EP0822574B1 - Flugzeit-Flugzeit-Massenspektrometer mit Kollisionszelle - Google Patents
Flugzeit-Flugzeit-Massenspektrometer mit Kollisionszelle Download PDFInfo
- Publication number
- EP0822574B1 EP0822574B1 EP97112631A EP97112631A EP0822574B1 EP 0822574 B1 EP0822574 B1 EP 0822574B1 EP 97112631 A EP97112631 A EP 97112631A EP 97112631 A EP97112631 A EP 97112631A EP 0822574 B1 EP0822574 B1 EP 0822574B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- chamber
- mass spectrometer
- collision
- time
- flight mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/06—Electron- or ion-optical arrangements
- H01J49/061—Ion deflecting means, e.g. ion gates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/004—Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
- H01J49/0045—Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction
- H01J49/005—Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction by collision with gas, e.g. by introducing gas or by accelerating ions with an electric field
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/40—Time-of-flight spectrometers
Definitions
- the invention relates to a time-of-flight time-of-flight mass spectrometer according to the preamble of claim 1.
- time-of-flight mass spectrometers there is generally at least one two flight routes, on which ions by their different Flight times are separated according to their mass. Thereby always forms End location of the previous flight route the start location of the following one.
- a specific ion mass is usually determined by means of the first flight route preselected, either before or after the selection of a is subjected to any interaction.
- This interaction can e.g. the action of a laser beam, the crossing with a second ion beam or flying through a cell with collision gas his.
- the fragments themselves can undergo further interaction be subjected to, after flying through the second Filter out the flight distance a certain ion mass, its fragments you then determine in the third flight route.
- the maximum working pressure is 0.01 Pa (10 -4 mBar). Electrical discharges on high-voltage components can occur from a pressure of approx. 0.1 Pa (10 -3 mBar).
- T.J. Cornish et al. can also suffice with helium as the collision gas Cause fragmentation in the ion masses to be examined.
- This is achieved here by using a pulsed nozzle Let the high-density helium beam into the collision cell. By sufficient Waiting time until the next primary ion pulse becomes an increase in pressure Prevents electrical discharges in the time-of-flight mass spectrometer or cause damage to components of the instrument could.
- a sufficient for fragmentation Pressure no discharges on the live parts of the mass spectrometer.
- the device according to the invention which is in front of the chamber contains the reflector, another chamber, in the following scattering chamber called, arranged, which then contains the collision cell.
- another chamber in the following scattering chamber called, arranged, which then contains the collision cell.
- the collision cell Between Scattering chamber and reflector chamber are one or more Gas flow impedances, which in the collision cell a very high gas density can be achieved with only a slight increase in pressure in the reflector chamber.
- the scattering chamber and the reflector chamber are separately pumped room areas arranged their each have their own pump nozzle, and that by a gas flow impedance are connected. So that the gas pressure in the reflector chamber is significantly lower than in the scattering chamber, the gas conductivity of the Connection between the two chambers may be significantly lower than that Pumping speed of the pump, which pumps on the reflector chamber.
- it is a gas flow impedance around an opening of certain cross section in the partition between Areas of different pressure.
- the cross-section of a gas flow impedance is always so small chosen that the ion beam is just not blocked. So achieved to get maximum sensitivity of the mass spectrometer with minimal Gas conductance of flow impedance.
- the subclaims can therefore already exist components time-of-flight mass spectrometer as gas flow impedances used to have the greatest possible pressure difference between Reflector chamber or ion source chamber and the scattering chamber or the collision cell.
- Fig. 1 shows a first embodiment of the arrangement according to the invention. Shown are the ion source chamber 1 with the ion source 21 and the withdrawal volume 11 contained therein.
- the ion source chamber is connected to a pump 6 which generates a vacuum, preferably below 10 -4 Pa (10 -6 mBar).
- the gas or ion beam 10 to be examined starts the ions to be detected on the detector 34 from the withdrawal volume on their path 12 into the time-of-flight mass spectrometer.
- the scattering chamber 2 is arranged shortly behind the ion source chamber, connected via the connecting tube 4, which can simultaneously serve as flow impedance between the two chambers.
- the collision cell 22 is located in the scattering chamber.
- the collision gas is supplied via a gas line 24 and the metering valve 25.
- the scattering chamber is connected to a pump 7, which generates a vacuum, preferably below 10 -3 Pa (10 -5 mBar).
- An ion selector 23 can additionally be arranged within the collision cell.
- the reflector chamber 3 is connected via the connecting tube 5.
- a shielding plate 31 between the ion path and the detector or a shot tube 32 In order to shield the injected ions from stray fields of the detector 34, one can either use a shielding plate 31 between the ion path and the detector or a shot tube 32.
- the bullet tube 32 cooperates with the connecting tube 5 as a gas flow impedance. As shown in FIG. 1, it can have a smaller cross section than the connecting pipe 5. However, a larger cross section can also be selected. By selecting a shot tube 32 with a predetermined cross section, the gas flow impedance can thus be set in a certain range.
- the ions are deflected by 180 ° in the reflector 33 and hit a detector 34 which is located in relative proximity to the inlet opening of the reflector chamber.
- the reflector chamber is connected to a pump 8 which generates a vacuum, preferably below 10 -4 Pa (10 -6 mBar).
- the ion source is located in its own chamber, which has its own pump nozzle, which is connected to the scattering chamber via a connection with a small gas conductance. Since discharges can also occur at the ion source with its live electrodes at pressures of more than 10 -3 mbar, it may be necessary to reduce the residual gas pressure in the ion source chamber when the collision cell is charged with collision gas.
- Fig. 2 shows a second embodiment of the arrangement according to the invention.
- the ion source chamber and the scattering chamber are integrated in a vacuum chamber, which is separated by means of an orifice 26, which can also serve as an electrode of the ion source, into the two areas, which have their own pump stubs, and which only have a flow impedance of low gas conductance are connected.
- This flow impedance can also be incorporated into an electrode of the ion source or into the diaphragm.
- a pipe 35 is arranged within the connecting tube 5 from the scattering chamber 2 to the reflector chamber 3 or the bullet tube 32 in the reflector chamber.
- This pipe is used for flow resistance between the scattering chamber and the reflector chamber.
- it extends within both of the connecting tube 5 and the bullet tube 32 and consequently has a diameter that is smaller than the diameter of the two mentioned pipes.
- the tube 35 can also only within one of the two pipes. The tube 35 thus offers another Possibility to adjust the gas flow impedance.
- FIG. 3 shows an embodiment of a collision cell 22 with an integrated ion selector.
- the ion selector 23 is shown here in the embodiment of an ion switching grid and is carried by the ceramic rings 27.
- the collision cell itself consists of the two halves 22a, 22b, which can be held together with the ceramic rings of the ion selector by any device for clamping, which need not be shown here. Since the two halves of the collision cell can be made of metal, this entire unit can also be easily attached and positioned within the scattering chamber.
- the collision gas is supplied via the gas line 24, which has its passage near the ion selector, which in the embodiment shown here is arranged in a plane perpendicular to the ion-optical axis, and divides the collision cell into two symmetrical halves. Because the collision gas is supplied near the center of the collision cell, the maximum possible pressure is generated in the center, at the same time with a minimal gas load on the scattering chamber.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Description
- Sind die Flugstrecken orthogonal zueinander angeordnet, so kann die Selektion am Ende der einen bzw. am Anfang der folgenden Flugstrecke dadurch bewirkt werden, daß zum Ankunfts-Zeitpunkt einer bestimmten Ionenmasse die an diesem Ort plazierte lonenquelle des folgenden Flugzeit-Massenspektrometers angeschaltet wird, was die Ablenkung und den Einschuß genau dieser Ionenmasse in das folgende Flugzeit-Massenspektrometer bewirkt.
- Sind die Flugstrecken kolinear zueinander angeordnet, so kann am
Ende der einen bzw. am Anfang der folgenden Flugzstrecke eine
Vorrichtung zum gepulsten Ablenken der Ionen vorgesehen werden:
- a) Eine solche Vorrichtung kann z.B. aus zwei zueinander parallel angeordneten Platten bestehen, welche normalerweise auf unterschiedlichen Potentialen liegen, wodurch die hindurchfliegenden Ionen abgelenkt werden. Werden diese Platten nun kurzzeitig auf gleiches Potential gelegt, so kann nur die Ionenmasse passieren, welche sich gerade kurz vor den Platten befindet und während der Passage kein ablenkendes Feld spürt.
- b) Eine solche Vorrichtung kann auch durch zwei kammartige Strukturen bewirkt werden, deren Zähne aus feinen Drähten bestehen, wobei die Zähne der einander gegenüberliegenden kammartigen Strukturen mittig ineinander greifen und alle zu jeweils einer kammartigen Struktur gehörenden Zähne elektrisch leitend miteinander verbunden sind. Werden diese beiden Strukturen auf Potentiale gelegt, die in ihrem Wert symmetrisch zum Potential der Driftstrecke sind, so heben sich die von den beiden kammartigen Strukturen erzeugten elektrischen Felder schon in sehr kurzem Abstand auf. Ein solches Ionenschaltgitter kann schon mit vergleichsweise geringen Spannungen durchtretende Ionen so stark ablenken, daß sie den Bahnbereich der Flugstrecken verlassen. Außerdem beeinflußt dieses Schaltgitter nur die Ionen in seiner allernächsten Nähe, was eine Selektion mit hoher Massenauflösung der gewünschten Ionenmasse bewirkt. Ein solches Ionenschaltgitter ist beispielsweise in der Veröffentlichung von D.J. Beussman et al. beschrieben. (Analytical Chemistry, Bd. 67, Seiten 3952 - 3957,1995)
Claims (14)
- Flugzeit-Flugzeit-Massenspektrometer, mit einer Ionenquelle(21), einem Reflektor(33), einem Detektor(34), und einer Kollisionszelle(22), in der ein Fremdgas enthalten ist, durch welches Primärionen infolge der Kollision mit Fremdatomen oder -molekülen in Fragment-Ionen zerfallen,
dadurch gekennzeichnet,daß das Massenspektrometer in Bereiche unterschiedlichen Druckes aufgeteilt ist, von denen jeder einen Anschluß für eine Vakuumpumpe(6,7,8) aufweist,daß diese Bereiche über Gas-Strömungsimpedanzen(4,5,32,35) verbunden sind,daß einer dieser Bereiche durch eine, den Reflektor(33) enthaltende Reflektorkammer(3) gebildet ist,daß ein weiterer Bereich durch die, die Kollisionszelle(22) enthaltende Streukammer(2) gebildet wird, unddaß dieser Bereich in Flugrichtung der Ionen vor der Reflektorkammer(3) angeordnet ist. - Flugzeit-Flugzeit-Massenspektrometer nach Anspruch 1, dadurch gekennzeichnet, daß die Ionenquelle(21) in einer lonenquellen-Kammer(1) angeordnet ist, und die Ionenquellen-Kammer(1) und die Streukammer(2) jeweils eine eigenen Anschluß für eine Vakuumpumpe(6,7) aufweisen und über eine Gas-Strömungsimpedanz(4) miteinander verbunden sind, sodaß die Ionenquellen-Kammer(1) einen niedrigeren Druck als die Streukammer(2) aufweist, wenn die Kollisionszelle mit dem Fremdgas beaufschlagt ist.
- Flugzeit-Flugzeit-Massenspektrometer nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Reflektor und Detektor in ein- und demselben Bereich enthalten sind.
- Flugzeit-Flugzeit-Massenspektrometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Gasströmungsimpedanz(5,32,35) zwischen Streukammer(2) und Reflektorkammer(3) mindestens teilweise durch ein Verbindungsrohr(5) zwischen beiden Kammern gebildet ist.
- Flugzeit-Flugzeit-Massenspektrometer nach Anspruch 4, dadurch gekennzeichnet, daß sich das Verbindungsrohr(5) von einer Auslaßöffnung der Streukammer(2) bis zu einer Einlaßöffnung der Reflektorkammer(3) erstreckt und daß mindestens ein weiterer Teil der Gasströmungsimpedanz durch ein Einschußrohr(32) gebildet ist, das sich von der Einlaßöffnung aus in die Reflektorkammer(3) erstreckt.
- Flugzeit-Flugzeit-Massenspektrometer nach einem oder beiden der Ansprüche 4 und 5, dadurch gekennzeichnet, daß mindestens ein weiterer Teil der Gas-Strömungsimpedanz durch ein Rohr(35) gebildet ist, daskleineren Durchmesser als das Verbindungsrohr(5) und/oder das Einschußrohr(32) aufweist, undinnerhalb eines oder beider dieser Rohre angeordnet ist.
- Flugzeit-Flugzeit-Massenspektrometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Ionenquelle(21) und Kollisionszelle(22) in ein- und derselben Vakuumkammer untergebracht sind, die jedoch durch eine innerhalb dieser Kammer angeordnente vakuumtechnische Trennwand(26) in zwei Teile(1,2) aufgeteilt ist, jeder dieser Teile(1,2) seinen eigenen Anschluß für eine Vakuumpumpe(6,7) aufweist, und daß eine Öffnung in der Trennwand(26) als Gas-Strömungsimpedanz zwischen den Teilen(1,2) wirkt.
- Flugzeit-Flugzeit-Massenspektrometer nach einem oder beiden der Ansprüche 1 und 2, dadurch gekennzeichnet, daß die Ionenquelle(21) Elektroden enthält und daß mindestens ein Teil der Trennwand(26) in eine der Elektroden integriert ist.
- Flugzeit-Flugzeit-Massenspektrometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß innerhalb der Kollisionszelle(22) ein Ionenselektor(23) angeordnet ist.
- Flugzeit-Flugzeit-Massenspektrometer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Kollisionszelle(22) eine Eintritts-(22a) und eine Austritts-Strömungsimpedanz(22b) enthält, und der Ionenselektor(23) zwischen beiden Strömungsimpedanzen angeordnet ist.
- Flugzeit-Flugzeit-Massenspektrometer nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Halterung des Ionenselektors(23) durch die Eintritts- bzw. Austritts-Strömungsimpedanz(22a, 22b) der Kollisionszelle gebildet ist.
- Flugzeit-Flugzeit-Massenspektrometer nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß der Ionenselektor(23) in einer zur ionenoptischen Achse senkrechten Ebene angeordnet ist, und die Kollisionszelle in zwei symmetrische Hälften teilt.
- Flugzeit-Flugzeit-Massenspektrometer nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß der Ionenselektor ein Schaltgitter ist, welches aus zwei kammartigen, mittig ineinandergreifenden Strukturen besteht, bei denen die Zähne jeweils einer Kammstruktur elektrisch leitend miteinander verbunden sind.
- Flugzeit-Flugzeit-Massenspektrometer nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß der Ionenselektor aus zwei gegenüberliegenden Platten besteht, die parallel zur ionenoptischen Achse angeordnet sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19631161A DE19631161A1 (de) | 1996-08-01 | 1996-08-01 | Flugzeit-Flugzeit-Massenspektrometer mit differentiell gepumpter Kollisionszelle |
DE19631161 | 1996-08-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0822574A1 EP0822574A1 (de) | 1998-02-04 |
EP0822574B1 true EP0822574B1 (de) | 2003-02-05 |
Family
ID=7801544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97112631A Expired - Lifetime EP0822574B1 (de) | 1996-08-01 | 1997-07-23 | Flugzeit-Flugzeit-Massenspektrometer mit Kollisionszelle |
Country Status (5)
Country | Link |
---|---|
US (1) | US5854485A (de) |
EP (1) | EP0822574B1 (de) |
AT (1) | ATE232334T1 (de) |
CA (1) | CA2209119A1 (de) |
DE (2) | DE19631161A1 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6331702B1 (en) * | 1999-01-25 | 2001-12-18 | University Of Manitoba | Spectrometer provided with pulsed ion source and transmission device to damp ion motion and method of use |
USRE39099E1 (en) * | 1998-01-23 | 2006-05-23 | University Of Manitoba | Spectrometer provided with pulsed ion source and transmission device to damp ion motion and method of use |
US6348688B1 (en) | 1998-02-06 | 2002-02-19 | Perseptive Biosystems | Tandem time-of-flight mass spectrometer with delayed extraction and method for use |
DE19853189C1 (de) | 1998-11-18 | 2000-04-13 | Frech Oskar Gmbh & Co | Heizeinrichtung für den Hals eines Gießbehälters, insbesondere für eine Warmkammer-Druckgießmaschine |
US6781117B1 (en) | 2002-05-30 | 2004-08-24 | Ross C Willoughby | Efficient direct current collision and reaction cell |
US7196324B2 (en) | 2002-07-16 | 2007-03-27 | Leco Corporation | Tandem time of flight mass spectrometer and method of use |
GB2390935A (en) | 2002-07-16 | 2004-01-21 | Anatoli Nicolai Verentchikov | Time-nested mass analysis using a TOF-TOF tandem mass spectrometer |
KR100659261B1 (ko) | 2006-02-07 | 2006-12-20 | 한국기초과학지원연구원 | 탠덤 푸리에변환 이온 사이클로트론 공명 질량 분석기 |
RU2769377C1 (ru) * | 2021-07-13 | 2022-03-30 | Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук | Времяпролетный масс-спектрометр |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3621240A (en) * | 1969-05-27 | 1971-11-16 | Franklin Gro Corp | Apparatus and methods for detecting and identifying trace gases |
DE3920566A1 (de) * | 1989-06-23 | 1991-01-10 | Bruker Franzen Analytik Gmbh | Ms-ms-flugzeit-massenspektrometer |
US5202563A (en) * | 1991-05-16 | 1993-04-13 | The Johns Hopkins University | Tandem time-of-flight mass spectrometer |
DE4322102C2 (de) * | 1993-07-02 | 1995-08-17 | Bergmann Thorald | Flugzeit-Massenspektrometer mit Gasphasen-Ionenquelle |
US5464985A (en) * | 1993-10-01 | 1995-11-07 | The Johns Hopkins University | Non-linear field reflectron |
-
1996
- 1996-08-01 DE DE19631161A patent/DE19631161A1/de not_active Ceased
-
1997
- 1997-07-23 EP EP97112631A patent/EP0822574B1/de not_active Expired - Lifetime
- 1997-07-23 DE DE59709254T patent/DE59709254D1/de not_active Expired - Fee Related
- 1997-07-23 AT AT97112631T patent/ATE232334T1/de not_active IP Right Cessation
- 1997-07-24 US US08/903,244 patent/US5854485A/en not_active Expired - Fee Related
- 1997-07-29 CA CA002209119A patent/CA2209119A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP0822574A1 (de) | 1998-02-04 |
DE59709254D1 (de) | 2003-03-13 |
ATE232334T1 (de) | 2003-02-15 |
US5854485A (en) | 1998-12-29 |
DE19631161A1 (de) | 1998-02-12 |
CA2209119A1 (en) | 1998-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19941670B4 (de) | Massenspektrometer und Verfahren zum Betreiben eines Massenspektrometers | |
DE3750928T2 (de) | Laufzeit-Massenspektrometrie. | |
DE1798021B2 (de) | Einrichtung zur buendelung eines primaer-ionenstrahls eines mikroanalysators | |
EP0822574B1 (de) | Flugzeit-Flugzeit-Massenspektrometer mit Kollisionszelle | |
DE10162267B4 (de) | Reflektor für Flugzeitmassenspektrometer mit orthogonalem Ioneneinschuss | |
DE19806018B4 (de) | Analysegerät mit Ionenfalle-Massenspektrometer | |
DE2439711B2 (de) | Ionenquelle | |
DE2701606A1 (de) | System zum verarbeiten positiver und negativer ionen im massenspektrometer | |
DE19635645A1 (de) | Hochauflösende Ionendetektion für lineare Flugzeitmassenspektrometer | |
DE102005023590A1 (de) | ICP-Massenspektrometer | |
DE68901731T2 (de) | Massenspektrometer. | |
EP0633602B1 (de) | Flugzeit-Massenspektrometer mit Gasphasen-Ionenquelle, mit hoher Empfindlichkeit und grossem dynamischem Bereich | |
DE69121463T2 (de) | Ionenbündelvorrichtung | |
EP0221339B1 (de) | Ionen-Zyklotron-Resonanz-Spektrometer | |
EP0000865B1 (de) | Ionenquelle mit einer Ionisationskammer zur chemischen Ionisierung | |
DE1598392A1 (de) | Vierpol-Massenspektrograph | |
DE4322101C2 (de) | Ionenquelle für Flugzeit-Massenspektrometer | |
DE69629536T2 (de) | Verfahren und Vorrichtung zur Massenanalyse einer gelösten Probe | |
EP0822573A1 (de) | Kollisionszelle mit integriertem Ionenselektor für Flugzeit-Flugzeit-Massenspektrometer | |
DE2752933A1 (de) | Elektronenmikroskop | |
DE1598150B2 (de) | ||
DE102022105233B4 (de) | Vorrichtung und Verfahren zur Erzeugung kurzer Pulse geladener Teilchen | |
EP0087152A2 (de) | Sekundärelektronen-Spektrometer und Verfahren zu seinem Betrieb | |
DE2045955A1 (de) | Massenspektrometer | |
DE19610521A1 (de) | Verfahren zur Massenanalyse von hochangeregten Teilchen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE FR GB LI |
|
17P | Request for examination filed |
Effective date: 19980721 |
|
AKX | Designation fees paid |
Free format text: AT CH DE FR GB LI |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT CH DE FR GB LI |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20020121 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT CH DE FR GB LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59709254 Country of ref document: DE Date of ref document: 20030313 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030723 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030723 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030731 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20031106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040203 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030723 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |