EP0654033A1 - Unsymmetrisch substituierte xanthine mit adenosinantagonistischen eigenschaften - Google Patents
Unsymmetrisch substituierte xanthine mit adenosinantagonistischen eigenschaftenInfo
- Publication number
- EP0654033A1 EP0654033A1 EP93917743A EP93917743A EP0654033A1 EP 0654033 A1 EP0654033 A1 EP 0654033A1 EP 93917743 A EP93917743 A EP 93917743A EP 93917743 A EP93917743 A EP 93917743A EP 0654033 A1 EP0654033 A1 EP 0654033A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- och
- conr
- substituted
- general formula
- coor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D473/00—Heterocyclic compounds containing purine ring systems
- C07D473/02—Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
- C07D473/04—Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms
- C07D473/06—Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 two oxygen atoms with radicals containing only hydrogen and carbon atoms, attached in position 1 or 3
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/08—Vasodilators for multiple indications
Definitions
- the present invention relates to new xanthine derivatives, processes for their preparation and their use as medicaments and their use as intermediates.
- R 1 cannot have the meaning of R 2 at the same time and how
- R 1 is hydrogen, R 1 -C 6 -alkyl, preferably methyl, ethyl, n-butyl, or allyl, particularly preferably n-propyl,
- R 2 is hydrogen, an R 1 -C 8 alkyl
- -CH CH-R 10 , -OCONR 6 R 7 , -CH 2 -O-CONR 6 R 7 ,
- R 2 is a radical of the formula
- AC 1 -C 6 alkenylene or AC 1 -C 6 alkynylene, where A is a C- or N-linked 5- or 6-membered heterocyclic ring which contains nitrogen or sulfur as heteroatoms and
- R 3 C 3 -C 7 cycloalkyl, preferably cyclopentyl, which is optionally substituted by O, -OH, -OR 8 , OCOR 8 or
- R 3 is phenyl, optionally substituted by -OH, halogen, -OR 8 , C 1 -C 4 alkyl, -CH 3 -, -NH 2 , -COOH, -SO 3 H, -COOR 8 , -OCH 2 COOR 8 , -CN, -OCH 2 CONR 6 R 7 is substituted or
- R 3 is a norbornane, norbornene, a C 3 -C 6 dicycloalkylmethyl
- R 3 -CH CH-phenyl, with the phenyl ring one or more times
- R 3 is a [3,3,0] bicyclooctane; preferably a [3,3,0] bicyclooctan-2-yl;
- R 3 is a C-linked piperidine or furan
- R 4 is hydrogen, methyl or benzyl where the benzyl group can be substituted by 1-3 methoxy groups
- R 5 C 1 - C 4 alkyl which is optionally substituted by OH, OCOR 8 , NH 2 , NR 6 R 7 or NHCOR 8 , preferably -CH 2 -CH 2 -OH, -CH 2 CH 2 OCOR 8 , - CH 2 -CH 2 -CH 2 -OH; -CH 2 -CH 2 CH 2 OCOR 8 ;
- R 6 is hydrogen, an optionally substituted cycloalkyl group having 3 to 6 carbon atoms, a branched or unbranched alkyl,
- C 1 to C 4 alkoxy can preferably be substituted
- R 7 is hydrogen, an optionally substituted cycloalkyl group having 3 to 6 carbon atoms, a branched or unbranched alkyl,
- C 1 to C 4 alkoxy may be substituted, - (CH 2 ) m -NHCOOR 8 with m 1, 2, 3 or 4;
- R 6 and R 7 together with the nitrogen atom form a saturated or unsaturated 5- or 6-ring which may contain nitrogen, oxygen or sulfur as heteroatoms, the heterocycle being represented by a branched or unbranched alkyl group having 1 to 4
- R 8 is hydrogen, C 1 -C 4 alkyl
- R 9 C 1 -C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, if appropriate
- R 10 -COOR 8 , -CH 2 OR 8 , -CONR 6 R 7 , hydrogen, C 1 -C 3 alkyl,
- R 11 is hydrogen phenyl, substituted phenyl, -CH 3 ; optionally in the form of their racemates, their enantiomers, their
- Preferred compounds of general formula I are those in which
- R 1 methyl, ethyl, n-butyl, allyl, n-propyl is particularly preferred;
- R 2 is a C 2 - or an unbranched C 3 alkyl radical, which by
- R 2 is a benzyl or phenethyl or phenylpropyl radical which is replaced by one of the following radicals
- phenyester can also be substituted three times; a C 3 -, C 4 -, C 5 - or
- R 2 is a radical of the formula
- A-CO-NH-CH 2 - A-CO-NH-CH 2 -CH 2 -, or
- A is a C- or N-linked 5- or 6-membered heterocyclic
- Ring which contains nitrogen or sulfur as heteroatoms and optionally one or more times by C 1 -C 4 alkyl, O, OH,
- R 2 an unbranched C 2 -C 5 alkyl radical which is replaced by -CN, -OH, SO 2 -R 5 ,
- radicals R 2 of the general formulas I and Ia are:
- radicals are particularly preferred
- R 3 is a residue from the group
- alkyl groups (also insofar as they are part of other radicals) are meant branched and unbranched alkyl groups with ibis 10 carbon atoms, preferably 1-4 carbon atoms, for example the following are mentioned: methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec Butyl, tert-butyl, pentyl, isopentyl, hexyl, heptyl and octyl.
- alkenyl groups branched and unbranched alkenyl groups with 2 to 10 carbon atoms, preferably 2 to 3 carbon atoms, are mentioned, provided that they have at least one double bond, for example also alkyl groups mentioned above, if they have at least one double bond, such as vinyl (provided that no unstable enamines or Enol ether are formed), propenyl, iso-propenyl, butenyl, pentenyl, hexenyl.
- Alkynyl groups with 2 to 10 carbon atoms are designated as alkynyl groups insofar as they have at least one triple bond,
- Cycloalkyl radicals with 3 to 6 carbon atoms are, for example
- Cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl which can also be substituted by branched or unbranched alkyl having 1 to 4 carbon atoms, hydroxy, and / or halogen or as previously defined.
- Halogen is generally referred to as fluorine, chlorine, bromine or iodine.
- cyclic radicals of the general formula NR 6 R 7 are: pyrrole, pyrroline, pyrrolidine, 2-methylpyrrolidine, 3-methylpyrrolidine, piperidine, piperazine, N-methylpiperazine, N-ethylpiperazine, N- (n-propyl) piperazine , N-benzylpiperazine, morpholine, thiomorpholine, imidazole, imidazoline, imidazolidine, pyrazole, pyrazoline, pyrazolidine - wherein the heterocycles mentioned can be substituted by alkyl having 1 to 4 carbon atoms - preferably methyl - or carry one of the following radicals
- C-linked 5- or 6-membered heterocyclic rings which can contain nitrogen, oxygen or sulfur as heteroatoms, for example tetrahydrofuran, 2-methyltetrahydrofuran, 2-hydroxymethylfuran,
- Xanthine derivatives with high adenosine A 1 affinity promote neurotransmission in the brain and can, for example, be regarded as functional cholinomimetics.
- Such substances are of great interest for the symptomatic therapy of degenerative diseases of the central nervous system, such as dementia senilis and Alzheimer's disease.
- the high receptor affinity should make it possible to treat with low doses, so that side effects that are not attributable to the blocking of adenosine receptors can hardly be expected.
- adenosine antagomsten could be useful for the treatment of cardiovascular diseases and in the treatment of respiratory diseases - in particular bronchial asthma.
- xanthines of the general formula I show diuretic properties and are therefore for the treatment of
- Kidney diseases and due to diuresis also of interest for the treatment of high blood pressure.
- a 1 antagonists increase the efflux of chloride ions, for example in CF PAC cells.
- the cells originate from a pancreatic adenocarcinoma cell line which was isolated from patients suffering from cystic fibrosis (CF). The action could be blocked by agonists such as 2-chloroadenosine. Interestingly, an increase in efflux was only observed in cells that came from sick patients or that had the corresponding gene defect.
- Adenosine antagomes can be used to treat lung diseases, in particular asthma, allergic lung diseases and chronic obstructive lung diseases. It is to be expected that the compounds according to the invention, due to their high potency, are also suitable for the inhalative treatment of lung diseases.
- the receptor binding values were determined in analogy to Ensinger et al. in "Cloning and functional characterization of human A 1 adenosine Receptor - Biochemical and Biophysical Communications, Vol 187, No. 2, 919-926, 1992".
- locomotor activity in mice adenosine antagonism:
- Subcutaneous administration of an adenosine agonist can induce locomotor inhibition in mice in the hour following application. It is examined how a test substance influences this hypomotility.
- the measurements for this experiment record the number of light barrier interruptions in motility chambers. Registration begins immediately after administration of the substance by computer. It is only evaluated the first hour after application, since the adenosine agonist's effects occur during this period.
- mice which are both the adenosine agonists and the
- the compounds of the invention can be prepared according to known methods
- Analogy processes can be produced, such as in the
- Synthesis schemes I, II and III is shown.
- the synthesis of xanthines is well known to the person skilled in the art, but will be explained again in detail in the following experimental section on the basis of important key compounds.
- a characteristic feature of the synthesis shown in synthesis plan I is that R 2 'has already been introduced at the stage of the diaminouracil (III).
- R 2 ' is a functional radical selected from the group of definitions of R 2 with the proviso that R 2 ' does not interfere with the structure of the xanthine and before or after
- R 4 preferably benzyi
- formula VIII can be converted into the desired R 2 'of the general formula I.
- a preferred radical R 2 ' is, for example, a methoxybenzyl group.
- R 3 is introduced by aminoacylation and subsequent ring closure to form xanthine.
- R 1 is now introduced into the protected xanthine VI by N-alkylation.
- R 4 Conversion of R 4 into hydrogen. If R 2 'does not yet have the desired meaning R 2 of the end compound I, R 2 ' can now be converted into R 2 . (Formula VIa) and, if not already done, the protective group is then split off. Examples of this are described in the general work instructions under points 12 and 14 to 23.
- R 2 'into R 2 can be prepared in a simple manner compounds of the general formula I.
- the invention thus also relates to a simple - generally applicable manufacturing process for the synthesis of substituted in the 1- and 3-position
- Xanthine derivatives in which R 1 and R 2 can represent any radicals, provided that they can be introduced by an electrophilic reaction.
- acylation position (5- or 6-position) is irrelevant for the subsequent reaction and has not been determined.
- acylation position (5- or 6-position) is irrelevant for the subsequent reaction and has not been determined.
- methyl ether derivative 0.5 mmol methyl ether derivative are dissolved in 5 ml absolute acetonitrile. 300 mg (40 mmol) of sodium iodide are added and then 0.39 ml (3.0 mmol)
- Washed sodium thiosulfate solution knocked over sodium sulfate and concentrated to dryness. If necessary, the product is purified by crystallization or chromatography.
- N-benzyl compound 0.01 mol are hydrogenated together with 0.5 g of palladium on activated carbon or Pearlman catalyst in methanol, tetrahydrofuran or in glacial acetic acid under pressure and, if necessary, with heating until the
- N-benzyl compound 3.3 mmol of N-benzyl compound are dissolved in 70 ml of absolute methylene chloride. 3.36 g (52.8 mmol) of ammonium formate and 1.32 g of Pearlman catalyst are added and the suspension is stirred at the reflux temperature for 2 hours. After cooling, filter through diatomaceous earth and concentrate the filtrate to dryness. If necessary, the residue is purified by crystallization or chromatography.
- Toothed hydrogenolysis was carried out according to this method, among others one obtains: a) from
- nitrile derivative 3.3 mmol are dissolved in 40 ml of methanol and 10.5 ml of 25% aqueous ammonia solution and hydrogenated under pressure in the presence of Raney nickel, if necessary with heating, until the starting compound is completely reacted.
- Output connection is fully implemented. It is extracted with dist. Water and dilute hydrochloric acid, the organic phase dries over sodium sulfate and evaporates it to dryness. The residue is purified by crystallization or by chromatography.
- R 1 n-propyl
- R 3 cyclopentyl
- R 4 hydrogen
- Suitable forms of use are, for example, tablets, capsules, suppositories, solutions, juices, emulsions or dispersible powders.
- Corresponding tablets can be mixed, for example, by mixing the active substance or substances with known auxiliary substances, for example inert diluents, such as
- Calcium carbonate calcium phosphate or milk sugar
- disintegrants such as corn starch or alginic acid
- binders such as starch or gelatin
- Lubricants such as magnesium stearate or talc, and / or agents for achieving the depot effect, such as carboxymethyl cellulose, cellulose acetate phthalate, or polyvinyl acetate can be obtained.
- the tablets can also consist of several layers.
- coated tablets can be produced by coating cores produced analogously to the tablets with agents commonly used in tablet coatings, for example collidone or shellac, gum arabic, talc, titanium dioxide or sugar.
- agents commonly used in tablet coatings for example collidone or shellac, gum arabic, talc, titanium dioxide or sugar.
- the core can also consist of several layers.
- the coated tablet can also be used to achieve a
- Combinations of materials can additionally contain a sweetener, such as
- Saccharin, cyclamate, glycerin or sugar as well as a taste-improving agent, e.g. Flavorings, such as vanillin or orange extract, contain.
- Flavorings such as vanillin or orange extract. You can also use suspending aids or thickeners, such as
- Preservatives such as p-hydroxybenzoates, or stabilizers, such as alkali metal salts of ethylenediamine tetraacetic acid, and prepared in
- Bottled injection bottles or ampoules The capsules containing one or more tools or combinations of tools can be produced, for example, by mixing the tools with inert carriers, such as lactose or sorbitol, and encapsulating them in gelatin capsules.
- inert carriers such as lactose or sorbitol
- Suitable suppositories can be produced, for example, by mixing them with carriers, such as new fats or polyethylene glycol or its derivatives.
- a therapeutically effective daily dose is between 1 and 800 mg, preferably 10-300 mg per adult.
- the finely ground active ingredient, milk sugar and part of the corn starch are mixed together.
- the mixture is sieved, whereupon it is moistened with a solution of polyvinylpyrrolidone in water, kneaded, wet-granulated and dried.
- the granules, the rest of the corn starch and the magnesium stearate are sieved and mixed together.
- the mixture is compressed into tablets of a suitable shape and size.
- the finely ground active ingredient part of the corn starch, milk sugar,
- Microcrystalline cellulose and polyvinylpyrrolidone are mixed together, the mixture is sieved and processed with the rest of the corn starch and water to form a granulate which is kneaded and sieved.
- the sodium carboxymethyl starch and the magnesium stearate are added, and the mixture is mixed and pressed into tablets of a suitable size.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4226371 | 1992-08-10 | ||
DE4226371 | 1992-08-10 | ||
DE4238423 | 1992-11-13 | ||
DE4238423 | 1992-11-13 | ||
PCT/EP1993/002077 WO1994003456A1 (de) | 1992-08-10 | 1993-08-05 | Unsymmetrisch substituierte xanthine mit adenosinantagonistischen eigenschaften |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0654033A1 true EP0654033A1 (de) | 1995-05-24 |
Family
ID=25917371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93917743A Withdrawn EP0654033A1 (de) | 1992-08-10 | 1993-08-05 | Unsymmetrisch substituierte xanthine mit adenosinantagonistischen eigenschaften |
Country Status (21)
Country | Link |
---|---|
US (1) | US5719279A (no) |
EP (1) | EP0654033A1 (no) |
JP (1) | JPH08500344A (no) |
KR (1) | KR950702988A (no) |
CN (1) | CN1043348C (no) |
AU (1) | AU681348B2 (no) |
BG (1) | BG62618B1 (no) |
CA (1) | CA2140883A1 (no) |
CZ (1) | CZ286459B6 (no) |
FI (1) | FI950542A (no) |
HU (1) | HUT65734A (no) |
IL (1) | IL106624A (no) |
MX (1) | MX9304819A (no) |
NZ (1) | NZ254804A (no) |
PL (1) | PL176389B1 (no) |
RU (1) | RU2138500C1 (no) |
SG (1) | SG55038A1 (no) |
SK (1) | SK18595A3 (no) |
TW (1) | TW252044B (no) |
UA (1) | UA46697C2 (no) |
WO (1) | WO1994003456A1 (no) |
Families Citing this family (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW252044B (no) * | 1992-08-10 | 1995-07-21 | Boehringer Ingelheim Kg | |
US5877179A (en) * | 1992-09-29 | 1999-03-02 | The United States Of America As Represented By The Department Of Health And Human Services | Xanthines for identifying CFTR--binding compounds useful for activating chloride conductance in animal cells |
WO1994025462A1 (en) * | 1993-05-03 | 1994-11-10 | The United States Of America, Represented By The | 8-substituted 1,3,7-trialkyl-xanthine derivatives as a2-selective adenosine receptor antagonists |
DE4316576A1 (de) * | 1993-05-18 | 1994-11-24 | Boehringer Ingelheim Kg | Verbessertes Verfahren zur Herstellung von 1,3-Dipropyl-8-(3-Oxocyclopentyl)-xanthin |
US5646156A (en) * | 1994-04-25 | 1997-07-08 | Merck & Co., Inc. | Inhibition of eosinophil activation through A3 adenosine receptor antagonism |
US5591776A (en) | 1994-06-24 | 1997-01-07 | Euro-Celtique, S.A. | Pheynl or benzyl-substituted rolipram-based compounds for and method of inhibiting phosphodiesterase IV |
GB9415529D0 (en) | 1994-08-01 | 1994-09-21 | Wellcome Found | Phenyl xanthine derivatives |
AU4527896A (en) * | 1994-12-13 | 1996-07-03 | Euro-Celtique S.A. | Aryl thioxanthines |
ATE247655T1 (de) | 1994-12-13 | 2003-09-15 | Euro Celtique Sa | Dreifachsubstituierte thioxanthine |
US5864037A (en) | 1996-06-06 | 1999-01-26 | Euro-Celtique, S.A. | Methods for the synthesis of chemical compounds having PDE-IV inhibitory activity |
GB9623859D0 (en) * | 1996-11-15 | 1997-01-08 | Chiroscience Ltd | Novel compounds |
US5786360A (en) | 1996-11-19 | 1998-07-28 | Link Technology Incorporated | A1 adenosine receptor antagonists |
GB9703044D0 (en) | 1997-02-14 | 1997-04-02 | Glaxo Group Ltd | Phenyl xanthine esters and amides |
US6248746B1 (en) | 1998-01-07 | 2001-06-19 | Euro-Celtique S.A. | 3-(arylalkyl) xanthines |
WO1999031101A1 (en) * | 1997-12-17 | 1999-06-24 | University Of South Florida | Adenosine receptor antagonists with improved bioactivity |
DE19816857A1 (de) * | 1998-04-16 | 1999-10-21 | Boehringer Ingelheim Pharma | Neue unsymmetrisch substituierte Xanthin-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel |
CA2336967C (en) | 1998-07-10 | 2010-06-29 | The United States Of America, Represented By The Secretary, Department Of Health And Human Services | A3 adenosine receptor antagonists |
GB9817623D0 (en) | 1998-08-13 | 1998-10-07 | Glaxo Group Ltd | Pharmaceutical compounds |
EP1775297A3 (en) | 1999-11-12 | 2008-12-03 | Biogen Idec MA Inc. | Adenosine receptor antagonists and methods of making and using the same |
CZ20021614A3 (cs) * | 1999-11-12 | 2002-07-17 | Biogen, Inc. | Polycykloalkylpuriny jako antagonisty adenosinového receptoru |
AU2223501A (en) * | 1999-12-24 | 2001-07-09 | Kyowa Hakko Kogyo Co. Ltd. | Fused purine derivatives |
ATE336492T1 (de) | 2000-01-14 | 2006-09-15 | Us Gov Health & Human Serv | Methonocarbacycloalkylanaloga von nucleosiden |
ATE353900T1 (de) * | 2001-02-24 | 2007-03-15 | Boehringer Ingelheim Pharma | Xanthinderivate, deren herstellung und deren verwendung als arzneimittel |
UA80258C2 (en) * | 2001-09-06 | 2007-09-10 | Biogen Inc | Methods of treating pulmonary disease |
EP1521584A1 (en) | 2002-06-17 | 2005-04-13 | Glaxo Group Limited | Purine derivatives as liver x receptor agonists |
US7407955B2 (en) | 2002-08-21 | 2008-08-05 | Boehringer Ingelheim Pharma Gmbh & Co., Kg | 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions |
US7569574B2 (en) | 2002-08-22 | 2009-08-04 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Purine derivatives, the preparation thereof and their use as pharmaceutical compositions |
US7495005B2 (en) | 2002-08-22 | 2009-02-24 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Xanthine derivatives, their preparation and their use in pharmaceutical compositions |
US7482337B2 (en) | 2002-11-08 | 2009-01-27 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Xanthine derivatives, the preparation thereof and their use as pharmaceutical compositions |
DE10254304A1 (de) | 2002-11-21 | 2004-06-03 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Neue Xanthinderivate, deren Herstellung und deren Verwendung als Arzneimittel |
US7202252B2 (en) * | 2003-02-19 | 2007-04-10 | Endacea, Inc. | A1 adenosine receptor antagonists |
NZ543109A (en) | 2003-04-25 | 2008-06-30 | Novacardia Inc | Method of improved diuresis in individuals with impaired renal function |
CA2528385C (en) * | 2003-06-06 | 2011-03-15 | Endacea, Inc. | A1 adenosine receptor antogonists |
WO2004110379A2 (en) * | 2003-06-09 | 2004-12-23 | Endacea, Inc. | A1 adenosine receptor antagonists |
US7566707B2 (en) | 2003-06-18 | 2009-07-28 | Boehringer Ingelheim International Gmbh | Imidazopyridazinone and imidazopyridone derivatives, the preparation thereof and their use as pharmaceutical compositions |
DE10355304A1 (de) * | 2003-11-27 | 2005-06-23 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Neue 8-(Piperazin-1-yl)-und 8-([1,4]Diazepan-1-yl)-xanthine, deren Herstellung und deren Verwendung als Arzneimittel |
US7501426B2 (en) | 2004-02-18 | 2009-03-10 | Boehringer Ingelheim International Gmbh | 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions |
DE102004009039A1 (de) | 2004-02-23 | 2005-09-08 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | 8-[3-Amino-piperidin-1-yl]-xanthine, deren Herstellung und Verwendung als Arzneimittel |
US7393847B2 (en) | 2004-03-13 | 2008-07-01 | Boehringer Ingleheim International Gmbh | Imidazopyridazinediones, their preparation and their use as pharmaceutical compositions |
US7179809B2 (en) * | 2004-04-10 | 2007-02-20 | Boehringer Ingelheim International Gmbh | 2-Amino-imidazo[4,5-d]pyridazin-4-ones, their preparation and their use as pharmaceutical compositions |
US7439370B2 (en) | 2004-05-10 | 2008-10-21 | Boehringer Ingelheim International Gmbh | Imidazole derivatives, their preparation and their use as intermediates for the preparation of pharmaceutical compositions and pesticides |
DE102004030502A1 (de) | 2004-06-24 | 2006-01-12 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Neue Imidazole und Triazole, deren Herstellung und Verwendung als Arzneimittel |
DE102004043944A1 (de) | 2004-09-11 | 2006-03-30 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Neue 8-(3-Amino-piperidin-1-yl)-7-(but-2-inyl)-xanthine, deren Herstellung und deren Verwendung als Arzneimittel |
DE102004044221A1 (de) | 2004-09-14 | 2006-03-16 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Neue 3-Methyl-7-butinyl-xanthine, deren Herstellung und deren Verwendung als Arzneimittel |
DE102004054054A1 (de) | 2004-11-05 | 2006-05-11 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Verfahren zur Herstellung chiraler 8-(3-Amino-piperidin-1-yl)-xanthine |
DE102005035891A1 (de) | 2005-07-30 | 2007-02-08 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | 8-(3-Amino-piperidin-1-yl)-xanthine, deren Herstellung und deren Verwendung als Arzneimittel |
EP1852108A1 (en) * | 2006-05-04 | 2007-11-07 | Boehringer Ingelheim Pharma GmbH & Co.KG | DPP IV inhibitor formulations |
CN102838599A (zh) | 2006-05-04 | 2012-12-26 | 贝林格尔.英格海姆国际有限公司 | 多晶型 |
PE20080251A1 (es) | 2006-05-04 | 2008-04-25 | Boehringer Ingelheim Int | Usos de inhibidores de dpp iv |
US8071583B2 (en) * | 2006-08-08 | 2011-12-06 | Boehringer Ingelheim International Gmbh | Pyrrolo[3,2-D] pyrimidines as DPP-IV inhibitors for the treatment of diabetes mellitus |
NZ600126A (en) * | 2007-08-17 | 2013-12-20 | Boehringer Ingelheim Int | Purine derivatives for use in the treatment of fap-related diseases |
CA2709772A1 (en) | 2007-12-21 | 2009-07-09 | Endacea, Inc. | A1 adenosine receptor antagonists |
US7928259B2 (en) * | 2008-02-12 | 2011-04-19 | Frx Polymers, Inc. | Diaryl alkylphosphonates and methods for preparing same |
PE20140960A1 (es) | 2008-04-03 | 2014-08-15 | Boehringer Ingelheim Int | Formulaciones que comprenden un inhibidor de dpp4 |
PE20100156A1 (es) * | 2008-06-03 | 2010-02-23 | Boehringer Ingelheim Int | Tratamiento de nafld |
BRPI0916997A2 (pt) | 2008-08-06 | 2020-12-15 | Boehringer Ingelheim International Gmbh | Inibidor de dpp-4 e seu uso |
UY32030A (es) | 2008-08-06 | 2010-03-26 | Boehringer Ingelheim Int | "tratamiento para diabetes en pacientes inapropiados para terapia con metformina" |
AU2009281122C1 (en) * | 2008-08-15 | 2016-04-21 | Boehringer Ingelheim International Gmbh | Purin derivatives for use in the treatment of fab-related diseases |
AU2009290911A1 (en) | 2008-09-10 | 2010-03-18 | Boehringer Ingelheim International Gmbh | Combination therapy for the treatment of diabetes and related conditions |
JP5334511B2 (ja) * | 2008-09-22 | 2013-11-06 | 日本精化株式会社 | 化粧料 |
US20200155558A1 (en) | 2018-11-20 | 2020-05-21 | Boehringer Ingelheim International Gmbh | Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral antidiabetic drug |
AU2009331471B2 (en) | 2008-12-23 | 2015-09-03 | Boehringer Ingelheim International Gmbh | Salt forms of organic compound |
AR074990A1 (es) | 2009-01-07 | 2011-03-02 | Boehringer Ingelheim Int | Tratamiento de diabetes en pacientes con un control glucemico inadecuado a pesar de la terapia con metformina |
BRPI1013561A8 (pt) * | 2009-03-26 | 2015-09-22 | Mapi Pharma Ltd | processo para a preparação de alogliptina |
KR102668834B1 (ko) | 2009-11-27 | 2024-05-24 | 베링거 인겔하임 인터내셔날 게엠베하 | 리나글립틴과 같은 dpp-iv 억제제를 사용한 유전자형 검사된 당뇨병 환자의 치료 |
WO2011068978A1 (en) | 2009-12-02 | 2011-06-09 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Methanocarba adenosine derivatives and dendrimer conjugates thereof |
ES2935300T3 (es) | 2010-05-05 | 2023-03-03 | Boehringer Ingelheim Int | Combiterapia |
KR20230051307A (ko) | 2010-06-24 | 2023-04-17 | 베링거 인겔하임 인터내셔날 게엠베하 | 당뇨병 요법 |
US9034883B2 (en) | 2010-11-15 | 2015-05-19 | Boehringer Ingelheim International Gmbh | Vasoprotective and cardioprotective antidiabetic therapy |
EA030121B1 (ru) | 2011-07-15 | 2018-06-29 | Бёрингер Ингельхайм Интернациональ Гмбх | Замещенные хиназолины, их получение и их применение в фармацевтических композициях |
US9555001B2 (en) | 2012-03-07 | 2017-01-31 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition and uses thereof |
WO2013171167A1 (en) | 2012-05-14 | 2013-11-21 | Boehringer Ingelheim International Gmbh | A xanthine derivative as dpp -4 inhibitor for use in the treatment of podocytes related disorders and/or nephrotic syndrome |
WO2013174767A1 (en) | 2012-05-24 | 2013-11-28 | Boehringer Ingelheim International Gmbh | A xanthine derivative as dpp -4 inhibitor for use in modifying food intake and regulating food preference |
ES2950384T3 (es) | 2014-02-28 | 2023-10-09 | Boehringer Ingelheim Int | Uso médico de un inhibidor de DPP-4 |
EP4233840A3 (en) | 2016-06-10 | 2023-10-18 | Boehringer Ingelheim International GmbH | Combinations of linagliptin and metformin |
RU2643336C1 (ru) * | 2016-10-03 | 2018-01-31 | Общество с Ограниченной Ответственностью "Компания "ЭЛТА" | СРЕДСТВО, ПРОЯВЛЯЮЩЕЕ АНТИТРОМБОТИЧЕСКИЙ ЭФФЕКТ ПОСРЕДСТВОМ БЛОКИРОВАНИЯ РЕЦЕПТОРОВ ТРОМБОЦИТОВ ГП IIb-IIIa (ВАРИАНТЫ) |
CN109796453A (zh) * | 2019-02-12 | 2019-05-24 | 南京纽邦生物科技有限公司 | 一种1,7-二甲基黄嘌呤的制备方法 |
EP4229059A1 (en) | 2020-10-15 | 2023-08-23 | Rheinische Friedrich-Wilhelms-Universität Bonn | 3-substituted xanthine derivatives as mrgprx4 receptor modulators |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4452788A (en) * | 1982-04-21 | 1984-06-05 | Warner-Lambert Company | Substituted 8-phenylxanthines |
US4593095A (en) * | 1983-02-18 | 1986-06-03 | The Johns Hopkins University | Xanthine derivatives |
US4696932A (en) * | 1984-10-26 | 1987-09-29 | The United States Of America As Represented By The Department Of Health And Human Services | Biologically-active xanthine derivatives |
GB8510758D0 (en) * | 1985-04-27 | 1985-06-05 | Wellcome Found | Compounds |
US4772607A (en) * | 1986-05-20 | 1988-09-20 | Warner-Lambert Company | Dialkenyl derivatives of xanthine, pharmaceutical compositions and methods of use therefor |
US4783530A (en) * | 1986-11-13 | 1988-11-08 | Marion Laboratories, Inc. | 8-arylxanthines |
US4968672A (en) * | 1987-01-02 | 1990-11-06 | The United States Of America As Represented By The Department Of Health And Human Services | Adenosine receptor prodrugs |
US5032593A (en) * | 1988-07-01 | 1991-07-16 | Marion Merrell Dow Inc. | Method of treating bronchoconstriction with 1,3-unsymmetrical straight chain alkyl-substituted 8-phenylxanthines |
DE3843117A1 (de) * | 1988-12-22 | 1990-06-28 | Boehringer Ingelheim Kg | Neue xanthinderivate mit adenosin-antagonistischer wirkung |
JPH06102662B2 (ja) * | 1989-09-01 | 1994-12-14 | 協和醗酵工業株式会社 | キサンチン誘導体 |
DE4019892A1 (de) * | 1990-06-22 | 1992-01-02 | Boehringer Ingelheim Kg | Neue xanthinderivate |
EP0559893B1 (en) * | 1990-10-18 | 1999-02-03 | Kyowa Hakko Kogyo Co., Ltd. | Xanthine derivative |
CA2061544A1 (en) * | 1991-02-25 | 1992-08-26 | Fumio Suzuki | Xanthine compounds |
TW252044B (no) * | 1992-08-10 | 1995-07-21 | Boehringer Ingelheim Kg | |
US5366977A (en) * | 1992-09-29 | 1994-11-22 | The United States Of America, As Represented By The Department Of Health And Human Services | Method of treating cystic fibrosis using 8-cyclopentyl-1,3-dipropylxanthine or xanthine amino congeners |
-
1993
- 1993-08-02 TW TW082106170A patent/TW252044B/zh active
- 1993-08-05 SG SG1996003249A patent/SG55038A1/en unknown
- 1993-08-05 NZ NZ254804A patent/NZ254804A/en unknown
- 1993-08-05 JP JP6505017A patent/JPH08500344A/ja active Pending
- 1993-08-05 WO PCT/EP1993/002077 patent/WO1994003456A1/de active IP Right Grant
- 1993-08-05 EP EP93917743A patent/EP0654033A1/de not_active Withdrawn
- 1993-08-05 RU RU95109100A patent/RU2138500C1/ru active
- 1993-08-05 PL PL93307397A patent/PL176389B1/pl unknown
- 1993-08-05 CZ CZ1995348A patent/CZ286459B6/cs not_active IP Right Cessation
- 1993-08-05 CA CA002140883A patent/CA2140883A1/en not_active Abandoned
- 1993-08-05 AU AU47071/93A patent/AU681348B2/en not_active Ceased
- 1993-08-05 SK SK185-95A patent/SK18595A3/sk unknown
- 1993-08-05 UA UA95038235A patent/UA46697C2/uk unknown
- 1993-08-09 MX MX9304819A patent/MX9304819A/es not_active IP Right Cessation
- 1993-08-09 HU HU9302302A patent/HUT65734A/hu unknown
- 1993-08-09 IL IL10662493A patent/IL106624A/en not_active IP Right Cessation
- 1993-08-10 CN CN93109282A patent/CN1043348C/zh not_active Expired - Fee Related
-
1995
- 1995-02-08 FI FI950542A patent/FI950542A/fi unknown
- 1995-02-10 KR KR1019950700569A patent/KR950702988A/ko not_active Application Discontinuation
- 1995-03-09 BG BG99489A patent/BG62618B1/bg unknown
-
1996
- 1996-06-11 US US08/661,567 patent/US5719279A/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO9403456A1 * |
Also Published As
Publication number | Publication date |
---|---|
RU2138500C1 (ru) | 1999-09-27 |
NZ254804A (en) | 1997-01-29 |
IL106624A0 (en) | 1993-12-08 |
CZ286459B6 (en) | 2000-04-12 |
RU95109100A (ru) | 1996-12-27 |
BG62618B1 (bg) | 2000-03-31 |
FI950542A0 (fi) | 1995-02-08 |
BG99489A (bg) | 1996-01-31 |
IL106624A (en) | 1999-01-26 |
SG55038A1 (en) | 1998-12-21 |
WO1994003456A1 (de) | 1994-02-17 |
HUT65734A (en) | 1994-07-28 |
JPH08500344A (ja) | 1996-01-16 |
SK18595A3 (en) | 1995-07-11 |
US5719279A (en) | 1998-02-17 |
AU4707193A (en) | 1994-03-03 |
AU681348B2 (en) | 1997-08-28 |
CN1043348C (zh) | 1999-05-12 |
CN1086818A (zh) | 1994-05-18 |
MX9304819A (es) | 1994-02-28 |
HU9302302D0 (en) | 1993-10-28 |
PL176389B1 (pl) | 1999-05-31 |
CZ34895A3 (en) | 1995-10-18 |
PL307397A1 (en) | 1995-05-15 |
KR950702988A (ko) | 1995-08-23 |
UA46697C2 (uk) | 2002-06-17 |
CA2140883A1 (en) | 1994-02-17 |
FI950542A (fi) | 1995-02-08 |
TW252044B (no) | 1995-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0654033A1 (de) | Unsymmetrisch substituierte xanthine mit adenosinantagonistischen eigenschaften | |
EP0130461A2 (de) | Neue Imidazole, ihre Herstellung und diese Verbindungen enthaltende Arzneimittel | |
EP0880524B1 (de) | Adenosin-antagonisten, verfahren zu ihrer herstellung und ihre verwendung als arzneimittel | |
EP0005154B1 (de) | 1-Oxo-1H-pyrimido (6,1-b) benzthiazol-Derivate, Verfahren zu deren Herstellung sowie diese Verbindungen enthaltende Arzneimittel | |
DE4325254A1 (de) | Unsymmetrisch substituierte Xanthine | |
EP0557879A1 (de) | 4-Amino-2-ureido-pyrimidin-5-carbonsäureamide, Verfahren zu deren Herstellung, diese Verbindungen enthaltende Arzneimittel und deren Verwendung | |
DE19816857A1 (de) | Neue unsymmetrisch substituierte Xanthin-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel | |
EP0621037A1 (de) | Pyrido-pyrimidindione, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel | |
EP1087973B1 (de) | Imidazotriazolopyrimidine als arzneimittel mit adenosinantagonistischer wirkung | |
EP1945304A2 (de) | Imidazo-pyridin-haltige beta-agonisten, verfahren zu deren herstellung und deren verwendung als arzneimittel | |
EP1237877B1 (de) | Carboxamid-substituierte benzimidazol-derivate, verfahren zu ihrer herstellung und ihre verwendung als tryptase-inhibitoren | |
EP0037471B1 (de) | 1-Aroyl-2-phenylamino-2-imidazoline, ihre Herstellung und diese enthaltende Arzneimittel | |
EP0113911B1 (de) | Pyrido-triazolochinazoline, ihre Herstellung und Verwendung | |
AT299202B (de) | Verfahren zur Herstellung von neuen substituierten Isochinolinen und von deren Säureadditionssalzen | |
EP1220845B1 (de) | Arylsulfonamid-substituierte benzimidazolderivate ihre verwendung als tryptase-inhibitoren | |
WO2000012511A1 (de) | Imidazotriazolopyrimidine | |
DE2215999A1 (de) | Nitroimidazolyl-triazolo-pyridazine und verfahren zu ihrer herstellung | |
CA2242097C (en) | Imidazotriazolopyrimidines, process for preparing them and their use as pharmaceutical compositions | |
EP2159226A1 (de) | Antihistamin- und antiallergienmittel sowie verfahren zu seiner herstellung | |
KR20000064893A (ko) | 트리아졸로퓨린,이의제조방법및이를함유하는약제학적제제 | |
AU1741899A (en) | New imidazotriazolopyrimidinones, processes for preparing them and their use as pharmaceutical compositions | |
DE1695821A1 (de) | Neue Purinverbindungen und Verfahren zu ihrer Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950118 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19971203 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BOEHRINGER INGELHEIM INTERNATIONAL GMBH Owner name: BOEHRINGER INGELHEIM PHARMA KG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BOEHRINGER INGELHEIM INTERNATIONAL GMBH Owner name: BOEHRINGER INGELHEIM PHARMA KG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BOEHRINGER INGELHEIM INTERNATIONAL GMBH Owner name: BOEHRINGER INGELHEIM PHARMA KG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20000130 |