EP0822574B1 - Flugzeit-Flugzeit-Massenspektrometer mit Kollisionszelle - Google Patents

Flugzeit-Flugzeit-Massenspektrometer mit Kollisionszelle Download PDF

Info

Publication number
EP0822574B1
EP0822574B1 EP97112631A EP97112631A EP0822574B1 EP 0822574 B1 EP0822574 B1 EP 0822574B1 EP 97112631 A EP97112631 A EP 97112631A EP 97112631 A EP97112631 A EP 97112631A EP 0822574 B1 EP0822574 B1 EP 0822574B1
Authority
EP
European Patent Office
Prior art keywords
chamber
mass spectrometer
collision
time
flight mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97112631A
Other languages
English (en)
French (fr)
Other versions
EP0822574A1 (de
Inventor
Thorald Dr. Bergmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0822574A1 publication Critical patent/EP0822574A1/de
Application granted granted Critical
Publication of EP0822574B1 publication Critical patent/EP0822574B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/061Ion deflecting means, e.g. ion gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0045Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction
    • H01J49/005Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction by collision with gas, e.g. by introducing gas or by accelerating ions with an electric field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Definitions

  • the invention relates to a time-of-flight time-of-flight mass spectrometer according to the preamble of claim 1.
  • time-of-flight mass spectrometers there is generally at least one two flight routes, on which ions by their different Flight times are separated according to their mass. Thereby always forms End location of the previous flight route the start location of the following one.
  • a specific ion mass is usually determined by means of the first flight route preselected, either before or after the selection of a is subjected to any interaction.
  • This interaction can e.g. the action of a laser beam, the crossing with a second ion beam or flying through a cell with collision gas his.
  • the fragments themselves can undergo further interaction be subjected to, after flying through the second Filter out the flight distance a certain ion mass, its fragments you then determine in the third flight route.
  • the maximum working pressure is 0.01 Pa (10 -4 mBar). Electrical discharges on high-voltage components can occur from a pressure of approx. 0.1 Pa (10 -3 mBar).
  • T.J. Cornish et al. can also suffice with helium as the collision gas Cause fragmentation in the ion masses to be examined.
  • This is achieved here by using a pulsed nozzle Let the high-density helium beam into the collision cell. By sufficient Waiting time until the next primary ion pulse becomes an increase in pressure Prevents electrical discharges in the time-of-flight mass spectrometer or cause damage to components of the instrument could.
  • a sufficient for fragmentation Pressure no discharges on the live parts of the mass spectrometer.
  • the device according to the invention which is in front of the chamber contains the reflector, another chamber, in the following scattering chamber called, arranged, which then contains the collision cell.
  • another chamber in the following scattering chamber called, arranged, which then contains the collision cell.
  • the collision cell Between Scattering chamber and reflector chamber are one or more Gas flow impedances, which in the collision cell a very high gas density can be achieved with only a slight increase in pressure in the reflector chamber.
  • the scattering chamber and the reflector chamber are separately pumped room areas arranged their each have their own pump nozzle, and that by a gas flow impedance are connected. So that the gas pressure in the reflector chamber is significantly lower than in the scattering chamber, the gas conductivity of the Connection between the two chambers may be significantly lower than that Pumping speed of the pump, which pumps on the reflector chamber.
  • it is a gas flow impedance around an opening of certain cross section in the partition between Areas of different pressure.
  • the cross-section of a gas flow impedance is always so small chosen that the ion beam is just not blocked. So achieved to get maximum sensitivity of the mass spectrometer with minimal Gas conductance of flow impedance.
  • the subclaims can therefore already exist components time-of-flight mass spectrometer as gas flow impedances used to have the greatest possible pressure difference between Reflector chamber or ion source chamber and the scattering chamber or the collision cell.
