EP0632482B1 - Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol, présentant une résolution en masse élevée ainsi qu'une large gamme de masses - Google Patents

Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol, présentant une résolution en masse élevée ainsi qu'une large gamme de masses Download PDF

Info

Publication number
EP0632482B1
EP0632482B1 EP94110274A EP94110274A EP0632482B1 EP 0632482 B1 EP0632482 B1 EP 0632482B1 EP 94110274 A EP94110274 A EP 94110274A EP 94110274 A EP94110274 A EP 94110274A EP 0632482 B1 EP0632482 B1 EP 0632482B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
ion source
time
acceleration
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94110274A
Other languages
German (de)
English (en)
Other versions
EP0632482A3 (fr
EP0632482A2 (fr
Inventor
Thorald Dr. Bergmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0632482A2 publication Critical patent/EP0632482A2/fr
Publication of EP0632482A3 publication Critical patent/EP0632482A3/fr
Application granted granted Critical
Publication of EP0632482B1 publication Critical patent/EP0632482B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/403Time-of-flight spectrometers characterised by the acceleration optics and/or the extraction fields

Definitions

  • the invention relates to a gas phase ion source according to the preamble of claim 1.
  • time-of-flight mass analysis there is a start time from which started a group of ions in the time-of-flight mass spectrometer becomes. At the end of a flight route, the time is measured needed each incoming ion and from this the mass of the concerned Ions determined.
  • a gas phase ion source of a time-of-flight mass spectrometer is understood as the withdrawal volume the spatial area of the ion source, from which, starting from the start, ions on the surface of the time-of-flight mass spectrometer detector.
  • the Orbits on which the ions move are determined by the existing electrical fields and arise in a simple manner from the physical laws.
  • a transverse electric field is said to be an electric Field to be understood in the transverse direction, its direction and strength in the area of the ion orbits only slightly different from the Coordinates in the transverse direction.
  • This field is called Deflection field, and the electrodes for its production are called deflection electrodes.
  • the acceleration field and the deflection field are separate arranged from each other, i.e. the deflection field is arranged after the acceleration field.
  • the transverse electric field is created by a parallel plate capacitor generated.
  • the invention is accordingly based on the object of a gas phase ion source indicate with which a larger mass range of ions in the time-of-flight mass spectrometer can be accelerated into it.
  • the deflection field becomes the acceleration field directly superimposed so that the deflection field contains the speed components at the earliest possible time can compensate transverse to the direction of acceleration.
  • the deflection of the ion trajectories from the ion optical axis is kept small, which leads to The consequence of this is that particles with a larger mass still pass through apertures in the beam path can pass through.
  • the deflection field can be directly superimposed on the acceleration field by the electrodes producing the deflection field are integrated into the accelerating field. Usually this means that the electrodes generating the deflection field between the accelerating ones Field-generating electrodes must be arranged.
  • an electric field arises, which is a sum of a transverse electric field and an electric field with high cylindrical symmetry to the ion-optical axis.
  • 1a, 1b show the simplest embodiment of the invention according to claim 1.
  • Ions which are located at the start time in the withdrawal volume (11), are shown by the acceleration field generated by a repeller electrode (1) and an acceleration electrode (2) Paths (12) accelerated, which end on the detector of the time-of-flight mass spectrometer.
  • Known solutions exist for the further guidance of the ions after the ion source in the time-of-flight mass spectrometer, which is why they are not discussed in more detail here.
  • the deflection electrodes (20) are designed as flat deflection plates in this exemplary embodiment. As can be seen in FIG.
  • the deflection electrodes are arranged symmetrically to a normal plane of the gas or ion beam (10) to be examined, indicated by dashed lines ( B - B ' ).
  • the gas or ion beam (10) to be examined crosses the acceleration field through openings (21) in the two deflection electrodes (20).
  • the electrodes (1,2) which generate the accelerating electric field here the acceleration electrode (2) can also be used form the boundary of two areas of different gas pressure.
  • the opening (3) in the middle of the electrode (2) the function of a gas flow impedance.
  • Gas flow impedances are to be understood here as small openings Cross-section, which are large enough to keep the ions on their orbits to pass to the detector, but their conductance for gases is essential is lower than the pumping capacity of the pump in the area with the lower pressure. This latter area is usually seen in the direction of flight of the ions, behind the gas flow impedance.
  • Gas flow impedances thus have the advantage that through them with a high particle density in the discharge volume, the lowest possible residual gas pressure achieved in the remaining areas of the time-of-flight mass spectrometer can be. This is desirable to avoid collisions with the ions Atoms or molecules of the residual gas that cover the dynamic range of the Can minimize time-of-flight mass spectrometers.
  • the electrode arrangement in the exemplary embodiment according to FIGS. 1a, 1b creates a resultant electric field through the superimposition of an accelerating and a transverse field, by means of which the transverse speed components of the charged particles which are still present initially are largely canceled out already in the acceleration phase. In this way, ions of large masses can also be accelerated on orbits into the time-of-flight mass spectrometer.
  • FIGS. 1a, 1b The arrangement according to FIGS. 1a, 1b is not yet the optimal solution, since after deduction of the transverse field, ie after equating the potentials of the left and right deflection electrodes, the remaining electric field is not very homogeneous in the area of the discharge volume. This results in flight time errors that are difficult to compensate for. Flight time errors generally increase with the distance of an ion trajectory from the ion optical axis. If one has therefore decided on a certain limit below which flight time errors can be tolerated, an inhomogeneous electric field in the area of the withdrawal volume reduces the permissible distance of the ion trajectory from the ion-optical axis, ie the usable area in the withdrawal volume. This reduces the sensitivity of the time-of-flight mass spectrometer.
  • the ions are focused or defocused anisotropically with respect to the ion-optical axis when crossing the acceleration path. It follows that at least one further anisotropic lens element is required in the further course of the ion path.
  • Anisotropic lens elements are generally more complex, expensive and difficult to adjust than cylindrical symmetrical lens elements.
  • An electrical field with the required properties is by means of a To produce electrode construction in which the required cylinder symmetry of the remaining electric field can be achieved can, by making the deflection electrodes themselves cylindrical symmetrical Gives shape.
  • the gas flow impedance (3) on the acceleration electrode (2) is designed here as a tube which has a lower conductance for gases than a pinhole of the same cross section. However, as in FIG. 1a, a hole can be provided as the gas flow impedance.
  • the has cylindrical symmetry Training the deflection electrodes the further advantage that the Deflection electrodes can initially be manufactured as a turned part. In in a subsequent operation, they can then be broken down into two parts become.
  • 3a, 3b show an example of how two pairs of deflection electrodes (20, 25) can be arranged. This has the advantage that openings do not have to be provided either for the gas or ion beam (10) to be examined or for an ionizing laser beam. In addition, the volume of the acceleration section can be pumped out better. As shown in FIGS. 3a, 3b , the two pairs of deflection electrodes can also have different radii to the axis of the ion source.
  • the deflecting electrodes (20) can additionally be symmetrically divided along the plane which is defined by the direction of acceleration and the gas or ion beam (10) to be examined.
  • the quadrupole component must be zero due to symmetry considerations.
  • the remaining portion, which is not cylindrically symmetrical, then has octupole symmetry in this case, the strength of which in the lowest order is proportional to the fourth power of the distance to the axis of symmetry. If higher demands are placed on the imaging quality of the ion source, the symmetry of the electric field can be additionally increased in this way.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)
  • Electron Sources, Ion Sources (AREA)

Claims (10)

  1. Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol,
    dans laquelle le jet de gaz ou d'ions à étudier (10) a une composante de vitesse perpendiculaire à la direction d'accélération de la source d'ions,
    dans laquelle un domaine de l'espace est défini comme volume de sortie (11) dans lequel des ions devant être analysés se trouvent à un instant initial de l'analyse de masse,
    ayant des électrodes accélératrices (1, 2) et
    des électrodes de déflexion (20, 25),
    avec
    un domaine de l'espace géométriquement d'un seul tenant, dans lequel les champs électriques accélérateur et transversal se superposent, et
    ce domaine de l'espace contenant le volume de sortie (11),
    caractérisée en ce que
    les électrodes de déflexion (20, 25) sont distinctes des électrodes accélératrices (1,2).
  2. Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol selon la première revendication, caractérisée en ce que les électrodes (20, 25) qui engendrent un champ transversal se trouvent dans le champ accélérateur.
  3. Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol selon la deuxième revendication, caractérisée en ce que les électrodes (20, 25) qui engendrent un champ transversal se trouvent entre les électrodes (1, 2) qui définissent le champ accélérateur.
  4. Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol selon l'une des revendications précédentes, caractérisée en ce que les électrodes (20, 25) qui engendrent le champ électrique transversal
    sont sensiblement de forme cylindrique symétrique par rapport à l'axe dans la direction d'accélération de la source d'ions,
    sont divisées, le long du plan ( B - B') normal à la direction du jet de gaz ou d'ions à étudier, en deux moitiés symétriques par rapport à ce plan.
  5. Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol selon l'une des revendications précédentes, caractérisée en ce que les électrodes (1, 2) qui engendrent le champ accélérateur et les électrodes (20, 25) qui engendrent le champ électrique transversal sont à des potentiels constants dans le temps.
  6. Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol selon l'une des revendications 1 à 4, caractérisée en ce que les électrodes (1, 2) qui engendrent le champ accélérateur et les électrodes (20, 25) qui engendrent le champ électrique transversal sont en partie à des potentiels constants dans le temps et en partie à des potentiels variables avec le temps.
  7. Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol selon l'une des revendications précédentes, caractérisée en ce que les électrodes (1, 2) qui engendrent le champ accélérateur et les électrodes (20, 25) qui engendrent le champ électrique transversal sont à des potentiels variables dans le temps.
  8. Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol selon l'une des revendications précédentes, caractérisée en ce que les électrodes (20, 25) qui engendrent le champ électrique transversal sont en outre divisées symétriquement le long du plan défini par la direction d'accélération et le jet de gaz ou d'ions (10) à étudier.
  9. Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol selon l'une des revendications précédentes, caractérisée en ce qu'une ou plusieurs des électrodes (1, 2) constituent une cloison séparatrice entre des zones de pressions différentes dans le spectromètre de masse à temps de vol, et en ce qu'une impédance (3) d'écoulement de gaz est intégrée aux électrodes considérées.
  10. Spectromètre de masse à temps de vol, équipé d'une source d'ions en phase gazeuse selon une ou plusieurs des revendications précédentes.
EP94110274A 1993-07-02 1994-07-01 Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol, présentant une résolution en masse élevée ainsi qu'une large gamme de masses Expired - Lifetime EP0632482B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4322101 1993-07-02
DE4322101A DE4322101C2 (de) 1993-07-02 1993-07-02 Ionenquelle für Flugzeit-Massenspektrometer

Publications (3)

Publication Number Publication Date
EP0632482A2 EP0632482A2 (fr) 1995-01-04
EP0632482A3 EP0632482A3 (fr) 1995-11-29
EP0632482B1 true EP0632482B1 (fr) 2000-03-15

Family

ID=6491835

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94110274A Expired - Lifetime EP0632482B1 (fr) 1993-07-02 1994-07-01 Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol, présentant une résolution en masse élevée ainsi qu'une large gamme de masses

Country Status (6)

Country Link
US (1) US5543624A (fr)
EP (1) EP0632482B1 (fr)
JP (1) JPH0831370A (fr)
AT (1) ATE190751T1 (fr)
CA (1) CA2127185A1 (fr)
DE (2) DE4322101C2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19655304B8 (de) * 1995-12-14 2007-05-31 Micromass Uk Ltd. Massenspektrometer und Verfahren zur Massenspektrometrie
GB9525507D0 (en) * 1995-12-14 1996-02-14 Fisons Plc Electrospray and atmospheric pressure chemical ionization mass spectrometer and ion source
US6137112A (en) * 1998-09-10 2000-10-24 Eaton Corporation Time of flight energy measurement apparatus for an ion beam implanter
US6831280B2 (en) * 2002-09-23 2004-12-14 Axcelis Technologies, Inc. Methods and apparatus for precise measurement of time delay between two signals
WO2006098086A1 (fr) * 2005-03-17 2006-09-21 National Institute Of Advanced Industrial Science And Technology Spectromètre de masse à temps de vol
CN103380479B (zh) * 2010-12-20 2016-01-20 株式会社岛津制作所 飞行时间型质量分析装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577165A (en) * 1968-05-31 1971-05-04 Perkin Elmer Corp Linear scanning arrangement for a cycloidal mass spectrometer
GB1302193A (fr) * 1969-04-18 1973-01-04
DE2242987B2 (de) * 1972-09-01 1980-06-12 Gesellschaft Fuer Strahlen- Und Umweltforschung Mbh, 8000 Muenchen Vorrichtung zur Trennung von neutralen Teilchen und schnellen Ionen von langsamen Ionen
DE2947542A1 (de) * 1979-11-26 1981-06-04 Leybold-Heraeus GmbH, 5000 Köln Einrichtung zur ueberwachung und/oder steuerung von plasmaprozessen
FR2514905A1 (fr) * 1981-10-21 1983-04-22 Commissariat Energie Atomique Dispositif de mesure d'un courant ionique produit par un faisceau d'ions
WO1989006044A1 (fr) * 1987-12-24 1989-06-29 Unisearch Limited Spectrometre de masse
US5073713A (en) * 1990-05-29 1991-12-17 Battelle Memorial Institute Detection method for dissociation of multiple-charged ions

Also Published As

Publication number Publication date
EP0632482A3 (fr) 1995-11-29
DE4322101A1 (de) 1995-01-19
ATE190751T1 (de) 2000-04-15
DE59409199D1 (de) 2000-04-20
CA2127185A1 (fr) 1995-01-03
EP0632482A2 (fr) 1995-01-04
JPH0831370A (ja) 1996-02-02
DE4322101C2 (de) 1995-06-14
US5543624A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
DE69230174T2 (de) Flugzeitmassenspektrometer mit einer oeffnung zum ausgleich von uebertragungsvermoegen und aufloesung
EP0218920B1 (fr) Filtre d'énergie électronique de type Oméga
DE69033353T2 (de) Massenspektrometer mit einem mehrkanaldetektor
DE112011102323B4 (de) Ionendetektionsanordnung
EP0396019A2 (fr) Spectromètre ionique à résonance cyclotronique
EP1277221B1 (fr) Canon electronique pour electrons ou faisceaux ioniques de haute monochromie ou de haute densite de courant
DE3913965A1 (de) Direkt abbildendes sekundaerionen-massenspektrometer mit laufzeit-massenspektrometrischer betriebsart
DE1539660A1 (de) Linsenkonstruktion fuer Einzelstrahlung und Mikroanalysevorrichtung,bestehend aus Mitteln zur Richtung eines Ionenstrahls auf einen gewaehlten Oberflaechenabschnitt einer Materialprobe
EP0208894A2 (fr) Spectromètre de masses à temps de vol avec Un réflecteur d'ions
DE69118492T2 (de) Massenspektrometer mit elektrostatischem Energiefilter
DE10122957B4 (de) Teilchenstrahlapparat mit energiekorrigierter Strahlablenkung sowie Vorrichtungund Verfahren zur energiekorrigierten Ablenkung eines Teilchenstrahls
EP3712924A1 (fr) Dispositif et procédé de transfert d'électrons d'un échantillon à un analyseur d'énergie et dispositif spectromètre d'électrons
DE2439711B2 (de) Ionenquelle
DE102005023590A1 (de) ICP-Massenspektrometer
EP0632482B1 (fr) Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol, présentant une résolution en masse élevée ainsi qu'une large gamme de masses
DE2824820A1 (de) Elektronenstrahlsystem mit verteilter elektrostatischer linse
DE2608958A1 (de) Vorrichtung zum erzeugen von strahlen aus geladenen teilchen
DE69121463T2 (de) Ionenbündelvorrichtung
EP0633602B1 (fr) Spectromètre de masse à temps de vol pourvu d'une source d'ions en phase gaseuze présentant une sensibilité élevée ainsi qu'une large gamme dynamique
EP0822574B1 (fr) Spectromètre à temps de vol en tandem avec chambre de collision
EP1559126A2 (fr) Filtre d'energie generateur d'images pour particules chargees electriquement et utilisation de ce filtre
EP0002430B1 (fr) Spectromètre de masse
EP0633601B1 (fr) Détecteur pour spectromètre de masse à temps de vol présentant des distorsions réduites des temps de vols à ouverture élevée
DE3990613C2 (de) Massenspektrometer mit variabler Dispersion
EP0221339A1 (fr) Spectromètre de masse à résonance de cyclotron ionique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK FR GB LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK FR GB LI NL SE

17P Request for examination filed

Effective date: 19960319

17Q First examination report despatched

Effective date: 19970307

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FR GB LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000315

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000315

REF Corresponds to:

Ref document number: 190751

Country of ref document: AT

Date of ref document: 20000415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59409199

Country of ref document: DE

Date of ref document: 20000420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000615

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & SEIFERT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000612

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000714

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000717

Year of fee payment: 7

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010726

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BERE Be: lapsed

Owner name: BERGMANN THORALD

Effective date: 20010731

Owner name: BERGMANN EVA MARTINA

Effective date: 20010731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020703

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020730

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020731

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST