EP0633601B1 - Détecteur pour spectromètre de masse à temps de vol présentant des distorsions réduites des temps de vols à ouverture élevée - Google Patents

Détecteur pour spectromètre de masse à temps de vol présentant des distorsions réduites des temps de vols à ouverture élevée Download PDF

Info

Publication number
EP0633601B1
EP0633601B1 EP94110272A EP94110272A EP0633601B1 EP 0633601 B1 EP0633601 B1 EP 0633601B1 EP 94110272 A EP94110272 A EP 94110272A EP 94110272 A EP94110272 A EP 94110272A EP 0633601 B1 EP0633601 B1 EP 0633601B1
Authority
EP
European Patent Office
Prior art keywords
ion
conversion surface
time
detector
flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94110272A
Other languages
German (de)
English (en)
Other versions
EP0633601A2 (fr
EP0633601A3 (fr
Inventor
Thorald Dr. Bergmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0633601A2 publication Critical patent/EP0633601A2/fr
Publication of EP0633601A3 publication Critical patent/EP0633601A3/fr
Application granted granted Critical
Publication of EP0633601B1 publication Critical patent/EP0633601B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers

Definitions

  • the invention relates to detectors for time-of-flight mass spectrometers the preamble of claim 1.
  • Detectors for time-of-flight mass spectrometers are said to be incident Oppose the largest possible area of the ion beam, and yet have small flight time errors.
  • Each detector has an ion-electron conversion surface, at which time an ion hits a certain Probability one or more electrons are generated that are in one or several downstream electron multipliers will. This gives an electrical impulse, which with the impact of the ion on the conversion surface in a temporal context stands.
  • the ion-optical axis of a detector means one selected path in or near the center of the incident ion beam. If the detector has a cylindrical symmetry, you usually choose the axis of symmetry.
  • the flight time along the ion-optical axis from the reference plane to the ion-electron conversion surface can be selected as the reference flight time.
  • Flight time errors can be specified as a function of the starting location on the reference level. In the most general case, the flight time errors are depending on the two variables that parameterize the reference level. If the detector has a cylindrical symmetry, then these are Flight time error is a function of the distance of the orbit in question the ion-optical axis in the reference plane.
  • Ions can within a detector with inhomogeneous electrical Field focused or scattered on a smaller or larger area will. For this reason, the usable area is suitable the ion-electron conversion area is not a measure of the sensitivity of the detector.
  • the content of the surface on the reference level is appropriate, from which consists of ions with acceptably small time-of-flight errors in the detector can be started into it.
  • the probability with which an ion hits the Ion-electron conversion surface electrons are triggered, i.e. the electron yield depends very much on the speed at Impact. Because the speed of the ions is inversely proportional to the square root of their mass, the probability of detection increases with ions of large mass.
  • a detector If a detector is to detect ions of larger mass, the ions must therefore be accelerated before being on the ion-electron conversion surface to hit with sufficient probability to release electrons from the conversion surface upon impact. Of the detector must therefore be designed so that a strong, accelerating electric field in front of the conversion surface. Through this post-acceleration field flight time errors can occur.
  • the flight time errors are kept small by keeps the post-acceleration field homogeneous.
  • Has a homogeneous field a location-independent direction and strength of the electric field, whereby the time of flight from the reference plane in a detector with homogeneous fields independent of the ion-electron conversion surface from the starting point at reference level or regardless of the point of entry into the Post-acceleration field is.
  • the post-acceleration field is necessarily inhomogeneous, whereby ions on different orbits with different from each other Flight times get to the ion-electron conversion surface.
  • the size of the flight time error is a function the distance of the trajectory from the ion-optical axis. It is the distance to the ion-optical axis as a variable in this function on the reference level, not on the conversion surface. in the best case, i.e. when the conversion surface is movably suspended the size of this flight time error is proportional to the square of the Distance from the ion-optical axis.
  • the detector in order to keep the flight time errors small, to load the detector only near the ion-optical axis.
  • the measure of the sensitivity of the detector is the content of that Area on the reference plane from which ion trajectories are acceptable small time-of-flight errors can be started into the detector can.
  • the invention is accordingly based on the object Specify detector for time-of-flight mass spectrometer, which alike ensures high sensitivity and high mass resolution.
  • the object of the present invention is a detector for time-of-flight mass spectrometers, in which despite large usable area opposed to the incident beam on the reference level, the flight time errors are kept small.
  • the inhomogeneous ones prevailing in the detector electric field generated or occurring in front of the detector Flight time errors between ions with different trajectories compensated by the detector itself.
  • the curvature causes that occurring in each trajectory Flight time depending on the lateral position on the ion beam varies so, i.e. is either lengthened or shortened by that caused the inhomogeneous field or those occurring in front of the detector Flight time errors can be compensated or at least minimized.
  • lanes can also be used use that with initial conditions corresponding to the actual Operation of the time-of-flight mass spectrometer started from the ion source will. That means that in principle such flight time errors, as in the ion source and in the remaining parts of the time-of-flight mass spectrometer arise in determining the curvature of the Ion-electron conversion area can be included.
  • the end face (20) At the determination of the end face (20) one must take into account that the space of the initial conditions in this case 6 coordinates, so 3 for initial speeds and 3 for initial coordinates. Because the end face is a 2-parameter area in 3-dimensional space is, the end face (20) must be adapted to the end points of the tracks (11) in this way be the average distance of the web endpoints to the end face (20) is minimal.
  • the method can also be designed in such a way that first on a design of the detector electrodes including one determines the curvature of the ion-electron conversion surface, and then the voltages varied until the flight time error fall below a predetermined limit. This procedure corresponds Process claim 10.
  • FIG. 3 shows the simplest embodiment of a detector according to the invention.
  • the time-of-flight errors of off-axis paths are compensated for by a curved conversion surface (3).
  • the only ring electrode (1) is at the potential of the drift path.
  • This embodiment also corresponds to claim 7.
  • tilting a movably mounted bracket it is possible to certain in the detector Flight time errors of the ion source, the reflector and / or the drift path of the time-of-flight mass spectrometer.
  • Fig. 4 shows a detector design in which the field of the post-acceleration path can be adjusted by additional ring electrodes (4). In this way, the necessary curvature of the conversion surface (3) can be kept smaller at a certain voltage than in the design of FIG. 3 . Alternatively, a higher post-acceleration voltage can be set with the same curvature of the ion-electron conversion surface (3).
  • the additional ring electrodes (4) reduce the flight time errors off-axis Trajectories by moving the areas of greater field curvature through them Areas are placed where the speed of the ions is already is bigger.
  • the ring electrodes are placed on potentials, their values between the drift path potential and the potential of the ion-electron conversion surface (3) lie. Instead of two or more Ring electrodes (4) would also be a single additional ring electrode conceivable.
  • the flight time errors become of off-axis orbits larger.
  • the ion orbits also bent more towards the ion-optical axis. Both require that the curvature of the ion-electron conversion surface increases Post-acceleration potential must increase. If the ion orbits are so strongly bent towards the ion-optical axis that they all hitting a point on the conversion surface, it is no longer so possible to correct the flight time errors by curving the conversion surface compensate. This is only with even greater post-acceleration potential possible if the ion trajectories are in front of the conversion surface cross.
  • a detector If a detector is to be operated with a large post-acceleration potential, it is advantageous, as shown in FIG. 5 , to operate it according to method claim 8.
  • arbitrarily high post-acceleration voltages can be achieved with a comparatively small curvature of the ion-electron conversion surface (3) by ensuring that the ion paths (11) cross in front of the conversion surface by suitable arrangement of the electrodes and suitable adjustment of the voltages. Since a number of possibilities are known for arranging electrodes or adjusting voltages in such a way that an electric field with the required properties results, the electrodes are not shown here.
  • FIG. 6 shows a detector design according to claim 6, in which the electrons generated on the curved ion-electron conversion surface (3) are withdrawn transversely to the detector axis by a field superimposed on the post-acceleration field.
  • the electron tracks (15) are shown in dashed lines.
  • the ion trajectories (11) are shown twice in the middle part of the post-acceleration section, since here, similar to Fig. 5 , it is possible to cause crossing (11a) ion trajectories, or the ion trajectories essentially parallel (11b) to the ion Lead electron conversion surface (3).
  • the generated electrons can be scanned using a multi-channel plate or scintillator or similar be effected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Claims (11)

  1. Détecteur pour spectromètre de masse à durée de vol, comportant
    une ou plusieurs électrodes (1, 2, 4) pour la post-accéleration des ions, et
    une surface de conversion (3) ions-électrons,
    la surface de conversion (3) ions-électrons n'etant pas plan et la courbure de la surface de conversion (3) ions-électrons servant à réduir les erreurs de la durée de vol.
  2. Détecteur suivant la revendication 1 caractérisé en ce que la surface de conversion (3) ions-électrons est formée en métal.
  3. Détecteur suivant la revendication 1 comportant une galette de microcanaux servant comme surface de conversion (3) ions-électrons.
  4. Détecteur suivant l'une quelconque des revendications précédentes caractérisé en ce que les électrodes (1, 2, 4) pour la post-accéleration des ions et la surface de conversion (3) ions-électrons sont en forme cylindrosymétrique.
  5. Détecteur suivant l'une quelconque des revendications 1 à 3 caractérisé en ce que les électrodes (1, 2, 4) pour la post-accéleration des ions et/ou la surface de conversion (3) ions-électrons ne sont pas en forme cylindrosymétrique.
  6. Détecteur suivant l'une quelconque des revendications précédentes caractérisé en ce que le champ de post-accélération des ions est superposé par un champ extracteur des ions produits à la surface de conversion (3) ions-électrons.
  7. Détecteur suivant l'une quelconque des revendications précédentes caractérisé en ce qu'il est possible d'incliner la surface de conversion (3) ions-électrons autour un ou plusieurs axes.
  8. Spectromètre de masse à durée de vol comportant un détecteur suivant l'une quelconque des revendications précédentes.
  9. Procédé d'opération d'un détecteur pour un spectromètre de masse à durée de vol comportant
    une ou plusieurs électrodes (1, 2, 4) pour la post-accéleration des ions, et
    une surface de conversion (3) ions-électrons,
    la surface de conversion (3) ions-électrons n'etant pas plan
    la courbure de la surface de conversion (3) ions-élections servant à réduir les erreurs de durée de vol, et
    les électrodes (1, 2, 4) et les tensions appliquées à ceux-ci ayant l'effect de courber des trajectoires extraaxiales (11) à un tel degrée qu'ils sont incidentes sur le côté opposé de l'axe.
  10. Procédé de détermination de la courbure de la surface de conversion (3) ions-électrons d'un détecteur comportant plusieurs électrodes (1, 2, 4) caractérisé en ce que
    a) on destine toutes les formes des électrodes (1, 2, 4) à l'avance, à l'exception de la courbure de la surface de conversion (3) ions-électrons,
    b) on choisit une forme arbitraire pour la surface de conversion (3) ions-électrons.
    c) on détermine les tensions de toutes les électrodes (1, 2, 4),
    d) on détermine le potentiel des formes et des tensions données des électrodes,
    e) on détermine une groupe de trajectoires (11), soit
    à partir d'une surface (12) verticale à l'axe optique des ions du détecteur, étant orientées vers l'intérieur du détecteur, parallèles à l'axe optique des ions et possédant la même vitesse initiale, ou soit
    à partir de la source des ions du spectromètre de masse à durée de vol, les trajéctoires étant choisies tel qu'elles possedent des lieux, des vitesses et des directions initials qui correspondent aux conditions normales d'utilisation du spectromètre de masse à durée de vol,
    la même durée de vol étant choisi pour toutes les trajectoires, c'est à dire le temps necessaire pour un ion de parvenir, longeant une trajectoire sur l'axe optique des ions et venant respectivement de la surface verticale (12) ou de la source de ions, à la surface de conversion (3) ions-électrons,
    f) la surface (20), laquelle
    en cas de conditions initiales à deux dimensions, est definie par les points d'extremité des trajectoires ainsi déterminées, ou respectivement
    en cas de conditions initiales à plus de deux dimensions, est une approximation optimalisée des points d'extremité des trajectoires ainsi déterminées
    fournit la forme necessaire de la surface de conversion ions-électrons,
    g) la surface détermine au pas f) est. soit
    prise directement comme nouvelle forme de la surface de conversion (3) ions-électrons, ou soit
    adaptée optimal par une surface à nombre fini de paramètres,
    et on continue avec pas d) le procédé etant répété de pas d) à pas g) jusqu'à ce que l'écart entre la surface (20) déterminée au pas f) et la surface de conversion (3) réelle descend au-dessous d'une limite prédéfinie, étant necessaire, si l'on utilise une surface à nombre fini de paramètres au pas g), d'utiliser au moins ce nombre minimale de paramètres pour la détermination de la surface de conversion (3) ions-électrons lequelle rend justement posssible que l'ecart entre la surface (20) détermine au pas f) et la surface de conversion (3) réelle descend au-dessous d'une limite prédéfinie.
  11. Procédé de détermination des tensions des électrodes d'un détecteur comportant une surface de conversion (3) ions-électrons courbée caractérisé en ce que
    a) on détermine toutes les formes des électrodes (1, 2, 3, 4) à l'avance,
    b) on choisit un jeu de tensions pour toutes les électrodes,
    c) on calcule le potentiel à partir des formes et tensions données des électrodes,
    d) on détermine une groupe de trajectoires (11), soit
    à partir d'une surface (12) verticale à l'axe optique des ions du détecteur, étant orientées vers l'intérieur du étecteur, parallèles à l'axe optique des ions et possédant la même vitesse initiale, ou soit
    à partir de la source des ions du spectromètre de masse à durée de vol, les trajéctoires étant choisies tel qu'elles possedent des lieux, des vitesses et des directions initials qui correspondent aux conditions normales d'utilisation du spectromètre de masse à durée de vol,
    la même durée de vol étant choisi pour toutes les trajectoires, c'est à dire le temps necessaire pour un ion de parvenir, longeant une trajectoire sur l'axe optique des ions et venant respectivement de la surface verticale (12) ou de la source de ions, à la surface de conversion (3) ions-électrons.
    e) on varie les tensions de toutes les électrodes jusqu'à ce que l'écart moyen entre les points d'extremité déterminés des trajectoires (1 1) des ions au pas d) et la surface de conversion (3) ions-électrons atteint un minimum.
EP94110272A 1993-07-02 1994-07-01 Détecteur pour spectromètre de masse à temps de vol présentant des distorsions réduites des temps de vols à ouverture élevée Expired - Lifetime EP0633601B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4322104 1993-07-02
DE4322104A DE4322104A1 (de) 1993-07-02 1993-07-02 Detektor für Flugzeit-Massenspektrometer mit geringen Flugzeitfehlern bei gleichzeitig großer Öffnung

Publications (3)

Publication Number Publication Date
EP0633601A2 EP0633601A2 (fr) 1995-01-11
EP0633601A3 EP0633601A3 (fr) 1995-11-22
EP0633601B1 true EP0633601B1 (fr) 1998-10-14

Family

ID=6491838

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94110272A Expired - Lifetime EP0633601B1 (fr) 1993-07-02 1994-07-01 Détecteur pour spectromètre de masse à temps de vol présentant des distorsions réduites des temps de vols à ouverture élevée

Country Status (7)

Country Link
US (1) US5637869A (fr)
EP (1) EP0633601B1 (fr)
JP (1) JPH0831372A (fr)
AT (1) ATE172323T1 (fr)
AU (1) AU685114B2 (fr)
CA (1) CA2127184A1 (fr)
DE (2) DE4322104A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188881A (ja) * 1996-12-26 1998-07-21 Yokogawa Analytical Syst Kk 飛行時間型質量分析装置及びイオンビーム用収束レンズ
US6013913A (en) * 1998-02-06 2000-01-11 The University Of Northern Iowa Multi-pass reflectron time-of-flight mass spectrometer
US6891712B2 (en) * 2001-10-18 2005-05-10 Pst Associates, Llc Field converter
US20050099761A1 (en) * 2001-10-18 2005-05-12 Pst Associates, Llc Field converter for thrust generation
GB2399677C (en) * 2003-02-13 2007-03-06 Micromass Ltd Ion detector
US7141785B2 (en) 2003-02-13 2006-11-28 Micromass Uk Limited Ion detector
CN103745908B (zh) * 2014-01-10 2016-06-22 清华大学深圳研究生院 一种时间补偿离子检测器及弯曲型离子迁移谱仪
US9666423B2 (en) 2014-05-22 2017-05-30 W Henry Benner Instruments for measuring ion size distribution and concentration

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2534796C3 (de) * 1975-08-04 1979-07-05 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Rotationssymetrischer Ionen-Elektronen-Konverter
US4472631A (en) * 1982-06-04 1984-09-18 Research Corporation Combination of time resolution and mass dispersive techniques in mass spectrometry
SU1274547A2 (ru) * 1984-08-10 1988-04-30 Институт Аналитического Приборостроения Научно-Технического Объединения Ан Ссср Устройство дл масс-спектрометрического анализа
US5300774A (en) * 1991-04-25 1994-04-05 Applied Biosystems, Inc. Time-of-flight mass spectrometer with an aperture enabling tradeoff of transmission efficiency and resolution
US5160840A (en) * 1991-10-25 1992-11-03 Vestal Marvin L Time-of-flight analyzer and method

Also Published As

Publication number Publication date
DE59407075D1 (de) 1998-11-19
CA2127184A1 (fr) 1995-01-03
EP0633601A2 (fr) 1995-01-11
JPH0831372A (ja) 1996-02-02
EP0633601A3 (fr) 1995-11-22
ATE172323T1 (de) 1998-10-15
AU6615494A (en) 1995-01-12
DE4322104A1 (de) 1995-01-19
AU685114B2 (en) 1998-01-15
US5637869A (en) 1997-06-10

Similar Documents

Publication Publication Date Title
DE102018208174B4 (de) Massenspektrometer und Verfahren für Fluqzeit-Massenspektrometrie
DE69921900T2 (de) Flugzeitmassenspektrometer und doppelverstärkungsdetektor dafür
DE3920566C2 (fr)
DE112010005323B4 (de) Offenes Fallen-Massenspektrometer
DE112012004909B4 (de) lonenspektrometer mit hohem Tastverhältnis
EP0208894B1 (fr) Spectromètre de masses à temps de vol avec Un réflecteur d'ions
DE112007000922B4 (de) Massenspektrometrieverfahren und Massenspektrometer zum Durchführen des Verfahrens
DE102019129108A1 (de) Multireflexions-Massenspektrometer
DE60128419T2 (de) Flugzeitmassenspektrometer mit auswählbarer Driftlänge
DE112011102323B4 (de) Ionendetektionsanordnung
DE112007002456T5 (de) Mehrkanal-Detektion
DE1798021B2 (de) Einrichtung zur buendelung eines primaer-ionenstrahls eines mikroanalysators
DE69118492T2 (de) Massenspektrometer mit elektrostatischem Energiefilter
DE10162267B4 (de) Reflektor für Flugzeitmassenspektrometer mit orthogonalem Ioneneinschuss
EP0633601B1 (fr) Détecteur pour spectromètre de masse à temps de vol présentant des distorsions réduites des temps de vols à ouverture élevée
DE102005023590A1 (de) ICP-Massenspektrometer
DE102013015046B4 (de) Bildgebendes Massenspektrometer und Verfahren zum Steuern desselben
DE2540505A1 (de) Flugzeit-massenspektrometer fuer ionen mit unterschiedlichen energien
DE69121463T2 (de) Ionenbündelvorrichtung
EP0633602B1 (fr) Spectromètre de masse à temps de vol pourvu d'une source d'ions en phase gaseuze présentant une sensibilité élevée ainsi qu'une large gamme dynamique
EP2355129B1 (fr) Reflecteur pour un spectromètre de masse à temps de vol
DE102019113776A1 (de) Korrektur der Neigung der Ionenfront in einem Flugzeit (TOF)-Massenspektrometer
DE1034884B (de) Vorrichtung zum Trennen von Ionen verschiedenen Ladungs-Masse-Verhaeltnisses
EP0632482B1 (fr) Source d'ions en phase gazeuse pour spectromètre de masse à temps de vol, présentant une résolution en masse élevée ainsi qu'une large gamme de masses
DE2542362C3 (de) Ionenstreuspektroskopisches Verfahren und Vorrichtung zur Durchführung desselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK FR GB LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK FR GB LI NL SE

17P Request for examination filed

Effective date: 19960319

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970626

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FR GB LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981014

REF Corresponds to:

Ref document number: 172323

Country of ref document: AT

Date of ref document: 19981015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59407075

Country of ref document: DE

Date of ref document: 19981119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990114

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990114

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990104

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & SEIFERT

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: BERGMANN THORALD

Effective date: 19990731

Owner name: BERGMANN EVA MARTINA

Effective date: 19990731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000714

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010726

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020703

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020730

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020731

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST