigenschaften sollte das Gewebe aus temperatur-, alkali- und oxidationsstabilen Polymeren (Polypropylen, Polyethylen, Polyetherketon) bestehen und als Festladung chemisch stabiles quartäres Ammoniumsalz (Vinylimidazol, 4,4'-Diaza-bicyclo[2.2.2]-octan) aufweisen.
  • Geeignete Membranen sind in der DE-A 44 21 1266 beschrieben. Besonders bevorzugt wird das erfindungsgemäße Verfahren kontinuierlich durchgeführt, wobei das gebildete Metallhydroxid und/oder Metalloxidhydroxid vom Anolyten abgetrennt wird und der Komplexbildner in den Anodenraum zurückgeführt wird.
  • Im folgenden wird die Erfindung beispielhaft erläutert, ohne daß hierin eine Einschränkung zu sehen ist.
  • Beispiel 1 Herstellung von Cobalthydroxiden Prinzipieller Aufbau der Elektrolysezelle
  • Die Elektrolysezelle ist aus zwei Nickelkathoden, zwei Abstandhaltern aus Polyethylen, zwei Membranen und der Cobalt-Opferanode und vier Rahmen unterschiedlicher Dicke zusammengesetzt. Die Zelle ist so aufgebaut, daß die Nickelkathoden die äußeren Seiten der Zelle mit einer Fläche von 120 x 200 mm² effektiver Elektrodenfläche darstellen. Die elektrische Kontaktierung erfolgt an überstehenden Elektrodenflächen. Auf den Kathoden liegt ein PE-Rahmen von 5 mm Dicke, auf dem wiederum die Membran aufliegt. Mit einem weiteren Rahmen von 10 mm Dicke wird der Abstand zur Cobalt-Anode gehalten, die über den Rahmen übersteht und mit den elektrischen Zuleitungen versehen ist. Die Cobalt-Anode besteht aus Reincobalt bei einer Dicke von 20 mm. Der gesamte Aufbau wird über eine Halterung flüssigkeitsdicht zusammengepreßt. Zwischen den Kathoden und der Membran ist ein PE-Gitter eingelegt, das eine Berührung von Kathode und Membran verhindert. Die Rahmen, die Anode und Membran trennen, sind mit Bohrungen versehen, durch die der Anolyt zu- und wieder abgeleitet wird. Die Kathoden sind ebenfalls mit Zuleitungen versehen, so daß im gesamten Kathodenraum eine gleichmäßige Durchströmung mit dem Katholyten gewährleistet ist.
  • Katholyt und Anolyt enthalten je 100 g/l NaCl, der Katholyt außerdem 40 g/l NaOH.
  • Der Katholyt wird mit einer Geschwindigkeit von 100 l/h umgepunpt, was einer Verweilzeit des Elektrolyten von 9 sec im Kathodenraum entspricht. Der Anolyt wird während der Elektrolyse mit einer Geschwindigkeit von 650 l/h im Kreislauf gepumpt, was einer mittleren Verweilzeit von 2,7 sec im Anodenraum entspricht. Die Temperatur des Anolyten beträgt 50°C. Die Ammoniakkonzentration im Anolyten wird auf 2 mol/l eingestellt und Verluste durch Verdampfung durch Zugabe von Ammoniak in den Anolytkreislauf ausgeglichen.
  • Die stationäre Feststoffkonzentration von gebildeten Cobalthydroxiden ist 80 g/l bei einer mittleren Verweilzeit von 4 h.
  • Die Elektrolysebedingungen sind so gewählt, daß ein Strom von 12 A entsprechend 500 A/m² fließt, wobei 21 g Cobalthydroxid der Form Co(OH)₂ in jeder Stunde gebildet werden, die in 0,26 l Suspension aus dem Kreislauf ausgeschleust und durch Filtration abgetrennt werden. Nach Waschen mit Wasser wird ein sauberes Cobalthydroxid gewonnen. Der gebildete Wasserstoff gast aus dem Katholyt-Vortatsbehälter aus.
    pH-Anolyt: 10,5 - 11,5
    Membran: Neosepta® AMH, Hersteller Tokuyama Soda
  • Zusammensetzung des Endproduktes
  • Cobalthydroxid, Mischung aus Co(OH)₂ mit CoOOH im Verhältnis 80/20 nach Analyse
    Schüttdichte: 1,6 g/cm³
    Cobalt-Gehalt: 63,5 %
    Farbe: Dunkelbraun
  • Beispiel 2 Herstellung von Nickelhydroxid
  • In einer Elektrolysezelle, die in vergleichbarer Weise als Stapel von Elektroden und Membranen mit den Elektrodenräumen dazwischen aufgebaut ist, wird Nickel elektrochemisch in Gegenwart von Ammoniak aufgelöst und der gebildete Amminkomplex zu Nickelhydroxid zersetzt.
  • Elektrolytzusammensetzung:
    Anolyt: 16,5 mmol/l NiSO₄
    220 ml NH₃ (25 %ig)/l
    2 mol/l NaCl
    Katholyt: 1 mol/l NaOH
    Anode: Reinstnickel
    Kathode: platiniertes Titan
    Temperatur: Elektrolyse 40°C Zersetzung des Komplexes 70°C
    Stromdichte: 1000 A/m²
    Abstand Elektroden/Membran: 2 mm
    Überströmgeschwindigkeit: >10 cm/s
    pH-Anolyt: 10,5 - 11,5
    Membran: Neosepta® AMH, Hersteller Tokuyama Soda
  • Die Zersetzung des in der Elektrolyse gebildeten Amminkomplexes erfolgt durch Temperaturerhöhung des Elektrolyten in einem Reaktor zu Nickelhydroxid.
    a) Herstellung eines kompakten, kugelförmigen Nickelhydroxid
    Der Amminkomplex wird in einem Rührreaktor zersetzt, wobei das Zersetzungsprodukt zu kompakten, sphärischen Partikeln agglomeriert. Das agglomerierte Material wird kontinuierlich über einen Überlauf als Suspension aus dem Kreislauf des Anolyten abgetrennt.
    Nickelhydroxid aus Überlauf:
    Schüttdichte: 1,35 g/cm³
    mittlere Partikelgröße: 10 µm

    b) Bei Vorlage von Substraten wie Fasern aus Nickel oder einem kugelförmigen Ionenaustauscherharz mit der mittleren Partikelgröße von 200 µm lagert sich im Zersetzungsreaktor eine gleichmäßige Schicht von Nickelhydroxid auf dem Substrat ab.

Claims (9)

  1. Verfahren zur Herstellung von Metallhydroxiden und/oder Metalloxidhydroxiden aus entsprechenden Metallionen und Hydroxidionen, wobei die Metallionen in einem membranelektrochemischen Verfahren durch anodische Auflösung entsprechender Metalle im Anodenraum und die Hydroxidionen durch kathodische Reduktion von Wasser im von einer Anionenaustauschermembran begrenzten Kathodenraum gebildet werden und die Hydroxidionen unter der treibenden Kraft eines elektrischen Feldes durch die Anionenaustauschermembran in den Anodenraum überführt werden, dadurch gekennzeichnet, daß die Auflösung der Metalle in Gegenwart eines Komplexbildners bei einem pH >7 durchgeführt wird.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß als Komplexbildner Ammoniak und/oder organische Mono- und/oder Diamine mit einer Kettenlange von 1 bis 6 C-Atomen eingesetzt werden.
  3. Verfahren gemäß einem der Ansprüche 1 oder 2, daurch gekennzeichnet, daß als Metall eines oder mehrere aus der Gruppe Co, Ni, Cu, Fe, In, Mn, Sn, Zn, Zr, Ti, Al, Cd und U eingesetzt werden.
  4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß als Metall Co und/oder Ni eingesetzt wird.
  5. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Katholyt eine wäßrige Alkalilauge eingesetzt wird.
  6. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß im Anolyten Chlorid- und/oder Sulfationen vorliegen.
  7. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als Anionenaustauschermembran eine solche auf Basis von Polyethylen, Polypropylen, Polyetherketon, Polysulfon, Polyphenyloxid- und/oder -sulfid eingesetzt wird.
  8. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Anionenaustauschmembran Austauschgruppen aus alkyliertem Polyvinylimidazol, Polyvinylpyridin und/oder alkyliertem 1,4-Diazabicyclo[2.2.2]octan aufweist.
  9. Verfahren gemäß einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das gebildete Metallhydroxid und/oder Metalloxidhydroxid vom Anolyten abgetrennt wird und der Komplexbildner in den Anodenraum zurückgeführt wird.
EP95107172A 1994-05-24 1995-05-11 Verfahren zur Herstellung von Metallhydroxiden Expired - Lifetime EP0684324B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4418067A DE4418067C1 (de) 1994-05-24 1994-05-24 Verfahren zur Herstellung von Metallhydroxiden und/oder Metalloxidhydroxiden
DE4418067 1994-05-24

Publications (2)

Publication Number Publication Date
EP0684324A1 true EP0684324A1 (de) 1995-11-29
EP0684324B1 EP0684324B1 (de) 1998-09-09

Family

ID=6518828

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95107172A Expired - Lifetime EP0684324B1 (de) 1994-05-24 1995-05-11 Verfahren zur Herstellung von Metallhydroxiden

Country Status (12)

Country Link
EP (1) EP0684324B1 (de)
JP (1) JPH0841668A (de)
KR (1) KR950032715A (de)
CN (1) CN1060823C (de)
AT (1) ATE170936T1 (de)
CA (1) CA2149857A1 (de)
DE (2) DE4418067C1 (de)
ES (1) ES2120106T3 (de)
FI (1) FI952484A (de)
NO (1) NO309332B1 (de)
RU (1) RU2153538C2 (de)
TW (1) TW396212B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013131A1 (en) * 1997-09-05 1999-03-18 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide
DE10030093C1 (de) * 2000-06-19 2002-02-21 Starck H C Gmbh Verfahren und Vorrichtung zur Herstellung von Metallhydroxiden oder basischen Metallcarbonaten
WO2023137553A1 (en) * 2022-01-20 2023-07-27 The University Of British Columbia Methods and apparatus for converting metal carbonate salts to metal hydroxides

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19921313A1 (de) 1999-05-07 2000-11-09 Starck H C Gmbh Co Kg Verfahren zur Herstellung von Nickelhydroxiden
JP4593038B2 (ja) * 2001-09-21 2010-12-08 古河機械金属株式会社 硫酸コバルト溶液の製造方法
US8822030B2 (en) 2006-08-11 2014-09-02 Aqua Resources Corporation Nanoplatelet metal hydroxides and methods of preparing same
US7892447B2 (en) 2006-08-11 2011-02-22 Aqua Resources Corporation Nanoplatelet metal hydroxides and methods of preparing same
CN103184466B (zh) * 2013-01-10 2015-06-17 昆明贵千新型材料技术研究有限公司 高纯金属氧化物制备新工艺
CN107190274A (zh) * 2017-05-10 2017-09-22 东北大学 一种氯化镍电转化直接制备氢氧化镍的方法
JP7259389B2 (ja) * 2018-05-16 2023-04-18 住友金属鉱山株式会社 硫酸溶液の製造方法
CN110983399A (zh) * 2019-11-29 2020-04-10 深圳市裕展精密科技有限公司 金属制品及金属制品的制备方法
DE102020109690A1 (de) 2020-04-07 2021-10-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Selektive Modifizierung von Ionenaustauschmembranen mit Iridiumoxid durch pH gesteuerte Fällung von IrOx-Spezies an der Phasengrenze
CN112877746A (zh) * 2021-01-12 2021-06-01 北京科技大学 一种制备高纯镥铝石榴石前驱体的方法
CN114016048B (zh) * 2021-12-16 2023-08-01 西北师范大学 一种微纳米结构的Zn(OH)2和ZnO的可控制备方法
CN115821284A (zh) * 2022-09-29 2023-03-21 西南医科大学 一种增强水解离促进碱性电解水制氢的复合催化电极材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3508360A1 (de) * 1984-03-06 1986-09-11 Japan Metals & Chemicals Co., Ltd., Tokio/Tokyo Verfahren zum elektrolytischen herstellen von metalloxiden fuer ferrite
JPS63206487A (ja) * 1987-02-23 1988-08-25 Tosoh Corp 金属水酸化物の電解製法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536119B2 (de) * 1975-01-28 1978-03-04
GB1600750A (en) * 1978-05-24 1981-10-21 Assoun C D Process and apparatus for the production of hydroxides of metallic or semi-conductor elements
JPS63247385A (ja) * 1987-04-03 1988-10-14 Tosoh Corp 金属水酸化物の製造法
EP0353837B1 (de) * 1988-07-19 1994-07-27 Yuasa Corporation Nickelelektrode für eine alkalische Batterie
ATE114873T1 (de) * 1990-06-18 1994-12-15 Accumulateurs Fixes Verfahren zur herstellung eines metallischen hydroxidpulvers und auf diese weise hergestellte pulver.
US5135622A (en) * 1991-12-02 1992-08-04 At&T Bell Laboratories Electrochemical synthesis of palladium hydroxide compounds
FR2688235B1 (fr) * 1992-03-05 1995-06-23 Sorapec Procede d'obtention d'hydroxydes metalliques.
DE4211266C2 (de) * 1992-04-03 1996-12-19 Fraunhofer Ges Forschung Nicht-poröse, flächige oder faserförmige Polymergebilde mit hydrophiler Oberfläche und deren Verwendung als Membranen für die Dialyse oder Elektrodialyse
JP2819488B2 (ja) * 1992-10-06 1998-10-30 日本電信電話株式会社 電界センサの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3508360A1 (de) * 1984-03-06 1986-09-11 Japan Metals & Chemicals Co., Ltd., Tokio/Tokyo Verfahren zum elektrolytischen herstellen von metalloxiden fuer ferrite
JPS63206487A (ja) * 1987-02-23 1988-08-25 Tosoh Corp 金属水酸化物の電解製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 8840, Derwent World Patents Index; AN 88-282091 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013131A1 (en) * 1997-09-05 1999-03-18 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide
US5984982A (en) * 1997-09-05 1999-11-16 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide
DE10030093C1 (de) * 2000-06-19 2002-02-21 Starck H C Gmbh Verfahren und Vorrichtung zur Herstellung von Metallhydroxiden oder basischen Metallcarbonaten
WO2023137553A1 (en) * 2022-01-20 2023-07-27 The University Of British Columbia Methods and apparatus for converting metal carbonate salts to metal hydroxides

Also Published As

Publication number Publication date
KR950032715A (ko) 1995-12-22
TW396212B (en) 2000-07-01
NO309332B1 (no) 2001-01-15
FI952484A0 (fi) 1995-05-22
NO952035L (no) 1995-11-27
CA2149857A1 (en) 1995-11-25
DE59503494D1 (de) 1998-10-15
ES2120106T3 (es) 1998-10-16
CN1121964A (zh) 1996-05-08
RU95108225A (ru) 1997-05-10
NO952035D0 (no) 1995-05-23
RU2153538C2 (ru) 2000-07-27
CN1060823C (zh) 2001-01-17
EP0684324B1 (de) 1998-09-09
FI952484A (fi) 1995-11-25
JPH0841668A (ja) 1996-02-13
ATE170936T1 (de) 1998-09-15
DE4418067C1 (de) 1996-01-25

Similar Documents

Publication Publication Date Title
EP0684324B1 (de) Verfahren zur Herstellung von Metallhydroxiden
DE4418440C1 (de) Elektrochemisches Verfahren und Vorrichtung zur Herstellung von Metallhydroxiden und/oder Metalloxidhydroxiden
DE3342713C2 (de) Verfahren zur Bildung eines quaternären Ammoniumsalzes
DE10030093C1 (de) Verfahren und Vorrichtung zur Herstellung von Metallhydroxiden oder basischen Metallcarbonaten
DE2940186A1 (de) Verfahren zur herstellung von nitriten
EP1145346B1 (de) Nickel-mischhydroxid, verfahren zu dessen herstellung und dessen verwendung als kathodenmaterial in alkalischen batterien
EP0599136B1 (de) Verfahren zur Herstellung von reinem Nickelhydroxid sowie dessen Verwendung
EP1190114B1 (de) Verfahren zur herstellung von nickelhydroxiden
DE3780060T2 (de) Verfahren zur herstellung eines metallsalzes durch elektrolyse.
EP0658514B1 (de) Verfahren zur Herstellung von Metallhydroxiden
DE2451846A1 (de) Verfahren zur elektrolytischen herstellung von metallhydroxidloesungen
EP0433748A1 (de) Verfahren zur Herstellung von Chromsäure
EP0828691B1 (de) Verfahren zur herstellung von basischen kobalt(ii)carbonaten
DE3036066C2 (de)
DE19635247B4 (de) Aktives Material für eine Nickelelektrode
EP0433750B1 (de) Verfahren zur Herstellung von Chromsäure
DD284059A5 (de) Verfahren zur herstellung von alkalidichromaten und chromsaeure
EP4439685A1 (de) Verfahren zur herstellung einer lithiumhaltigen elektrode und elektrochemische zelle
DE4110617A1 (de) Verfahren zur herstellung aromatischer nitroverbindungen mit hilfe dreiwertiger titanverbindungen
EP0588149A1 (de) Verfahren zur elektrochemischen Spaltung von Alkalisulfaten und Ammoniumsulfat in die freien Laugen und Schwefelsäure bei gleichzeitiger anodischer Oxidation von Schwefeldioxid
DE2929357A1 (de) Verfahren zur gleichzeitigen herstellung von stickstoffmonoxid und alkalihydroxid
CH203740A (de) Verfahren zur Herstellung von Mangan auf elektrolytischem Wege.
DD269068A3 (de) Verfahren zur elektrolytischen abscheidung glatter kupferschichten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19951221

17Q First examination report despatched

Effective date: 19961206

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: H.C. STARCK GMBH & CO. KG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 170936

Country of ref document: AT

Date of ref document: 19980915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59503494

Country of ref document: DE

Date of ref document: 19981015

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2120106

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981127

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010412

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010418

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010509

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010510

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010514

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20010517

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010523

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010530

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010531

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020511

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020512

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020511

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20021201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050511