  • Fig. 1 shows a first embodiment of the arrangement according to the invention. Shown are the ion source chamber 1 with the ion source 21 and the withdrawal volume 11 contained therein.
  • the ion source chamber is connected to a pump 6 which generates a vacuum, preferably below 10 -4 Pa (10 -6 mBar).
  • the gas or ion beam 10 to be examined starts the ions to be detected on the detector 34 from the withdrawal volume on their path 12 into the time-of-flight mass spectrometer.
  • the scattering chamber 2 is arranged shortly behind the ion source chamber, connected via the connecting tube 4, which can simultaneously serve as flow impedance between the two chambers.
  • the collision cell 22 is located in the scattering chamber.
  • the collision gas is supplied via a gas line 24 and the metering valve 25.
  • the scattering chamber is connected to a pump 7, which generates a vacuum, preferably below 10 -3 Pa (10 -5 mBar).
  • An ion selector 23 can additionally be arranged within the collision cell.
  • the reflector chamber 3 is connected via the connecting tube 5.
  • a shielding plate 31 between the ion path and the detector or a shot tube 32 In order to shield the injected ions from stray fields of the detector 34, one can either use a shielding plate 31 between the ion path and the detector or a shot tube 32.
  • the bullet tube 32 cooperates with the connecting tube 5 as a gas flow impedance. As shown in FIG. 1, it can have a smaller cross section than the connecting pipe 5. However, a larger cross section can also be selected. By selecting a shot tube 32 with a predetermined cross section, the gas flow impedance can thus be set in a certain range.
  • the ions are deflected by 180 ° in the reflector 33 and hit a detector 34 which is located in relative proximity to the inlet opening of the reflector chamber.
  • the reflector chamber is connected to a pump 8 which generates a vacuum, preferably below 10 -4 Pa (10 -6 mBar).
  • the ion source is located in its own chamber, which has its own pump nozzle, which is connected to the scattering chamber via a connection with a small gas conductance. Since discharges can also occur at the ion source with its live electrodes at pressures of more than 10 -3 mbar, it may be necessary to reduce the residual gas pressure in the ion source chamber when the collision cell is charged with collision gas.
  • Fig. 2 shows a second embodiment of the arrangement according to the invention.
  • the ion source chamber and the scattering chamber are integrated in a vacuum chamber, which is separated by means of an orifice 26, which can also serve as an electrode of the ion source, into the two areas, which have their own pump stubs, and which only have a flow impedance of low gas conductance are connected.
  • This flow impedance can also be incorporated into an electrode of the ion source or into the diaphragm.
  • a pipe 35 is arranged within the connecting tube 5 from the scattering chamber 2 to the reflector chamber 3 or the bullet tube 32 in the reflector chamber.
  • This pipe is used for flow resistance between the scattering chamber and the reflector chamber.
  • it extends within both of the connecting tube 5 and the bullet tube 32 and consequently has a diameter that is smaller than the diameter of the two mentioned pipes.
  • the tube 35 can also only within one of the two pipes. The tube 35 thus offers another Possibility to adjust the gas flow impedance.
  • FIG. 3 shows an embodiment of a collision cell 22 with an integrated ion selector.
  • the ion selector 23 is shown here in the embodiment of an ion switching grid and is carried by the ceramic rings 27.
  • the collision cell itself consists of the two halves 22a, 22b, which can be held together with the ceramic rings of the ion selector by any device for clamping, which need not be shown here. Since the two halves of the collision cell can be made of metal, this entire unit can also be easily attached and positioned within the scattering chamber.
  • the collision gas is supplied via the gas line 24, which has its passage near the ion selector, which in the embodiment shown here is arranged in a plane perpendicular to the ion-optical axis, and divides the collision cell into two symmetrical halves. Because the collision gas is supplied near the center of the collision cell, the maximum possible pressure is generated in the center, at the same time with a minimal gas load on the scattering chamber.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

Die Erfindung betrifft ein Flugzeit-Flugzeit-Massenspektrometer nach dem Oberbegriff des Anspruch 1.
Bei Flugzeit-Flugzeit-Massenspektrometern gibt es generell mindestens zwei Flugstrecken, auf welchen Ionen durch ihre unterschiedlichen Flugzeiten ihrer Masse nach aufgetrennt werden. Dabei bildet immer der Endort der vorangehenden Flugstrecke den Startort der folgenden.
Üblicherweise wird mittels der ersten Flugstrecke eine bestimmte Ionenmasse vorselektiert, welche entweder vor oder nach der Selektion einer beliebigen Wechselwirkung unterworfen wird. Diese Wechselwirkung kann z.B. die Einwirkung eines Laserstrahls sein, das Kreuzen mit einem zweiten Ionenstrahl oder auch das Durchfliegen einer Zelle mit Kollisionsgas sein.
Die Selektion bzw. Auswahl einer bestimmten Ionenmasse am Endort einer Flugstrecke kann nach dem Stand der Technik durch eine Reihe von Methoden bewirkt werden:
  • Sind die Flugstrecken orthogonal zueinander angeordnet, so kann die Selektion am Ende der einen bzw. am Anfang der folgenden Flugstrecke dadurch bewirkt werden, daß zum Ankunfts-Zeitpunkt einer bestimmten Ionenmasse die an diesem Ort plazierte lonenquelle des folgenden Flugzeit-Massenspektrometers angeschaltet wird, was die Ablenkung und den Einschuß genau dieser Ionenmasse in das folgende Flugzeit-Massenspektrometer bewirkt.
  • Sind die Flugstrecken kolinear zueinander angeordnet, so kann am Ende der einen bzw. am Anfang der folgenden Flugzstrecke eine Vorrichtung zum gepulsten Ablenken der Ionen vorgesehen werden:
  • a) Eine solche Vorrichtung kann z.B. aus zwei zueinander parallel angeordneten Platten bestehen, welche normalerweise auf unterschiedlichen Potentialen liegen, wodurch die hindurchfliegenden Ionen abgelenkt werden. Werden diese Platten nun kurzzeitig auf gleiches Potential gelegt, so kann nur die Ionenmasse passieren, welche sich gerade kurz vor den Platten befindet und während der Passage kein ablenkendes Feld spürt.
  • b) Eine solche Vorrichtung kann auch durch zwei kammartige Strukturen bewirkt werden, deren Zähne aus feinen Drähten bestehen, wobei die Zähne der einander gegenüberliegenden kammartigen Strukturen mittig ineinander greifen und alle zu jeweils einer kammartigen Struktur gehörenden Zähne elektrisch leitend miteinander verbunden sind. Werden diese beiden Strukturen auf Potentiale gelegt, die in ihrem Wert symmetrisch zum Potential der Driftstrecke sind, so heben sich die von den beiden kammartigen Strukturen erzeugten elektrischen Felder schon in sehr kurzem Abstand auf. Ein solches Ionenschaltgitter kann schon mit vergleichsweise geringen Spannungen durchtretende Ionen so stark ablenken, daß sie den Bahnbereich der Flugstrecken verlassen. Außerdem beeinflußt dieses Schaltgitter nur die Ionen in seiner allernächsten Nähe, was eine Selektion mit hoher Massenauflösung der gewünschten Ionenmasse bewirkt. Ein solches Ionenschaltgitter ist beispielsweise in der Veröffentlichung von D.J. Beussman et al. beschrieben. (Analytical Chemistry, Bd. 67, Seiten 3952 - 3957,1995)
Durch die nach oder vor der Selektion ausgeführte Wechselwirkung wird der innere Zustand der selektierten Ionenmasse geändert. Meist wird Energie zugeführt, um einen Zerfall dieser Ionenmasse in Bruchstücke zu bewirken. Die Massen dieser Bruchstücke lassen dann oft Rückschlüsse auf den Aufbau der ursprünglichen Ionenmasse zu und dienen so der Strukturaufklärung komplexer Moleküle. Die Massen dieser Bruchstücke werden nun durch Messen der Flugzeit in der zweiten Flugstrecke des Flugzeit-Flugzeit-Massenspektrometers bestimmt.
Müssen noch mehr Einzelheiten als nur die Massen der Bruchstücke bestimmt werden, so können die Bruchstücke selbst einer weiteren Wechselwirkung unterworfen werden, man kann nach Durchfliegen der zweiten Flugstrecke eine bestimmte Ionenmasse herausfiltern, deren Bruchstücke man dann in der dritten Flugstrecke bestimmt.
Soll der selektierten Ionenmasse durch Wechselwirkung mit einem Kollisionsgas Energie zugeführt werden, so werden in den meisten Fällen die Gase Helium, Stickstoff, oder Argon verwendet, wobei sich in vielen Untersuchungen Helium als das günstigste Kollisionsgas erwiesen hat. Zum Stand der Technik finden sich zwei Anordnungen, welche Kollisionsgas in einem Flugzeit-Flugzeit-Massenspektrometer zur Erzeugung von Fragment-Ionen verwenden:
  • a) B. Spengler et al. (Journal of Physical Chemistry, Bd. 96, Seiten 9678 - 9684, 1992) untersuchen die Fragmentation des Moleküls Cytochrom C, indem sie verschiedene Gase bis zu einem Druck von 4 · 10-5 mbar in die Flugstrecke ihres Flugzeit-Flugzeit-Massenspektrometers einlassen.
  • b) T.J. Cornish et al. (Rapid Communications in Mass Spectrometry, Bd. 7, Seiten 1037 - 1040, 1993) untersuchen die Fragmentation von Molekülen in ihrem Flugzeit-Flugzeit-Massenspektrometer, indem sie mittels einer gepulsten Düse Argon oder Helium in eine Kollisionszelle einlassen, welche sich zwischen den beiden Flugstrecken ihrer Flugzeit-Flugzeit-Massenspektrometer-Anordnung befindet.
  • B. Spengler et al. haben hierbei die einfachste Ausführungsform gewählt. Das Kollisionsgas einfach in die Driftstrecke des Flugzeit-Massenspektrometers einzulassen, stellt die billigste, und am leichtesten zu realisierende Möglichkeit dar, Fragmente durch Stöße mit Gasmolekülen oder -Atomen zu erzeugen. Nachteilig ist allerdings, daß bei Helium, dem am häufigsten verwendeten Kollisionsgas nicht soviel Gas in die Driftstrecke eingelassen werden kann, so daß eine ausreichende Anzahl der Primärionen fragmentierbar wäre. Der Helium-Gasdruck, der notwendig für eine ausreichende Fragmentation wäre, würde elektrische Entladungen im Flugzeit-Massenspektrometer hervorrufen, welche seine Funktion beeinträchtigen würden, unter Umständen auch zur Zerstörung von Komponenten, insbesondere des Detektors führen könnten.
    Bei Vielkanalplatten, welche häufig in den Detektoren der Flugzeit-Massenspektrometer verwendet werden, wird als maximaler Arbeitsdruck 0.01 Pa (10-4 mBar) angegeben. Elektrische Entladungen an hochspannungsführenden Bauteilen können ab einem Druck von ca. 0.1 Pa (10-3 mBar) auftreten.
    T.J. Cornish et al. können auch mit Helium als Kollisionsgas ausreichende Fragmentation bei den zu untersuchenden Ionenmassen hervorrufen. Dies wird hier erreicht, indem sie mit einer gepulsten Düse einen Heliumstrahl hoher Dichte in die Kollisionszelle einlassen. Durch ausreichende Wartezeit bis zum nächsten Primärionenpuls wird ein Druckanstieg im Flugzeit-Massenspektrometer verhindert, der elektrische Entladungen bzw. Zerstörungen an Komponenten des Instruments hervorrufen könnte.
    Insbesondere dadurch, daß T.J. Cornish et al. die Austrittsöffnung ihrer gepulsten Düse mit einer Hohl-Nadel bis zur Kollisionszelle verlängern (Analytical Chemistry, Bd. 65, Seiten 1043 - 1047, 1993), erreichen sie einen hohen Gasdruck im Bereich der Kollisionszelle, wobei gleichzeitig der Druckanstieg im restlichen Bereich des Massenspektrometers sich in zulässigen Grenzen hält.
    Trotzdem ist in jedem Falle, um einen unzulässigen Druckanstieg zu vermeiden, eine niedrige Repetitionsfrequenz der Düse notwendig, was infolge der langen Wartezeiten zwischen Primärionenpulsen jedoch die Empfindlichkeit des Flugzeit-Massenspektrometers in kaum vertretbarer Weise herabgesetzt. Außerdem stellt eine gepulste Düse ein Bauteil mit großem Verschleiß dar, d.h. es wird ein öfteres Auswechseln erforderlich sein.
    Dementsprechend ist es Aufgabe der Erfindung, ein Flugzeit-Flugzeit-Massenspektrometer anzugeben, bei welchem mit vertretbarem technischen Aufwand und ohne Einbußen bei der Massenauflösung oder Empfindlichkeit ein ausreichender Druck des Kollisionsgases für die verschiedenen Möglichkeiten der Fragmentation zur Verfügung steht. Insbesondere ist es Aufgabe der Erfindung, bei einem zur Fragmentation ausreichendem Druck, keine Entladungen an den spannungsführenden Teilen des Massenspektrometers entstehen zu lassen.
    Diese Aufgaben werden durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
    Bei der erfindungsgemäßen Vorrichtung wird vor der Kammer, welche den Reflektor enthält, eine weitere Kammer, im folgenden Streukammer genannt, angeordnet, welche dann die Kollisionszelle enthält. Zwischen Streukammer und Reflektorkammer befinden sich eine oder mehrere Gas-Strömungsimpedanzen, wodurch in der Kollisionszelle eine sehr hohe Gasdichte erzielbar ist, bei gleichzeitig nur geringfügigem Druckanstieg in der Reflektorkammer.
    Hierbei werden die Streukammer und die Reflektorkammer in verschiedenen, separat gepumpten Raumbereichen angeordnet, die ihre jeweils eigenen Pumpstutzen aufweisen, und die durch eine Gas-Strömungsimpedanz verbunden sind. Damit der Gasdruck in der Reflektorkammer deutlich niedriger als in der Streukammer ist, muß der Gas-Leitwert der Verbindung zwischen den beiden Kammern deutlich niedriger sein als das Saugvermögen der Pumpe, welche an der Reflektorkammer pumpt.
    Im einfachsten Fall handelt es sich bei einer Gas-Strömungsimpedanz um eine Öffnung bestimmten Querschnitts in der Trennwand zwischen Bereichen verschiedenen Druckes. Rohre oder rohrähnliche Gebilde haben jedoch einen wesentlich kleineren Gasleitwert als Öffnungen gleichen Querschnitts und sind darum in vielen Fällen vorzuziehen. Vorteilhafterweise wird der Querschnitt einer Gas-Strömungsimpedanz immer so klein gewählt, daß der Ionenstrahl gerade eben nicht blockiert wird. So erzielt man maximale Empfindlichkeit des Massenspektrometers bei minimalem Gas-Leitwert der Strömungsimpedanz.
    Es ist auch möglich, die Streukammer und die Reflektorkammer in einer gemeinsamen Vakuumkammer aufzubauen, und durch Trennwände solcherart voneinander zu trennen, daß sich Raumgebiete ergeben, welche nur durch Öffnungen mit kleinem Gas-Leitwert verbunden sind, und für jeden dieser Bereiche einen eigenen Pumpstutzen vorsehen.
    Dadurch, daß die Kollisionszelle auf diese Weise nun vergleichbar nahe am Abzugsvolumen des Flugzeit-Massenspektrometers angeordnet ist, können auch bei großer Divergenz der Ionenbahnen die Querschnitte der Strömungsimpedanzen kleiner gewählt werden, ohne die Empfindlichkeit des Massenspektrometers herabzusetzen.
    Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
    Als besonders vorteilhafte Ausführungsformen der Erfindung gemäß den Unteransprüchen können somit bereits vorhandene Komponenten des Flugzeit-Flugzeit-Massenspektrometers als Gas-Strömungsimpedanzen verwendet werden, um einen möglichst großen Druckunterschied zwischen Reflektorkammer bzw. Ionenquellenkammer und der Streukammer bzw. der Kollisionszelle hervorzurufen.
    Im Folgenden wird nun anhand der in den Zeichnungen dargestellten Ausführungsbeispiele die Erfindung näher beschrieben und erläutert. Es zeigen:
  • Fig. 1 eine erste Ausführungsform der Erfindung.
  • Fig. 2 eine weitere Ausführungsform der Erfindung.
  • Fig. 3 eine Ausführungsform der Kollisionszelle mit integriertem Ionenselektor.
  • Fig. 1 zeigt eine erste Ausführungsform der erfindungsgemäßen Anordnung. Gezeigt sind die Ionenquellenkammer 1 mit der Ionenquelle 21, und dem darin enthaltenen Abzugsvolumen 11. Die Ionenquellenkammer ist mit einer Pumpe 6 verbunden, die ein Vakuum, vorzugsweise unterhalb 10-4 Pa (10-6 mBar) erzeugt. Zum Start-Zeitpunkt der Massenanalyse werden von dem zu untersuchenden Gas- bzw. Ionenstrahl 10 die am Detektor 34 nachzuweisenden Ionen aus dem Abzugsvolumen heraus auf ihrer Bahn 12 ins Flugzeit-Massenspektrometer gestartet.
    Kurz hinter der Ionenquellenkammer ist die Streukammer 2 angeordnet, verbunden über das Verbindungsrohr 4, welches gleichzeitig als Strömungsimpedanz zwischen beiden Kammern dienen kann. In der Streukammer befindet sich die Kollisionszelle 22. Über eine Gasleitung 24 und das Dosierventil 25 wird das Kollisionsgas zugeführt. Die Streukammer ist mit einer Pumpe 7 verbunden, die ein Vakuum, vorzugsweise unterhalb 10-3 Pa (10-5 mBar) erzeugt. Innerhalb der Kollisionszelle kann zusätzlich ein Ionenselektor 23 angeordnet sein.
    Über das Verbindungsrohr 5 ist die Reflektorkammer 3 angeschlossen. Um die eingeschossenen Ionen gegenüber Streufeldern des Detektors 34 abzuschirmen, kann man entweder ein Abschirmblech 31 zwischen der Ionenbahn und dem Detektor oder ein Einschußrohr 32 verwenden. Das Einschußrohr 32 wirkt mit dem Verbindungsrohr 5 zusammen als Gasströmungsimpedanz. Es kann, wie in Fig. 1 dargestellt, einen geringeren Querschnitt als das Verbindungsrohr 5 aufweisen. Es kann aber auch ein größerer Querschnitt gewählt werden. Durch Auswahl eines Einschußrohrs 32 mit vorgegebenem Querschnitt kann somit die Gasströmungsimpedanz in einem gewissen Bereich eingestellt werden. Die Ionen werden im Reflektor 33 um 180° umgelenkt und treffen auf einen Detektor 34, der sich in relativer Nähe zur Eintrittsöffnung der Reflektorkammer befindet. Die Reflektorkammer ist mit einer Pumpe 8 verbunden, die ein Vakuum, vorzugsweise unterhalb 10-4 Pa (10-6 mBar) erzeugt.
    Diese Anordnung schützt den Detektor und Reflektor vor zu hohen Drücken, wobei insbesondere der Detektor mit seinen Vielkanalplatten ein empfindliches Bauteil darstellt, an welchem zuerst Probleme durch einen Druck von mehr als 0.01 Pa (10-4 mBar) entstehen würden. In dieser Ausführungsform befindet sich die Ionenquelle in einer eigenen Kammer, die einen eigenen Pumpstutzen aufweist, welche über eine Verbindung mit kleinem Gas-Leitwert an die Streukammer angeschlossen ist. Da auch an der Ionenquelle mit ihren spannungsführenden Elektroden bei Drücken von mehr als 10-3 mBar Entladungen auftreten können, kann es notwendig sein, den Restgasdruck in der Ionenquellenkammer zu reduzieren, wenn die Kollisionszelle mit Stoßgas beaufschlagt wird.
    Fig. 2 zeigt eine zweite Ausführungsform der erfindungsgemäßen Anordnung. Hier sind die Ionenquellenkammer und die Streukammer in eine Vakummkammer integriert, die mittels einer Blende 26, die auch als Elektrode der Ionenquelle dienen kann, in die beiden Bereiche aufgetrennt wird, welche eigene Pumpstuzen aufweisen, und die nur durch eine Strömungsimpedanz von kleinem Gas-Leitwert verbunden sind. Diese Strömungsimpedanz kann auch in eine Elektrode der Ionenquelle bzw. in die Blende eingearbeitet sein.
    Innerhalb des Verbindungsrohrs 5 von der Streukammer 2 zur Reflektorkammer 3 bzw. des Einschußrohrs 32 in die Reflektorkammer ist ein Rohr 35 angeordnet. Dieses Rohr dient dazu, den Strömungswiderstand zwischen Streukammer und Reflektorkammer zu erhöhen. In der in Fig. 2 gezeigten Ausführungsform erstreckt es sich innerhalb sowohl des Verbindungsrohrs 5 als auch des Einschußrohrs 32 und hat demzufolge einen Durchmesser, der kleiner ist als die Durchmesser der beiden genannten Rohre. Das Rohr 35 kann sich aber auch nur innerhalb eines der beiden Rohre befinden. Das Rohr 35 bietet somit eine weitere Möglichkeit zur Einstellung der Gasströmungsimpedanz.
    Fig. 3 zeigt eine Ausführungsform einer Kollisionszelle 22 mit integriertem Ionenselektor. Der Ionenselektor 23 ist hier in der Ausführungsform eines Ionenschaltgitters dargestellt und wird von den Keramikringen 27 getragen. Die Kollisionszelle selbst besteht aus den beiden Hälften 22a, 22b, welche durch eine beliebige Vorrichtung zum Klemmen, die hier nicht gezeigt werden muß, mit den Keramikringen des Ionenselektors zusammengehalten werden können. Da die beiden Hälften der Kollisionszelle aus Metall gefertigt werden können, läßt sich diese gesamte Einheit auch auf einfache Weise innerhalb der Streukammer befestigen und positionieren. Das Kollisionsgas wird über die Gasleitung 24 zugeführt, die ihren Durchtritt nahe des Ionenselektors hat, welcher in der hier gezeigten Ausführung in einer zur ionenoptischen Achse senkrechten Ebene angeordnet ist, und die Kollisionszelle in zwei symmetrische Hälften teilt. Dadurch, daß das Kollisionsgas nahe der Mitte der Kollisionszelle zugeführt wird, wird in der Mitte der maximal mögliche Druck erzeugt, gleichzeitig bei minimaler Gasbelastung der Streukammer.

    Claims (14)

    1. Flugzeit-Flugzeit-Massenspektrometer, mit einer Ionenquelle(21), einem Reflektor(33), einem Detektor(34), und einer Kollisionszelle(22), in der ein Fremdgas enthalten ist, durch welches Primärionen infolge der Kollision mit Fremdatomen oder -molekülen in Fragment-Ionen zerfallen,
      dadurch gekennzeichnet,
      daß das Massenspektrometer in Bereiche unterschiedlichen Druckes aufgeteilt ist, von denen jeder einen Anschluß für eine Vakuumpumpe(6,7,8) aufweist,
      daß diese Bereiche über Gas-Strömungsimpedanzen(4,5,32,35) verbunden sind,
      daß einer dieser Bereiche durch eine, den Reflektor(33) enthaltende Reflektorkammer(3) gebildet ist,
      daß ein weiterer Bereich durch die, die Kollisionszelle(22) enthaltende Streukammer(2) gebildet wird, und
      daß dieser Bereich in Flugrichtung der Ionen vor der Reflektorkammer(3) angeordnet ist.
    2. Flugzeit-Flugzeit-Massenspektrometer nach Anspruch 1, dadurch gekennzeichnet, daß die Ionenquelle(21) in einer lonenquellen-Kammer(1) angeordnet ist, und die Ionenquellen-Kammer(1) und die Streukammer(2) jeweils eine eigenen Anschluß für eine Vakuumpumpe(6,7) aufweisen und über eine Gas-Strömungsimpedanz(4) miteinander verbunden sind, sodaß die Ionenquellen-Kammer(1) einen niedrigeren Druck als die Streukammer(2) aufweist, wenn die Kollisionszelle mit dem Fremdgas beaufschlagt ist.
    3. Flugzeit-Flugzeit-Massenspektrometer nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Reflektor und Detektor in ein- und demselben Bereich enthalten sind.
    4. Flugzeit-Flugzeit-Massenspektrometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Gasströmungsimpedanz(5,32,35) zwischen Streukammer(2) und Reflektorkammer(3) mindestens teilweise durch ein Verbindungsrohr(5) zwischen beiden Kammern gebildet ist.
    5. Flugzeit-Flugzeit-Massenspektrometer nach Anspruch 4, dadurch gekennzeichnet, daß sich das Verbindungsrohr(5) von einer Auslaßöffnung der Streukammer(2) bis zu einer Einlaßöffnung der Reflektorkammer(3) erstreckt und daß mindestens ein weiterer Teil der Gasströmungsimpedanz durch ein Einschußrohr(32) gebildet ist, das sich von der Einlaßöffnung aus in die Reflektorkammer(3) erstreckt.
    6. Flugzeit-Flugzeit-Massenspektrometer nach einem oder beiden der Ansprüche 4 und 5, dadurch gekennzeichnet, daß mindestens ein weiterer Teil der Gas-Strömungsimpedanz durch ein Rohr(35) gebildet ist, das
      kleineren Durchmesser als das Verbindungsrohr(5) und/oder das Einschußrohr(32) aufweist, und
      innerhalb eines oder beider dieser Rohre angeordnet ist.
    7. Flugzeit-Flugzeit-Massenspektrometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Ionenquelle(21) und Kollisionszelle(22) in ein- und derselben Vakuumkammer untergebracht sind, die jedoch durch eine innerhalb dieser Kammer angeordnente vakuumtechnische Trennwand(26) in zwei Teile(1,2) aufgeteilt ist, jeder dieser Teile(1,2) seinen eigenen Anschluß für eine Vakuumpumpe(6,7) aufweist, und daß eine Öffnung in der Trennwand(26) als Gas-Strömungsimpedanz zwischen den Teilen(1,2) wirkt.
    8. Flugzeit-Flugzeit-Massenspektrometer nach einem oder beiden der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Ionenquelle(21) Elektroden enthält und daß mindestens ein Teil der Trennwand(26) in eine der Elektroden integriert ist.
    9. Flugzeit-Flugzeit-Massenspektrometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß innerhalb der Kollisionszelle(22) ein Ionenselektor(23) angeordnet ist.
    10. Flugzeit-Flugzeit-Massenspektrometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Kollisionszelle(22) eine Eintritts-(22a) und eine Austritts-Strömungsimpedanz(22b) enthält, und der Ionenselektor(23) zwischen beiden Strömungsimpedanzen angeordnet ist.
    11. Flugzeit-Flugzeit-Massenspektrometer nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Halterung des Ionenselektors(23) durch die Eintritts- bzw. Austritts-Strömungsimpedanz(22a, 22b) der Kollisionszelle gebildet ist.
    12. Flugzeit-Flugzeit-Massenspektrometer nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß der Ionenselektor(23) in einer zur ionenoptischen Achse senkrechten Ebene angeordnet ist, und die Kollisionszelle in zwei symmetrische Hälften teilt.
    13. Flugzeit-Flugzeit-Massenspektrometer nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß der Ionenselektor ein Schaltgitter ist, welches aus zwei kammartigen, mittig ineinandergreifenden Strukturen besteht, bei denen die Zähne jeweils einer Kammstruktur elektrisch leitend miteinander verbunden sind.
    14. Flugzeit-Flugzeit-Massenspektrometer nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß der Ionenselektor aus zwei gegenüberliegenden Platten besteht, die parallel zur ionenoptischen Achse angeordnet sind.
    EP97112631A 1996-08-01 1997-07-23 Flugzeit-Flugzeit-Massenspektrometer mit Kollisionszelle Expired - Lifetime EP0822574B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19631161A DE19631161A1 (de) 1996-08-01 1996-08-01 Flugzeit-Flugzeit-Massenspektrometer mit differentiell gepumpter Kollisionszelle
    DE19631161 1996-08-01

    Publications (2)

    Publication Number Publication Date
    EP0822574A1 EP0822574A1 (de) 1998-02-04
    EP0822574B1 true EP0822574B1 (de) 2003-02-05

    Family

    ID=7801544

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97112631A Expired - Lifetime EP0822574B1 (de) 1996-08-01 1997-07-23 Flugzeit-Flugzeit-Massenspektrometer mit Kollisionszelle

    Country Status (5)

    Country Link
    US (1) US5854485A (de)
    EP (1) EP0822574B1 (de)
    AT (1) ATE232334T1 (de)
    CA (1) CA2209119A1 (de)
    DE (2) DE19631161A1 (de)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6331702B1 (en) * 1999-01-25 2001-12-18 University Of Manitoba Spectrometer provided with pulsed ion source and transmission device to damp ion motion and method of use
    USRE39099E1 (en) * 1998-01-23 2006-05-23 University Of Manitoba Spectrometer provided with pulsed ion source and transmission device to damp ion motion and method of use
    US6348688B1 (en) 1998-02-06 2002-02-19 Perseptive Biosystems Tandem time-of-flight mass spectrometer with delayed extraction and method for use
    DE19853189C1 (de) 1998-11-18 2000-04-13 Frech Oskar Gmbh & Co Heizeinrichtung für den Hals eines Gießbehälters, insbesondere für eine Warmkammer-Druckgießmaschine
    US6781117B1 (en) 2002-05-30 2004-08-24 Ross C Willoughby Efficient direct current collision and reaction cell
    US7196324B2 (en) 2002-07-16 2007-03-27 Leco Corporation Tandem time of flight mass spectrometer and method of use
    GB2390935A (en) 2002-07-16 2004-01-21 Anatoli Nicolai Verentchikov Time-nested mass analysis using a TOF-TOF tandem mass spectrometer
    KR100659261B1 (ko) 2006-02-07 2006-12-20 한국기초과학지원연구원 탠덤 푸리에변환 이온 사이클로트론 공명 질량 분석기
    RU2769377C1 (ru) * 2021-07-13 2022-03-30 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Времяпролетный масс-спектрометр

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3621240A (en) * 1969-05-27 1971-11-16 Franklin Gro Corp Apparatus and methods for detecting and identifying trace gases
    DE3920566A1 (de) * 1989-06-23 1991-01-10 Bruker Franzen Analytik Gmbh Ms-ms-flugzeit-massenspektrometer
    US5202563A (en) * 1991-05-16 1993-04-13 The Johns Hopkins University Tandem time-of-flight mass spectrometer
    DE4322102C2 (de) * 1993-07-02 1995-08-17 Bergmann Thorald Flugzeit-Massenspektrometer mit Gasphasen-Ionenquelle
    US5464985A (en) * 1993-10-01 1995-11-07 The Johns Hopkins University Non-linear field reflectron

    Also Published As

    Publication number Publication date
    EP0822574A1 (de) 1998-02-04
    DE59709254D1 (de) 2003-03-13
    ATE232334T1 (de) 2003-02-15
    US5854485A (en) 1998-12-29
    DE19631161A1 (de) 1998-02-12
    CA2209119A1 (en) 1998-02-01

    Similar Documents

    Publication Publication Date Title
    DE19941670B4 (de) Massenspektrometer und Verfahren zum Betreiben eines Massenspektrometers
    DE3750928T2 (de) Laufzeit-Massenspektrometrie.
    DE1798021B2 (de) Einrichtung zur buendelung eines primaer-ionenstrahls eines mikroanalysators
    EP0822574B1 (de) Flugzeit-Flugzeit-Massenspektrometer mit Kollisionszelle
    DE10162267B4 (de) Reflektor für Flugzeitmassenspektrometer mit orthogonalem Ioneneinschuss
    DE19806018B4 (de) Analysegerät mit Ionenfalle-Massenspektrometer
    DE2439711B2 (de) Ionenquelle
    DE2701606A1 (de) System zum verarbeiten positiver und negativer ionen im massenspektrometer
    DE19635645A1 (de) Hochauflösende Ionendetektion für lineare Flugzeitmassenspektrometer
    DE102005023590A1 (de) ICP-Massenspektrometer
    DE68901731T2 (de) Massenspektrometer.
    EP0633602B1 (de) Flugzeit-Massenspektrometer mit Gasphasen-Ionenquelle, mit hoher Empfindlichkeit und grossem dynamischem Bereich
    DE69121463T2 (de) Ionenbündelvorrichtung
    EP0221339B1 (de) Ionen-Zyklotron-Resonanz-Spektrometer
    EP0000865B1 (de) Ionenquelle mit einer Ionisationskammer zur chemischen Ionisierung
    DE1598392A1 (de) Vierpol-Massenspektrograph
    DE4322101C2 (de) Ionenquelle für Flugzeit-Massenspektrometer
    DE69629536T2 (de) Verfahren und Vorrichtung zur Massenanalyse einer gelösten Probe
    EP0822573A1 (de) Kollisionszelle mit integriertem Ionenselektor für Flugzeit-Flugzeit-Massenspektrometer
    DE2752933A1 (de) Elektronenmikroskop
    DE1598150B2 (de)
    DE102022105233B4 (de) Vorrichtung und Verfahren zur Erzeugung kurzer Pulse geladener Teilchen
    EP0087152A2 (de) Sekundärelektronen-Spektrometer und Verfahren zu seinem Betrieb
    DE2045955A1 (de) Massenspektrometer
    DE19610521A1 (de) Verfahren zur Massenanalyse von hochangeregten Teilchen

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT CH DE FR GB LI

    17P Request for examination filed

    Effective date: 19980721

    AKX Designation fees paid

    Free format text: AT CH DE FR GB LI

    RBV Designated contracting states (corrected)

    Designated state(s): AT CH DE FR GB LI

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 20020121

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): AT CH DE FR GB LI

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59709254

    Country of ref document: DE

    Date of ref document: 20030313

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030723

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030723

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030731

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030731

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20031106

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040203

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20030723

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040331

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST