EP0633602B1 - Spectromètre de masse à temps de vol pourvu d'une source d'ions en phase gaseuze présentant une sensibilité élevée ainsi qu'une large gamme dynamique - Google Patents

Spectromètre de masse à temps de vol pourvu d'une source d'ions en phase gaseuze présentant une sensibilité élevée ainsi qu'une large gamme dynamique Download PDF

Info

Publication number
EP0633602B1
EP0633602B1 EP94110273A EP94110273A EP0633602B1 EP 0633602 B1 EP0633602 B1 EP 0633602B1 EP 94110273 A EP94110273 A EP 94110273A EP 94110273 A EP94110273 A EP 94110273A EP 0633602 B1 EP0633602 B1 EP 0633602B1
Authority
EP
European Patent Office
Prior art keywords
ion source
time
flight mass
spectrometer
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94110273A
Other languages
German (de)
English (en)
Other versions
EP0633602A2 (fr
EP0633602A3 (fr
Inventor
Thorald Dr. Bergmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0633602A2 publication Critical patent/EP0633602A2/fr
Publication of EP0633602A3 publication Critical patent/EP0633602A3/fr
Application granted granted Critical
Publication of EP0633602B1 publication Critical patent/EP0633602B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0422Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for gaseous samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/403Time-of-flight spectrometers characterised by the acceleration optics and/or the extraction fields

Definitions

  • the invention relates to a time-of-flight mass spectrometer with a gas phase ion source according to the preamble of claim 1.
  • time-of-flight mass analysis there is a start time from which started a group of ions in the time-of-flight mass spectrometer becomes. At the end of a flight route, the time is measured needed each incoming ion and from this the mass of the concerned Ions determined.
  • a gas phase ion source of a time-of-flight mass spectrometer is understood as the withdrawal volume the spatial area of the ion source, from which, starting from the start, ion orbits to the Guide the surface of the detector of the time-of-flight mass spectrometer.
  • the generated electrons are detected.
  • the deduction volume for the ions does not have to match the withdrawal volume for the electrons be congruent. However, these two volumes will at least be different partially overlap.
  • the electrons are in the opposite Subtracted towards the ions from the source.
  • the first acceleration phase of those arriving at the detector Ions instead.
  • the ions in the ion source are up to the top speed accelerates.
  • the ion source electrodes for focusing the ions arriving at the detector contains. But it may also be that the electrodes for focusing are arranged separately, i.e. the ions arriving at the detector Leave source in a direction and location distribution, which for the further transport through the mass spectrometer is unsuitable, and for this reason a separate focus is still necessary.
  • Another important quality feature of a time-of-flight mass spectrometer is its dynamic range.
  • the dynamic range Factor meant by which the signal of a certain mass is smaller than the signal of other masses may be without going through at wrong times incoming ions of these other masses to be covered.
  • time-of-flight mass spectrometer To make the time-of-flight mass spectrometer highly sensitive so it is necessary to have a high particle density in the discharge volume to reach. Around a high dynamic range of the time-of-flight mass spectrometer to cause, the lowest possible residual gas pressure be achieved. If both quality features are to be optimized, This is how time-of-flight mass spectrometry arises in many applications the problem with gas phase particles that a high particle density in the withdrawal volume also a high load with undesired gas ballast, which increases the residual gas pressure means.
  • time-of-flight mass spectrometer is divided into several Areas of different pressure divided by the sample introduction, i.e. the generation of the gas or ion beam to be examined, to the ion source and along the flight path in the time-of-flight mass spectrometer are sorted by decreasing pressure.
  • the gas or ion beam to be examined nor the ions on it Path from the withdrawal volume to the detector are hindered adjacent areas connected by gas flow impedances. This The procedure allows a high particle density in the discharge volume, and nevertheless a low residual gas pressure or low impact probability on the flight path of the time-of-flight mass spectrometer.
  • Gas flow impedances are to be understood here as small openings Cross-section, which are large enough to keep the ions on their orbits to pass to the detector, but their conductance for gases is essential is lower than the pumping capacity of the pump in the area with the lower pressure.
  • Skimmers are conical structures with an opening in the tip, which the Gas flow opposes. Skimmers have a similar gas conductance as openings same cross section and are preferable if the gas flow has a high density.
  • WO-A-92 04728 an apparatus for the analysis of chemical species is used a supersonic ion beam and a time-of-flight mass spectrometer, in which are two areas with different pressures from each other by a skimmer are separated and the ion source is arranged in one of these areas and in the other Area the time-of-flight mass spectrometer is arranged.
  • the same arrangement is published in the publication by C.H. Sin et al. in Analytical Chemistry, Vol. 63, No. 24, pages 2897-2900.
  • the invention is accordingly based on the object of a time-of-flight mass spectrometer specify with gas phase ion source, which is equally high sensitivity and has a high dynamic range.
  • the device according to the invention is in two or more areas of different pressure split, with gas flow impedances connecting two areas.
  • the gas flow impedance (s) is / are to be as close as possible to the withdrawal volume approach, integrated directly into the electrodes of the ion source. This has the intent part that a maximum particle density in the withdrawal volume with a minimum impact probability can be achieved in the flight path of the mass spectrometer.
  • Fig. 1 shows the simplest possibility of the gas flow impedance in one of the electrodes to integrate.
  • the accelerating field will defined here by a repeller electrode (1) and an acceleration electrode (2). These two electrodes define this in this example accelerating field of the ion source.
  • a flow impedance (3) is only integrated into the acceleration electrode (2).
  • the acceleration electrode separates the area of the acceleration field with the higher pressure p 1 from the area of the flight path in the time-of-flight mass spectrometer with lower pressure p 2.
  • the gas flow impedance can, for example, as shown in FIG. 1 and in claim 2, to be a pinhole.
  • the gas or ion beam (10) to be examined can be shot into the ion source perpendicular to the direction of acceleration. Ionized particles, which are in the withdrawal volume (11) at the start time, are accelerated along the drawn paths (12) into the time-of-flight mass spectrometer.
  • the direction of acceleration is understood here to be the direction in which the ions are then accelerated to at the start time.
  • the orbits (12) of the ions are divergent according to the gas flow impedance (3) and have to be focused afterwards. This can be achieved by already known lens designs and is therefore not described in more detail here.
  • Fig. 2 corresponds essentially to Fig. 1 , instead of a pinhole, the flow impedance (3) is formed by a tube.
  • a pipe has a much lower gas conductivity than a pinhole with the same cross-section.
  • Fig. 3 shows an example of an embodiment according to claim 14 or 16.
  • the additional electrode (4) between the repeller electrode (1) and the acceleration electrode (2) serves to the ions on parallel paths (12) by the flow impedance (3) to steer.
  • the electrode (4) It is also possible to use the electrode (4) to be broken down into two parts, one closer to the repeller electrode (1), and one is closer to the accelerating electrode (2). The beams can be aimed between these two parts.
  • Fig. 4 This arrangement is shown in Fig. 4 , which thus also gives an example according to claims 14 and 16, respectively.
  • the two electrodes (4, 5) between the repeller electrode (1) and the acceleration electrode (2) serve to direct the ions on intersecting paths (12) through the flow impedance (3). Under certain circumstances, it may be advantageous to add further electrodes behind the gas flow impedance. It is also possible to choose different radii to the axis of the ion source for the two additional electrodes (4, 5).
  • a transverse electric field can be created , also called the deflection field. This deflection field can change the transverse velocity components of the charged particles.
  • the has cylindrical symmetry Training the deflection electrodes the further advantage that the Deflection electrodes can initially be manufactured as a turned part. In in a subsequent operation, they can then be broken down into two parts become.
  • Fig. 5 shows an embodiment according to claim 20.
  • the generated electrons are drawn off along the shown electron paths (13) by a gas flow impedance (6) in the repeller electrode (1). Due to the gas flow impedance (6) along the electron tracks (13), as seen in FIG. 5 , to the left of the repeller electrode (1), the pressure p 3 is lower than the pressure p 1 in the acceleration path.
  • the electron beam (13) is divergent according to the gas flow impedance (6) and must then be focused. This can be achieved by already known lens designs and is therefore not described in more detail here.
  • FIG. 6 shows an embodiment according to claim 10.
  • the gas or ion beam (10) to be examined is injected into the ion source parallel to the direction of acceleration by the skimmer (6).
  • the pressure p 3 in front of the skimmer is greater than the pressure p 1 in the acceleration section.
  • Electrodes that separate partitions between areas simultaneously Pressure must be connected to the housing, to be able to fulfill their function. If the electrode in question Ground or housing potential, this is easy. If an electrode, which are simultaneously a partition between different areas To represent pressure, is not at ground potential, must be between an insulator can be provided for this electrode and the housing. If this insulator is glued flat between the electrode and the housing problems, e.g. by degassing the adhesive, gas inclusions between insulator and electrode, etc. arise.
  • FIG. 7 shows a possible solution if an electrode, which is also intended to represent a partition between areas of different pressure, is not at ground potential.
  • the electrode (2) and the housing wall (31) overlap, but do not touch.
  • the distance between the two, as shown here by way of example, is determined by a sapphire ball (32).
  • the gap between the electrode (2) and the housing wall (31) should be chosen so small that the conductance for gases is significantly smaller than the pumping capacity of the pump in the area with the lower pressure. It is understood that the electrode (2) must be pressed against the housing wall. This can be brought about by already known methods, which is why it is not dealt with in more detail here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Claims (20)

  1. Spectromètre de masse à temps de vol,
    ayant plusieurs zones où règnent des pressions différentes,
    les zones voisines les unes des autres étant reliées par des impédances d'écoulement de gaz (3, 6),
    équipé d'une source d'ions en phase gazeuse,
    cette source d'ions étant délimitée par des électrodes (1, 2, 4, 5) qui servent à créer un champ électrique d'accélération des ions,
    et équipé d'une électrode réflectrice (1),
    caractérisé en ce
    qu'au moins l'une des électrodes accélératrices (1, 2, 4, 5) sert de limite entre deux zones de pressions différentes, le gradient de pression diminuant dans le sens du vol des ions, et porte une impédance d'écoulement de gaz (3, 6) perméable aux particules et disposée, dans le sens du vol des ions, derrière l'électrode réflectrice (1).
  2. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon la première revendication, caractérisé en ce que l'impédance d'écoulement de gaz (3, 6) est un trou dans une électrode (1, 2).
  3. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon la première revendication, caractérisé en ce que l'impédance d'écoulement de gaz (3, 6) est un tube qui se trouve sur une électrode ou dans une électrode (1, 2).
  4. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon la première revendication, caractérisé en ce que l'impédance d'écoulement de gaz (3, 6) est un skimmer placé sur une électrode (1, 2).
  5. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications précédentes, caractérisé en ce que l'impédance d'écoulement de gaz (3, 6) est couverte d'un filet métallique.
  6. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications 1 à 4, caractérisé en ce que l'impédance d'écoulement de gaz (3, 6) n'est pas couverte d'un filet métallique.
  7. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications précédentes, caractérisé en ce que certaines ouvertures des électrodes (1, 2) sont couvertes d'un filet métallique tandis que d'autres ouvertures des électrodes (1, 2) ne sont pas couvertes de filets métalliques.
  8. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications précédentes, caractérisé en ce que le champ électrique, entre les électrodes (1, 2, 4, 5), est un champ statique.
  9. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications 1 à 7, caractérisé en ce que le champ électrique, entre les électrodes (1, 2, 4, 5), est variable dans le temps.
  10. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications précédentes, caractérisé en ce que la direction de vol du jet de gaz ou d'ions (10) à étudier est parallèle à la direction d'accélération des ions dans la source d'ions.
  11. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon la revendication 10, caractérisé en ce qu'une impédance supplémentaire d'écoulement de gaz (6) est intégrée à l'électrode réflectrice (1).
  12. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications 1 à 9, caractérisé en ce que la direction de vol du jet de gaz ou d'ions (10) à étudier forme un angle droit avec la direction d'accélération des ions dans la source d'ions.
  13. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications 1 à 9, caractérisé en ce que la direction de vol du jet de gaz ou d'ions (10) à étudier forme un angle quelconque avec la direction d'accélération des ions dans la source d'ions.
  14. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications précédentes, caractérisé en ce qu'une ou plusieurs électrodes supplémentaires (4, 5) sont placées en avant de l'impédance d'écoulement de gaz (3, 6), vues dans le sens du vol des ions ou des électrons.
  15. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications précédentes, caractérisé en ce qu'une ou plusieurs électrodes supplémentaires sont placées en arrière de l'impédance d'écoulement de gaz (3, 6), vues dans le sens du vol des ions ou des électrons.
  16. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications 1 à 13, caractérisé en ce que plusieurs électrodes supplémentaires sont placées en avant et en arrière de l'impédance d'écoulement de gaz (3, 6).
  17. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications précédentes, caractérisé en ce que, entre les électrodes (1, 2, 4, 5) qui définissent le champ électrique d'accélération, se trouvent d'autres électrodes qui engendrent un champ transversal servant à modifier les composantes transversales de la vitesse des particules chargées.
  18. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications 14 à 16, caractérisé en ce que les électrodes supplémentaires (par exemple 4, 5) qui se trouvent en avant ou en arrière de l'impédance d'écoulement de gaz (3, 6)
    sont divisées, le long du plan perpendiculaire à la direction du jet de gaz ou d'ions à étudier, en moitiés symétriques par rapport à ce plan, et qui produisent un chap transversal servant à modifier les composantes transversales de la vitesse des particules chargées,
    ont une forme sensiblement cylindrique et symétrique par rapport à l'axe, dans la direction d'accélération de la source d'ions.
  19. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications 17 ou 18, caractérisé en ce que les électrodes qui produisent le champ électrique transversal sont en outre divisées symétriquement par rapport au plan défini par la direction de l'accélération et le jet de gaz ou d'ions (10) à étudier.
  20. Spectromètre de masse à temps de vol équipé d'une source d'ions en phase gazeuse, selon l'une des revendications précédentes, caractérisé en ce que, outre les ions produits, les électrons produits peuvent être évacués et qu'une impédance d'écoulement de gaz (6) se trouve sur les trajectoires (13) des électrons à l'intérieur de la source d'ions.
EP94110273A 1993-07-02 1994-07-01 Spectromètre de masse à temps de vol pourvu d'une source d'ions en phase gaseuze présentant une sensibilité élevée ainsi qu'une large gamme dynamique Expired - Lifetime EP0633602B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4322102 1993-07-02
DE4322102A DE4322102C2 (de) 1993-07-02 1993-07-02 Flugzeit-Massenspektrometer mit Gasphasen-Ionenquelle

Publications (3)

Publication Number Publication Date
EP0633602A2 EP0633602A2 (fr) 1995-01-11
EP0633602A3 EP0633602A3 (fr) 1995-11-22
EP0633602B1 true EP0633602B1 (fr) 2000-05-24

Family

ID=6491836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94110273A Expired - Lifetime EP0633602B1 (fr) 1993-07-02 1994-07-01 Spectromètre de masse à temps de vol pourvu d'une source d'ions en phase gaseuze présentant une sensibilité élevée ainsi qu'une large gamme dynamique

Country Status (7)

Country Link
US (1) US5496998A (fr)
EP (1) EP0633602B1 (fr)
JP (1) JPH07176291A (fr)
AT (1) ATE193398T1 (fr)
AU (2) AU685112B2 (fr)
CA (1) CA2127183A1 (fr)
DE (2) DE4322102C2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4441972C2 (de) * 1994-11-25 1996-12-05 Deutsche Forsch Luft Raumfahrt Verfahren und Vorrichtung zum Nachweis von Probenmolekülen in einem Trägergas
US5744797A (en) * 1995-11-22 1998-04-28 Bruker Analytical Instruments, Inc. Split-field interface
GB9525507D0 (en) * 1995-12-14 1996-02-14 Fisons Plc Electrospray and atmospheric pressure chemical ionization mass spectrometer and ion source
DE19655304B8 (de) * 1995-12-14 2007-05-31 Micromass Uk Ltd. Massenspektrometer und Verfahren zur Massenspektrometrie
DE19631161A1 (de) * 1996-08-01 1998-02-12 Bergmann Thorald Flugzeit-Flugzeit-Massenspektrometer mit differentiell gepumpter Kollisionszelle
GB0021902D0 (en) * 2000-09-06 2000-10-25 Kratos Analytical Ltd Ion optics system for TOF mass spectrometer
US6675660B1 (en) * 2002-07-31 2004-01-13 Sandia National Laboratories Composition pulse time-of-flight mass flow sensor
EP1726945A4 (fr) * 2004-03-16 2008-07-16 Idx Technologies Kk Spectroscope de masse a ionisation laser
DE102005005333B4 (de) * 2005-01-28 2008-07-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Probennahme und Aerosol-Analyse

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577165A (en) * 1968-05-31 1971-05-04 Perkin Elmer Corp Linear scanning arrangement for a cycloidal mass spectrometer
US3553452A (en) * 1969-02-17 1971-01-05 Us Air Force Time-of-flight mass spectrometer operative at elevated ion source pressures
GB1302193A (fr) * 1969-04-18 1973-01-04
GB8602463D0 (en) * 1986-01-31 1986-03-05 Vg Instr Group Mass spectrometer
WO1989006044A1 (fr) * 1987-12-24 1989-06-29 Unisearch Limited Spectrometre de masse
GB8813149D0 (en) * 1988-06-03 1988-07-06 Vg Instr Group Mass spectrometer
US5070240B1 (en) * 1990-08-29 1996-09-10 Univ Brigham Young Apparatus and methods for trace component analysis
DE4108462C2 (de) * 1991-03-13 1994-10-13 Bruker Franzen Analytik Gmbh Verfahren und Vorrichtung zum Erzeugen von Ionen aus thermisch instabilen, nichtflüchtigen großen Molekülen
JP2913924B2 (ja) * 1991-09-12 1999-06-28 株式会社日立製作所 質量分析の方法および装置

Also Published As

Publication number Publication date
AU6615294A (en) 1995-01-12
AU685113B2 (en) 1998-01-15
JPH07176291A (ja) 1995-07-14
CA2127183A1 (fr) 1995-01-03
EP0633602A2 (fr) 1995-01-11
AU685112B2 (en) 1998-01-15
DE59409371D1 (de) 2000-06-29
DE4322102A1 (de) 1995-01-19
EP0633602A3 (fr) 1995-11-22
US5496998A (en) 1996-03-05
ATE193398T1 (de) 2000-06-15
DE4322102C2 (de) 1995-08-17
AU6615394A (en) 1995-01-12

Similar Documents

Publication Publication Date Title
DE19941670B4 (de) Massenspektrometer und Verfahren zum Betreiben eines Massenspektrometers
DE1798021B2 (de) Einrichtung zur buendelung eines primaer-ionenstrahls eines mikroanalysators
DE69934128T2 (de) Gas-verwirbelungs-übergangsstück für die elektrospray massenspektrometrie
DE813228T1 (de) Plasma-Massenspektrometer
DE69118492T2 (de) Massenspektrometer mit elektrostatischem Energiefilter
DE19930894B4 (de) Verfahren zur Regelung der Ionenzahl in Ionenzyklotronresonanz-Massenspektrometern
DE69623728T2 (de) Massenspektrometer
EP0633602B1 (fr) Spectromètre de masse à temps de vol pourvu d'une source d'ions en phase gaseuze présentant une sensibilité élevée ainsi qu'une large gamme dynamique
DE3231036C2 (fr)
EP0613171B1 (fr) Spectromètre de masse avec séparation des masses selon le temps de vol
DE10162267A1 (de) Reflektor für Flugzeitmassenspektrometer mit orthogonalem Ioneneinschuss
DE102005023590A1 (de) ICP-Massenspektrometer
DE102013015046B4 (de) Bildgebendes Massenspektrometer und Verfahren zum Steuern desselben
DE2608958A1 (de) Vorrichtung zum erzeugen von strahlen aus geladenen teilchen
DE69121463T2 (de) Ionenbündelvorrichtung
EP0822574B1 (fr) Spectromètre à temps de vol en tandem avec chambre de collision
DE3783476T2 (de) Massenspektrometer mit getrennter ionenquelle.
DE3813641A1 (de) Doppelfokussierendes massenspektrometer und ms/ms-anordnung
EP0633601B1 (fr) Détecteur pour spectromètre de masse à temps de vol présentant des distorsions réduites des temps de vols à ouverture élevée
DE1598392A1 (de) Vierpol-Massenspektrograph
DE202013012580U1 (de) Ionenumlenkungsvorrichtung für ein Massenspektrometer
EP0632482B1 (fr) Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol, présentant une résolution en masse élevée ainsi qu'une large gamme de masses
DE69629536T2 (de) Verfahren und Vorrichtung zur Massenanalyse einer gelösten Probe
DE102016103292B4 (de) Massenspektrometer
DE60101896T2 (de) Massenspektrometer mit quadrupolmassenfilter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK FR GB LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK FR GB LI NL SE

17P Request for examination filed

Effective date: 19960319

17Q First examination report despatched

Effective date: 19970321

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FR GB LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000524

REF Corresponds to:

Ref document number: 193398

Country of ref document: AT

Date of ref document: 20000615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59409371

Country of ref document: DE

Date of ref document: 20000629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000714

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000717

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & SEIFERT

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000824

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000824

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000818

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010726

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

BERE Be: lapsed

Owner name: BERGMANN THORALD

Effective date: 20010731

Owner name: BERGMANN EVA MARTINA

Effective date: 20010731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020703

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020730

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020731

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST