EP0653898A2 - Verfahren zum Herstellen von keramischen Heizelementen - Google Patents

Verfahren zum Herstellen von keramischen Heizelementen Download PDF

Info

Publication number
EP0653898A2
EP0653898A2 EP94117182A EP94117182A EP0653898A2 EP 0653898 A2 EP0653898 A2 EP 0653898A2 EP 94117182 A EP94117182 A EP 94117182A EP 94117182 A EP94117182 A EP 94117182A EP 0653898 A2 EP0653898 A2 EP 0653898A2
Authority
EP
European Patent Office
Prior art keywords
metallization
paste
ceramic
weight
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94117182A
Other languages
English (en)
French (fr)
Other versions
EP0653898B1 (de
EP0653898A3 (de
Inventor
Alfred Dr. Thimm
Heinz Groschwitz
Peter Besold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramtec GmbH
Original Assignee
Ceramtec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramtec GmbH filed Critical Ceramtec GmbH
Publication of EP0653898A2 publication Critical patent/EP0653898A2/de
Publication of EP0653898A3 publication Critical patent/EP0653898A3/de
Application granted granted Critical
Publication of EP0653898B1 publication Critical patent/EP0653898B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/286Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an organic material, e.g. plastic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/28Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material
    • H05B3/283Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor embedded in insulating material the insulating material being an inorganic material, e.g. ceramic

Definitions

  • the invention relates to a method for producing an electrical heating element in which metallic heating conductors are embedded between ceramic insulating layers, contacting recesses in the ceramic insulating layers being filled with electrically conductive material as current leads and as current conductors.
  • Otsuka et al. describe in CERAMIC BULLETIN 60, pp. 540 ff (1981) that components made of ceramic materials, which mainly contain aluminum oxide or aluminum nitride, can be metallized with refractory metals such as tungsten or molybdenum, and that this metallization is then covered by a further layer of green ceramic and the composite can then be sintered to form the material.
  • Foil technology is particularly suitable for this.
  • an application as a heating element is possible in which large amounts of heat are preferably generated by the action of an electric current at those locations in the metallization pattern which have a high resistance.
  • the present invention was based on the object of specifying a manufacturing method for thin-walled ceramic heating elements, in which the structure is initially pre-formed with ceramic foils and with a high-temperature-resistant metallization, and in which a miniaturized high-performance heating element with permanent long-term stability can then be created by sintering the multilayer structure.
  • the heating conductors, the current leads and the current conductors are used as metallization paste containing 60 to 95% by weight of metal particles and 5 to 40% by weight of inorganic powder, based on the total solids content of the paste, are applied to the ceramic layers in the green state, that then the ceramic Layers with the applied metallization pastes are stacked on top of one another and then sintered.
  • the high-temperature-resistant metallization paste is applied using thick-film technology. Layers with layer thicknesses of up to 100 ⁇ m are achieved using the screen printing process. The ceramic insulating layers with the applied metallization pastes are then preferably first dried. The drying conditions depend on the screen printing oil used, with drying generally over a period of 5 to 30 minutes at temperatures in the range from 40 to 150 ° C.
  • a metallization paste is preferably used which contains at least 70% by weight of metal powder consisting of tungsten or molybdenum or mixtures thereof and at most 35% by weight of a non-glass-phase-forming ceramic powder or powder mixture containing aluminum oxide, aluminum nitride, titanium nitride, titanium carbide or tungsten carbide and in addition Contains 5 to 35 wt .-% of an organic pasting medium.
  • Oils such as mineral oil, vegetable oils or synthetic oils such as screen printing oil or recycling oil are particularly suitable as organic pasting media, but fats, waxes, adjusting agents such as thixotropic agents, rosin or lecithin can also be used to achieve better fill levels, bentonites to improve the strength of the unfired paste and / or organic solvents can be used.
  • contacting recesses also called “vias” in the context of the present invention
  • the metallizing paste is transferred to still unfired ceramic films using a printing process such as screen printing, roller screen printing, offset printing or pad printing, the desired pattern being produced on the film surface becomes.
  • the fully filled vias have a diameter of 0.1 to 0.5 mm, preferably 0.3 mm.
  • the layer thickness of the metallization for the conductor tracks can be between 5 and 100 ⁇ m, preferably between 10 and 15 ⁇ m.
  • the width of the conductor track should be at least 0.25 mm in order to reliably avoid burning through, preferably about 0.5 mm.
  • the paste For the processing of the paste, it is recommended to use the paste to fill the vias with a viscosity of 150 to 500 Pa ⁇ s, for the flat metallization printing, however, it is advantageous to add a small amount of screen printing oil to the paste to a viscosity in the Range from 50 to 90 Pa ⁇ s.
  • the metallization paste is matched to the shrinkage of the film in such a way that during the sintering, there are no voids or star cracks in the via due to the metallization paste shrinking too little compared to the ceramic shrinkage, nor because of the metallization paste shrinkage too high.
  • the shrinkage is matched to the composition and grain size of the powder.
  • the non-glass-phase-forming ceramic powder contained in the metallization paste preferably has an average grain size of ⁇ 10 ⁇ m, particularly preferably ⁇ 2 ⁇ m. The grain sizes are measured with a laser granulometer ®CILAS 850 from ALCATEL.
  • a constant total resistance should be set, which is based on the surface resistance of the burned-in conductor track and the The area of the conductor track in the film layer level is obtained by multiplication. In practice, total resistances of approximately 1 to 1000 ohms are required with such miniature heating elements.
  • the distance between adjacent conductor tracks should be ⁇ 0.4 mm if possible to avoid burning out.
  • the overall arrangement of the conductor tracks should be selected so that the loop has a heating temperature that is as uniform as possible over its extent. Then the outer metallization parts of the contact surfaces can be nickel-plated.
  • a commercially available metallizing bath for example based on hypophosphite, can be used as a reducing agent for this purpose. If necessary, a copper and / or silver-containing solder layer can also be applied.
  • an adhesive aid made of an organic mixture with a binder can be applied over the entire surface of the ceramic films.
  • Such adhesive aids are known from US Pat. No. 5,021,287 and contain organic resins such as polyvinyl butyral or acrylic resins in an organic solvent and possibly also plasticizers such as phthalic acid esters or polyethylene glycols.
  • the separation must now take place, the later shape of the heating element being produced at the same time.
  • the separation can take place, for example, by cutting or punching.
  • the final size of the heating element is generated by the sintering process at temperatures ⁇ 1600 ° C in a reducing, humid atmosphere.
  • the furnace atmosphere preferably has a composition of about 75% Hydrogen and 25% nitrogen, the mixture being saturated with water vapor at a temperature of 55 ° C.
  • the heating element is particularly miniaturized, special care must be taken with the temperature distribution and heat dissipation. In the heating area, care must be taken to ensure that the layer thickness of the conductor tracks is as uniform as possible in order to avoid local overheating in narrow spaces and places with a smaller layer thickness. In addition, poor coordination between the geometry and the thermal conductivity of the aluminum oxide material, the composition of the metallization and the conductor track design lead to burnout due to local overheating.
  • a continuous operating temperature between 50 and, depending on the material composition, 1100 h at temperatures up to 1800 ° C. can be achieved.
  • the upper operating temperature limit is primarily dependent on the chemical composition of the ceramic insulating layers and their content of softening phases. Materials such as aluminum oxide, aluminum nitride, zirconium oxide, silicon dioxide or titanium nitride are preferably used for the ceramic insulating layers.
  • the heating elements can be used as heating elements for oxygen sensors or other measuring probes, in particular for automotive technology, in laboratory measuring devices and infrared measuring transmitters or in heating technology, for example as an ignition element for igniting escaping flammable gases or as immersion heaters.
  • a 0.8 mm thick green film primarily contained aluminum oxide and 4% of a quartz-containing, glass-forming mixture.
  • the foil was cut into cards with blades, the recesses for the vias were mechanically punched.
  • the vias were screen-printed with a metallizing paste which, in addition to 84% by weight of tungsten with an average grain size of 2.5 ⁇ m, also 16% by weight of fine-grained alumina with an average grain size of 1 ⁇ m and an additional 15 as an organic pasting medium %
  • screen printing oil based on the weight of the solids content, contained.
  • a viscosity of 75 Pa ⁇ s for the surface pressure and 175 Pa ⁇ s for the pressure of the vias was set for the processing of the paste.
  • a loop-shaped structure was printed on the unfired and via-filled cards using the paste described using a screen printing machine using thick-film technology.
  • the printed cards were dried in air at 70 ° C.
  • a flat pattern was printed on other unfired cards, also with the described metallizing paste, using a screen printing machine. These metallization surfaces should be on the outside of the finished heating element and enable the electrical connection as contact surfaces. All printed cards were air dried at 70 ° C.
  • FIG. 1 A graphic representation of this arrangement is illustrated in FIG. 1.
  • the ceramic films 1 with the vias 2 can be recognized by reference numerals.
  • the vias 2 are filled with via fillings, not shown.
  • the metallizations 4 are arranged in such a way that interconnect leads 5 and heating loops 6 result, the latter forming the heating area 7.
  • the outer contact surfaces 8 can also be seen.
  • This stack of cards was pressed under a pressure of 90,000 hPa at a temperature of 90 ° C.
  • Several individual parts were cut from the laminate using a cutting tool.
  • the distance between the loop-shaped structure inside the heating element and the lateral outer edge of the heating element was 0.5 mm.
  • the rod-shaped heating elements were sintered under protective gas (moist mixture of nitrogen and hydrogen) at a temperature of 1630 ° C. in a hood furnace.
  • protective gas moist mixture of nitrogen and hydrogen
  • the ceramic material aluminum oxide with a content of 96 wt .-% Al2O3 was generated, on the other hand, the conductor tracks were sintered in a co-firing process.
  • the fully filled vias were 0.3 mm in diameter.
  • the layer thickness of the conductor track metallization was 12 ⁇ m and its width was 0.5 mm.
  • the surface resistance achieved with the conductor tracks according to Example 1 was 5 m ⁇ / cm2.
  • the finished heating element each had a width and height of approximately 2.5 mm and a length of its heating area of approximately 18 mm. The measurements made on the finished heating element are described after the examples and are compared in a table.
  • Example 2 Analogously to Example 1, a heating element with the same dimensions was produced from the same ceramic material consisting of 96% by weight of aluminum oxide and 4% by weight of quartz-containing, glass-forming mixture. The only difference was that the metallizing paste consisted of 100 wt .-% tungsten with an average particle size of 2.5 microns plus the amount of screen printing oil necessary for processing as a paste. Reference is made to the measurement results following the examples.
  • the manufacturing process for a rod-shaped heating element, each with a contact surface at each of the rod ends and consisting of only two layers of ceramic film, is analogous to the manufacturing process of Example 1.
  • An aluminum nitride with 3% by weight aluminum oxide and 4% by weight was used as the ceramic material.
  • Yttrium oxide produced.
  • a card made of an unfired ceramic film was printed with the aid of the metallization paste described below with a wavy or meandering structure. Vias were mechanically punched into a second unfired ceramic card using a metal needle.
  • the metallization paste consisted of 84% by weight of molybdenum and 8% by weight of aluminum oxide and a further 8% by weight of aluminum nitride.
  • the powders had fine grain sizes as described in Example 1.
  • the metallization paste was adjusted to the viscosity described in Example 1 using screen printing oil.
  • the manufacturing process for an essentially annular heating element was identical in all points to the manufacturing processes of Examples 1 and 2.
  • Ceramic material aluminum nitride with 10 wt .-% aluminum oxide and 3 wt .-% yttrium oxide was used.
  • cards made of an unfired ceramic film were printed with the aid of the metallizing paste of Example 2 with an essentially ring-shaped and, if necessary, undulating or meandering structure.
  • the superimposed conductor tracks have different shapes or lengths, their electrical resistances and heating temperatures can be adjusted over the cross section of the conductor tracks.
  • the heatable zone can become almost circular due to a slight displacement of the contact surfaces and the vias on the outer edge of the component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines elektrischen Heizelementes, bei dem metallische Heizleiter (6) zwischen keramischen Isolierschichten (1) eingebettet sind, wobei als Stromzuführungen und als Stromableitungen Kontaktierungsausnehmungen (2) in den keramischen Isolierschichten mit elektrisch leitfähiger Masse gefüllt sind. Die Heizleiter, die Stromzuführungen (5) und die Stromableitungen werden erfindungsgemäß als Metallisierungspaste enthaltend 60 bis 95 Gew.-% Metallpartikel und 5 bis 40 Gew.-% anorganisches Pulver, bezogen auf den gesamten Feststoffgehalt der Paste, auf die keramischen Schichten im Grünzustand aufgetragen. Dann werden die keramischen Schichten mit den aufgetragenen Metallisierungspasten übereinandergestapelt und dann gesintert. <IMAGE>

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines elektrischen Heizelementes, bei dem metallische Heizleiter zwischen keramischen Isolierschichten eingebettet sind, wobei als Stromzuführungen und als Stromableitungen Kontaktierungsausnehmungen in den keramischen Isolierschichten mit elektrisch leitfähiger Masse gefüllt sind.
  • Otsuka et al. beschreiben in CERAMIC BULLETIN 60, S. 540 ff (1981), daß Bauteile aus keramischen Werkstoffen, die hauptsächlich Aluminiumoxid oder Aluminiumnitrid enthalten, mit hochschmelzenden Metallen wie Wolfram oder Molybdän metallisiert werden können, daß diese Metallisierung dann durch eine weitere Schicht aus grüner Keramik abgedeckt und der Verbund danach zur Werkstoffbildung gesintert werden kann. Besonders eignet sich hierzu die Folientechnik.
  • So hergestellte Bauteile können vor allem im Bereich der Elektronik und Elektrotechnik Anwendung finden. Dickwandige und große Heizelemente sind in verschiedenen Ausführungsformen bekannt. Bei der zunehmenden Miniaturisierung in der Elektronik und Elektrotechnik treten jedoch herstellungstechnische und anwendungstechnische Probleme auf.
  • Bei hohen Heizleistungen müssen die verwendeten Werkstoffe hochtemperaturbeständig sein, ohne daß die Heizelemente durch Überlastung zerstört werden (Durchbrennen).
  • So ist eine Anwendung als Heizelement möglich, bei der durch Einwirkung eines elektrischen Stromes große Wärmemengen bevorzugt an solchen Stellen im Metallisierungsmuster erzeugt werden, die einen hohen Widerstand aufweisen.
  • Dabei können im Hochtemperatur-Heizbereich so hohe Temperaturen erzeugt werden, daß es bei Verwendung von glasphasenhaltigen Keramikwerkstoffen (Glasgehalt > 5 Gew.-%) zu einem Fließen der Glasphase in der Keramik kommt. Wenn dabei der Abstand einer metallischen Heiz-Leiterbahn zur Außenfläche der Keramik im Multilayer sehr klein ist, insbesondere weniger als 0,4 mm, kann Luft durch die an Glasphase verarmten Zonen, das sind die Zonen mit besonders hoher Temperatur, bis an den aus Wolfram oder Molybdän bestehenden metallischen Leiter vordringen und diesen Stromleiter oxidativ zerstören. Aus diesem Grund ist es vorteilhaft, eine Keramik mit geringem Anteil an Glasphase zu verwenden.
  • Ebenfalls von Otsuka et al. ist bekannt, daß Metallisierungspasten ohne Anteile an Glas oder Glasbildnern nur wenig Haftfestigkeit auf solchen glasphasearmen Keramikwerkstoffen besitzen. Durch Zumengung von Glas kann bekanntermaßen die Haftfestigkeit stark erhöht werden, jedoch besitzen solche Pasten einen hohen elektrischen Widerstand, was besonders bei sehr feinen Strukturen unvorteilhaft ist.
  • Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein Herstellverfahren für dünnwandige keramische Heizelemente anzugeben, bei dem der Aufbau mit keramischen Folien und mit einer hochtemperaturbeständigen Metallisierung zunächst vorgebildet wird und bei dem dann durch Sintern des Mehrschichtenaufbaus ein miniaturisiertes Hochleistungsheizelement mit dauerhafter Langzeitbeständigkeit geschaffen werden kann.
  • Gelöst wird diese Aufgabe durch ein Verfahren der eingangs genannten Gattung, dessen Kennzeichenmerkmal darin zu sehen ist, daß die Heizleiter, die Stromzuführungen und die Stromableitungen als Metallisierungspaste enthaltend 60 bis 95 Gew.-% Metallpartikel und 5 bis 40 Gew.-% anorganisches Pulver, bezogen auf den gesamten Feststoffgehalt der Paste, auf die keramischen Schichten im Grünzustand aufgetragen werden, daß dann die keramischen Schichten mit den aufgetragenen Metallisierungspasten übereinandergestapelt werden und daß dann gesintert wird.
  • In bevorzugter Ausgestaltung des erfindungsgemäßen Verfahrens wird die hochtemperaturbeständige Metallisierungspaste in Dickschichttechnik aufgetragen. Dabei werden nach dem Siebdruckverfahren Schichten mit Schichtdicken von bis zu 100 µm erreicht. Die keramischen Isolierschichten mit den aufgetragenen Metallisierungspasten werden vorzugsweise dann zunächst getrocknet. Die Trocknungsbedingungen richten sich nach dem verwendeten Siebdrucköl, wobei allgemein über einen Zeitraum von 5 bis 30 min bei Temperaturen im Bereich von 40 bis 150 °C getrocknet wird.
  • Vorzugsweise wird erfindungsgemäß eine Metallisierungspaste verwendet, die mindestens 70 Gew.-% Metallpulver, bestehend aus Wolfram oder Molybdän oder Mischungen daraus, und höchstens 35 Gew.-% eines nicht glasphasenbildenden Keramikpulvers oder Pulvergemisches enthaltend Aluminiumoxid, Aluminiumnitrid, Titannitrid, Titancarbid oder Wolframcarbid und zusätzlich 5 bis 35 Gew.-% eines organischen Anpastungsmediums enthält. Als organische Anpastungsmedien sind insbesondere Öle wie Mineralöl, pflanzliche Öle oder synthetische Öle wie Siebdrucköl oder Recyclingöl geeignet, es können aber auch Fette, Wachse, Stellmittel wie Thixotropierungsmittel, Kolophonium oder Lecithin zu Erzielung besserer Füllgrade, Bentonite zur Verbesserung der Festigkeit der ungebrannten Paste und/oder organische Lösemittel eingesetzt werden.
  • Zur Herstellung des Heizelements werden gemäß der Erfindung in ungebrannte keramische Folien zur Ermöglichung eines Stromtransportes senkrecht zur Folienoberfläche Kontaktierungsausnehmungen, im Rahmen der vorliegenden Erfindung auch »Vias« genannt, gestanzt oder gebohrt. Die Metallisierungspaste wird mit Hilfe eines Druckverfahrens wie Siebdruck, Rollensiebdruck, Offset-Druck oder Tampondruck auf noch ungebrannte keramische Folien übertragen, wobei auf der Folienoberfläche das gewünschte Muster erzeugt wird. Die vollständig gefüllten Vias weisen einen Durchmesser von 0,1 bis 0,5 mm auf, vorzugsweise von 0,3 mm. Die Schichtdicke der Metallisierung für die Leiterbahnen kann zwischen 5 und 100 µm betragen, vorzugsweise zwischen 10 und 15 µm. Die Breite der Leiterbahn sollte mindestens 0,25 mm betragen, um ein Durchbrennen sicher zu vermeiden, vorzugsweise etwa 0,5 mm.
  • Für die Verarbeitung der Paste empfiehlt es sich, die Paste zum Füllen der Vias mit einer Viskosität von 150 bis 500 Pa·s anzuwenden, für den flächigen Metallisierungsdruck hingegen ist er vorteilhaft, die Paste durch entsprechende Addition weiterer geringer Mengen an Siebdrucköl auf eine Viskosität im Bereich von 50 bis 90 Pa·s einzustellen.
  • Es ist vorteilhaft, aber nicht erforderlich, die gleiche Metallisierungspaste zum Füllen der Vias und auch für die Leiterbahnen und Kontaktflächen zu verwenden, da dann das Auftreten von Fehlern an den Grenzflächen zwischen Vias und Metallisierungsebenen weitgehend vermieden wird.
  • Die Metallisierungspaste ist so auf die Schwindung der Folie abgestimmt, daß während des Sinterns weder aufgrund einer zu geringen Schwindung der Metallisierung im Vergleich zur Schwindung der Keramik Sternrisse in der Keramik, noch aufgrund einer zu hohen Schwindung der Metallisierungspaste Hohlräume oder Sternrisse im Via entstehen. Die Abstimmung auf die Schwindung erfolgt über die Zusammensetzung und die Korngrößen der Pulver. Das in der Metallisierungspaste enthaltene nicht glasphasenbildende Keramikpulver besitzt vorzugsweise eine mittlere Korngröße von ≦ 10 µm, besonders bevorzugt ≦ 2 µm. Die Korngrößen werden mit einem Lasergranulometer ®CILAS 850 der Firma ALCATEL gemessen.
  • Außerdem sollte ein möglichst konstanter Gesamtwiderstand eingestellt werden, der sich aus dem Flächenwiderstand der eingebrannten Leiterbahn und der Fläche der Leiterbahn in der Folienschichtebene durch Multiplikation ergibt. In der Praxis sind Gesamtwiderstände von etwa 1 bis 1000 Ohm bei derartigen Miniaturheizelementen erforderlich. Der Abstand zwischen benachbarten Leiterbahnen sollte möglichst ≧ 0,4 mm sein, um ein Durchbrennen zu vermeiden. Die Gesamtanordnung der Leiterbahnen soll so gewählt werden, daß die Schleife eine möglichst gleichmäßige Heiztemperatur über ihre Erstreckung aufweist. Danach können die außenliegenden Metallisierungspartien der Kontaktflächen stromlos vernickelt werden. Hierzu kann ein handelsübliches Metallisierungsbad zum Beispiel auf der Basis von Hypophosphit als Reduktionsmittel verwendet werden. Bei Bedarf kann zusätzlich eine kupfer- und/oder silberhaltige Lotschicht aufgetragen werden.
  • Mehrere mit Metallisierungspaste überzogene Folien werden dann übereinandergestapelt und unter Anwendung von Druck (meist ≧ 5·10⁴ hPa) ggf. in Kombination mit Wärme (RT bis ca. 150 °C) miteinander verpresst. Zur Erleichterung dieses Vorgangs kann auf die keramischen Folien eine Klebehilfe aus einem organischen Gemisch mit einem Binder vollflächig aufgebracht werden. Derartige Klebehilfen sind aus der US-PS 5,021,287 bekannt und enthalten organische Harze wie Polyvinylbutyral oder Acrylharze in einem organischen Lösemittel sowie eventuell noch Weichmacher wie Phthalsäureester oder Polyethylenglykole.
  • Nachdem ein Mehrschichtlaminat hergestellt wurde, das zumeist mehrere Heizelemente in der Ebene seitlich zueinander versetzt gleichzeitig enthält, muß nun die Vereinzelung erfolgen, wobei gleichzeitig die spätere Form des Heizelementes erzeugt wird. Die Vereinzelung kann beispielsweise durch Schneiden oder Stanzen erfolgen.
  • Die endgültige Größe des Heizelementes wird durch den Sintervorgang bei Temperaturen ≧ 1600 °C in reduzierender, feuchter Atmosphäre erzeugt. Die Ofenatmosphäre hat vorzugsweise eine Zusammensetzung von etwa 75 % Wasserstoff und 25 % Stickstoff, wobei das Gemisch bei einer Temperatur von 55 °C mit Wasserdampf gesättigt wird.
  • Bei besonderer Miniaturisierung des Heizelementes ist auf die Temperaturverteilung und Wärmeableitung besondere Sorgfalt zu legen. Im Heizbereich muß auf möglichst gleichmäßige Schichtdicke der Leiterbahnen geachtet werden, um örtliche Überhitzungen an Engstellen und Stellen mit geringerer Schichtdicke zu vermeiden. Darüber hinaus führt bereits eine schlechte Abstimmung zwischen der Geometrie und der Wärmeleitfähigkeit des Aluminiumoxid-Werkstoffs, der Zusammensetzung der Metallisierung und der Leiterbahnenausführung zum Durchbrennen aufgrund örtlicher Überhitzung.
  • Mit Heizelementen, die nach dem erfindungsgemäßen Verfahren hergestellt sind, ist eine Dauereinsatztemperatur zwischen 50 und, je nach Werkstoffzusammensetzung, 1100 h bei Temperaturen bis 1800 °C realisierbar. Die obere Einsatztemperaturgrenze ist vor allem von der chemischen Zusammensetzung der keramischen Isolierschichten und ihrem Gehalt an erweichenden Phasen abhängig. Vorzugsweise werden für die keramischen Isolierschichten Materialien wie Aluminiumoxid, Aluminiumnitrid, Zirkonoxid, Siliziumdioxid oder Titannitrid eingesetzt.
  • Die Heizelemente können Verwendung finden als Heizelemente für Sauerstoffsensoren oder andere Meßsonden, insbesondere für die Automobiltechnik, in Labormeßgeräten und Infrarotmeßsendern oder in der Heiztechnik, zum Beispiel als Zündelement zum Zünden von ausströmenden brennbaren Gasen oder als Tauchsieder.
  • Die Erfindung wird nachfolgend durch Ausführungsbeispiele für den Fachmann noch ausführlicher dargestellt, ohne daraus aber Einschränkungen auf die konketen Ausführungsformen ableiten zu wollen.
  • Beispiel 1
  • Eine 0,8 mm starke grüne Folie enthielt neben Binder, Weichmacher und Dispergiermittel in erster Linie Aluminiumoxid und 4 % eines quarzhaltigen, glasbildenden Versatzes. Die Folie wurde mit Klingen zu Karten geschnitten, die Ausnehmungen für die Durchkontaktierungen (Vias) wurden mechanisch gestanzt. Die Vias wurden im Siebdruck mit einer Metallisierungspaste gefüllt, welche neben 84 Gew.-% Wolfram mit einer mittleren Korngröße von 2,5 µm noch 16 Gew.-% einer feinkörnigen Tonerde mit einer mittleren Korngröße von 1 µm und zusätzlich als organisches Anpastungsmedium noch 15 Gew.-% Siebdrucköl, bezogen auf das Gewicht des Feststoffanteils, enthielt. Für die Verarbeitung der Paste wurde eine Viskosität von 75 Pa·s für den Flächendruck und von 175 Pa·s für den Druck der Vias eingestellt.
  • Nach dem Trocknen der gefüllten Vias an Luft bei 70 °C wurde auf die ungebrannten und viagefüllten Karten eine schleifenförmige Struktur unter Verwendung der beschriebenen Paste mit Hilfe einer Siebdruckmaschine in Dickschichttechnik aufgedruckt. Die bedruckten Karten wurden an Luft bei 70 °C getrocknet. Auf andere ungebrannte Karten wurde, ebenfalls mit der beschriebenen Metallisierungspaste, ein flächiges Muster mit Hilfe einer Siebdruckmaschine aufgedruckt. Diese Metallisierungsflächen sollen am fertigen Heizelement außen liegen und als Kontaktflächen den elektrischen Anschluß ermöglichen. Alle bedruckten Karten wurden an Luft bei 70 °C getrocknet.
  • Mehrere bedruckte Karten wurden dann so aufeinandergestapelt, daß jeweils zwei Karten mit Schleifenmuster mit ihrer nicht metallisierten Rückseite aufeinanderliegen und je eine weitere Karte mit dem Anschlußmuster darauf zu liegen kommt, wobei die Anschlußmuster jeweils nach außen weisen. Eine zeichnerische Darstellung dieser Anordnung ist in der Figur 1 veranschaulicht. Mit Bezugszeichen sind die Keramikfolien 1 mit den Vias 2 zu erkennen. Die Vias 2 sind mit nicht dargestellten Viafüllungen gefüllt. Die Metallisierungen 4 sind so angeordnet, daß sich Leiterbahnzuleitungen 5 und Heizschleifen 6 ergeben, welchletztere den Heizbereich 7 bilden. Schließlich sind auch noch die außen liegenden Kontaktflächen 8 zu erkennen.
  • Dieser Kartenstapel wurde unter einem Druck von 90 000 hPa bei einer Temperatur von 90 °C verpreßt. Aus dem Laminat wurden mehrere Einzelteile unter Verwendung eines Schneidewerkzeuges geschnitten. Dabei betrug der Abstand der schleifenförmigen Struktur im Inneren des Heizelementes von der seitlichen Außenkante des Heizelementes 0,5 mm. Die stabförmigen Heizelemente wurden unter Schutzgas (feuchte Mischung aus Stickstoff und Wasserstoff) bei einer Temperatur von 1630 °C in einem Haubenofen gesintert. Hierbei wurde einerseits der keramische Werkstoff Aluminiumoxid mit einem Gehalt von 96 Gew.-% Al₂O₃ erzeugt, andererseits wurden die Leiterbahnen in einem Co-firing Prozeß mitgesintert. Die vollständig gefüllten Vias wiesen einen Durchmesser von 0,3 mm auf. Die Schichtdicke der Leiterbahn-Metallisierung betrug 12 µm und ihre Breite 0,5 mm. Der mit den Leiterbahnen nach Beispiel 1 erzielte Flächenwiderstand lag bei 5 mΩ/cm². Der fertige Heizstab wies eine Breite und Höhe von jeweils etwa 2,5 mm auf und eine Länge seines Heizbereiches von etwa 18 mm. Die an dem fertigen Heizelement vorgenommenen Messungen sind im Anschluß an die Beispiele beschrieben und tabellarisch gegenübergestellt.
  • Vergleichsbeispiel 1
  • Analog zu Beispiel 1 wurde aus dem gleichen keramischen Material bestehend aus 96 Gew.-% Aluminiumoxid und 4 Gew.-% quarzhaltigem, glasbildendem Versatz ein Heizelement mit den gleichen Dimensionen hergestellt. Der einzige Unterschied bestand darin, daß die Metallisierungspaste aus 100 Gew.-% Wolfram mit einer mittleren Teilchengröße von 2,5 µm plus der für die Verarbeitung als Paste notwendigen Menge an Siebdrucköl bestand. Es wird auf die Meßergebnisse im Anschluß an die Beispiele verwiesen.
  • Beispiel 2
  • Das Herstellverfahren für ein stabförmiges Heizelement mit je einer Kontaktfläche an jedem der Stabenden und bestehend aus nur zwei Lagen keramischer Folie ist analog zu dem Herstellverfahren des Beispieles 1. Als keramischer Werkstoff wurde ein Aluminiumnitrid mit 3 Gew.-% Aluminiumoxid und 4 Gew.-% Yttriumoxid hergestellt. Dazu wurde eine Karte aus einer ungebrannten keramischen Folie mit Hilfe der nachfolgend beschriebenen Metallisierungspaste mit einer wellen- oder mäanderförmigen Struktur bedruckt. In eine zweite ungebrannte keramische Karte wurden Vias mechanisch mit einer Metallnadel gestanzt.
  • Die Metallisierungspaste bestand aus 84 Gew.-% Molybdän sowie 8 Gew.-% Aluminiumoxid und weiteren 8 Gew.-% Aluminiumnitrid. Die Pulver hatten feine Korngrößen wie in Beispiel 1 beschrieben. Die Metallisierungspaste wurde mit Siebdrucköl auf die in Beispiel 1 beschriebene Viskosität eingestellt.
  • Die Vias wurden mit der beschriebenen Paste gefüllt und getrocknet. Dann wurde auf eine Seite dieser Karte ein flächen- oder mäanderförmiger Druck mit Hilfe der beschriebenen Paste aufgebracht und wiederum getrocknet. Beide Karten wurden in einen wasserdichten Beutel eingeschweißt und mit Hilfe einer isostatisch arbeitenden Presse bei einer Temperatur von 70 °C unter hohem Druck von über 100 000 hPa so laminiert, daß die wellen- oder mäanderförmige Struktur zwischen die beiden Karten zu liegen kommt, während die Kontaktfläche nach außen weist. Eine solche Anordnung ist in Figur 2 veranschaulicht. Das weitere Herstellverfahren wurde wie im Beispiel 1 angegeben durchgeführt.
  • Beispiel 3
  • Das Herstellverfahren für ein im wesentlichen ringförmiges Heizelement war in allen Punkten identisch mit den Herstellungsverfahren der Beispiele 1 und 2. Als keramischer Werkstoff wurde Aluminiumnitrid mit 10 Gew.-% Aluminiumoxid und 3 Gew.-% Yttriumoxid eingesetzt. Dazu wurden Karten aus einer ungebrannten keramischen Folie mit Hilfe der Metallisierungspaste des Beispiels 2 mit einer im wesentlichen ringförmigen und bei Bedarf wellen- oder mäanderförmigen Struktur bedruckt.
  • Falls die übereinanderliegenden Leiterbahnen unterschiedliche Formen bzw. Längen aufweisen, lassen sich ihre elektrischen Widerstände und Heiztemperaturen über den Querschnitt der Leiterbahnen anpassen. Die heizbare Zone kann durch eine geringe Verlagerung der Kontaktflächen und der Vias an den äußeren Rand des Bauteils nahezu kreisförmig werden.
  • Um die Belastbarkeit der hergestellten Heizelemente zu testen, wurden zwei verschiedene Meßreihen durchgeführt. Bei der Meßreihe 1 wurde an die Kontakte der Heizelemente eine elektrische Spannung von 17 V angelegt während das Heizelement in einem Ofen auf eine Temperatur von konstant 1000 °C aufgeheizt wurde. Die Stromstärke des Stromes, der dabei durch das Heizelement fließt, regelt sich von selbst ein und wird an einem Ampèremeter angezeigt. Bei der Messung wird aber nur die Zeit gemessen, die vergeht bis auf dem Ampèremeter die Stromstärke 0 A angezeigt wird, weil das Element dann defekt ist.
  • Bei der zweiten Messung wird ein sogenannter Überlastungstest durchgeführt. Dabei wird an die Heizelement eine elektrische Spannung von 30 V angelegt, wobei sich in diesem Fall Stromstärke und Temperatur frei einstellen. Gemessen wird auch in diesem Fall die Zeit, die vergeht bis das Heizelement durchgebrannt ist und infolgedessen 0 A angezeigt werden. Die Ergebnisse sind in der nachfolgenden Tabelle zusammengestellt: Tabelle
    Beispiel Nr. 1 2 3 V 1*)
    17 V/1000 °C 199 h+) 212 h 148 h 25 h
    30 V 34 m#) 69 m 28 m 12 m
    *) Vergleichsbeispiel 1
    +) h = Stunden
    #) m = Minuten

Claims (10)

  1. Verfahren zur Herstellung eines elektrischen Heizelementes, bei dem metallische Heizleiter zwischen keramischen Isolierschichten eingebettet sind, wobei als Stromzuführungen und als Stromableitungen Kontaktierungsausnehmungen in den keramischen Isolierschichten mit elektrisch leitfähiger Masse gefüllt sind, dadurch gekennzeichnet, daß die Heizleiter, die Stromzuführungen und die Stromableitungen als Metallisierungspaste enthaltend 60 bis 95 Gew.-% Metallpartikel und 5 bis 40 Gew.-% anorganisches Pulver, bezogen auf den gesamten Feststoffgehalt der Paste, auf die keramischen Schichten im Grünzustand aufgetragen werden und daß dann die keramischen Schichten mit den aufgetragenen Metallisierungspasten übereinandergestapelt und dann gesintert werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die hochtemperaturbeständige Metallisierungspaste in Dickschichttechnik aufgetragen wird und daß die keramischen Isolierschichten mit den aufgetragenen Metallisierungspasten zunächst bei Temperaturen von 40 bis 150 °C getrocknet werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine Metallisierungspaste verwendet wird, die mindestens 70 Gew.-% Metallpulver, bestehend aus Wolfram oder Molybdän oder Mischungen daraus, und höchstens 30 Gew.-% eines nicht glasphasenbildenden Keramikpulvers oder Pulvergemisches enthaltend Aluminiumoxid, Aluminiumnitrid, Titannitrid, Titancarbid oder Wolframcarbid und zusätzlich 5 bis 35 Gew.-% eines organischen Anpastungsmediums enthält, bezogen auf den Gesamtfeststoffgehalt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Metallisierungspaste mit Hilfe eines Druckverfahrens wie Siebdruck, Rollensiebdruck, Offset-Druck oder Tampondruck auf ungebrannte keramische Folien übertragen wird, wobei auf der Folienoberfläche das gewünschte Muster erzeugt wird, bei dem die vollständig gefüllten Kontaktierungsausnehmungen einen Durchmesser von 0,1 bis 0,5 mm aufweisen, vorzugsweise von 0,3 mm, bei dem die Schichtdicke der Metallisierung für die Leiterbahnen im Bereich von 5 bis 100 µm liegt, vorzugsweise zwischen 10 und 25 µm, und bei dem die Breite der Leiterbahn mindestens 0,25 mm beträgt, vorzugsweise wenigstens 0,5 mm.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Viskosität der Metallisierungspaste, die zum Füllen der Kontaktierungsausnehmungen verwendet wird, auf einen Wert im Bereich von von 150 bis 500 Pa·s eingestellt wird, und daß die Viskosität der Metallisierungspaste, die für den flächigen Metallisierungsdruck verwendet wird, auf einen Wert im Bereich von 50 bis 90 Pa·s eingestellt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das in der Metallisierungspaste enthaltene, nicht glasphasenbildende Keramikpulver eine mittlere Korngröße von ≦ 10 µm, bevorzugt ≦ 3 µm, besitzt.
  7. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Sintervorgang bei Temperaturen ≧ 1600 °C in reduzierender, feuchter Atmosphäre durchgeführt wird.
  8. Elektrisches Heizelement hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet daß es einen konstanten Gesamtwiderstand besitzt, der sich aus dem Flächenwiderstand der eingebrannten Leiterbahn und der Fläche der Leiterbahn in der Folienschichtebene durch Multiplikation ergibt und der im Bereich von 1 bis 1000 Ω liegt.
  9. Elektrisches Heizelement nach Anspruch 8, dadurch gekennzeichnet, daß seine außenliegenden Metallisierungspartien der Kontaktflächen stromlos vernickelt sind und daß gegebenenfalls zusätzlich eine kupfer- und/oder silberhaltige Lotschicht aufgetragen ist.
  10. Verwendung eines Heizelementes nach Anspruch 8 oder 9 für Sauerstoffsensoren oder andere Meßsonden, insbesondere in der Automobiltechnik im Motorenbau oder in Labormeßgeräten und Infrarotmeßsendern oder in der Heiztechnik als Zündelement zum Zünden von ausströmenden brennbaren Gasen oder als Tauchsieder.
EP94117182A 1993-11-11 1994-10-31 Verfahren zum Herstellen von keramischen Heizelementen Expired - Lifetime EP0653898B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4338539A DE4338539A1 (de) 1993-11-11 1993-11-11 Verfahren zum Herstellen von keramischen Heizelementen
DE4338539 1993-11-11

Publications (3)

Publication Number Publication Date
EP0653898A2 true EP0653898A2 (de) 1995-05-17
EP0653898A3 EP0653898A3 (de) 1996-01-17
EP0653898B1 EP0653898B1 (de) 2003-05-14

Family

ID=6502368

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94117182A Expired - Lifetime EP0653898B1 (de) 1993-11-11 1994-10-31 Verfahren zum Herstellen von keramischen Heizelementen

Country Status (4)

Country Link
US (1) US5560851A (de)
EP (1) EP0653898B1 (de)
JP (1) JP3664757B2 (de)
DE (2) DE4338539A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007130398A2 (en) * 2006-05-03 2007-11-15 Watlow Electric Manufacturing Company Power terminals for ceramic heater and method of making the same
CN104582024A (zh) * 2014-12-19 2015-04-29 苏州路路顺机电设备有限公司 一种分段冷却用加热管及其使用方法
EP2975951B1 (de) * 2013-03-22 2018-12-05 British American Tobacco (Investments) Ltd Erwärmung von rauchbarem material
US11318264B2 (en) 2017-01-13 2022-05-03 Nicoventures Trading Limited Aerosol generating device and article
US11589617B2 (en) 2017-01-05 2023-02-28 Nicoventures Trading Limited Aerosol generating device and article
US11623053B2 (en) 2017-12-06 2023-04-11 Nicoventures Trading Limited Component for an aerosol-generating apparatus

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726621A (en) * 1994-09-12 1998-03-10 Cooper Industries, Inc. Ceramic chip fuses with multiple current carrying elements and a method for making the same
US6133557A (en) * 1995-01-31 2000-10-17 Kyocera Corporation Wafer holding member
JPH08264269A (ja) * 1995-03-28 1996-10-11 Rohm Co Ltd シート材に対する加熱体
US5657532A (en) * 1996-01-16 1997-08-19 Ferro Corporation Method of making insulated electrical heating element using LTCC tape
JP3826961B2 (ja) * 1996-03-25 2006-09-27 ローム株式会社 加熱体およびその製造方法
US5889462A (en) * 1996-04-08 1999-03-30 Bourns, Inc. Multilayer thick film surge resistor network
KR20000015858A (ko) * 1997-03-21 2000-03-15 크리스티안 반겔 광물성 절연 도선
WO2000004085A1 (en) 1998-07-15 2000-01-27 Thermon Manufacturing Company Thermally-conductive, electrically non-conductive heat transfer material and articles made thereof
JP2000268944A (ja) * 1998-08-03 2000-09-29 Denso Corp セラミックヒータおよびその製造方法,並びにガスセンサ
EP1187511A1 (de) * 1999-05-07 2002-03-13 Ibiden Co., Ltd. Heizplatte und das verfahren von herstellung.
US7011874B2 (en) * 2000-02-08 2006-03-14 Ibiden Co., Ltd. Ceramic substrate for semiconductor production and inspection devices
JP2001244320A (ja) * 2000-02-25 2001-09-07 Ibiden Co Ltd セラミック基板およびその製造方法
GB2363307A (en) * 2000-06-05 2001-12-12 Otter Controls Ltd Thick film heating element stack
EP1274110A1 (de) * 2001-07-02 2003-01-08 Abb Research Ltd. Schmelzsicherung
JP2005040408A (ja) * 2003-07-24 2005-02-17 Olympus Corp 発熱素子
AT7326U1 (de) * 2003-12-04 2005-01-25 Econ Exp & Consulting Group Gm Verfahren zur herstellung eines flächenheizelementes und danach hergestelltes flächenheizelement
KR20080108372A (ko) * 2003-12-24 2008-12-12 쿄세라 코포레이션 세라믹 히터 및 그 제조 방법
US7180302B2 (en) * 2004-07-16 2007-02-20 Simula, Inc Method and system for determining cracks and broken components in armor
JP4518885B2 (ja) * 2004-09-09 2010-08-04 京セラ株式会社 セラミック電子部品及びその製造方法
NL1027571C2 (nl) * 2004-11-23 2006-05-24 Ferro Techniek Holding Bv Emailsamenstelling voor toepassing als dielektricum, en gebruik van een dergelijke emailsamenstelling.
WO2006083161A1 (en) * 2004-11-23 2006-08-10 Ferro Techniek Holding B.V. Enamel composition, assembly and use thereof on a substrate surface
FR2879819B1 (fr) * 2004-12-21 2007-02-23 Ulis Soc Par Actions Simplifie Composant de detection de rayonnements electromagnetiques notamment infrarouges
US7638737B2 (en) * 2005-06-16 2009-12-29 Ngk Spark Plug Co., Ltd. Ceramic-metal assembly and ceramic heater
US7800020B2 (en) * 2007-01-19 2010-09-21 Ceva Carlos Jose Heating plate for hair straightening iron and its manufacturing process
US20080186045A1 (en) * 2007-02-01 2008-08-07 Matsushita Electric Industrial Co., Ltd. Test mark structure, substrate sheet laminate, multilayered circuit substrate, method for inspecting lamination matching precision of multilayered circuit substrate, and method for designing substrate sheet laminate
KR101120599B1 (ko) * 2008-08-20 2012-03-09 주식회사 코미코 세라믹 히터, 이의 제조 방법 및 이를 포함하는 박막 증착 장치
KR101961290B1 (ko) * 2013-12-31 2019-03-25 한온시스템 주식회사 Ptc 히터
GB201423318D0 (en) 2014-12-29 2015-02-11 British American Tobacco Co Cartridge for use with apparatus for heating smokable material
DE102016120536A1 (de) 2016-10-27 2018-05-03 Heraeus Noblelight Gmbh Infrarotstrahler
US11535086B2 (en) * 2016-12-20 2022-12-27 Lg Innotek Co., Ltd. Heating rod, heating module including same, and heating device including same
US11452179B2 (en) * 2017-01-06 2022-09-20 Lg Innotek Co., Ltd. Heating rod and heater having same
DE102017112611A1 (de) 2017-06-08 2018-12-13 Heraeus Noblelight Gmbh Infrarotstrahler und Verfahren für dessen Herstellung
CN107548174B (zh) * 2017-09-29 2024-09-24 珠海惠友电子有限公司 一种汽车调温器用陶瓷发热元件及其制备方法
CA3095044A1 (en) 2018-03-27 2019-10-03 Scp Holdings, An Assumed Business Name Of Nitride Igniters, Llc. Hot surface igniters for cooktops
KR20210016521A (ko) * 2018-04-17 2021-02-16 와틀로 일렉트릭 매뉴팩츄어링 컴파니 모든 알루미늄 히터
WO2020067129A1 (ja) * 2018-09-28 2020-04-02 京セラ株式会社 ウェハ用部材、ウェハ用システム及びウェハ用部材の製造方法
DE102020200639A1 (de) * 2020-01-21 2021-07-22 Eberspächer Catem Gmbh & Co. Kg Elektrische Heizvorrichtung
CN113248237A (zh) * 2021-06-15 2021-08-13 江苏天宝陶瓷股份有限公司 一种远红外陶瓷加热器的制造方法
CN114953100B (zh) * 2022-05-09 2024-09-27 深圳市吉迩技术有限公司 一种多材料陶瓷雾化芯制备方法及注塑机
GB2618803A (en) * 2022-05-17 2023-11-22 Dyson Technology Ltd Thick film heating elements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2548019A1 (de) * 1974-10-31 1976-05-06 Kyoto Ceramic Keramisches heizelement
DE3902484A1 (de) * 1988-01-28 1989-08-10 Ngk Insulators Ltd Keramischer heizkoerper mit bereichen, die einen waermeerzeugenden bereich und leitungsbereiche verbinden
DE3907312A1 (de) * 1988-03-09 1989-09-21 Ngk Insulators Ltd Keramische widerstandsheizeinrichtung mit untereinander verbundenen waermeentwickelnden leitern und eine derartige heizeinrichtung verwendendes elektrochemisches element oder analysiergeraet
FR2642116A1 (fr) * 1989-01-20 1990-07-27 Bosch Gmbh Robert Element chauffant a haute temperature notamment pour le demarrage de moteur diesel et procede pour sa fabrication

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126989A (en) * 1979-03-24 1980-10-01 Kyoto Ceramic Ceramic heater
JPS58209084A (ja) * 1982-05-28 1983-12-05 株式会社日立製作所 直熱形ヒ−タ材
US4510000A (en) * 1983-11-30 1985-04-09 International Business Machines Corporation Method for palladium activating molybdenum metallized features on a ceramic substrate
JPS61109289A (ja) * 1984-11-01 1986-05-27 日本碍子株式会社 セラミツクヒ−タおよびその製造方法
JPS6244971A (ja) * 1985-08-23 1987-02-26 日本特殊陶業株式会社 セラミツク基板ヒ−タ−
GB8526397D0 (en) * 1985-10-25 1985-11-27 Oxley Dev Co Ltd Metallising paste
US4804823A (en) * 1986-07-31 1989-02-14 Kyocera Corporation Ceramic heater
DE3630066C1 (de) * 1986-09-04 1988-02-04 Heraeus Gmbh W C Verfahren zur Herstellung von gesinterten metallisierten Aluminiumnitrid-Keramikkoerpern
JPH01169989A (ja) * 1987-12-24 1989-07-05 Ngk Insulators Ltd セラミックグリーンシート
JP2781420B2 (ja) * 1989-08-07 1998-07-30 株式会社日立製作所 導体ペーストの製造方法
US5264681A (en) * 1991-02-14 1993-11-23 Ngk Spark Plug Co., Ltd. Ceramic heater
JP2804393B2 (ja) * 1991-07-31 1998-09-24 京セラ株式会社 セラミックヒータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2548019A1 (de) * 1974-10-31 1976-05-06 Kyoto Ceramic Keramisches heizelement
DE3902484A1 (de) * 1988-01-28 1989-08-10 Ngk Insulators Ltd Keramischer heizkoerper mit bereichen, die einen waermeerzeugenden bereich und leitungsbereiche verbinden
DE3907312A1 (de) * 1988-03-09 1989-09-21 Ngk Insulators Ltd Keramische widerstandsheizeinrichtung mit untereinander verbundenen waermeentwickelnden leitern und eine derartige heizeinrichtung verwendendes elektrochemisches element oder analysiergeraet
FR2642116A1 (fr) * 1989-01-20 1990-07-27 Bosch Gmbh Robert Element chauffant a haute temperature notamment pour le demarrage de moteur diesel et procede pour sa fabrication

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007130398A2 (en) * 2006-05-03 2007-11-15 Watlow Electric Manufacturing Company Power terminals for ceramic heater and method of making the same
WO2007130398A3 (en) * 2006-05-03 2008-03-20 Watlow Electric Mfg Power terminals for ceramic heater and method of making the same
US7696455B2 (en) 2006-05-03 2010-04-13 Watlow Electric Manufacturing Company Power terminals for ceramic heater and method of making the same
US8242416B2 (en) 2006-05-03 2012-08-14 Watlow Electric Manufacturing Company Methods of making ceramic heaters with power terminals
EP2975951B1 (de) * 2013-03-22 2018-12-05 British American Tobacco (Investments) Ltd Erwärmung von rauchbarem material
EP3494815A1 (de) * 2013-03-22 2019-06-12 British American Tobacco (Investments) Limited Erwärmung von rauchbarem material
CN104582024A (zh) * 2014-12-19 2015-04-29 苏州路路顺机电设备有限公司 一种分段冷却用加热管及其使用方法
US11589617B2 (en) 2017-01-05 2023-02-28 Nicoventures Trading Limited Aerosol generating device and article
US11318264B2 (en) 2017-01-13 2022-05-03 Nicoventures Trading Limited Aerosol generating device and article
US11623053B2 (en) 2017-12-06 2023-04-11 Nicoventures Trading Limited Component for an aerosol-generating apparatus

Also Published As

Publication number Publication date
DE4338539A1 (de) 1995-05-18
EP0653898B1 (de) 2003-05-14
US5560851A (en) 1996-10-01
JPH07192906A (ja) 1995-07-28
DE59410284D1 (de) 2003-06-18
EP0653898A3 (de) 1996-01-17
JP3664757B2 (ja) 2005-06-29

Similar Documents

Publication Publication Date Title
EP0653898B1 (de) Verfahren zum Herstellen von keramischen Heizelementen
DE10032850B4 (de) Elektrokeramisches Vielschichtbauelement
EP0016307B1 (de) Verfahren zur Herstellung einer mehrschichtigen glaskeramischen Struktur mit innen liegenden Versorgungsleitungen auf Kupferbasis
DE10042909C2 (de) Mehrlagiges Keramiksubstrat und Verfahren zur Herstellung desselben
DE4010827C2 (de) Monolithischer keramischer Kondensator
DE3738343C2 (de)
DE3888370T2 (de) Verfahren zur Herstellung eines keramischen Mehrschichtkörpers mit inneren Kupferteilen.
DE68910155T2 (de) Mehrschichtige keramische Unterlagen und Verfahren zu ihrer Herstellung.
DE69305939T2 (de) Verfahren zur Herstellung eines keramischen Schaltungssubstrates
DE3485930T2 (de) Mehrschichtiges keramisches substrat und verfahren zum herstellen desselben.
DE4036997C2 (de) Monolithischer Varistor
DE2703956A1 (de) Verfahren zur herstellung einer mehrschichtkeramik
DE112006002451B4 (de) Keramisches mehrlagiges Substrat, keramisches mehrlagiges Modul und Verfahren zum Herstellen desselben
DE112007001859B4 (de) Glaskeramikzusammensetzung, Glaskeramiksinterkörper und keramisches Mehrschicht-Elektronikbauteil
DE112007001868B4 (de) Glaskeramikzusammensetzung, gesinterter Glaskeramikkörper und elektronische Komponente aus monolithischer Keramik
DE3630066C1 (de) Verfahren zur Herstellung von gesinterten metallisierten Aluminiumnitrid-Keramikkoerpern
DE3734274A1 (de) Elektrisch isolierender, keramischer, gesinterter koerper
DE19909300A1 (de) Monolithisches Keramisches Elektronikbauteil
DE19608484B4 (de) Bei niedriger Temperatur gebranntes Keramik-Schaltungssubstrat
DE10164354A1 (de) Dielektrische Vorrichtung in Schichtbauweise, ein Herstellungsverfahren und ein Elektrodenpastenmaterial
DE3434449A1 (de) Keramisches mehrschichtsubstrat und verfahren zu seiner herstellung
DE2924292C2 (de) Keramikkörper mit einer diesen zumindest teilweise bedeckenden Schicht aus elektrisch leitendem Werkstoff
DE69320098T2 (de) Kaltleiterthermistor für Heizgeräte und Verfahren zur Herstellung
DE68907084T2 (de) Keramischer Mehrschichtkondensator.
DE112022001724T5 (de) Sauerstoffsensorelement und verfahren zu seiner herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19960717

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CERAMTEC AG INNOVATIVE CERAMIC ENGINEERING

17Q First examination report despatched

Effective date: 20010417

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030514

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20030514

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030514

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59410284

Country of ref document: DE

Date of ref document: 20030618

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030825

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030514

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59410284

Country of ref document: DE

Owner name: CERAMTEC GMBH, DE

Free format text: FORMER OWNER: CERAMTEC AG, 73207 PLOCHINGEN, DE

Effective date: 20110216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131022

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59410284

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501