EP0633602B1 - High sensitivity, wide dynamic range time-of-flight mass spectrometer provided with a gas phase ion source - Google Patents

High sensitivity, wide dynamic range time-of-flight mass spectrometer provided with a gas phase ion source Download PDF

Info

Publication number
EP0633602B1
EP0633602B1 EP94110273A EP94110273A EP0633602B1 EP 0633602 B1 EP0633602 B1 EP 0633602B1 EP 94110273 A EP94110273 A EP 94110273A EP 94110273 A EP94110273 A EP 94110273A EP 0633602 B1 EP0633602 B1 EP 0633602B1
Authority
EP
European Patent Office
Prior art keywords
ion source
time
flight mass
spectrometer
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94110273A
Other languages
German (de)
French (fr)
Other versions
EP0633602A3 (en
EP0633602A2 (en
Inventor
Thorald Dr. Bergmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0633602A2 publication Critical patent/EP0633602A2/en
Publication of EP0633602A3 publication Critical patent/EP0633602A3/en
Application granted granted Critical
Publication of EP0633602B1 publication Critical patent/EP0633602B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0422Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for gaseous samples
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/403Time-of-flight spectrometers characterised by the acceleration optics and/or the extraction fields

Definitions

  • the invention relates to a time-of-flight mass spectrometer with a gas phase ion source according to the preamble of claim 1.
  • time-of-flight mass analysis there is a start time from which started a group of ions in the time-of-flight mass spectrometer becomes. At the end of a flight route, the time is measured needed each incoming ion and from this the mass of the concerned Ions determined.
  • a gas phase ion source of a time-of-flight mass spectrometer is understood as the withdrawal volume the spatial area of the ion source, from which, starting from the start, ion orbits to the Guide the surface of the detector of the time-of-flight mass spectrometer.
  • the generated electrons are detected.
  • the deduction volume for the ions does not have to match the withdrawal volume for the electrons be congruent. However, these two volumes will at least be different partially overlap.
  • the electrons are in the opposite Subtracted towards the ions from the source.
  • the first acceleration phase of those arriving at the detector Ions instead.
  • the ions in the ion source are up to the top speed accelerates.
  • the ion source electrodes for focusing the ions arriving at the detector contains. But it may also be that the electrodes for focusing are arranged separately, i.e. the ions arriving at the detector Leave source in a direction and location distribution, which for the further transport through the mass spectrometer is unsuitable, and for this reason a separate focus is still necessary.
  • Another important quality feature of a time-of-flight mass spectrometer is its dynamic range.
  • the dynamic range Factor meant by which the signal of a certain mass is smaller than the signal of other masses may be without going through at wrong times incoming ions of these other masses to be covered.
  • time-of-flight mass spectrometer To make the time-of-flight mass spectrometer highly sensitive so it is necessary to have a high particle density in the discharge volume to reach. Around a high dynamic range of the time-of-flight mass spectrometer to cause, the lowest possible residual gas pressure be achieved. If both quality features are to be optimized, This is how time-of-flight mass spectrometry arises in many applications the problem with gas phase particles that a high particle density in the withdrawal volume also a high load with undesired gas ballast, which increases the residual gas pressure means.
  • time-of-flight mass spectrometer is divided into several Areas of different pressure divided by the sample introduction, i.e. the generation of the gas or ion beam to be examined, to the ion source and along the flight path in the time-of-flight mass spectrometer are sorted by decreasing pressure.
  • the gas or ion beam to be examined nor the ions on it Path from the withdrawal volume to the detector are hindered adjacent areas connected by gas flow impedances. This The procedure allows a high particle density in the discharge volume, and nevertheless a low residual gas pressure or low impact probability on the flight path of the time-of-flight mass spectrometer.
  • Gas flow impedances are to be understood here as small openings Cross-section, which are large enough to keep the ions on their orbits to pass to the detector, but their conductance for gases is essential is lower than the pumping capacity of the pump in the area with the lower pressure.
  • Skimmers are conical structures with an opening in the tip, which the Gas flow opposes. Skimmers have a similar gas conductance as openings same cross section and are preferable if the gas flow has a high density.
  • WO-A-92 04728 an apparatus for the analysis of chemical species is used a supersonic ion beam and a time-of-flight mass spectrometer, in which are two areas with different pressures from each other by a skimmer are separated and the ion source is arranged in one of these areas and in the other Area the time-of-flight mass spectrometer is arranged.
  • the same arrangement is published in the publication by C.H. Sin et al. in Analytical Chemistry, Vol. 63, No. 24, pages 2897-2900.
  • the invention is accordingly based on the object of a time-of-flight mass spectrometer specify with gas phase ion source, which is equally high sensitivity and has a high dynamic range.
  • the device according to the invention is in two or more areas of different pressure split, with gas flow impedances connecting two areas.
  • the gas flow impedance (s) is / are to be as close as possible to the withdrawal volume approach, integrated directly into the electrodes of the ion source. This has the intent part that a maximum particle density in the withdrawal volume with a minimum impact probability can be achieved in the flight path of the mass spectrometer.
  • Fig. 1 shows the simplest possibility of the gas flow impedance in one of the electrodes to integrate.
  • the accelerating field will defined here by a repeller electrode (1) and an acceleration electrode (2). These two electrodes define this in this example accelerating field of the ion source.
  • a flow impedance (3) is only integrated into the acceleration electrode (2).
  • the acceleration electrode separates the area of the acceleration field with the higher pressure p 1 from the area of the flight path in the time-of-flight mass spectrometer with lower pressure p 2.
  • the gas flow impedance can, for example, as shown in FIG. 1 and in claim 2, to be a pinhole.
  • the gas or ion beam (10) to be examined can be shot into the ion source perpendicular to the direction of acceleration. Ionized particles, which are in the withdrawal volume (11) at the start time, are accelerated along the drawn paths (12) into the time-of-flight mass spectrometer.
  • the direction of acceleration is understood here to be the direction in which the ions are then accelerated to at the start time.
  • the orbits (12) of the ions are divergent according to the gas flow impedance (3) and have to be focused afterwards. This can be achieved by already known lens designs and is therefore not described in more detail here.
  • Fig. 2 corresponds essentially to Fig. 1 , instead of a pinhole, the flow impedance (3) is formed by a tube.
  • a pipe has a much lower gas conductivity than a pinhole with the same cross-section.
  • Fig. 3 shows an example of an embodiment according to claim 14 or 16.
  • the additional electrode (4) between the repeller electrode (1) and the acceleration electrode (2) serves to the ions on parallel paths (12) by the flow impedance (3) to steer.
  • the electrode (4) It is also possible to use the electrode (4) to be broken down into two parts, one closer to the repeller electrode (1), and one is closer to the accelerating electrode (2). The beams can be aimed between these two parts.
  • Fig. 4 This arrangement is shown in Fig. 4 , which thus also gives an example according to claims 14 and 16, respectively.
  • the two electrodes (4, 5) between the repeller electrode (1) and the acceleration electrode (2) serve to direct the ions on intersecting paths (12) through the flow impedance (3). Under certain circumstances, it may be advantageous to add further electrodes behind the gas flow impedance. It is also possible to choose different radii to the axis of the ion source for the two additional electrodes (4, 5).
  • a transverse electric field can be created , also called the deflection field. This deflection field can change the transverse velocity components of the charged particles.
  • the has cylindrical symmetry Training the deflection electrodes the further advantage that the Deflection electrodes can initially be manufactured as a turned part. In in a subsequent operation, they can then be broken down into two parts become.
  • Fig. 5 shows an embodiment according to claim 20.
  • the generated electrons are drawn off along the shown electron paths (13) by a gas flow impedance (6) in the repeller electrode (1). Due to the gas flow impedance (6) along the electron tracks (13), as seen in FIG. 5 , to the left of the repeller electrode (1), the pressure p 3 is lower than the pressure p 1 in the acceleration path.
  • the electron beam (13) is divergent according to the gas flow impedance (6) and must then be focused. This can be achieved by already known lens designs and is therefore not described in more detail here.
  • FIG. 6 shows an embodiment according to claim 10.
  • the gas or ion beam (10) to be examined is injected into the ion source parallel to the direction of acceleration by the skimmer (6).
  • the pressure p 3 in front of the skimmer is greater than the pressure p 1 in the acceleration section.
  • Electrodes that separate partitions between areas simultaneously Pressure must be connected to the housing, to be able to fulfill their function. If the electrode in question Ground or housing potential, this is easy. If an electrode, which are simultaneously a partition between different areas To represent pressure, is not at ground potential, must be between an insulator can be provided for this electrode and the housing. If this insulator is glued flat between the electrode and the housing problems, e.g. by degassing the adhesive, gas inclusions between insulator and electrode, etc. arise.
  • FIG. 7 shows a possible solution if an electrode, which is also intended to represent a partition between areas of different pressure, is not at ground potential.
  • the electrode (2) and the housing wall (31) overlap, but do not touch.
  • the distance between the two, as shown here by way of example, is determined by a sapphire ball (32).
  • the gap between the electrode (2) and the housing wall (31) should be chosen so small that the conductance for gases is significantly smaller than the pumping capacity of the pump in the area with the lower pressure. It is understood that the electrode (2) must be pressed against the housing wall. This can be brought about by already known methods, which is why it is not dealt with in more detail here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

A high particle density in the exhaust volume of a gas-phase ion source and simultaneously a very low particle density in the flight path of the time-of-flight mass spectrometer results in a high sensitivity while simultaneously maintaining a large dynamic range of the intensity display. In order to achieve this, it is necessary to divide the time-of-flight mass spectrometer into two or more regions of different pressure, the different regions being separated by a gas-flow impedance. A maximum particle density in the exhaust volume while simultaneously maintaining a minimum particle density in the flight path can be obtained by integrating the gas-flow impedances (3, 6) directly into the electrodes (1, 2) of the ion source. <IMAGE>

Description

Die Erfindung betrifft ein Flugzeit-Massenspektrometer mit Gasphasen-Ionenquelle nach dem Oberbegriff des Anspruch 1.The invention relates to a time-of-flight mass spectrometer with a gas phase ion source according to the preamble of claim 1.

Bei der Flugzeit-Massenanalyse gibt es einen Start-Zeitpunkt, ab welchem eine Gruppe von Ionen im Flugzeit-Massenspektrometer gestartet wird. Am Ende einer Flugstrecke wird die Zeit gemessen, welche das jeweilige ankommende Ion benötigt hat und hieraus die Masse des betreffenden Ions ermittelt.In the time-of-flight mass analysis, there is a start time from which started a group of ions in the time-of-flight mass spectrometer becomes. At the end of a flight route, the time is measured needed each incoming ion and from this the mass of the concerned Ions determined.

In einer Gasphasen-Ionenquelle eines Flugzeit-Massenspektrometers wird als Abzugsvolumen der Raumbereich der Ionenquelle verstanden, aus welchem, beginnend ab dem Start-Zeitpunkt, Ionenbahnen auf die Oberfläche des Detektors des Flugzeit-Massenspektrometers führen.In a gas phase ion source of a time-of-flight mass spectrometer is understood as the withdrawal volume the spatial area of the ion source, from which, starting from the start, ion orbits to the Guide the surface of the detector of the time-of-flight mass spectrometer.

Der Start-Zeitpunkt der Flugzeit-Analyse kann z.B. gegeben sein durch

  • den Zeitpunkt, in dem neutrale Teilchen eines im Abzugsvolumen befindlichen zu untersuchenden Gases durch den Puls einer das Abzugsvolumen durchstrahlenden Laserstrahl- oder Elektronenstrahlquelle ionisiert werden.
  • den Zeitpunkt des Anschaltens der Elektrodenspannungen der Ionenquelle. In diesem Fall handelt es sich meist darum, Ionen zu untersuchen, da Ionen nur dann in das Abzugsvolumen gelangen können, wenn an den Elektroden der Ionenquelle keine Spannungen anliegen.
The start time of the flight time analysis can be given, for example, by
  • the point in time at which neutral particles of a gas to be examined in the discharge volume are ionized by the pulse of a laser beam or electron beam source radiating through the discharge volume.
  • the time at which the electrode voltages of the ion source are switched on. In this case, it is usually a matter of examining ions, since ions can only get into the withdrawal volume if there are no voltages at the electrodes of the ion source.

Als Nebenfunktion können in einem Flugzeit-Massenspektrometer auch die erzeugten Elektronen nachgewiesen werden. Für die Elektronen kann man in Analogie auch ein Abzugsvolumen definieren. Das Abzugsvolumen für die Ionen muß nicht mit dem Abzugsvolumen für die Elektronen deckungsgleich sein. Diese beide Volumina werden aber zumindest sich teilweise überlappen. Üblicherweise werden die Elektronen in der entgegengesetzten Richtung zu den Ionen aus der Quelle abgezogen.As a side function you can also use it in a time of flight mass spectrometer the generated electrons are detected. For the electrons can you can also define a deduction volume by analogy. The deduction volume for the ions does not have to match the withdrawal volume for the electrons be congruent. However, these two volumes will at least be different partially overlap. Usually the electrons are in the opposite Subtracted towards the ions from the source.

Da der wesentlich häufigere Fall der Nachweis von Ionen ist, wird im Folgenden hauptsächlich darauf eingegangen. Wenn allerdings im Folgenden Ionen und deren Bahnen diskutiert werden, so trifft in entsprechender Analogie dasselbe für Elektronen und deren Bahnen zu.Since the much more common case is the detection of ions, the Following mainly dealt with it. If, however, in the following Ions and their orbits are discussed, so meets in corresponding Analogy the same for electrons and their orbits too.

In jedem Fall findet in der Ionenquelle, anschließend an den Start-Zeitpunkt, die erste Beschleunigungsphase der am Detektor ankommenden Ionen statt. Oft werden die Ionen in der Ionenquelle auch bis auf die Endgeschwindigkeit beschleunigt. Es kann sein, daß die Ionenquelle noch Elektroden zur Fokussierung der am Detektor ankommenden Ionen enthält. Es kann aber auch sein, daß die Elektroden zur Fokussierung separat angeordnet sind, d.h. die am Detektor ankommenden Ionen die Quelle in einer Richtungs- und Ortsverteilung verlassen, welche für den weiteren Transport durch das Massenspektrometer ungeeignet ist, und aus diesem Grunde noch eine separate Fokussierung nötig ist.In any case, in the ion source, following the start time, the first acceleration phase of those arriving at the detector Ions instead. Often the ions in the ion source are up to the top speed accelerates. It may be that the ion source electrodes for focusing the ions arriving at the detector contains. But it may also be that the electrodes for focusing are arranged separately, i.e. the ions arriving at the detector Leave source in a direction and location distribution, which for the further transport through the mass spectrometer is unsuitable, and for this reason a separate focus is still necessary.

Im Abzugsvolumen ist eine hohe Teilchendichte zum Startzeitpunkt vorteilhaft, da die am Detektor ankommende Anzahl von Ionen proportional zu dieser Dichte ist. Somit ist die Größe des Abzugsvolumens und die Dichte der darin enthaltenen Teilchen ein direktes Maß für die Empfindlichkeit des Flugzeit-Massenspektrometers.There is a high particle density in the withdrawal volume at the start time advantageous because the number of ions arriving at the detector is proportional to this density. So the size of the deduction volume and the density of the particles contained therein is a direct measure of the Time-of-flight mass spectrometer sensitivity.

Ein weiteres wichtiges Qualitätsmerkmal eines Flugzeit-Massenspektrometers ist sein dynamischer Bereich. Als dynamischer Bereich ist hier der Faktor gemeint, um welchen das Signal einer bestimmten Masse kleiner als das Signal anderer Massen sein darf, ohne durch zu falschen Zeiten ankommende Ionen dieser anderen Massen zugedeckt zu werden.Another important quality feature of a time-of-flight mass spectrometer is its dynamic range. Here is the dynamic range Factor meant by which the signal of a certain mass is smaller than the signal of other masses may be without going through at wrong times incoming ions of these other masses to be covered.

Diese beiden Qualitätsmerkmale werden durch Stöße der Ionen mit Molekülen oder Atomen auf ihrer Bahn zum Detektor beeinträchtigt. Hierbei müssen zwei Arten von Stößen auseinandergehalten werden:

  • 1. Stöße, welche die Geschwindigkeit oder Richtung der Ionen derart ändern, daß sie nicht mehr am Detektor ankommen. Sofern diese Art von Stoß nur bei einem geringen Anteil der Ionen auftritt, wird hierdurch der dynamische Bereich und die Empfindlichkeit des Massenspektrometers nicht wesentlich verringert.
  • 2. Stöße, welche die Geschwindigkeit oder Richtung der Ionen nur geringfügig verändern, so daß sie immer noch am Detektor ankommen, jedoch zu falschen Zeiten. Diese Stöße verringern zwar die Empfindlichkeit nur in ebenso geringem Maße wie Stöße der ersten Sorte. Da der dynamische Bereich proportional zum Quotient (richtig ankommende)/(falsch ankommende) Ionen ist, und die Anzahl der falsch ankommenden Ionen hier im Nenner steht, ist der Einfluß dieser Art Stöße auf den dynamischen Bereich des Flugzeit-Massenspektrometers sehr groß.
  • Die Anzahl von Stößen der Ionen mit Molekülen oder Atomen auf ihrer Bahn zum Detektor ist proportional zum vakuumtechnischen Restgasdruck in den entsprechenden Bereichen der Flugbahn.These two quality features are affected by collisions of the ions with molecules or atoms on their path to the detector. Two types of bumps must be kept apart:
  • 1. collisions which change the speed or direction of the ions in such a way that they no longer reach the detector. If this type of collision occurs only with a small proportion of the ions, the dynamic range and the sensitivity of the mass spectrometer are not significantly reduced.
  • 2. Shocks that change the speed or direction of the ions only slightly so that they still arrive at the detector, but at the wrong times. These impacts only reduce the sensitivity to the same extent as impacts of the first kind. Since the dynamic range is proportional to the quotient (correctly arriving) / (incorrectly arriving) ions, and the number of incorrectly arriving ions is in the denominator here, the impact of this type of impact on the dynamic range of the time-of-flight mass spectrometer is very great.
  • The number of collisions of ions with molecules or atoms on their path to the detector is proportional to the vacuum-technical residual gas pressure in the corresponding areas of the trajectory.

    Um eine hohe Empfindlichkeit des Flugzeit-Massenspektrometers zu erreichen, ist es also notwendig, eine hohe Teilchendichte im Abzugsvolumen zu erreichen. Um einen hohen dynamischen Bereich des Flugzeit-Massenspektrometers zu bewirken, muß ein möglichst niedriger Restgasdruck erzielt werden. Sollen beide Qualitätsmerkmale optimiert werden, so entsteht in vielen Anwendungsfällen der Flugzeit-Massenspektrometrie an Gasphasenteilchen das Problem, daß eine hohe Teilchendichte im Abzugsvolumen auch eine hohe Belastung mit unerwünschtem Gasballast, welcher den Restgasdruck erhöht, bedeutet.To make the time-of-flight mass spectrometer highly sensitive so it is necessary to have a high particle density in the discharge volume to reach. Around a high dynamic range of the time-of-flight mass spectrometer to cause, the lowest possible residual gas pressure be achieved. If both quality features are to be optimized, This is how time-of-flight mass spectrometry arises in many applications the problem with gas phase particles that a high particle density in the withdrawal volume also a high load with undesired gas ballast, which increases the residual gas pressure means.

    Üblicherweise wird das Flugzeit-Massenspektrometer in verschiedene Bereiche unterschiedlichen Druckes aufgeteilt, welche von der Probeneinführung, d.h. der Erzeugung des zu untersuchenden Gas- bzw. Ionenstrahls, bis zur Ionenquelle und entlang der Flugstrecke im Flugzeit-Massenspektrometers nach absteigendem Druck geordnet sind. Damit weder der zu untersuchende Gas bzw. Ionenstrahl, noch die Ionen auf ihrer Bahn vom Abzugsvolumen zum Detektor, behindert werden, werden angrenzende Bereiche durch Gas-Strömungsimpedanzen verbunden. Dieses Vorgehen erlaubt eine hohe Teilchendichte im Abzugsvolumen, und dennoch einen niedrigen Restgasdruck bzw. niedrige Stoßwahrscheinlichkeit auf der Flugstrecke des Flugzeit-Massenspektrometers.Usually the time-of-flight mass spectrometer is divided into several Areas of different pressure divided by the sample introduction, i.e. the generation of the gas or ion beam to be examined, to the ion source and along the flight path in the time-of-flight mass spectrometer are sorted by decreasing pressure. In order to neither the gas or ion beam to be examined nor the ions on it Path from the withdrawal volume to the detector, are hindered adjacent areas connected by gas flow impedances. This The procedure allows a high particle density in the discharge volume, and nevertheless a low residual gas pressure or low impact probability on the flight path of the time-of-flight mass spectrometer.

    Gas-Strömungsimpedanzen sind hier zu verstehen als Öffnungen kleinen Querschnitts, welche groß genug sind, um die Ionen auf ihren Bahnen zum Detektor passieren zu lassen, deren Leitwert für Gase jedoch wesentlich niedriger ist als die Pumpleistung der Pumpe des Bereichs mit dem niedrigeren Druck.Gas flow impedances are to be understood here as small openings Cross-section, which are large enough to keep the ions on their orbits to pass to the detector, but their conductance for gases is essential is lower than the pumping capacity of the pump in the area with the lower pressure.

    Im einfachsten Fall handelt es sich bei einer Gas-Strömungsimpedanz um eine Öffnung bestimmten Querschnitts in der Trennwand zwischen Bereichen verschiedenen Druckes. Rohre oder rohrähnliche Gebilde haben jedoch einen wesentlich kleineren Gasleitwert als Öffnungen gleichen Querschnitts und sind darum in vielen Fällen vorzuziehen.In the simplest case, it is a gas flow impedance around an opening of certain cross section in the partition between Areas of different pressure. Have pipes or pipe-like structures but have a much lower gas conductance than openings Cross-section and are therefore preferable in many cases.

    Skimmer sind kegelige Gebilde mit Öffnung in der Spitze, welche dem Gasstrom entgegen weist. Skimmer haben ähnlichen Gasleitwert wie Öffnungen gleichen Querschnitts und sind vorzuziehen, falls der Gasstrom eine hohe Dichte aufweist.Skimmers are conical structures with an opening in the tip, which the Gas flow opposes. Skimmers have a similar gas conductance as openings same cross section and are preferable if the gas flow has a high density.

    Der Veröffentlichung von Michael et al. (Review of Scientific Instruments, Band 63(10), Seiten 4277-4284, 1992) kann man entnehmen, daß das Flugzeit-Massenspektrometer in mehrere Bereiche mit verschiedenem Druck aufgeteilt ist, wobei der Bereich, in welchem sich das Abzugsvolumen befindet, einen höheren Restgasdruck aufweist als Teile der Ionenflugbahn. Jedoch sind, wie man Kapitel "C. TOF operation" entnehmen kann, die Ionenquelle, eine Gas-Strömungsimpedanz ("A restriction of 1 in. tubing is placed between the flight tube and the main chamber"), und die Fokussierungselektroden einzeln und getrennt angeordnete Einheiten.The publication by Michael et al. (Review of Scientific Instruments, Volume 63 (10), pages 4277-4284, 1992) it can be seen that the time-of-flight mass spectrometer in several areas with different Pressure is divided, the area in which the trigger volume has a higher residual gas pressure than parts of the ion trajectory. However, how to take chapter "C. TOF operation" can, the ion source, a gas flow impedance ("A restriction of 1 in. Tubing is placed between the flight tube and the main chamber "), and the focusing electrodes individually and separately arranged units.

    Der Nachteil dieser separaten Anordnung von Ionenquelle und Gas-Strömungsimpedanz ist, daß die Ionen eine relativ lange Strecke noch sich durch das dichte Gas in der Ionenquelle bewegen müssen und dadurch eine große Stoßwahrscheinlichkeit für Ionen mit Restgasteilchen besteht. Im Übrigen scheint bei der oben genannten Gas-Strömungsimpedanz der Durchmesser zu groß oder die Länge zu klein gewählt zu sein, da der Druckunterschied der beiden Bereiche weniger als einen Faktor 4 ausmacht (2 × 10-6 bzw. 6 × 10-7).The disadvantage of this separate arrangement of the ion source and the gas flow impedance is that the ions still have to travel a relatively long distance through the dense gas in the ion source and there is therefore a high probability of collision for ions with residual gas particles. Incidentally, with the gas flow impedance mentioned above, the diameter seems to be too large or the length is too small, since the pressure difference between the two areas is less than a factor of 4 (2 × 10 -6 or 6 × 10 -7 ).

    Die Offenlegungsschrift DE 41 08 462 A1 und die Veröffentlichung von Rohwer et al. (Zeitschrift für Naturforschung, Band 43a, Seiten 1151-1153, 1988) zeigen, wie ein Skimmer getrennt von der Ionenquelle vor der Ionenquelle angeordnet ist. Hier ist die Strecke zwischen Skimmeröffnung und Abzugsvolumen relativ groß.The published patent application DE 41 08 462 A1 and the publication of Rohwer et al. (Zeitschrift für Naturforschung, Volume 43a, pages 1151-1153, 1988) show how a skimmer is separated from the ion source in front of the Ion source is arranged. Here is the distance between the opening of the skimmer and deduction volume relatively large.

    Dies ist aus folgenden Gründen von Nachteil: Man möchte, daß der zu untersuchende Gas bzw. Ionenstrahl das Abzugsvolumen durchquert, da von hier aus die Ionen auf ihrer Flugbahn ins Massenspektrometer gestartet werden. Wenn Teile des zu untersuchenden Gas bzw. Ionenstrahls das Abzugsvolumen nicht durchqueren, so tragen diese Teile nicht zur Erhöhung der Empfindlichkeit bei, sie erhöhen lediglich den Restgasdruck und verringern damit den dynamischen Bereich des Flugzeit-Massenspektrometers. Da der zu untersuchende Gas bzw. Ionenstrahl immer mehr oder weniger divergent ist, sind die Anteile, welche das Abzugsvolumen nicht durchqueren umso größer, je größer der Abstand Skimmer/Abzugsvolumen ist. Ein großer Abstand ist also von Nachteil, da sich bei großer Gasbelastung des Ionenquellen-Bereichs, und damit hohem Restgasdruck, nur eine geringere Teilchendichte im Abzugsvolumen erzielen laßt. Dies hat eine verringerte Empfindlichkeit und einen niedrigeren dynamischen Bereich des Flugzeit-Massenspektrometers zur Folge.This is disadvantageous for the following reasons: You want the gas or ion beam to be examined crosses the discharge volume, because from here the ions on their trajectory into the mass spectrometer be started. If parts of the gas or ion beam to be examined do not cross the discharge volume, so do not wear these parts to increase sensitivity, they only increase the residual gas pressure and thus reduce the dynamic range of the time-of-flight mass spectrometer. Since the gas or ion beam to be examined is always more or less divergent, the proportions that are Do not cross the discharge volume, the greater the distance Skimmer / trigger volume is. A large distance is disadvantageous since there is a large gas load in the ion source area, and thus high residual gas pressure, can only achieve a lower particle density in the discharge volume. This has a reduced sensitivity and a lower dynamic range of the Time-of-flight mass spectrometers result.

    In der WO-A-92 04728 ist eine Apparatur zur Analyse chemischer Spezies unter Verwendung eines Überschallionenstrahls und eines Flugzeit-Massenspektrometers beschrieben, in welcher zwei Bereiche mit unterschiedlichen Drücken durch einen Skimmer voneinander getrennt sind und in einem dieser Bereiche die Ionenquelle angeordnet ist und in dem anderen Bereich das Flugzeit-Massenspektrometer angeordnet ist. Eine ebensolche Anordnung wird in der Publikation von C.H. Sin et al. in Analytical Chemistry, Bd. 63, Nr. 24, Seiten 2897 - 2900 beschrieben.In WO-A-92 04728 an apparatus for the analysis of chemical species is used a supersonic ion beam and a time-of-flight mass spectrometer, in which are two areas with different pressures from each other by a skimmer are separated and the ion source is arranged in one of these areas and in the other Area the time-of-flight mass spectrometer is arranged. The same arrangement is published in the publication by C.H. Sin et al. in Analytical Chemistry, Vol. 63, No. 24, pages 2897-2900.

    Der Erfindung liegt dementsprechend die Aufgabe zugrunde, ein Flugzeit-Massenspektrometer mit Gasphasen-Ionenquelle anzugeben, welches gleichermaßen eine hohe Empfindlichkeit sowie einen hohen dynamischen Bereich aufweist.The invention is accordingly based on the object of a time-of-flight mass spectrometer specify with gas phase ion source, which is equally high sensitivity and has a high dynamic range.

    Insbesondere ist es Aufgabe dieser Erfindung, ein Flugzeit-Massenspektrometer mit Gasphasen-Ionenquelle anzugeben, welches eine hohe Teilchendichte im Abzugsvolumen zuläßt, gleichzeitig aber einen niedrigen Restgasdruck auf der Flugstrecke der Ionen vom Abzugsvolumen zum Detektor aufweist.In particular, it is an object of this invention to provide a time-of-flight mass spectrometer with a gas phase ion source specify which allows a high particle density in the discharge volume, but at the same time a low residual gas pressure on the flight path of the ions from the withdrawal volume to the detector.

    Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.This object is achieved by the characterizing features of claim 1.

    Die erfindungsgemäße Vorrichtung ist in zwei oder mehr Bereiche unterschiedlichen Druckes aufgeteilt, wobei Gas- Strömungsimpedanzen jeweils zwei Bereiche miteinander verbinden. Dabei wird/werden die Gas-Strömungimpedanz(en), um möglichst nah an das Abzugsvolumen heranzukommen, direkt in Elektroden der Ionenquelle integriert. Dies hat den Vor teil, daß eine maximale Teilchendichte im Abzugsvolumen bei gleichzeitig minimaler Stoßwahrscheinlichkeit in der Flugstrecke des Massenspektrometers erreicht werden kann.The device according to the invention is in two or more areas of different pressure split, with gas flow impedances connecting two areas. The gas flow impedance (s) is / are to be as close as possible to the withdrawal volume approach, integrated directly into the electrodes of the ion source. This has the intent part that a maximum particle density in the withdrawal volume with a minimum impact probability can be achieved in the flight path of the mass spectrometer.

    Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous embodiments of the invention are specified in the subclaims.

    Im Folgenden wird nun anhand der in den Zeichnungen dargestellten Ausführungsbeispiele die Erfindung näher beschrieben und erläutert.The following is now based on the embodiments shown in the drawings the invention described and explained in more detail.

    Fig. 1 zeigt die einfachste Möglichkeit, die Gas-Strömungsimpedanz in eine der Elektroden zu integrieren. Das beschleunigende Feld wird hier definiert durch eine Repellerelektrode(1) und eine Beschleunigungselektrode(2). Diese beiden Elektroden definieren in diesem Beispiel das beschleunigende Feld der Ionenquelle.Fig. 1 shows the simplest possibility of the gas flow impedance in one of the electrodes to integrate. The accelerating field will defined here by a repeller electrode (1) and an acceleration electrode (2). These two electrodes define this in this example accelerating field of the ion source.

    Bei dieser Ausführungsform ist nur in die Beschleunigungselektrode(2) eine Strömungsimpedanz(3) integriert. Die Beschleunigungselektrode trennt den Bereich des Beschleunigungsfeldes mit dem höheren Druck p1 von dem Bereich der Flugstrecke im Flugzeit-Massenspektrometer mit niedrigerem Druck p2. Bei der Gas-Strömungsimpedanz kann es sich z.B., wie in Fig. 1 gezeigt und in Anspruch 2 ausgeführt, um eine Lochblende handeln.In this embodiment, a flow impedance (3) is only integrated into the acceleration electrode (2). The acceleration electrode separates the area of the acceleration field with the higher pressure p 1 from the area of the flight path in the time-of-flight mass spectrometer with lower pressure p 2. The gas flow impedance can, for example, as shown in FIG. 1 and in claim 2, to be a pinhole.

    Wie in Fig. 1 gezeigt, kann der zu untersuchende Gas- bzw. Ionenstrahl(10), entsprechend Anspruch 12, senkrecht zur Beschleunigungsrichtung in die Ionenquelle eingeschossen werden. Ionisierte Teilchen, welche sich zum Start-Zeitpunkt im Abzugsvolumen(11) befinden, werden entlang der gezeichneten Bahnen(12) ins Flugzeit-Massenspektrometer beschleunigt.As shown in FIG. 1 , the gas or ion beam (10) to be examined can be shot into the ion source perpendicular to the direction of acceleration. Ionized particles, which are in the withdrawal volume (11) at the start time, are accelerated along the drawn paths (12) into the time-of-flight mass spectrometer.

    Als Beschleunigungsrichtung wird hier die Richtung verstanden, in welche die Ionen anschließend an den Startzeitpunkt beschleunigt werden.The direction of acceleration is understood here to be the direction in which the ions are then accelerated to at the start time.

    Bei der Ausführungsform von Fig. 1 sind die Bahnen(12) der Ionen nach der Gas-Strömungsimpedanz(3) divergent und müssen anschließend noch fokussiert werden. Dies kann durch bereits bekannte Linsenkonstruktionen erreicht werden, und wird deshalb hier nicht näher beschrieben.In the embodiment of FIG. 1 , the orbits (12) of the ions are divergent according to the gas flow impedance (3) and have to be focused afterwards. This can be achieved by already known lens designs and is therefore not described in more detail here.

    Fig. 2 entspricht im wesentlichen Fig. 1, statt einer Lochblende wird die Strömungsimpedanz(3) durch ein Rohr gebildet. Ein Rohr hat einen wesentlich geringeren Gas-Leitwert als eine Lochblende gleichen Querschnitts. Fig. 2 corresponds essentially to Fig. 1 , instead of a pinhole, the flow impedance (3) is formed by a tube. A pipe has a much lower gas conductivity than a pinhole with the same cross-section.

    Fig. 3 zeigt beispielhaft eine Ausführungsform nach Anspruch 14 bzw. 16. Hierbei dient die zusätzliche Elektrode(4) zwischen der Repellerelektrode(1) und der Beschleunigungselektrode(2) dazu, die Ionen auf parallelen Bahnen(12) durch die Strömungsimpedanz(3) zu lenken. Unter Umständen kann es vorteilhaft sein, hinter der Gas-Strömungsimpedanz weitere Elektroden anzubringen. Fig. 3 shows an example of an embodiment according to claim 14 or 16. Here, the additional electrode (4) between the repeller electrode (1) and the acceleration electrode (2) serves to the ions on parallel paths (12) by the flow impedance (3) to steer. Under certain circumstances, it may be advantageous to add further electrodes behind the gas flow impedance.

    Soll ein Laser- oder Elektronenstrahl zur Ionisierung durch das Abzugsvolumen geschossen werden, so müssen dafür Durchtrittsöffnungen in der Elektrode(4) vorgesehen werden. Es ist auch möglich, die Elektrode(4) in zwei Teile zu zerlegen, wovon eine näher zur Repellerelektrode(1), und eine näher zur Beschleunigungselektrode(2) gelegen ist. Die Strahlen können zwischen diesen beiden Teilen hindurch gezielt werden.Should be a laser or electron beam for ionization through the withdrawal volume openings must be shot for this be provided in the electrode (4). It is also possible to use the electrode (4) to be broken down into two parts, one closer to the repeller electrode (1), and one is closer to the accelerating electrode (2). The beams can be aimed between these two parts.

    Diese Anordnung wird in Fig. 4 gezeigt, welche damit auch ein Beispiel, entsprechend den Ansprüchen 14 bzw. 16 angibt. Hierbei dienen die beiden Elektroden(4,5) zwischen der Repellerelektrode(1) und der Beschleunigungselektrode(2) dazu, die Ionen auf sich kreuzenden Bahnen(12) durch die Strömungsimpedanz(3) zu lenken. Unter Umständen kann es vorteilhaft sein, hinter der Gas-Strömungsimpedanz weitere Elektroden anzubringen. Ebenso ist es möglich, für die beiden zusätzlichen Elektroden(4,5) unterschiedliche Radii zur Achse der Ionenquelle zu wählen.This arrangement is shown in Fig. 4 , which thus also gives an example according to claims 14 and 16, respectively. The two electrodes (4, 5) between the repeller electrode (1) and the acceleration electrode (2) serve to direct the ions on intersecting paths (12) through the flow impedance (3). Under certain circumstances, it may be advantageous to add further electrodes behind the gas flow impedance. It is also possible to choose different radii to the axis of the ion source for the two additional electrodes (4, 5).

    Teilt man die Elektroden(4,5) entlang einer, in Fig. 4 gestrichelt mit ( B - B' ) markierten, Normalebene des zu untersuchenden Gas- bzw. Ionenstrahls(10) in zwei symmetrische Hälften, so kann man ein transversales elektrisches Feld, auch genannt Ablenkfeld, erzeugen. Dieses Ablenkfeld kann die transversalen Geschwindigkeitskomponenten der geladenen Teilchen ändern.If the electrodes ( 4 , 5) are divided into two symmetrical halves along a normal plane of the gas or ion beam (10) to be examined, which is marked with a dash ( B - B ' ) in FIG. 4 , a transverse electric field can be created , also called the deflection field. This deflection field can change the transverse velocity components of the charged particles.

    Außer einem notwendigen, kleinen Spalt zwischen den beiden Hälften, behalten dann die Elektroden(4,5) ihre zylindersymmetrische Form. Dies hat folgende Vorteile:

    • Zieht man die zylindersymmetrischen Anteile des Feldes von dem gesamten elektrischen Feld ab, d.h. setzt man die linken und rechten Hälften der geteilten Elektroden(4,5) auf gegengleiche Potentiale, und die übrigen, ungeteilten Elektroden(1,2) auf Massepotential, so entsteht in einem großen Bereich entlang der Achse ein elektrisches Feld, dessen Feldstärke in transversaler Richtung nur schwach von den transversalen Koordinaten abhängt.
    • Zieht man die transversalen Anteile des Feldes von dem gesamten elektrischen Feld ab, d.h. setzt man die linken und rechten Hälften der geteilten Elektroden(4,5) auf gleiche Potentiale, so verbleibt als Rest ein nahezu zylindersymmetrisches elektrisches Feld. In einem zylindersymmetrischen Feld werden die Ionen isotrop fokussiert bzw. defokussiert, und somit sind dann nach der Ionenquelle keine anisotropen Linsenelemente nötig. Anisotrope Linsenelemente sind generell aufwendiger, teurer und schwerer zu justieren als zylindersymmetrische Linsenelemente.
    In addition to a necessary, small gap between the two halves, the electrodes (4, 5) then retain their cylindrical symmetrical shape. This has the following advantages:
    • Subtracting the cylindrically symmetrical portions of the field from the total electric field, ie if the left and right halves of the divided electrodes (4,5) are set to opposite potentials, and the remaining undivided electrodes (1,2) to ground potential, the result is in a large area along the axis there is an electric field whose field strength in the transverse direction depends only weakly on the transverse coordinates.
    • If the transverse portions of the field are subtracted from the total electric field, ie if the left and right halves of the divided electrodes (4, 5) are set to the same potential, the remainder remains an almost cylindrical symmetrical electric field. The ions are isotropically focused or defocused in a cylindrically symmetrical field, and thus no anisotropic lens elements are then necessary after the ion source. Anisotropic lens elements are generally more complex, expensive and difficult to adjust than cylindrical symmetrical lens elements.

    Zusätzlich zu den optimalen Feldeigenschaften hat die zylindersymmetrische Ausbildung der Ablenkelektroden den weiteren Vorteil, daß die Ablenkelektroden zunächst als Drehteil hergestellt werden können. In einem anschließenden Arbeitsgang können sie dann in zwei Teile zerlegt werden.In addition to the optimal field properties, the has cylindrical symmetry Training the deflection electrodes the further advantage that the Deflection electrodes can initially be manufactured as a turned part. In in a subsequent operation, they can then be broken down into two parts become.

    Fig. 5 zeigt eine Ausführungsform nach Anspruch 20. Hierbei werden die erzeugten Elektronen entlang der gezeigten Elektronenbahnen(13) durch eine Gas-Strömungsimpedanz(6) in der Repellerelektrode(1) abgezogen. Durch die Gas-Strömungsimpedanz(6) entlang der Elektronenbahnen(13) ist, gesehen in Fig. 5, links von der Repellerelektrode(1) der Druck p3 niedriger als der Druck p1 in der Beschleunigungsstrecke. Fig. 5 shows an embodiment according to claim 20. Here, the generated electrons are drawn off along the shown electron paths (13) by a gas flow impedance (6) in the repeller electrode (1). Due to the gas flow impedance (6) along the electron tracks (13), as seen in FIG. 5 , to the left of the repeller electrode (1), the pressure p 3 is lower than the pressure p 1 in the acceleration path.

    Bei der Ausführungsform von Fig. 5 ist der Elektronenstrahl(13) nach der Gas-Strömungsimpedanz(6) divergent und muß anschließend noch fokussiert werden. Dies kann durch bereits bekannte Linsenkonstruktionen erreicht werden, und wird deshalb hier nicht näher beschrieben.In the embodiment of FIG. 5 , the electron beam (13) is divergent according to the gas flow impedance (6) and must then be focused. This can be achieved by already known lens designs and is therefore not described in more detail here.

    Fig. 6 zeigt eine Ausführungsform nach Anspruch 10. Hierbei wird der zu untersuchende Gas- bzw. Ionenstrahl(10) parallel zur Beschleunigungsrichtung durch den Skimmer(6) in die Ionenquelle eingeschossen. Für diese Ausführungsform der Erfindung ist der Druck p3 vor dem Skimmer größer als der Druck p1 in der Beschleunigungsstrecke. 6 shows an embodiment according to claim 10. Here, the gas or ion beam (10) to be examined is injected into the ion source parallel to the direction of acceleration by the skimmer (6). For this embodiment of the invention, the pressure p 3 in front of the skimmer is greater than the pressure p 1 in the acceleration section.

    Elektroden, welche gleichzeitig Trennwände zwischen Bereichen verschieden Drucks darstellen, müssen mit dem Gehäuse verbunden werden, um ihre Funktion erfüllen zu können. Falls die betreffende Elektrode auf Masse- bzw. Gehäusepotential liegt, ist dies einfach. Falls eine Elektrode, die gleichzeitig eine Trennwand zwischen Bereichen verschiedenen Drucks darstellen soll, sich nicht auf Massepotential befindet, muß zwischen dieser Elektrode und dem Gehäuse ein Isolator vorgesehen werden. Wenn dieser Isolator flächig zwischen Elektrode und Gehäuse geklebt wird, können dadurch Probleme z.B. durch Ausgasen des Klebers, Gaseinschlüsse zwischen Isolator und Elektrode, usw. entstehen.Electrodes that separate partitions between areas simultaneously Pressure must be connected to the housing, to be able to fulfill their function. If the electrode in question Ground or housing potential, this is easy. If an electrode, which are simultaneously a partition between different areas To represent pressure, is not at ground potential, must be between an insulator can be provided for this electrode and the housing. If this insulator is glued flat between the electrode and the housing problems, e.g. by degassing the adhesive, gas inclusions between insulator and electrode, etc. arise.

    Fig. 7 zeigt eine mögliche Lösung, falls eine Elektrode, die gleichzeitig eine Trennwand zwischen Bereichen verschiedenen Drucks darstellen soll, sich nicht auf Massepotential befindet. Wie gezeigt, überlappen sich die Elektrode(2) und die Gehäusewand(31), berühren sich aber nicht. Der Abstand zwischen beiden wird, wie hier beispielhaft gezeigt, durch eine Saphirkugel(32) festgelegt. Der Spalt zwischen der Elektrode(2) und der Gehäusewand(31) soll so klein gewählt werden, daß der Leitwert für Gase deutlich kleiner ist als die Pumpleistung der Pumpe des Bereichs mit dem niedrigeren Druck. Es versteht sich, daß die Elektrode(2) gegen die Gehäusewand gedrückt werden muß. Dies kann durch bereits bekannte Methoden bewirkt werden, weshalb hier nicht näher darauf eingegangen wird. FIG. 7 shows a possible solution if an electrode, which is also intended to represent a partition between areas of different pressure, is not at ground potential. As shown, the electrode (2) and the housing wall (31) overlap, but do not touch. The distance between the two, as shown here by way of example, is determined by a sapphire ball (32). The gap between the electrode (2) and the housing wall (31) should be chosen so small that the conductance for gases is significantly smaller than the pumping capacity of the pump in the area with the lower pressure. It is understood that the electrode (2) must be pressed against the housing wall. This can be brought about by already known methods, which is why it is not dealt with in more detail here.

    Claims (20)

    1. A time-of-flight mass-spectrometer
      with two or more regions of different gas pressure,
      neighboring regions being connected via gas flow restrictions(3,6),
      with a gasphase ion source,
      being bounded by a number of electrodes(1,2,4,5) for producing electrical fields that accelerate the ions,
      containing a repeller-electrode(1)
      characterized by
      at least one of the accelerating electrodes(1,2,4,5) forming a boundary between regions of different gas pressure, the gas pressure being reduced in the direction of flight of the ions, a gas flow restriction(3,6) integrated into said electrode, this electrode being positioned in the path of the ions behind the repeller electrode(1).
    2. A time-of-flight mass-spectrometer with gasphase ion source according to claim 1, characterized by a gas flow restriction(3,6) in an electrode(1,2), said flow restriction being a hole in said electrode.
    3. A time-of-flight mass-spectrometer with gasphase ion source according to claim 1, characterized by a gas flow restriction(3,6) in an electrode(1,2), said flow restriction being a tube integrated into said electrode.
    4. A time-of-flight mass-spectrometer with gasphase ion source according to claim 1, characterized by a gas flow restriction(3,6) in an electrode(1,2), said flow restriction being a scimmer integrated into said electrode.
    5. A time-of-flight mass-spectrometer with gasphase ion source according to one of the previous claims, characterized by the gas flow restriction being covered by a metal mesh.
    6. A time-of-flight mass-spectrometer with gasphase ion source according to one of the previous claims, characterized by the gas flow restriction not being covered by a metal mesh.
    7. A time-of-flight mass-spectrometer with gasphase ion source according to one of the previous claims, characterized by several electrodes(1,2) with openings, said openings representing gas flow restrictions, some of said openings being covered with metal meshes, and some of said openings not being covered with metal meshes.
    8. A time-of-flight mass-spectrometer with gasphase ion source according to one of the previous claims, characterized by an electrical field between the electrodes(1,2,4,5), said electrical field being independent of time.
    9. A time-of-flight mass-spectrometer with gasphase ion source according to one of the claims 1 through 7, characterized by an electrical field between the electrodes(1,2,4,5), said electrical field being time-dependent.
    10. A time-of-flight mass-spectrometer with gasphase ion source according to one of the previous claims, characterized by the direction of flight of the analyte gas or ion beam(10), said direction of flight being parallel to the direction into which the ions are accelerated within the ion source.
    11. A time-of-flight mass-spectrometer with gasphase ion source according to claim 10, characterized by a further gas flow restriction(6), said further gas flow restriction being integrated into the repeller electrode(1).
    12. A time-of-flight mass-spectrometer with gasphase ion source according to one of the claims 1 through 9, characterized by the direction of flight of the analyte gas or ion beam(10), said direction of flight being orthogonal to the direction into which the ions are accelerated within the ion source.
    13. A time-of-flight mass-spectrometer with gasphase ion source according to one of the claims 1 through 9, characterized by the direction of flight of the analyte gas or ion beam(10), said direction of flight having some arbitrary angle to the direction into which the ions are accelerated within the ion source.
    14. A time-of-flight mass-spectrometer with gasphase ion source according to one of the previous claims, characterized by one or several gas flow restrictions (3,6), one or several additional electrodes(4,5), and said additional electrodes being arranged before - as seen in the direction of flight for ions or electrons - said flow restriction.
    15. A time-of-flight mass-spectrometer with gasphase ion source according to one of the previous claims, characterized by one or several gas flow restrictions(3,6), one or several additional electrodes, and said additional electrodes being arranged behind - as seen in the direction of flight for ions or electrons - said flow restriction.
    16. A time-of-flight mass-spectrometer with gasphase ion source according to one of the claims 1 through 13, characterized by one or several gas flow restrictions(3,6), one or several additional electrodes, and said additional electrodes being arranged before or behind said flow restriction.
    17. A time-of-flight mass-spectrometer with gasphase ion source according to one of the previous claims, characterized by electrodes(1,2,4,5), said electrodes defining the acceleration field, and further electrodes, said further electrodes creating a transverse field, said transverse field changing the transverse velocity component of charged particles.
    18. A time-of-flight mass-spectrometer with gasphase ion source according to one of the claims 14 through 16, characterized by additional electrodes(e.g. 4,5), said additional electrodes being arranged before or after the gas flow restriction(3,6), and
      said additional electrodes being split along a plane normal to the direction of the analyte gas or ion beam into symmetrical half-parts, said half-parts producing a transverse electrical field, said transverse field changing the transverse velocity component of charged particles,
      said additional electrodes, except for being split into two half-parts, having a form of rotational symmetry around an axis, said axis pointing in the direction of acceleration of said gasphase ion source.
    19. A time-of-flight mass-spectrometer with gasphase ion source according to one of the claims 17 or 18, characterized by electrodes defining a transverse electrical field, said electrodes being additionally split symmetrically along a plane, said plane being defined by two vectors, one of said vectors being the direction of the analyte gas or ion beam, the other of said vectors being the direction of acceleration in the ion source.
    20. A time-of-flight mass-spectrometer with gasphase ion source according to one of the previous claims, characterized by ions and electrons that are both drawn out of the ion source, and a gas flow restriction(6) on the electron paths(13) within the ion source.
    EP94110273A 1993-07-02 1994-07-01 High sensitivity, wide dynamic range time-of-flight mass spectrometer provided with a gas phase ion source Expired - Lifetime EP0633602B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE4322102A DE4322102C2 (en) 1993-07-02 1993-07-02 Time-of-flight mass spectrometer with gas phase ion source
    DE4322102 1993-07-02

    Publications (3)

    Publication Number Publication Date
    EP0633602A2 EP0633602A2 (en) 1995-01-11
    EP0633602A3 EP0633602A3 (en) 1995-11-22
    EP0633602B1 true EP0633602B1 (en) 2000-05-24

    Family

    ID=6491836

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP94110273A Expired - Lifetime EP0633602B1 (en) 1993-07-02 1994-07-01 High sensitivity, wide dynamic range time-of-flight mass spectrometer provided with a gas phase ion source

    Country Status (7)

    Country Link
    US (1) US5496998A (en)
    EP (1) EP0633602B1 (en)
    JP (1) JPH07176291A (en)
    AT (1) ATE193398T1 (en)
    AU (2) AU685113B2 (en)
    CA (1) CA2127183A1 (en)
    DE (2) DE4322102C2 (en)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4441972C2 (en) * 1994-11-25 1996-12-05 Deutsche Forsch Luft Raumfahrt Method and device for the detection of sample molecules in a carrier gas
    US5744797A (en) * 1995-11-22 1998-04-28 Bruker Analytical Instruments, Inc. Split-field interface
    DE19655304B8 (en) * 1995-12-14 2007-05-31 Micromass Uk Ltd. Mass spectrometers and methods for mass spectrometry
    GB9525507D0 (en) * 1995-12-14 1996-02-14 Fisons Plc Electrospray and atmospheric pressure chemical ionization mass spectrometer and ion source
    DE19631161A1 (en) * 1996-08-01 1998-02-12 Bergmann Thorald Time of flight time of flight mass spectrometer with differentially pumped collision cell
    GB0021902D0 (en) * 2000-09-06 2000-10-25 Kratos Analytical Ltd Ion optics system for TOF mass spectrometer
    US6675660B1 (en) * 2002-07-31 2004-01-13 Sandia National Laboratories Composition pulse time-of-flight mass flow sensor
    WO2005088294A1 (en) * 2004-03-16 2005-09-22 Kabushiki Kaisha Idx Technologies Laser ionization mass spectroscope
    DE102005005333B4 (en) * 2005-01-28 2008-07-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for sampling and aerosol analysis

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3577165A (en) * 1968-05-31 1971-05-04 Perkin Elmer Corp Linear scanning arrangement for a cycloidal mass spectrometer
    US3553452A (en) * 1969-02-17 1971-01-05 Us Air Force Time-of-flight mass spectrometer operative at elevated ion source pressures
    GB1302193A (en) * 1969-04-18 1973-01-04
    GB8602463D0 (en) * 1986-01-31 1986-03-05 Vg Instr Group Mass spectrometer
    WO1989006044A1 (en) * 1987-12-24 1989-06-29 Unisearch Limited Mass spectrometer
    GB8813149D0 (en) * 1988-06-03 1988-07-06 Vg Instr Group Mass spectrometer
    US5070240B1 (en) * 1990-08-29 1996-09-10 Univ Brigham Young Apparatus and methods for trace component analysis
    DE4108462C2 (en) * 1991-03-13 1994-10-13 Bruker Franzen Analytik Gmbh Method and device for generating ions from thermally unstable, non-volatile large molecules
    JP2913924B2 (en) * 1991-09-12 1999-06-28 株式会社日立製作所 Method and apparatus for mass spectrometry

    Also Published As

    Publication number Publication date
    US5496998A (en) 1996-03-05
    DE4322102C2 (en) 1995-08-17
    AU685113B2 (en) 1998-01-15
    DE59409371D1 (en) 2000-06-29
    AU685112B2 (en) 1998-01-15
    JPH07176291A (en) 1995-07-14
    AU6615394A (en) 1995-01-12
    EP0633602A3 (en) 1995-11-22
    ATE193398T1 (en) 2000-06-15
    AU6615294A (en) 1995-01-12
    CA2127183A1 (en) 1995-01-03
    DE4322102A1 (en) 1995-01-19
    EP0633602A2 (en) 1995-01-11

    Similar Documents

    Publication Publication Date Title
    DE19941670B4 (en) Mass spectrometer and method of operating a mass spectrometer
    DE10158924B4 (en) Pulser for time-of-flight mass spectrometers with orthogonal ion injection
    DE1798021B2 (en) DEVICE FOR CONFIRMING A PRIMARY ION BEAM FROM A MICROANALYZER
    DE69934128T2 (en) GAS PILOT PASSAGE FOR ELECTROSPRAY MASS SPECTROMETRY
    DE19930894B4 (en) Method for controlling the number of ions in ion cyclotron resonance mass spectrometers
    DE10162267B4 (en) Reflector for time-of-flight mass spectrometers with orthogonal ion injection
    EP0633602B1 (en) High sensitivity, wide dynamic range time-of-flight mass spectrometer provided with a gas phase ion source
    DE3231036C2 (en)
    EP0613171B1 (en) Mass spectrometer for mass discrimination according to the time of flight
    DE102005023590A1 (en) Inductively coupled plasma or ICP mass spectrometer having an extraction element formed as an ion funnel
    DE102013015046B4 (en) Imaging mass spectrometer and method for controlling same
    DE2608958A1 (en) DEVICE FOR GENERATING RAYS FROM CHARGED PARTICLES
    DE2420275B2 (en) Device for analyzing a surface layer by ion scattering
    EP0822574B1 (en) Tandem time-of-flight mass spectrometer with colission cell
    DE3813641A1 (en) DOUBLE FOCUSING MASS SPECTROMETER AND MS / MS ARRANGEMENT
    EP0633601B1 (en) Large aperture, low flight-time distortion detector for a time-of-flight mass spectrometer
    DE1598392A1 (en) Quadrupole mass spectrograph
    DE202013012580U1 (en) Ion deflection device for a mass spectrometer
    EP0632482B1 (en) Gas phase ion source for high mass resolution, wide mass range time-of-flight mass spectrometer
    DE69629536T2 (en) Method and device for mass analysis of a dissolved sample
    DE102016103292B4 (en) mass spectrometry
    EP0002430A1 (en) Mass spectrometer
    DE102012203150B4 (en) MASS SPECTROMETER AND MASS ANALYZER THAT HAS AN IMPULSE DEVICE
    DE2012479C3 (en) Method and device for mass analysis with the aid of a mass filter
    DE102018116305B4 (en) Dynamic ion filter to reduce highly abundant ions

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH DE DK FR GB LI NL SE

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH DE DK FR GB LI NL SE

    17P Request for examination filed

    Effective date: 19960319

    17Q First examination report despatched

    Effective date: 19970321

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK FR GB LI NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000524

    REF Corresponds to:

    Ref document number: 193398

    Country of ref document: AT

    Date of ref document: 20000615

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59409371

    Country of ref document: DE

    Date of ref document: 20000629

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20000714

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20000717

    Year of fee payment: 7

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: RITSCHER & SEIFERT

    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000824

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000824

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20000818

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010701

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20010726

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010731

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    BERE Be: lapsed

    Owner name: BERGMANN THORALD

    Effective date: 20010731

    Owner name: BERGMANN EVA MARTINA

    Effective date: 20010731

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20020703

    Year of fee payment: 9

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20020730

    Year of fee payment: 9

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020731

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020731

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20020731

    Year of fee payment: 9

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040203

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20030701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040331

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST