EP0822574B1 - Spectromètre à temps de vol en tandem avec chambre de collision - Google Patents

Spectromètre à temps de vol en tandem avec chambre de collision Download PDF

Info

Publication number
EP0822574B1
EP0822574B1 EP97112631A EP97112631A EP0822574B1 EP 0822574 B1 EP0822574 B1 EP 0822574B1 EP 97112631 A EP97112631 A EP 97112631A EP 97112631 A EP97112631 A EP 97112631A EP 0822574 B1 EP0822574 B1 EP 0822574B1
Authority
EP
European Patent Office
Prior art keywords
chamber
mass spectrometer
collision
time
flight mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97112631A
Other languages
German (de)
English (en)
Other versions
EP0822574A1 (fr
Inventor
Thorald Dr. Bergmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0822574A1 publication Critical patent/EP0822574A1/fr
Application granted granted Critical
Publication of EP0822574B1 publication Critical patent/EP0822574B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/061Ion deflecting means, e.g. ion gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0045Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction
    • H01J49/005Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction by collision with gas, e.g. by introducing gas or by accelerating ions with an electric field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Definitions

  • the invention relates to a time-of-flight time-of-flight mass spectrometer according to the preamble of claim 1.
  • time-of-flight mass spectrometers there is generally at least one two flight routes, on which ions by their different Flight times are separated according to their mass. Thereby always forms End location of the previous flight route the start location of the following one.
  • a specific ion mass is usually determined by means of the first flight route preselected, either before or after the selection of a is subjected to any interaction.
  • This interaction can e.g. the action of a laser beam, the crossing with a second ion beam or flying through a cell with collision gas his.
  • the fragments themselves can undergo further interaction be subjected to, after flying through the second Filter out the flight distance a certain ion mass, its fragments you then determine in the third flight route.
  • the maximum working pressure is 0.01 Pa (10 -4 mBar). Electrical discharges on high-voltage components can occur from a pressure of approx. 0.1 Pa (10 -3 mBar).
  • T.J. Cornish et al. can also suffice with helium as the collision gas Cause fragmentation in the ion masses to be examined.
  • This is achieved here by using a pulsed nozzle Let the high-density helium beam into the collision cell. By sufficient Waiting time until the next primary ion pulse becomes an increase in pressure Prevents electrical discharges in the time-of-flight mass spectrometer or cause damage to components of the instrument could.
  • a sufficient for fragmentation Pressure no discharges on the live parts of the mass spectrometer.
  • the device according to the invention which is in front of the chamber contains the reflector, another chamber, in the following scattering chamber called, arranged, which then contains the collision cell.
  • another chamber in the following scattering chamber called, arranged, which then contains the collision cell.
  • the collision cell Between Scattering chamber and reflector chamber are one or more Gas flow impedances, which in the collision cell a very high gas density can be achieved with only a slight increase in pressure in the reflector chamber.
  • the scattering chamber and the reflector chamber are separately pumped room areas arranged their each have their own pump nozzle, and that by a gas flow impedance are connected. So that the gas pressure in the reflector chamber is significantly lower than in the scattering chamber, the gas conductivity of the Connection between the two chambers may be significantly lower than that Pumping speed of the pump, which pumps on the reflector chamber.
  • it is a gas flow impedance around an opening of certain cross section in the partition between Areas of different pressure.
  • the cross-section of a gas flow impedance is always so small chosen that the ion beam is just not blocked. So achieved to get maximum sensitivity of the mass spectrometer with minimal Gas conductance of flow impedance.
  • the subclaims can therefore already exist components time-of-flight mass spectrometer as gas flow impedances used to have the greatest possible pressure difference between Reflector chamber or ion source chamber and the scattering chamber or the collision cell.
  • Fig. 1 shows a first embodiment of the arrangement according to the invention. Shown are the ion source chamber 1 with the ion source 21 and the withdrawal volume 11 contained therein.
  • the ion source chamber is connected to a pump 6 which generates a vacuum, preferably below 10 -4 Pa (10 -6 mBar).
  • the gas or ion beam 10 to be examined starts the ions to be detected on the detector 34 from the withdrawal volume on their path 12 into the time-of-flight mass spectrometer.
  • the scattering chamber 2 is arranged shortly behind the ion source chamber, connected via the connecting tube 4, which can simultaneously serve as flow impedance between the two chambers.
  • the collision cell 22 is located in the scattering chamber.
  • the collision gas is supplied via a gas line 24 and the metering valve 25.
  • the scattering chamber is connected to a pump 7, which generates a vacuum, preferably below 10 -3 Pa (10 -5 mBar).
  • An ion selector 23 can additionally be arranged within the collision cell.
  • the reflector chamber 3 is connected via the connecting tube 5.
  • a shielding plate 31 between the ion path and the detector or a shot tube 32 In order to shield the injected ions from stray fields of the detector 34, one can either use a shielding plate 31 between the ion path and the detector or a shot tube 32.
  • the bullet tube 32 cooperates with the connecting tube 5 as a gas flow impedance. As shown in FIG. 1, it can have a smaller cross section than the connecting pipe 5. However, a larger cross section can also be selected. By selecting a shot tube 32 with a predetermined cross section, the gas flow impedance can thus be set in a certain range.
  • the ions are deflected by 180 ° in the reflector 33 and hit a detector 34 which is located in relative proximity to the inlet opening of the reflector chamber.
  • the reflector chamber is connected to a pump 8 which generates a vacuum, preferably below 10 -4 Pa (10 -6 mBar).
  • the ion source is located in its own chamber, which has its own pump nozzle, which is connected to the scattering chamber via a connection with a small gas conductance. Since discharges can also occur at the ion source with its live electrodes at pressures of more than 10 -3 mbar, it may be necessary to reduce the residual gas pressure in the ion source chamber when the collision cell is charged with collision gas.
  • Fig. 2 shows a second embodiment of the arrangement according to the invention.
  • the ion source chamber and the scattering chamber are integrated in a vacuum chamber, which is separated by means of an orifice 26, which can also serve as an electrode of the ion source, into the two areas, which have their own pump stubs, and which only have a flow impedance of low gas conductance are connected.
  • This flow impedance can also be incorporated into an electrode of the ion source or into the diaphragm.
  • a pipe 35 is arranged within the connecting tube 5 from the scattering chamber 2 to the reflector chamber 3 or the bullet tube 32 in the reflector chamber.
  • This pipe is used for flow resistance between the scattering chamber and the reflector chamber.
  • it extends within both of the connecting tube 5 and the bullet tube 32 and consequently has a diameter that is smaller than the diameter of the two mentioned pipes.
  • the tube 35 can also only within one of the two pipes. The tube 35 thus offers another Possibility to adjust the gas flow impedance.
  • FIG. 3 shows an embodiment of a collision cell 22 with an integrated ion selector.
  • the ion selector 23 is shown here in the embodiment of an ion switching grid and is carried by the ceramic rings 27.
  • the collision cell itself consists of the two halves 22a, 22b, which can be held together with the ceramic rings of the ion selector by any device for clamping, which need not be shown here. Since the two halves of the collision cell can be made of metal, this entire unit can also be easily attached and positioned within the scattering chamber.
  • the collision gas is supplied via the gas line 24, which has its passage near the ion selector, which in the embodiment shown here is arranged in a plane perpendicular to the ion-optical axis, and divides the collision cell into two symmetrical halves. Because the collision gas is supplied near the center of the collision cell, the maximum possible pressure is generated in the center, at the same time with a minimal gas load on the scattering chamber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Claims (14)

  1. Spectromètre de masse à temps de vol en tandem, comprenant une source d'ions (21), un réflecteur (33), un détecteur (34) et une cellule de collisions (22) contenant un gaz étranger sous l'effet duquel des ions primaires se décomposent en ions fragmentaires en raison de la collision avec des atomes étrangers ou des molécules étrangères, caractérisé en ce que
    ce spectromètre de masse est divisé en domaines de pressions différentes dont chacun possède un branchement pour une pompe à vide (6, 7, 8),
    ces domaines sont reliés par des impédances d'écoulement gazeux (4, 5, 32, 35),
    l'un de ces domaines est constitué par une chambre de réflexion (3) contenant le réflecteur (33),
    un autre domaine est constitué par la chambre de dispersion (2) contenant la cellule de collisions (22), et que
    ce domaine est placé, dans le sens du vol des ions, en avant de la chambre de réflexion (3).
  2. Spectromètre de masse à temps de vol en tandem selon la première revendication, caractérisé en ce que la source d'ions (21) se trouve dans une chambre (1) de source d'ions, et que la chambre (1) de source d'ions et la chambre de dispersion (2) possèdent chacune son propre branchement pour une pompe à vide (6, 7) et sont reliées par une impédance d'écoulement gazeux (4), de telle sorte que la chambre (1) de source d'ions (1) est à une pression inférieure à celle de la chambre de dispersion (2) quand le gaz étranger occupe la cellule de collisions.
  3. Spectromètre de masse à temps de vol en tandem selon la revendication 1 ou 2, caractérisé en ce que le réflecteur et le détecteur sont contenus dans un seul et même domaine.
  4. Spectromètre de masse à temps de vol en tandem selon l'une des revendications précédentes, caractérisé en ce que l'impédance d'écoulement gazeux (5, 32, 35) située entre la chambre de dispersion (2) et la chambre de réflexion (3) est constituée, au moins en partie, par un tube de liaison (5) placé entre les deux chambres.
  5. Spectromètre de masse à temps de vol en tandem selon la revendication 4, caractérisé en ce que le tube de liaison (5) s'étend d'une ouverture de sortie de la chambre de dispersion (2) à une ouverture d'entrée de la chambre de réflexion (3), et qu'au moins une autre partie de l'impédance d'écoulement gazeux est constituée par un tube de tir (32) qui s'étend de l'ouverture d'entrée jusque dans la chambre de réflexion (3).
  6. Spectromètre de masse à temps de vol en tandem selon la revendication 4 ou 5, ou selon les deux, caractérisé en ce qu'au moins une autre partie de l'impédance d'écoulement gazeux est constituée par un tube (35)
    dont le diamètre est inférieur à celui du tube de liaison (5) ou de tube de tir (32), ou des deux,
    et qui est placé à l'intérieur de l'un de ces tubes ou des deux.
  7. Spectromètre de masse à temps de vol en tandem selon l'une des revendications précédentes, caractérisé en ce que la source d'ions (21) et la cellule de collisions (22) sont logées dans la même chambre à vide, qu'une cloison pour vide (26) placée à l'intérieur de cette chambre divise cependant en deux parties (1, 2), que chacune de ces parties (1, 2) possède son propre branchement pour une pompe à vide (6, 7), et en ce qu'une ouverture, dans la cloison (26), joue le rôle d'impédance d'écoulement gazeux entre les deux parties (1, 2).
  8. Spectromètre de masse à temps de vol en tandem selon la revendication 1 ou 2, ou les deux, caractérisé en ce que la source d'ions (21) comporte des électrodes, et en ce qu'au moins une partie de la cloison (26) est intégrée à l'une des électrodes.
  9. Spectromètre de masse à temps de vol en tandem selon l'une des revendications précédentes, caractérisé en ce qu'un sélecteur d'ions (23) est monté à l'intérieur de la cellule de collisions (22).
  10. Spectromètre de masse à temps de vol en tandem selon l'une des revendications précédentes, caractérisé en ce que la cellule de collisions (22) comporte une impédance d'écoulement gazeux d'entrée (22a) et une impédance d'écoulement gazeux de sortie (22b), et que le sélecteur d'ions (23) est placé entre ces deux impédances d'écoulement gazeux.
  11. Spectromètre de masse à temps de vol en tandem selon la revendication 9 ou 10, caractérisé en ce que la fixation du sélecteur d'ions (23) est formée par l'impédance d'écoulement gazeux d'entrée ou de sortie (22a, 22b) de la cellule de collisions.
  12. Spectromètre de masse à temps de vol en tandem selon l'une des revendications 9 à 11, caractérisé en ce que le sélecteur d'ions (23) est disposé dans un plan perpendiculaire à l'axe optique ionique et que la cellule de collisions est divisée en deux moitiés symétriques.
  13. Spectromètre de masse à temps de vol en tandem selon l'une des revendications 9 à 12, caractérisé en ce que le sélecteur d'ions est une grille de commutation constituée par deux structures en peigne qui s'engrènent l'une dans l'autre au milieu et dans lesquelles les dents de chacune des structures en peigne sont reliées les unes aux autres d'une façon électriquement conductrice.
  14. Spectromètre de masse à temps de vol en tandem selon l'une des revendications 9 à 12, caractérisé en ce que le sélecteur d'ions est constitué par deux plaques situées l'une en face de l'autre et parallèles à l'axe optique ionique.
EP97112631A 1996-08-01 1997-07-23 Spectromètre à temps de vol en tandem avec chambre de collision Expired - Lifetime EP0822574B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19631161 1996-08-01
DE19631161A DE19631161A1 (de) 1996-08-01 1996-08-01 Flugzeit-Flugzeit-Massenspektrometer mit differentiell gepumpter Kollisionszelle

Publications (2)

Publication Number Publication Date
EP0822574A1 EP0822574A1 (fr) 1998-02-04
EP0822574B1 true EP0822574B1 (fr) 2003-02-05

Family

ID=7801544

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97112631A Expired - Lifetime EP0822574B1 (fr) 1996-08-01 1997-07-23 Spectromètre à temps de vol en tandem avec chambre de collision

Country Status (5)

Country Link
US (1) US5854485A (fr)
EP (1) EP0822574B1 (fr)
AT (1) ATE232334T1 (fr)
CA (1) CA2209119A1 (fr)
DE (2) DE19631161A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39099E1 (en) * 1998-01-23 2006-05-23 University Of Manitoba Spectrometer provided with pulsed ion source and transmission device to damp ion motion and method of use
US6331702B1 (en) * 1999-01-25 2001-12-18 University Of Manitoba Spectrometer provided with pulsed ion source and transmission device to damp ion motion and method of use
US6348688B1 (en) 1998-02-06 2002-02-19 Perseptive Biosystems Tandem time-of-flight mass spectrometer with delayed extraction and method for use
DE19853189C1 (de) 1998-11-18 2000-04-13 Frech Oskar Gmbh & Co Heizeinrichtung für den Hals eines Gießbehälters, insbesondere für eine Warmkammer-Druckgießmaschine
US6781117B1 (en) 2002-05-30 2004-08-24 Ross C Willoughby Efficient direct current collision and reaction cell
US7196324B2 (en) * 2002-07-16 2007-03-27 Leco Corporation Tandem time of flight mass spectrometer and method of use
GB2390935A (en) 2002-07-16 2004-01-21 Anatoli Nicolai Verentchikov Time-nested mass analysis using a TOF-TOF tandem mass spectrometer
KR100659261B1 (ko) 2006-02-07 2006-12-20 한국기초과학지원연구원 탠덤 푸리에변환 이온 사이클로트론 공명 질량 분석기
RU2769377C1 (ru) * 2021-07-13 2022-03-30 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Времяпролетный масс-спектрометр

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3621240A (en) * 1969-05-27 1971-11-16 Franklin Gro Corp Apparatus and methods for detecting and identifying trace gases
DE3920566A1 (de) * 1989-06-23 1991-01-10 Bruker Franzen Analytik Gmbh Ms-ms-flugzeit-massenspektrometer
US5202563A (en) * 1991-05-16 1993-04-13 The Johns Hopkins University Tandem time-of-flight mass spectrometer
DE4322102C2 (de) * 1993-07-02 1995-08-17 Bergmann Thorald Flugzeit-Massenspektrometer mit Gasphasen-Ionenquelle
US5464985A (en) * 1993-10-01 1995-11-07 The Johns Hopkins University Non-linear field reflectron

Also Published As

Publication number Publication date
CA2209119A1 (fr) 1998-02-01
EP0822574A1 (fr) 1998-02-04
ATE232334T1 (de) 2003-02-15
DE19631161A1 (de) 1998-02-12
DE59709254D1 (de) 2003-03-13
US5854485A (en) 1998-12-29

Similar Documents

Publication Publication Date Title
DE19941670B4 (de) Massenspektrometer und Verfahren zum Betreiben eines Massenspektrometers
DE3750928T2 (de) Laufzeit-Massenspektrometrie.
DE1798021B2 (de) Einrichtung zur buendelung eines primaer-ionenstrahls eines mikroanalysators
EP0822574B1 (fr) Spectromètre à temps de vol en tandem avec chambre de collision
DE10162267B4 (de) Reflektor für Flugzeitmassenspektrometer mit orthogonalem Ioneneinschuss
DE19806018B4 (de) Analysegerät mit Ionenfalle-Massenspektrometer
DE2439711B2 (de) Ionenquelle
DE2701606A1 (de) System zum verarbeiten positiver und negativer ionen im massenspektrometer
DE19635645A1 (de) Hochauflösende Ionendetektion für lineare Flugzeitmassenspektrometer
DE102005023590A1 (de) ICP-Massenspektrometer
DE102007013693A1 (de) Ionennachweissystem mit Unterdrückung neutralen Rauschens
DE68901731T2 (de) Massenspektrometer.
EP0633602B1 (fr) Spectromètre de masse à temps de vol pourvu d'une source d'ions en phase gaseuze présentant une sensibilité élevée ainsi qu'une large gamme dynamique
DE69121463T2 (de) Ionenbündelvorrichtung
EP0221339B1 (fr) Spectromètre de masse à résonance de cyclotron ionique
EP0000865B1 (fr) Source d'ions comportant une chambre d'ionisation pour l'ionisation chimique
DE1598392A1 (de) Vierpol-Massenspektrograph
DE4322101C2 (de) Ionenquelle für Flugzeit-Massenspektrometer
DE69629536T2 (de) Verfahren und Vorrichtung zur Massenanalyse einer gelösten Probe
EP0822573A1 (fr) Chambre de collision avec sélecteur d'ions intégré pour spectromètre de masse à temps de vol en tandem
DE2752933A1 (de) Elektronenmikroskop
DE1598150B2 (fr)
DE102022105233B4 (de) Vorrichtung und Verfahren zur Erzeugung kurzer Pulse geladener Teilchen
EP0087152A2 (fr) Spectromètre d'électrons secondaires et méthode d'utilisation
DE2045955A1 (de) Massenspektrometer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI

17P Request for examination filed

Effective date: 19980721

AKX Designation fees paid

Free format text: AT CH DE FR GB LI

RBV Designated contracting states (corrected)

Designated state(s): AT CH DE FR GB LI

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020121

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59709254

Country of ref document: DE

Date of ref document: 20030313

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030723

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST