EP0629265B1 - Kraftstoff-einspritzvorrichtung nach dem festkörper-energiespeicher-prinzip für brennkraftmaschinen - Google Patents

Kraftstoff-einspritzvorrichtung nach dem festkörper-energiespeicher-prinzip für brennkraftmaschinen Download PDF

Info

Publication number
EP0629265B1
EP0629265B1 EP93905299A EP93905299A EP0629265B1 EP 0629265 B1 EP0629265 B1 EP 0629265B1 EP 93905299 A EP93905299 A EP 93905299A EP 93905299 A EP93905299 A EP 93905299A EP 0629265 B1 EP0629265 B1 EP 0629265B1
Authority
EP
European Patent Office
Prior art keywords
fuel
piston
line
valve
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93905299A
Other languages
English (en)
French (fr)
Other versions
EP0629265A1 (de
Inventor
Wolfgang Heimberg
Wolfram Hellmich
Franz Kögl
Paul Malatinszky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ficht GmbH and Co KG
Original Assignee
Ficht GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4206817A external-priority patent/DE4206817C2/de
Application filed by Ficht GmbH and Co KG filed Critical Ficht GmbH and Co KG
Priority to EP96109438A priority Critical patent/EP0733798B1/de
Publication of EP0629265A1 publication Critical patent/EP0629265A1/de
Application granted granted Critical
Publication of EP0629265B1 publication Critical patent/EP0629265B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/462Arrangement of fuel conduits, e.g. with valves for maintaining pressure in the pipes after the engine being shut-down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D33/00Controlling delivery of fuel or combustion-air, not otherwise provided for
    • F02D33/003Controlling the feeding of liquid fuel from storage containers to carburettors or fuel-injection apparatus ; Failure or leakage prevention; Diagnosis or detection of failure; Arrangement of sensors in the fuel system; Electric wiring; Electrostatic discharge
    • F02D33/006Controlling the feeding of liquid fuel from storage containers to carburettors or fuel-injection apparatus ; Failure or leakage prevention; Diagnosis or detection of failure; Arrangement of sensors in the fuel system; Electric wiring; Electrostatic discharge depending on engine operating conditions, e.g. start, stop or ambient conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M39/00Arrangements of fuel-injection apparatus with respect to engines; Pump drives adapted to such arrangements
    • F02M39/005Arrangements of fuel feed-pumps with respect to fuel injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/04Pumps peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/007Venting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/027Injectors structurally combined with fuel-injection pumps characterised by the pump drive electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/38Pumps characterised by adaptations to special uses or conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/047Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves being formed by deformable nozzle parts, e.g. flexible plates or discs with fuel discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/06Use of pressure wave generated by fuel inertia to open injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/16Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors
    • F02M69/18Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air
    • F02M69/24Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air the device comprising a member for transmitting the movement of the air throttle valve actuated by the operator to the valves controlling fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/30Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
    • F02M69/34Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines with an auxiliary fuel circuit supplying fuel to the engine, e.g. with the fuel pump outlet being directly connected to injection nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2075Type of transistors or particular use thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M2037/085Electric circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/40Fuel-injection apparatus with fuel accumulators, e.g. a fuel injector having an integrated fuel accumulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Steroid Compounds (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum Einspritzen von Kraftstoff für Brennkraftmaschinen der im Oberbegriff des Anspruchs 1 angegebenen Art.
  • Einspritzvorrichtungen, deren elektrisch betriebene Hubkolbenpumpen nach dem sogenannten Festkörper-Energiespeicher-Prinzip arbeiten, weisen einen Förderkolben oder -zylinder auf, der auf einem bestimmten Weg nahezu widerstandslos beschleunigt wird, wobei in der Regel Kraftstoff bewegt wird, bevor derjenige Förderdruck aufgebaut wird, der zum Abspritzen des Kraftstoffes über die Einspritzdüse erforderlich ist. Auf diese Weise wird vor dem eigentlichen zum Einspritzen erforderlichen Druckaufbau kinetische Energie aufgenommen bzw. gespeichert, die dann schlagartig in einen Druckanstieg im Kraftstoff umgewandelt wird.
  • Bei einem aus der DD-PS 120 514 bekannten sogenannten Pumpe-Düse-Element, das nach dem Festkörper-Energiespeicher-Prinzip arbeitet, weist der den Förderkolben der Einspritzpumpe aufnehmende Kraftstofförderraum in einem ersten Abschnitt axial parallel angeordnete Nuten in der Innenwandung auf, durch die Kraftstoff zur Rückseite des Förderkolbens abfließen kann, wenn sich der Förderkolben in Bewegung setzt, ohne daß es zu einem merklichen Druckaufbau im Kraftstoff kommt.
  • Der sich anschließende zweite Abschnitt des Kraftstofförderraumes ist der eigentliche Druckraum, der keine Nuten aufweist. Tritt der beschleunigte Förderkolben in diesen Druckraum ein, wird er durch den inkompressiblen Kraftstoff schlagartig abgebremst, wodurch die gespeicherte kinetische Energie in einen Druckstoß umgewandelt wird, durch den der Widerstand des Einspritzventils überwunden wird, so daß es zum Abspritzen von Kraftstoff kommt. Nachteilig hierbei ist, daß beim Eintauchen des Förderkolbens in den zweiten Abschnitt des Förderraumes aufgrund ungünstiger Spaltbedingungen, nämlich einer relativ großen Spaltbreite und einer relativ kleinen Spaltlänge, spürbar hohe Druckverluste auftreten, die insbesondere die mögliche Geschwindigkeit und Druckhöhe des Druckaufbaus reduzieren und damit den Abspritzvorgang ungünstig beeinflussen. Die Druckverluste werden durch Abfließen von Kraftstoff aus dem Druckraum in den Druckvorraum (erster Abschnitt des Kraftstofförderraumes) verursacht.
  • Nach der DD-PS 213 472 soll dieser Nachteil vermieden werden, indem im Druckraum des Förderzylinders ein Schlagkörper gelagert wird, auf den der nahezu widerstandslos beschleunigte Kolben auftrifft, so daß der Druckverlust beim Druckaufbau durch eine relativ große Spaltlänge trotz relativ großer Spaltbreite (große Fertigungstoleranzen) zwischen dem Schlagkörper und der Druckrauminnenwandungsfläche vertretbar klein gehalten werden kann. Nachteilig hierbei ist jedoch, daß es durch den Schlagvorgang zu einem hohen Verschleiß der aufeinandertreffenden Körper kommt. Zudem wird der Schlagkörper durch den Schlag in Longitudinalschwingungen versetzt, die sich auf den Kraftstoff übertragen und dort als hochfrequente Druckschwingungen den Einspritzvorgang stören.
  • Ein besonderer Nachteil dieser bekannten Festkörper-Energiespeicher-Einspritzvorrichtungen besteht darin, daß der Einspritzvorgang nur sehr begrenzt steuerbar ist, sich also nur sehr beschränkt an die Lastverhältnisse des Motors anpassen läßt. Das Gleiche gilt für die Kraftstoffeinspritzvorrichtung nach der DE-OS 23 07 435, bei der die Hubkolbenpumpe als bewegliches Pumpenglied einen hülsenförmigen Pumpenzylinder hat, der längsverschieblich auf einem im Pumpengehäuse fest sitzenden Pumpenkolben angeordnet ist und den Pumpendruckraum begrenzt, der über eine Längsbohrung im Pumpenkolben mit der Einspritzventileinrichtung in Verbindung steht. Eine Querbohrung im Pumpenzylinder ermöglicht das Abfließen von Kraftstoff auf die Rückseite des Zylinders beim Energiespeichern. Das Überfahren der Kolbenstirnkante mit der Bohrung führt zum Druckaufbau und damit zum Abspritzen von Kraftstoff. Auch in diesem Fall treten hohe Spaltverluste beim Druckaufbau auf.
  • Aufgabe der Erfindung ist, eine kostengünstige, einfach zu fertigende Vorrichtung zum Einspritzen von Kraftstoff der eingangs genannten Art zu schaffen, mit der ohne spürbare Druckverluste beim Druckaufbau verschleißfrei, sowie lastabhängig genau steuerbar Kraftstoff eingespritzt werden kann und die insbesondere für schnellaufende Brennkraftmaschinen geeignet ist.
  • Gelöst wird diese Aufgabe durch die kennzeichnenden Merkmale des Anspruchs 1. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
  • Anhand der Zeichnung wird die Erfindung beispielhaft näher erläutert. Es zeigen:
    • Fig. 1 bis 8 schematisch im Längsschnitt verschiedene Ausführungsformen der erfindungsgemäßen Einspritzvorrichtung,
    • Fig. 9, 10 und 11 schematisch eine der erfindungsgemäßen Einspritzvorrichtung zuarbeitende Kraftstoffzuführeinrichtung für einen Motorstart und einen Motor-Notlauf ohne Batterie,
    • Fig. 12 schematisch eine bevorzugte Schaltung zur Ansteuerung der Spule der erfindungsgemäßen Einspritzvorrichtung,
    • Fig. 13, 14 und 15 bevorzugte Ausführungsformen des Einspritzventils der erfindungsgemäßen Einspritzvorrichtung im Längsschnitt, und
    • Fig. 16 eine Kraftstoffversorgungseinrichtung ohne Rückleitung zum Tank.
  • Bei der Erfindung ist ein anfänglicher Teilhub des Förderelements der Einspritzpumpe vorgesehen, bei dem die Verdrängung des Kraftstoffes keinen Druckaufbau zur Folge hat, wobei der der Energiespeicherung dienende Förderelementteilhub zweckmäßigerweise durch ein Speichervolumen z.B. in Form eines Leervolumens und ein Anschlagelement bestimmt wird, die, wie nachfolgend anhand der Ausführungsbeispiele näher ausgeführt ist, unterschiedlich gestaltet sein können, beispielsweise in Form einer federbelasteten Membran oder eines federbelasteten Kolbenelements, gegen die Kraftstoff gefördert wird und die auf einem Hubweg "X" des Förderelements die Verdrängung von Kraftstoff zulassen; erst dann, wenn das federbelastete Element während der Verdrängung an einen z.B. festen Anschlag stößt, wird ein schlagartiger Druckaufbau im Kraftstoff erzeugt, so daß eine Verdrängung des Kraftstoffes in Richtung Einspritzdüse bewirkt wird.
  • Die Einspritzvorrichtung nach Fig. 1 weist eine elektromagnetisch angetriebene Hubkolbenpumpe 1 auf, die über eine Förderleitung 2 an eine Einspritzdüseneinrichtung 3 angeschlossen ist. Von der Förderleitung 2 zweigt eine Ansaugleitung 4 ab, die mit einem Kraftstoff-Vorratsbehälter 5 (Tank) in Verbindung steht. Zudem ist an die Förderleitung 2 etwa im Bereich des Anschlusses der Ansaugleitung 4 ein Volumenspeicherelement 6 über eine Leitung 7 angeschlossen.
  • Die Pumpe 1 ist als Kolbenpumpe ausgebildet und hat ein Gehäuse 8, in dem eine Magnetspule 9 lagert, einen im Bereich des Spulendurchgangs angeordneten Anker 10, der als zylindrischer Körper, beispielsweise als Vollkörper ausgebildet und in einer Gehäusebohrung 11 geführt ist, die sich im Bereich der Zentrallängsachse der Ringspule 9 befindet, und mittels einer Druckfeder 12 in eine Ausgangsstellung gedrückt wird, in welcher er am Boden 11a der Gehäusebohrung 11 anliegt. Abgestützt ist die Druckfeder 12 an der einspritzdüsenseitigen Stirnfläche des Ankers 10 und einer dieser Stirnfläche gegenüberliegenden Ringstufe 13 der Gehäusebohrung 11. Die Feder 12 umfaßt mit Spiel einen Förderkolben 14, der mit dem Anker 10 an der von der Feder 12 beaufschlagten Ankerstirnfläche fest, z.B. einstückig, verbunden ist. Der Förderkolben 14 taucht relativ tief in einen zylindrischen Kraftstofförderraum 15 ein, der koaxial in axialer Verlängerung der Gehäusebohrung 11 im Pumpengehäuse 8 ausgebildet ist und in Übertragungsverbindung mit der Druckleitung 2 steht. Aufgrund der Eintauchtiefe können Druckverluste während des schlagartigen Druckanstiegs vermieden werden, wobei die Fertigungstoleranzen zwischen Kolben 14 und Zylinder 15 sogar relativ groß sein können, z.B. lediglich im Hundertstel Millimeterbereich zu liegen brauchen, so daß der Herstellungsaufwand gering ist.
  • In der Ansaugleitung 4 ist ein Rückschlagventil 16 angeordnet. Im Gehäuse 17 des Ventils 16 ist als Ventilelement beispielsweise eine Kugel 18 angeordnet, die in ihrer Ruhestellung durch eine Feder 19 gegen ihren Ventilsitz 20 am vorratsbehälterseitigen Ende des Ventilgehäuses 17 gedrückt wird. Zu diesem Zweck ist die Feder 19 einerseits abgestützt an der Kugel 18 und andererseits an der dem Ventilsitz 20 gegenüberliegenden Wandung des Gehäuses 17 im Bereich der Mündung 21 der Ansaugleitung 4.
  • Das Speicherelement 6 weist ein z.B. zweiteilig ausgebildetes Gehäuse 22 auf, in dessen Hohlraum als zu verdrängendes Organ eine Membran 23 gespannt ist, die von dem Hohlraum einen druckleitungsseitigen, mit Kraftstoff gefüllten Raum abtrennt, und die im entspannten Zustand den Hohlraum in zwei Häften teilt, die durch die Membran gegeneinander abgedichtet sind. An der der Leitung 7 abgewandten Seite der Membran 23 greift in einem Leerraum, dem Speichervolumen, eine diese beaufschlagende Federkraft z.B. eine Feder 24 an, die als Rückstellfeder für die Membran 23 eingerichtet ist. Die Feder 24 ist mit ihrem der Membran gegenüberliegenden Ende an einer Innenwandung des zylindrisch erweiterten leeren Hohlraums gelagert. Der leere Hohlraum des Gehäuses 22 ist durch eine gewölbeförmige Wandung begrenzt, die eine Anschlagfläche 22a für die Membran 23 ausbildet.
  • Die Spule 9 der Pumpe 1 ist an eine Steuereinrichtung 26 angeschlossen, die als elektronische Steuerung für die Einspritzvorrichtung dient.
  • Im stromlosen Zustand der Spule 9 befindet sich der Anker 10 der Pumpe 1 durch die Vorspannung der Feder 12 am Boden lla. Das Kraftstoffzulaufventil 16 ist dabei geschlossen und die Speichermembran 23 wird durch die Feder 24 in ihrer von der Anschlagfläche 22a abgerückten Stellung im Gehäusehohlraum gehalten.
  • Bei Ansteuerung der Spule 9 über die Steuereinrichtung 26 wird der Anker 10 mit Kolben 14 gegen die Kraft der Feder 12 in Richtung Einspritzventil 3 bewegt. Dabei verdrängt der mit dem Anker 10 in Verbindung stehende Förderkolben 14 aus dem Förderzylinder 15 Kraftstoff in den Raum des Speicherelements 6. Die Federkräfte der Federn 12, 24 sind relativ weich ausgebildet, so daß durch den Förderkolben 14 verdrängten Kraftstoff während des ersten Teilhubes des Förderkolbens 14 nahezu ohne Widerstand die Speichermembran 23 in den Leerraum drückt. Dadurch kann der Anker 10 zunächst fast widerstandsfrei beschleunigt werden bis das Speichervolumen bzw. Leerraumvolumen des Speicherelements 6 durch Auftreffen der Membran 23 auf die Gewölbewandung 22a erschöpft ist. Die Verdrängung des Kraftstoffs wird dadurch plötzlich gestoppt und der Kraftstoff infolge der bereits hohen kinetischen Energie des Förderkolbens 14 schlagartig verdichtet. Die kinetische Energie des Ankers 10 mit Förderkolben 14 wirkt auf die Flüssigkeit ein. Dabei entsteht ein Druckstoß, der durch die Druckleitung 2 zur Düse 3 wandert und dort zum Abspritzen von Kraftstoff führt.
  • Für das Förderende wird die Spule 9 stromlos geschaltet. Der Anker 10 wird durch die Feder 12 zum Boden lla zurückbewegt. Dabei wird die in der Speichereinrichtung 6 gespeicherte Flüssigkeitsmenge über die Leitungen 7 und 2 in den Förderzylinder 15 zurückgesaugt und die Membran 23 infolge der Wirkung der Feder 24 in ihre Ausgangsstellung zurückgedrückt. Gleichzeitig öffnet das Kraftstoffzulaufventil 16, so daß Kraftstoff aus dem Tank 5 nachgesaugt wird.
  • Zweckmäßigerweise ist in der Druckleitung 2 zwischen dem Einspritzventil 3 und den Abzweigungen 4, 7 ein Ventil 16a angeordnet, das in dem einspritzventilseitigen Raum einen Standdruck aufrecht erhält, der z.B. höher ist als der Dampfdruck der Flüssigkeit bei maximal auftretender Temperatur, so daß Blasenbildung verhindert wird. Das Standdruckventil kann z.B. wie das Ventil 16 ausgebildet sein.
  • Als Verdrängungorgan für das Speicherelement 6 kann anstelle der Membran 23 auch ein Speicherkolben 31 verwendet werden. Der Anschlag, der in diesem Fall das Speichern plötzlich stoppt, kann erfindungsgemäß verstellbar ausgebildet sein, so daß die Weglänge des Beschleunigungshubes von Anker 10 und Förderkolben 14 verändert werden kann. Zu dieser Verstellung wird bevorzugt ein beispielsweise mit der Drosselklappe des Motors gekoppelter Seilzug verwendet. Alternativ kann die Verstellung zweckmäßigerweise durch die Steuereinrichtung 26, beispielsweise mittels eines Stellmagneten gesteuert werden. Fig. 2 zeigt z.B. ein Ausführungsbeispiel des Speicherelements 6 mit einem durch einen Seilzug 40 verstellbaren Verdrängungkolben 31.
  • Das Speicherelement 6 gemäß Fig. 2 hat ein zylindrisches Gehäuse 30, das integral mit der Druckleitung 2 ausgebildet sein kann. Als zu verdrängendes Organ dient ein Speicherkolben 31, der mit einem engen Paßsitz an der Innenwandung des Zylindergehäuses 30 geführt ist, so daß keine nennenswerte Leckage auftreten kann, wobei im Zylinder 30 ein Leervolumen 33c vorgesehen ist, in das der Kolben 31 verdrängt werden kann. Vorhandene Leckageflüssigkeit kann durch eine Ablaufbohrung 32 aus dem Leervolumenraum 33c entweichen und wird dem Kraftstoffbehälter 5 (s. Fig. 1) zugeführt. Die Ablaufbohrung 32 ist in der Zylinderwandung des Gehäuses 30 im Bereich des Gehäusedeckels 33 ausgebildet, die der Gehäusewand 33a gegenüberliegt, die integral ausgebildet ist mit einem Wandungsabschnitt der Druckleitung 2. Die Ablaufbohrung 32 verläuft etwa radial zur Mittenlängsachse 33b des zylindrischen Gehäuses 30.
  • Zwischen der Innenseite des Gehäusedeckels 33 und der dieser Wand gegenüberliegenden Stirnfläche des Kolbens 31 ist eine Druckfeder 34 eingespannt, die den Kolben 31 in seine Ruhestellung gegen die gegenüberliegende Gehäuseendwand 33a drückt, in welcher eine Bohrung 35 ausgebildet ist, die in der Mittenlängsachse 33b des Gehäuses 30 liegt und in die Druckleitung 2 mündet.
  • Der Gehäusedeckel 33 des Gehäuses 30 ist in axialer Richtung rohrförmig verlängert, und im Durchgang des Verlängerungsrohres 36 ist kolbenartig ein Anschlagbolzen 37 gleitend geführt, der am im Raum 33c befindlichen Ende einen Ring 38 aufweist. Gegen die Unterseite des Rings 38 stößt der Kolben 31, wenn er aus seiner Ruhestellung in Richtung auf den Gehäusedeckel 33 bewegt wird. Dieses Anschlagelement 37 ist mittels einer Feder 39 vorgespannt gelagert. Zu diesem Zweck stützt sich die Feder 39 einerseits an der Innenseite des Deckels 33 und andererseits an der Ringstufe des Ringes 38 des Bolzens 37 ab. Am außerhalb des Zylinders 30 angeordneten Teil des Bolzens 37 ist ein Seilzug 40 befestigt, der beispielsweise mit der Drosselklappe des Motors verbunden ist. Über den Seilzug 40 ist der Anschlagbolzen 37 in Richtung der Mittenlängsachse 33b des Gehäuses 30 verstellbar, so daß auch der mögliche Hubweg des Kolbens 31 der Stellung des Anschlagringes 38 entsprechend variiert werden kann. Der Anschlagbolzen 37 kann je nach erforderlichem Beschleunigungshub des Ankers 10 der Pumpe 1 (Fig. 1) verstellt werden.
  • Die Funktionsweise des Speicherelements 6 gemäß Fig. 2 entspricht im wesentlichen derjenigen des Speicherelements 6 nach Fig. 1. Bei einem ersten Teilhub des Förderkolbens 14 und des Ankers 10 (Fig. 1) wird der Speicherkolben 31 des Speicherelements 6 durch verdrängten Kraftstoff aus seiner in Fig. 2 gezeigten Ruhestellung gedrückt, wobei die Rückstellfeder 34 relativ weich ausgebildet ist, so daß der durch den am Anker 10 sitzenden Förderkolben 14 bewegte Kraftstoff fast ohne Widerstand des Speicherkolbens 31 verdrängt werden kann. Dadurch wird der Anker 10 mit Förderkolben 14 auf einem Teil des Hubes nahezu widerstandsfrei, d.h. im wesentlichen nur gegen die Federkraft der Federn 12, 34 beschleunigt, bis der Speicherkolben 31 mit seiner federbeauschlagten Stirnfläche gegen den Anschlagring 38 stößt, wodurch der im Förderzylinder 15 und in der Druckleitung 2 befindliche Kraftstoff schlagartig infolge der hohen kinetischen Energie des Ankers 10 und Förderkolbens 14 verdichtet und diese kinetische Energie an die Flüssigkeit übertragen wird. Der daraus resultierende Druckstoß führt dann zum Abspritzen von Kraftstoff über die Düse 3.
  • Der verstellbare Anschlagbolzen 37 eignet sich auch zur ausschließlichen Steuerung der einzuspritzenden Kraftstoffmenge für bestimmte Motoren.
  • Fig. 3 zeigt ein Ventil 90, das als integrales Speicherelement-Zulaufventil ausgebildet ist. Das integrale Speicherelement-Zulaufventil 90 weist ein Gehäuse 91 auf, das baueinheitlich ausgebildet ist mit dem Gehäuse 8 der Pumpe 1 und der Druckleitung 2. In das Gehäuse 91 ist eine Mittenlängsbohrung 92 eingebracht, die einendig über eine Öffnung 93a in die Druckleitung 2 und anderendig in einen zylindrischen Ventilraum 93 mündet, wobei zudem Rinnen 94 von der Bohrung 92 zum Ventilraum 93 führen. Das Ventilelement ist zweiteilig ausgebildet und umfaßt einen im Ventilraum 93 geführten Zylinder 95, in dessen zylindrischer, durchgehender Zentralstufenbohrung ein Kolben 96 verschiebbar geführt wird. In der Außenmantelfläche des Zylinders 95 sind axialparallel verlaufende Nuten 97 ausgebildet. Der Zylinder 95 wird durch eine Feder 98 in seine Ruhestellung gedrückt, in welcher er mit seiner einen Stirnfläche auf dem tankseitigen Boden des Ventilraums 93 aufsitzt, in den eine vom Kraftstoffbehälter kommende Kraftstoffzuführleitung 99 mündet. In der Bohrung zur Aufnahme des Kolbens 96 sitzt tankseitig eine Feder 100, die den Kolben 96 gegen den druckleitungsseitigen Boden des Ventilraums 93 drückt, so daß die Bohrung 92 abgedeckt ist, wobei im tankseitigen Innenraum des Zylinders 95 ein Freiraum 95a für den Kolben 96 gebildet wird.
  • Das Ventil 90 funktioniert wie folgt. Wenn der Förderkolben 14 einen Saughub ausführt, wird Kraftstoff aus der Leitung 99 dadurch angesaugt, daß der Zylinder 95 von der tankseitigen Bodenfläche des Ventilraums 93 durch den Unterdruck gegen den Druck der Feder 98 abgehoben wird, so daß Kraftstoff über die Längsnuten 97, den Ventilraum 93 und die Rinnen 94 sowie die Bohrung 92 in die Druckleitung 2 fließen kann. Bei diesem Vorgang liegt der Kolben 96, wie in Fig. 3 gezeigt, an dem druckleitungsseitigen Boden des Ventilraums 93 an. Mit Beendigung des Saughubs wird der Zylinder 95 durch die Feder 98 in die in Fig. 3 gezeigte Stellung gedrückt, in welcher der Zylinder 95 wieder am tankseitigen Boden des Ventilraums 93 dichtend anliegt.
  • Mit Beginn des Förderhubs des Förderkolbens 14 wird der im Zylinder 95 geführte Kolben 96 aufgrund der relativ weichen Ausbildung der Federkraft der Feder 100 aus seiner Anlage am druckleitungsseitigen Boden des Ventilraums 93 wegbewegt und in den Freiraum 95a gedrückt, wobei in den dadurch entstehenden zusätzlichen Raum im Ventilraum 93 Kraftstoff aus dem Druckraum 15, 2 strömt, der bei der Förderbewegung des Förderkolbens 14 verdrängt wird, wobei auf der tankseitigen Stirnseite des Kolbens 96 vom Kolben 96 Kraftstoff über die Leitung 99 in den Tank zurückgedrückt wird. Der Förderhub des Förderkolbens 14 wird dadurch beendet, daß der Kolben 96 mit seiner tankseitigen von der Feder 100 beaufschlagten Stirnfläche an der Stufe in der Mittenlängsbohrung des Kolbens 95 anschlägt. Infolge dieser abrupten Beendigung des im wesentlichen widerstandsfreien Beschleunigungshubes des Ankers 10 mit Förderkolben 14 wird die Ausbildung eines sehr steilen Druckanstiegs in der Druckleitung 2 bewirkt, wodurch Kraftstoff mit hohem Druck über die Düse 3 abgespritzt wird.
  • Gemäß einer weiteren Variante der Erfindung ist vorgesehen, das Speicherelement 6 baueinheitlich auszubilden mit dem Förderkolben der Hubkolbenpumpe 1. Ein dementsprechendes Ausführungsbeispiel ist in Fig. 4 dargestellt. Als Speicherelement dient ein Speicherkolben 80, der in einem druckleitungsseitigen ersten Mittenlängsachsstufenbohrungsabschnitt 14b einer zentral durch den Kolben 14 und den Anker 10 gehenden Stufenbohrung 14a gegen einen druckleitungsseitigen Anschlag (nicht dargestellt) von einer Feder 81 gedrückt wird. Der Kolben 80 ragt dabei in der Ruhestellung mit seiner einen Stirnfläche in den Druckraum 15. Der den Speicherkolben 80 aufnehmende Bohrungsabschnitt 14b im Förderkolben 14 setzt sich nach der Stufe 14c zum Anker 10 hin in einem weiteren Stufenbohrungsabschnitt 14d fort, auf dessen Stufe 14e sich die Druckfeder 81 abstützt, die gegen die ankerseitige Stirnfläche des Kolbens 80 drückt. Die Bohrung 14a durchsetzt nach der Stufe 14e schließlich auch den Anker 10 und mündet in den leeren Ankerraum 11, so daß Luft verdrängt werden kann.
  • Das Speicherelement dieser Ausführungsform funktioniert wie folgt. Auf einem ersten Teil des Hubes des Förderkolbens 14, dem Energiespeicherweg, wird der Speicherkolben 80 in die für den Kolben vorgesehene Bohrung des Förderkolbens 14 hineingedrängt, wodurch druckraumseitig ein zusätzlicher Raum für verdrängten Kraftstoff zur Verfügung steht, so daß der Anker 10 während des ersten Hubabschnitts zusammen mit dem Förderkolben 14 im wesentlichen widerstandsfrei beschleunigt werden kann. Die widerstandslose Beschleunigung von Anker 10 und Förderkolben 14 wird beendet, wenn die ankerseitige Stirnfläche des Speicherkolbens 80 gegen die Ringschulter 14c der Stufenbohrung 14a zur Anlage kommt. Die Folge hiervon ist ein schlagartiger Druckanstieg, durch welchen Kraftstoff über die Düse 3 abgespritzt wird.
  • Fig. 5 zeigt ein Ausführungsbeispiel der Einspritzpumpe, die im wesentlichen den Aufbau der Einspritzpumpe 1 nach Fig. 1 aufweist. Für die hydraulische Dämpfung ist nach Art einer Kolbenzylinderanordnung an der Rückseite des Ankers 10 zentral ein zylindrischer Vorsprung 10a ausgebildet, der im letzten Abschnitt der Ankerrückstellbewegung in eine Sackzylinderbohrung llb im Boden lla passend eintritt, die an der Anschlagfläche lla für den Anker 10 im Gehäuse 8 ausgebildet ist. Im Anker 10 sind in Längsrichtung verlaufende Nuten 10b ausgebildet, die den ankerrückseitigen Raum 11 mit dem ankervorderseitigen Raum 11 verbinden. Im Raum 11 befindet sich ein Medium, z.B. Luft oder Kraftstoff, das bei der Bewegung des Ankers 10 durch die Nuten 10b fließen kann. Die Tiefe der Sackzylinderbohrung 11b entspricht etwa der Länge des Vorsprungs 10a (Abmessung Y in Fig. 8). Dadurch, daß der Vorsprung 10a in die Sackzylinderbohrung 11b eintauchen kann, wird die Ankerrückbewegung im letzten Abschnitt stark verzögert, wodurch die erwünschte hydraulische Dämpfung der Ankerrückstellbewegung durch Verdrängung des Mediums aus dem Raum llb bewirkt wird.
  • Fig. 6a zeigt eine Variante der hydraulischen Dämpfung. Auch bei diesem Ausführungsbeispiel ist der vom Förderkolben 14 durchsetzte Pumpraum 11 vor dem Anker 10 verbunden mit dem an der Ankerrückseite angrenzenden Raum 11, und zwar durch Bohrungen 10d, die im Bereich der Ankerrückseite in einen zentralen Überströmkanal 10c münden. Ein zentraler Stift 8a eines Stoßdämpfers 8b ragt mit seiner Kegelspitze 8c in Richtung Mündung des Überströmkanals 10c, durchgreift rückwärtig ein Loch 8d im Boden 11a, das in einen Dämpfungsraum 8e mündet, und endet im Dämfungsraum mit einem Ring 8f, der einen größeren Druchmesser aufweist als das Loch 8d. Eine sich am Boden des Dämpfungsraums abstützende Feder 8g drückt gegen den Ring 8f und damit den Stift 8a in seine Ruhestellung (Fig. 6a). Ein Kanal 8h verbindet den Dämfungsraum 8e mit dem rückwärtigen Ankerraum 11. Die Kanäle 10c und 10d ermöglichen dem Anker 10 eine nahezu widerstandsfreie Bewegung während der Beschleunigungsphase.
  • Die Dämpfungseinrichtung 8b ist bei der Beschleunigungsbewegung des Ankers 10 unwirksam, so daß keine Beeinträchtigung der Hubphase erfolgt. Bei der Rückstellbewegung trifft die Mündung des Überströmkanals auf die Kegelspitze 8c und wird verschlossen, so daß die Strömung durch die Kanäle 10c und 10d unterbrochen wird. Der Anker 10 drückt den Stift 8a gegen die Federkraft und gegen das im Raum 8e befindliche Medium, das sich auch im Raum 11 befindet und über den Kanal 8h ausströmt in den Raum 11. Dabei sind die Strömungen und Federkräfte so gewählt, daß eine optimale Dämpfung gewährleistet wird.
  • Anstelle des Kanals 8h kann gemäß Fig. 6b eine Verdrängungsbohrung 8i zentral im Stift 8a angeordnet sein, durch die Dämpfungsmedium in den Überströmkanal 10c gedrückt werden kann.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Einspritzvorrichtung ist vorgesehen, die in der Rückstellfeder 12 des Ankers 10 gespeicherte Energie bei der Rückstellbewegung des Ankers 10 nutzbringend einzusetzen. Dies kann erfindungsgemäß beispielsweise dadurch erfolgen, daß der Anker bei der Rückstellung eine Pumpeinrichtung bedient, die für die Kraftstoffversorgung der Einspritzvorrichtung zur Stabilisierung des Systems sowie zur Verhinderung einer Blasenbildung oder als eine separate Ölpumpe für die Motorschmierung verwendet werden kann. Fig. 7 zeigt ein entsprechendes Ausführungsbeispiel einer an die Kraftstoffeinspritzpumpe 1 angeschlossenen Ölpumpe 260.
  • Die in Fig. 7 gezeigte Kraftstoffeinspritzvorrichtung ist im übrigen entsprechend Fig. 4 ausgebildet, weist also ein Kraftstoffzu- und -abflußsteuerelement zur Steuerung des ersten Teilhubes des Förderkolbens 14 auf. Die Ölpumpe 260 ist an den rückwärtigen Boden lla des Pumpengehäuses 8 angeschlossen. Im einzelnen umfaßt die Ölpumpe 260 ein Gehäuse 261, das mit dem Gehäuse 8 der Einspritzpumpe verbunden ist, und in dessen Pumpenraum 261b ein Pumpenkolben 262 angeordnet ist, dessen Kolbenstange 262a in den Arbeitsraum 11 des Ankers 10 ragt, wobei der Kolben 262 beaufschlagt wird von einer Rückstellfeder 263, die sich am Gehäuseboden 261a im Bereich eines Auslasses 264 abstützt.
  • Außerdem steht der Pumpenraum 261b des Gehäuses über eine Ölzufuhrleitung 265 in Verbindung mit einem Ölvorratsbehälter 266. In der Ölzufuhrleitung 265 ist ein Rückschlagventil 267 eingesetzt, dessen Aufbau dem Ventil 16 in Fig. 1 gleicht.
  • Die Ölpumpe 260 funktioniert wie folgt. Wird der Anker 10 der Einspritzpumpe 1 während seines Arbeitshubes in Richtung auf die Einspritzdüse 3 bewegt, wird der Pumpenraum 11 im Gehäuse 8 hinter dem Anker 10 bezüglich seines Volumens vergrößert, wodurch der Ölpumpenkolben 262 in Richtung Anker 10 bewegt wird und schließlich durch Einwirkung der Rückstellfeder 263 in seine Ruhelage überführt wird. Dabei wird aus dem Vorratsbehälter 266 über das Ventil 267 Öl in den Arbeitsraum 261b der Ölpumpe 260 eingesaugt. Während der Rückstellbewegung des Ankers 10 der Pumpe 1 in Richtung auf seinen Anschlag lla wird der Ölpumpenkolben 262 zumindest auf einem Teil des Rückstellweges des Ankers 10 in den Ölpumpenraum 261b geschoben. Dabei wird durch den Pumpendruck das Ventil 267 verschlossen und es wird Öl über den Auslaß 264 in Richtung des Pfeils 264a von der Ölpumpe abgegeben und an die mit Öl zu versorgenden Stellen des Motors gedrückt.
  • Die Ölpumpe 260 kann alternativ auch als Kraftstoffvordruckpumpe verwendet werden, wobei der Kraftstoff der Ventileinrichtung 70 zugeführt werden kann. Vorteilhaft ist dabei, daß die Pumpe 260 einen Standdruck im Kraftstoffversorgungssystem erzeugen kann, der einer Dampfblasenbildung z.B. bei Erwärmung des Gesamtsystems entgegenwirkt.
  • Außerdem bewirkt die erfindungsgemäße Ausbildung der zusätzlichen Pumpe 260 an der Pumpe 1 eine schnelle Dämpfung des Ankers 10, so daß der Anker 10 am Anschlag 11a nicht nachprellt.
  • Figuren 8a und 8b zeigen eine besonders effektive und einfache Dämpfungseinrichtung. Der Aufbau der Pumpeneinrichtung 1 gleicht dem in Figur 9 dargestellten. Die Sackzylinderbohrung llb nach Figur 12a ist im Durchmesser größer als der Durchmesser des zylindrischen Vorsprungs 10a beträgt. Der Vorsprung 10a ist von einem in Richtung Sackzylinderbohrung 11b vorspringenden Dichtlippenring 10e aus einem elastischen Material umgeben, der in die Sackzylinderbohrung 11b paßt. Eine Einführschräge an der Mündung der Sackzylinderbohrung 11b erleichtert den Eintritt der Lippen den Dichtlippenrings 10e in die Sackzylinderbohrung llb. Diese Dämpfungseinrichtung erbringt eine gute Dämpfung beim Anschlag des Ankers 10 und behindert den Beschleunigungshub des Ankers nicht. Das elastische Dämpfungselement 10e mit achsparallel abstehenden Dichtlippen taucht beim Rückstellhub des Ankers 10 in die Sackzylinderbohrung 11b formschlüssig ein und legt sich nach außen dichtend an der Innenwandung der Sackzylinderbohrung 11b an.
  • Die Sackzylinderbohrung 11b nach Fig. 8b ist im Durchmesser ebenfalls größer als der zylindrische Vorsprung 10a. Ein Dichtring 10f aus elastischem Material sitzt formschlüssig an der Wandung der Sackzylinderbohrung 11b und weist im Bereich der Mündung einwärts gerichtete Dichtlippen 10g auf. In das elastische Dichtelement 10f taucht der zylindrische Vorsprung 10a kolbenartig ein, wobei die Dichtlippen 10g infolge des ausströmenden Dämpfungsmediums gegen den zylindrischen Vorsprung 10a gepreßt werden, so daß eine besonders gute Dämpfung des Ankers 10 erreicht wird.
  • Mit Hilfe der erfindungsgemäßen Einspritzvorrichtung läßt sich ein Motorstart ohne Batterie sowie ein Motornotlauf ohne Batterie betreiben. Anhand der Fig. 9, 10, 11 wird diese Möglichkeit im folgenden näher beschrieben.
  • Die elektrisch angetriebene bzw. elektronisch gesteuerte Einspritzung benötigt zum Start und Lauf ausreichend elektrische Energie. Für den Fall, daß die elektrische Energie nicht in ausreichender Größe zur Verfügung steht, soll erfindungsgemäß die Möglichkeit geschaffen werden, Motoren mit der erfindungsgemäßen Einspritzung auch ohne elektrische Energie zu starten, beispielsweise per Handkurbeltrieb. Der erforderliche Kraftstoff wird dabei, wie nachstehend näher ausgeführt, durch eine Hilfseinrichtung zur Verfügung gestellt. Erreicht der Motor eine Drehzahl, bei der der Generator ausreichend Energie bereitstellt, wird die Kraftstoffhilfseinrichtung erfindungsgemäß abgeschaltet und die Einspritzung erfolgt elektrisch bzw. elektronisch gesteuert, dem Normalfall entsprechend.
  • Es gibt Motoren, die ohne elektrische Energie gestartet werden, z.B. durch Hand- oder Kickstarteinrichtung. Dazu gehören kleine Motoren von Handarbeitsgeräten, Zweiradfahrzeugen oder Außenborder. Diese Starteinrichtung ist erforderlich, weil keine Batterie zum Starten und/oder Laufen vorhanden ist. Darüber hinaus sollen Motoren, beispielsweise auch bei entladener Batterie ohne elektrische Energie startfähig sein.
  • Erfindungsgemäß wird die Möglichkeit, Motoren ohne elektrische Energie per Hilfseinrichtung zu starten dadurch erreicht, daß die an jedem Motor vorhandene Kraftstoffzuführbedingung, z.B. das Zulaufgefälle oder der Druck der Kraftstofförderpumpe bei Startdrehzahl genutzt wird. Dabei wird der Kraftstoff dem Saugrohr bzw. den Überströmern bei Zweitaktmotoren oder einer Dosiereinrichtung direkt zugeführt. Erreicht der Motor dann eine Drehzahl, bei der der Generator ausreichende Energie für die Einspritzung bereit stellt, sperrt ein Ventil die direkte Kraftstoffzuführung zum Motor, der Kraftstoff wird der Einspritzvorrichtung zugeführt und diese übernimmt dann die Kraftstoffversorgung des Motors.
  • Fig. 9 zeigt eine erfindungsgemäße Anordnung zur Kraftstoffversorgung eines Motors 500. Dabei ist nach einer Kraftstoffvordruckpumpe 501, die ansaugseitig mit einem Kraftstoffvorratsbehälter 502 verbunden ist, eine Verzweigung des Kraftstoffzulaufs zum Motor vorgesehen. Im stromlosen Zustand ist eine an einen Generator 503 angeschlossene Einspritzvorrichtung 504, die entsprechend einem der vorstehenden Ausführungsbeispiele aufgebaut ist, inaktiv, und ein beispielsweise elektromagnetisch betätigtes Steuerventil 505 ist für den Kraftstoffzulauf zu einem Zerstäuber 506 am Motor 500 geöffnet.
  • Beim Start des Motors 500 wird der von der Vordruckpumpe 501 gelieferte Kraftstoffdruck über das geöffnete Steuerventil 505 dem am Motor 500 befindlichen Zerstäuber 506 zugeführt. Der Strömungswiderstand des Steuerventils 505 und/oder des Zerstäubers 506 ist dabei so bemessen, daß mit dem Druckangebot der Vordruckpumpe 501 bei Startdrehzahl der für den Start erforderliche Kraftstoffbedarf gedeckt wird. Erreicht der mit dem Motor gekoppelte Generator 503 eine Drehzahl, bei der der für die Einspritzvorrichtung 504 erforderliche Energiebedarf gedeckt ist, wird eine Einspritzsteuerung 507 aktiv, die ebenfalls vom Generator 503 gespeist wird und über eine Steuerleitung an die Einspritzvorrichtung 504 angeschlossen ist. Dazu wird mittels eines Stromsignals das Steuerventil 505 geschlossen, so daß kein Kraftstoff mehr dem Motor direkt zugeführt werden kann. Gleichzeitig übernimmt die Einspritzvorrichtung 504, gesteuert durch die Einspritzsteuerung 507, über die Einspritzdüse 508 die Einspritzung.
  • Eine an vielen Motoren vorhandene Handpumpe 509 kann gegebenenfalls zusätzlich beim Startvorgang für die direkte Kraftstoffzuführung zum Motor über den Zerstäuber 506 benutzt werden. Die Handpumpe 509 ist in der Verbindungsleitung 511 von der Pumpe 501 zum Steuerventil 505 angeordnet. Die Ansteuerung des Steuerventils 505 erfolgt durch die Einspritzsteuerung 507 über eine Steuerleitung 510.
  • Fig. 10 zeigt eine Abwandlung der Anordnung nach Fig. 9, bei der das Steuerventil 505 in der Einspritzleitung 511 zwischen der Einspritzvorrichtung 504 und der Einspritzdüse 508 angeordnet ist. Die Funktion des stormlosen Startens entspricht der vorstehend anhand von Fig. 9 erläuterten Funktion.
  • Um das Durchströmen des Kraftstoffes ohne Pumpunterstützung der Einspritzvorrichtung 504 zu gewährleisten, ist der Strömungswiderstand der Einspritzvorrichtung 504 klein gehalten. Vorteilhaft ist dabei, daß das Entlüften der Einspritzvorrichtung 504 und der Einspritzleitung 511 problemlos möglich ist. Soll die Einspritzvorrichtung 504 entlüftet werden, so wird das Steuerventil 505 über einen Ausschalter 512 in der Leitung von der Einspritzsteuerung 507 zum Steuerventil 505 stromlos gemacht, soweit dies nicht durch die Einspritzsteuerung 507 bereits erfolgt ist. Dadurch ist das Steuerventil 505 in Richtung Zerstäuber 506 geöffnet, und die im System befindliche Luft kann bei gleichzeitigem Pumpen, beispielsweise mit der Vordruckpumpe 501 oder der Handpumpe 509, entweichen.
  • Anhand von Fig. 11 wird nachfolgend der erfindungsgemäß vorgesehene Motornotlauf ohne Batterie näher beschrieben werden.
  • Die in den Fig. 9 und 10 dargestellte Anordnung kann auch für den Notbetrieb des Motors verwendet werden, bei dem beispielsweise durch Ausfall des Generators kein ausreichendes Energieangebot für die Einspritzsteuerung und die Einspritzvorrichtung vorhanden ist. Dabei erfolgt erfindungsgemäß durch eine Dosiereinrichtung, beispielsweise durch eine verstellbare, mit der Drosselklappe im Luftansaugrohr gekoppelten Drossel im Steuerventil eine Mengenvariation des Kraftstoffes, was eine Steuerung der Motorlast notdürftig erlaubt.
  • Fig. 11 zeigt ein hierfür geeignetes Ausführungsbeispiel des Steuerventils bzw. des Dosierventils 505 in den Fig. 9 und 10. Das Steuerventil 505 weist ein Gehäuse 520 auf, in das eine Spule 521 eingesetzt ist, die zum Antrieb eines Ankers 522 dient, der in einer Bohrung 523 des Gehäuses 520 verschiebbar gelagert ist und in seiner Ruhestellung durch eine Rückstellfeder 524 gegen einen im Gehäuse 520 angeordneten, einstellbaren Anschlag 525 gedrängt ist, an den außerhalb des Gehäuses ein Seilzug 526 angeschlossen ist. Im Anker 522 sind peripher Längsnuten 527 ausgebildet, die eine Kommunikation von in der Bohrung 523 vorhandenem Kraftstoff zwischen der Vorderseite und Rückseite des Ankers 522 zulassen. Der kolbenförmig ausgebildete Anschlag 525 durchgreift die Gehäusestirnwandung 520b und ist im Gehäuse 520 mittels einer Feder 528 gegenüber der Gehäusestirnwandung 520b vorgespannt.
  • Einheitlich ausgebildet mit der dem Anschlag 525 gegenüberliegenden Stirnseite des Ankers 522 ist ein Dosierkolben 527. Diese Stirnseite ist zudem von der Rückstellfeder 524 beaufschlagt, die sich anderendig gegen die Stirnwand 520a des Gehäuses 520 abstützt. Der Dosierkolben 527 ragt mit einem konisch zulaufenden Spitzende in die Förderleitung 511, von der außerdem eine Verbindungsleitung 511a zum Zerstäuber 506 abzweigt.
  • Der Seilzug 526, der an dem unter Federkraft gegen den Anker 522 vorgespannten Anschlag 525 angeschlossen ist, ist mit der Drosselklappe 530 (s. Fig. 10, 11) verbunden. Die Drosselklappenstellung wird dadurch unmittelbar auf den Anschlag 525 übertragen.
  • Die Funktion des Steuerventils 505 ist wie folgt. Im entregten Zustand der Spule 521 liegen Anker 522 und Dosierkolben 527 durch die Rückstellfeder 524 am Anschlag 525 an. Der Kraftstoff kann dabei von der Förderpumpe 501 kommend durch die Förderleitung 511 zum Zerstäuber 506 fließen. Wird das Steuerventil 505 durch die Steuereinrichtung erregt, drückt der Anker 522 den Dosierkolben 527 entgegen der Kraft der Feder 524 soweit in Förderrichtung, bis der Zulaufquerschnitt 531 der Förderleitung 511 verschlossen ist.
  • Wird der Motor im Notbetrieb ohne Einspritzung betrieben, ist das Steuerventil 505 stromlos und somit der Zulaufquerschnitt 531 in der Leitung 511 zum Zerstäuber 506 freigegeben. Entsprechend der Drosselklappenstellung wird der konische Dosierkolben 527 über den Anker 522 durch den Anschlag 525 mehr oder weniger weit in die Bohrung des Zulaufquerschnitts 531 gedrückt. Die Kopplung zur Drosselklappe 530 ist dabei so gewählt, daß mit zunehmender Öffnung der Drosselklappe 530 der Querschnitt 531 mehr geöffnet wird. In der Leerlaufstellung der Drosselklappe 530 verbleibt ein minimaler Spalt am Querschnitt 531, der die Leerlaufmenge des Kraftstoffs zum Zerstäuber 506 durchläßt.
  • Fig. 12 zeigt eine bevorzugte Schaltung zur Ansteuerung der Ankererregerspule der erfindungsgemäßen Einspritzpumpen, die eine optimale Beschleunigung des Ankers gewährleistet.
  • Bekannt ist, die Dosierung der abzuspritzenden Kraftstoffmenge beispielsweise zeitlich gesteuert vorzunehmen. Eine rein zeitliche Steuerung hat sich jedoch als nachteilig erwiesen, weil das Zeitfenster, welches sich zwischen minimal und maximal abzuspritzender Kraftstoffmenge ergibt, zu klein ist, um das im Motorbetrieb erforderliche Mengenspektrum differenziert und reproduzierbar genug zu beherrschen. Über die erfindungsgemäße reine Intensitätssteuerung des Stromflusses läßt sich jedoch eine genügend differenzierbare Mengendosierung erreichen.
  • Im Falle des elektromagnetischen Antriebes der erfindungsgemäßen Kraftstoff-Einspritzvorrichtungen ist insbesondere die Erregung, d.h. das Produkt aus Windungszahl der Spule und Stromstärke des Stroms, der die Spule durchsetzt, bestimmend für die elektromagnetomechanische Energieumwandlung. Das heißt, eine ausschließliche Steuerung der Stromamplitude erlaubt es, das Schaltverhalten des Antriebmagneten unabhängig von Einflüssen der Spulenerwärmung und einer schwankenden Versorgungsspannung eindeutig definiert zu gestalten. Damit trägt eine derartige Steuerung insbesondere den bei Motoren üblicherweise stark schwankenden elektrischen Spannungsverhältnissen und den unterschiedlichen Temperaturverhältnissen Rechnung.
  • Fig. 12 zeigt eine erfindungsgemäße Zweipunktregelungsschaltung für die Stromamplitude des eine Pumpenantriebsspule 600 steuernden Stroms. Die Antriebsspule 600 ist an einen Leistungstransistor 601 angeschlossen, der über einen Meßwiderstand 602 an Masse liegt. An den Steuereingang des Transistors 601, beispielsweise an die Transistorbasis, ist ein Komparator 603 mit seinem Ausgang angelegt. Der nicht invertierende Eingang des Komparators wird von einem Stromsollwert beaufschlagt, der beispielsweise mittels eines Mikrocomputers gewonnen wird, und der invertierende Eingang des Komparators 603 ist an der Seite des Meßwiderstands angeschlossen, die mit dem Transistor 601 verbunden ist.
  • Um den Energiefluß in der Antriebsspule 600 unabhängig von der Versorgungsspannung zu steuern, wird der von der Spule 600 aufgenommene Strom durch den Meßwiderstand 602 gemessen. Erreicht dieser Strom den von einem Mikroprozessor als Stromsollwert vorgegebenen Grenzwert, schaltet der Komparator über den Leistungstransistor 601 den Strom für die Spule 600 aus. Sobald der Stromistwert unter den Stromsollwert sinkt, schaltet der Transistor über den Komparator den Spulenstrom wieder ein. Die durch die Induktivität der Spule 600 bedingte Stromanstiegsverzögerung verhindert ein zu schnelles Überschreiten des maximal zulässigen Stroms.
  • Danach kann der nächste Schaltzyklus beginnen, und dieses Takten des Spulenstroms der Spule 600 findet so lange statt, wie die den Stromsollwert liefernde Referenzspannung am nicht invertierenden Eingang des Komparators 603 anliegt.
  • Die Schaltung stellt eine getaktete Stromquelle dar, wobei das Takten erst nach Erreichen des vom Mikroprozessor bereitgestellten Stromsollwerts einsetzt. Die Energie- und damit die Mengensteuerung der Pumpeinrichtung 1 kann mit dieser Schaltung in Kombination von Dauer oder/und Höhe der vom Mikroprozessor bereitgestellten Referenzspannung erfolgen.
  • Die Fig. 13, 14 und 15 zeigen besonders vorteilhafte Ausführungsformen der Einspritzdüse (z.B. Düse 3) für die erfindungsgemaße Einspritzvorrichtung.
  • Diese Einspritzdüse umfaßt ein Ventilsitzrohr 701, an dessen freiem unteren Ende die Membran 70 angeordnet ist, gegebenenfalls einen strahlformenden Zapfeneinsatz 702 (der in einem zentralen Loch der Membran 704 sitzt), einen Düsenhalter 703, eine in Richtung Ventilsitz vorgespannte Membranplatte 704, einen Sprengring 705, eine Druckleitung 706, die ventilsitzseitig in einen zur Membran 704 hin offenen, von der Membran abgedeckten Ringkanal 708 mündet, eine Druckschraube 707, eine Dichtung 709 für den Düsenhalter 703 und eine Aufnahme 710 für den Düsenhalter 703.
  • Mit der in den Fig. 13, 14 und 15 gezeigten Membran-Flachsitzdüse mit Düsenzapfen 702 (Fig. 14) und ohne Düsenzapfen 702 (Fig. 15) wird eine gute Brennstoffzerstäubung auf der Oberfläche eines gewölbten Kegelmantels erreicht. Die Form und Abmessungen dieses Mantels sind u.a. von den Abmessungen und der Gestaltung der Austrittsöffnung in der Membran (Fig. 14) abhängig und können gegebenenfalls mit Hilfe eines Richtzapfens oder Drosselzapfens mit den bekannten Funktionsvorteilen den Erfordernissen des Motorbetriebes zusätzlich angepaßt werden.
  • Das Ventil arbeitet fast ohne bewegte Massen und ist durch eine speziell ausgebildete Metallmembran gekennzeichnet, die mit einem feststehenden flachen Ventilsitz zusammenarbeitet. Die Membran - zugleich wegen der Vorspannung Ventilfeder - kann durch geeignete, definierte und bleibende Deformation gegen die Richtung des Öffnens (z.B. durch Wölbung) vorgespannt werden. Damit kann die Brennstoffzerstäubung bei niedrigen Drücken vor der Düsenöffnung, die durch das zentrale Loch in der Membran 704 gebildet wird, z.B. bei niedrigen Drehzahlen und kleinen Einspritzungen (in niedrigem Teillastbetrieb), verbessert werden. Die Bearbeitung des Düsenloches (Rundung der Kanten etc.) ist von beiden Richtungen leicht möglich.
  • Um den guten Schließeffekt am Ventil der nach außen öffnenden Einspritzdüse zu verstärken, kann die Sitzringbreite des Flachsitzes (Fig. 14) mit der Vorspannung der Membranplatte abgestimmt werden. Hierzu trägt die richtige Wahl der Abmessungen des unteren Ringeinstiches im Ventilsitz bei, wodurch sich bei gegebenem Standdruck des Brennstoffes vor Ventilsitz die auf die Membran wirkende Kraft ergibt. Andererseits wird die Membran durch den im Ringeinstich lagernden bzw. den hier durchströmenden Brennstoff wirksam gekühlt.
  • Die Düse bedarf keiner Schmierung und ist deshalb für Benzin, Alkohol und dessen Mischungen besonders geeignet. Aufgrund der Funktionsweise - es ist kein dem Ventilsitz nachgeschaltetes Volumen vorhanden - sind in dieser Düse vergleichsweise niedrigere Kohlenwasserstoff-Emissionen des Motors zu erwarten als mit nach innen öffnenden Düsen.
  • Die Düse besteht aus wenigen Teilen, ihre Herstellung in Massenproduktion, Wartung, Überprüfung und Teileaustausch ist deshalb sehr einfach und preiswert.
  • Kraftstoffversorgungseinrichtungen für Kraftstoffeinspritzanlagen werden zu deren Kühlung und zur Abfuhr von Dampfblasen während des Betriebs mit Kraftstoff durchspült. Das heißt, die Kraftstoff-Förderpumpe stellt eine größere Menge Kraftstoff bereit, als vom Motor benötigt wird. Diese Mehrmenge wird über eine Leitung zum Tank zurückgeführt und dient zur Wärmeabfuhr und zur Abfuhr von Kraftstoff-Dampfblasen. Dampfblasen entstehen im Motorbetrieb durch Wärmeeinwirkung und können die Funktion der Einspritzanlage stören oder gar verhindern. Auch ein erneutes Starten des noch betriebswarmen Motors kann durch Dampfblasen erschwert oder gar verhindert werden.
  • Bei bestimmten Motoranwendungen, z.B. als Außenbordmotor an Booten, ist jedoch eine Rückleitung zum Tank aus Sicherheitsgründen vom Gesetzgeber nicht zugelassen.
  • Eine Kraftstoffversorgungseinrichtung mit einer erfindungsgemäßen Kraftstoffeinspritzvorrichtung wird nach einer weiteren Ausführungsform der Erfindung deshalb ohne Rückleitung zum Tank ausgebildet, wobei dennoch Wärme und Dampfblasen abgeführt werden können.
  • Die Erfindung löst dieses Problem durch Verwendung einer zweiten Kraftstoffpumpe, einer Gasabscheidekammer mit Schwimmventil und eines Kühlers. Diese Anordnung kann direkt am Motor angebracht werden und vermeidet damit unter Druck stehende Kraftstoffleitungen außerhalb des Motorraumes oder der Motorkapsel. Damit ist den gesetzlichen Sicherheitsbestimmungen genüge getan.
  • Anhand der Fig. 16 wird diese Kraftstoffversorgungseinrichtung im folgenden beispielhaft näher erläutert.
  • Eine Pumpe 801 saugt den Kraftstoff 802 aus dem Tank 803 und führt ihn durch eine Kraftstoffleitung 804 einer Gasabscheidekammer 805 zu. Die Gasabscheidekammer 805 weist einen Schwimmer 806 auf, der ein Entlüftungsventil 807 bedient, das auf eine im Deckenbereich oberhalb des Flüssigkeitsspiegels 805a angeordnete Gasabführleitung 808 einwirkt.
  • Vom Boden der Gasabscheidekammer 805 ist eine Kraftstoffleitung 809 abgezweigt, die mit einer Pumpe 810 in Verbindung steht und zu einem erfindungsgemäßen Einspritzventil 811 führt, das über eine Kraftstoffleitung 812 mit dem Gasabscheidebehälter 805 verbunden ist, die oberhalb des Flüssigkeitsspiegels 805a in den Gasabscheidebehälter 805 mündet. In der Kraftstoffleitung 812 sitzt in der Folge vom Einspritzventil 811 ausgehend ein Druckregler 813 und ein Kühler 814.
  • Die neue Kraftstoffversorgungseinrichtung für eine erfindungsgemäße Kraftstoffeinspritzvorrichtung funktioniert wie folgt: Die Pumpe 801 saugt den Kraftstoff 802 aus den Tank 803 und führt ihn der Gasabscheidekammer 805 zu, bis das Entlüftungsventil 807 vom Schwimmer 806 geschlossen wird. Die Pumpe 810 entnimmt am Boden der Gasabscheidekammer 805 den Kraftstoff und baut vor dem Druckregler 813 den für das jeweilige Einspritzsystem erforderlichen Druck auf. In ihrer Fördercharakteristik ist die Pumpe 810 so ausgelegt, daß sie die zur Kühlung und Durchspülung des Einspritzventils 811 erforderliche Menge an Kraftstoff aufbringt und über den Kühler 814 der Gasabscheidekammer 805 zuführt. Werden nur Dampfblasen 805b in die Gasabscheidekammer 805 abgeführt, so wird das Kraftstoffniveau 805a sinken, der Schwimmer 806 öffnet das Entlüftungsventil 807 so lange, bis die Pumpe 801 zum ursprünglichen Niveau 805a nachgefördert hat. Das Entlüftungsventil 807 steht in Verbindung mit dem Luftansaugrohr 808 des Motors, so daß die aus dem Luftansaugrohr abgezogenen Kraftstoffdämpfe nicht unverbrannt in die Umwelt gelangen können.

Claims (41)

  1. Kraftstoff-Einspritzvorrichtung, die nach dem Festkörper-Energiespeicher-Prinzip arbeitet, wobei ein in einem Pumpenzylinder einer mit einem Elektromagneten angetriebenen Hubkolbenpumpe geführtes Hubkolbenelement Teilmengen des abzuspritzenden Kraftstoffs während einer nahezu widerstandslosen Beschleunigungsphase, während der das Hubkolbenelement kinetische Energie speichert, vor dem Abspritzen im Pumpenbereich verdrängt und die Verdrängung plötzlich mit einem die Verdrängung unterbrechenden Mitteln gestoppt wird, so daß ein Druckstoß im in einem abgeschlossenen Druckraum befindlichen Kraftstoff erzeugt wird, indem die gespeicherte kinetische Energie des Hubkolbenelements direkt auf den im Druckraum befindlichen Kraftstoff übertragen wird, und wobei der Druckstoß zum Abspritzen von Kraftstoff durch eine Einspritzdüseneinrichtung verwendet wird,
    dadurch gekennzeichnet,
    daß das die Verdrängung unterbrechende, den Druckstoß erzeugende Mittel ein Volumenspeicherelement (6) ist, das für die Verdrängung von Krattstoff während der Boscchleunigungsphase vorgesehen ist und das außerhalb des führenden, flüssigkeitsdichten Kontaktbereichs zwischen Hubkolbenelement und Hubkolbenzylinder der Hubkolbenpumpe angeordnet ist.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die Mittel zur Unterbrechung der Verdrängung bzw. zum Erzeugen des Druckanstiegs als eine ein Anschlagmittel aufweisende Einrichtung (6, 50, 70, 90, 125, 218/223) ausgebildet sind.
  3. Vorrichtung nach Anspruch 1 und/oder 2,
    dadurch gekennzeichnet,
    daß das Anschlagmittel (z.B. 37) positionsverstellbar ausgeführt ist.
  4. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß sie eine elektromagnetisch angetriebene Hubkolbenpumpe (1) aufweist, die über eine Förderleitung (2) an eine Einspritzdüseneinrichtung (3) angeschlossen ist, wobei von der Förderleitung (2) eine Ansaugleitung (4) abzweigt, die mit einem Kraftstoffvorratsbehälter (5) in Verbindung steht und wobei an die Förderleitung (2) das Volumenspeicherelement (6) über eine Leitung (7) angeschlossen ist.
  5. Vorrichtung nach Anspruch 4,
    dadurch gekennzeichnet,
    daß die Pumpe (1) ein Gehäuse (8) aufweist, in dem eine Ringspule (9) lagert, wobei im Bereich des Spulendurchgangs ein Anker (10) angeordnet ist, der als zylindrischer Körper ausgebildet und in einem Gehäusezylinder geführt ist, der sich im Bereich der Zentrallängsachse der Ringspule (9) befindet und mittels einer Druckfeder (12) in eine Ausgangsstellung gedrückt wird, in der er am Boden (lla) des Gehäusezylinders anliegt, wobei an der einspritzdüsenseitigen Stirnfläche des Ankers (10) ein Förderkolben (14) angesetzt ist, der relativ tief in einen zylindrischen Kraftstofförderraum (15) eintaucht, der koaxial zum Gehäusezylinder angeordnet ist und in Übertragungsverbindung mit der Druckleitung (2) steht.
  6. Vorrichtung nach Anspruch 4 und/oder 5,
    dadurch gekennzeichnet,
    daß in der Ansaugleitung (4) ein Rückschlagventil (16) angeordnet ist.
  7. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    daß das Speicherelement (6) ein Gehäuse (22) aufweist, in dessen Hohlraum als zu verdrängendes Organ eine Membran (23) gespannt ist, die von dem Hohlraum einen druckleitungsseitigen, mit Kraftstoff gefüllten Raum abtrennt und die im entspannten Zustand den Hohlraum in zwei Hälften teilt, die durch die Membran gegeneinander abgedichtet sind, wobei an der der Leitung (7) abgewandten Seite der Membran ein Leerraum angeordnet ist, der eine gewölbeförmige Wandung (22a) als Anschlagmittel für die Membran (23) aufweist.
  8. Vorrichtung nach Anspruch 7,
    dadurch gekennzeichnet,
    daß an der der Leitung (7) abgewandten Seite der Membran (23) in dem Leerraum eine die Membran beaufschlagende Feder (24) angeordnet ist, die als Rückstellfeder für die Membran (23) wirkt.
  9. Vorrichtung nach einem oder mehreren der Ansprüche 6 bis 8,
    dadurch gekennzeichnet,
    daß in der Druckleitung (2) zwischen dem Einspritzventil (3) und dem Druckraum vor den Abzweigungen (4, 7) ein Rückschlagventil (16a) angeordnet ist, das in dem einspritzventilseitigen Raum einen Stauraum zur Aufrechterhaltung eines bestimmten Standdrucks im Kraftstoff bildet.
  10. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 6 und 9,
    dadurch gekennzeichnet,
    daß als Verdrängungsorgan für das Speicherelement (6) ein in einem mit der Leitung (7) in Verbindung stehenden zylindrischen Gehäuse (30) geführter Speicherkolben (31) verwendet wird, wobei der Zylinder (30) ein Leervolumen (33c) zur Verfügung stellt, in das der Kolben (31) vom Kraftstoff verdrängt werden kann.
  11. Vorrichtung nach Anspruch 10,
    dadurch gekennzeichnet,
    daß im Bereich des Leerraumvolumens (33c) eine Ablaufbohrung (32) angeordnet ist.
  12. Vorrichtung nach Anspruch 10 und/oder 11,
    dadurch gekennzeichnet,
    daß im Leerraumvolumen (33c) eine Druckfeder (34) eingespannt ist, die den Kolben (31) in seine Ruhestellung gegen eine druckleitungsseitige Gehäusewandung (33a) drückt.
  13. Vorrichtung nach einem oder mehreren der Ansprüche 10 bis 12,
    dadurch gekennzeichnet,
    daß im Leerraumvolumen (33c) ein axial verstellbarer Anschlagbolzen (37) für den Kolben (31) angeordnet ist, der die Gehäusewandung durchgreift und außerhalb des Gehäuses mit einem Verstellmittel in Verbindung steht.
  14. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 6 und 9,
    dadurch gekennzeichnet,
    daß das Kraftstoffzulaufventil (16) auch als Speicherelementventil (50) ausgebildet ist.
  15. Vorrichtung nach Anspruch 14,
    gekennzeichnet durch
    eine integrale Speicherlement-Zulaufventileinrichtung (90), die ein Gehäuse (91) aufweist, in das eine Mittenlängsbohrung (92) eingebracht ist, die einendig über eine Öffnung (93a) in die Druckleitung (2) und anderendig in einen zylindrischen Ventilraum (93) mündet, wobei zudem Rinnen (94) von der Bohrung (92) zum Ventilraum (93) führen und wobei das Ventilelement zweiteilig ausgebildet ist und einen im Ventilraum (93) geführten Zylinder (95) umfaßt, in dessen zylindrischer durchgehender Zentralstufenbohrung ein Kolben (96) verschiebbar geführt wird und wobei in der Außenmantelfläche des Zylinders (95) achsparallel verlaufende Nuten (97) ausgebildet sind und wobei der Zylinder (95) durch eine Feder (98) in seine Ruhestellung gedrückt wird, in welcher er mit seiner einen Stirnfläche auf dem tankseitigen Boden des Ventilraums (93) aufsitzt, in den eine vom Kraftstoffbehälter kommende Kraftstoffzuführleitung (99) mündet, und wobei in der Bohrung zur Aufnahme des Kolbens (96) tankseitig eine Feder (100) sitzt, die den Kolben (96) gegen den druckleitungsseitigen Boden den Ventilraums (93) drückt, so daß die Bohrung (92) abgedeckt ist, wobei im tankseitigen Innenraum des Zylinders (95) ein Freiraum (95a) für den Kolben (96) gebildet wird.
  16. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 6 und 9,
    dadurch gekennzeichnet,
    daß das Speicherelement (6) baueinheitlich mit dem Förderkolben (14) der Hubkolbenpumpe (1) ausgebildet ist.
  17. Vorrichtung nach Anspruch 16,
    dadurch gekennzeichnet,
    daß als Speicherelement ein Speicherkolben (80) dient, der in einem druckleitungsseitigen ersten Mittenlängsachsstufenbohrungsabschnitt (14b) einer zentral durch den Kolben (14) und den Anker (10) gehenden Stufenbohrung (14a) gegen einen druckleitungsseitigen Anschlag von einer Feder (81) gedrückt wird, wobei der Kolben (80) in der Ruhestellung mit seiner einen Stirnfläche in den Druckraum (15) ragt und der den Speicherkolben (80) aufnehmende Bohrungsabschnitt (14b) im Förderkolben (14) sich nach einer Stufe (14c) zum Anker (10) hin in einem weiteren Stufenbohrungsabschnitt (14d) fortsetzt, auf dessen Stufe (14e) sich eine Druckfeder (81) abstützt, die gegen die ankerseitige Stirnfläche des Kolbens (80) drückt.
  18. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 17,
    gekennzeichnet durch
    eine hydraulische Dämpfungseinrichtung für das Ankerelement (10) der Hubkolbenpumpe.
  19. Vorrichtung nach Anspruch 18,
    dadurch gekennzeichnet,
    daß die hydraulische Dämpfeinrichtung nach Art einer Kolbenzylinderanordnung aufgebaut ist, wobei auf dem Anker (10) zentral ein zylindrischer Vorsprung (10a) ausgebildet ist, der im letzten Abschnitt der Ankerrückstellbewegung in eine Sackzylinderborhung (11b) im Boden (11a) des Zylinders paßt, wobei im Anker (10) in Längsrichtung verlaufende Nuten (10b) angeordnet sind, die den ankerrückseitigen Raum mit dem ankervorderseitigen Raum im Pumpenzylinder verbinden.
  20. Vorrichtung nach Anspruch 18,
    dadurch gekennzeichnet,
    daß der vom Förderkolben (14) durchsetzte Pumpenraum (11) vor dem Kolben (10) verbunden ist mit dem an der Ankerrückseite angrenzenden Raum (11) durch Bohrungen (10d), die im Bereich der Ankerrückseite in einen zentralen Überströmkanal (10c) münden, wobei ein zentraler Stift (8a) eines Stoßdämpfers (8b) mit einer Kegelspitze (8c) in Richtung Mündung des Überströmkanals (10c) ragt.
  21. Vorrichtung nach Anspruch 20,
    dadurch gekennzeichnet,
    daß der zentrale Stift (8a) rückwärtig ein Loch (8d) im Boden (lla) durchgreift, das in einen Dämpfungsraum (8e) mündet, wobei der Stift (8a) im Dämpfungsraum mit einem Ring (8f) endet, der einen größeren Durchmesser aufweist als das Loch (8d), und wobei sich am Boden des Dämpfungsraums eine Feder (8g) abstützt, die gegen den Ring (8f) drückt, und wobei ein Kanal (8h) den Dämpfungsraum (8e) mit dem rückwärtigen Ankerraum (11) verbindet.
  22. Vorrichtung nach Anspruch 20,
    dadurch gekennzeichnet,
    daß im Stift (8a) zentral eine durchgehende Verdrängungsbohrung (8i) angeordnet ist, durch die Dämpfungsmedium in den Überströmkanal (10c) gedrückt werden kann.
  23. Vorrichtung nach Anspruch 18,
    dadurch gekennzeichnet,
    daß der Anker (10) bei der Rückstellbewegung eine Pumpeinrichtung bedient, die gleichzeitig eine Dämpfungseinrichtung für den Anker (10) gewährleistet.
  24. Vorrichtung nach Anspruch 23,
    dadurch gekennzeichnet,
    daß eine Ölpumpe (260) an dem rückwärtigen Boden (lla) des Pumpengehäuses (8) angeschlossen ist, die ein Gehäuse (261) aufweist, in dessen Pumpenraum (261b) ein Pumpenkolben (262) angeordnet ist, dessen Kolbenstange (262a) in den Arbeitsraum (11) des Ankers (10) ragt, wobei der Kolben (262) beaufschlagt wird von einer Rückstellfeder (263), die sich am Gehäuseboden (261a) im Bereich eines Auslasses (264) abstützt.
  25. Vorrichtung nach Anspruch 21,
    dadurch gekennzeichnet,
    daß der Pumpenraum (261b) über eine Ölzufuhrleitung (265) in Verbindung mit einem Ölvorratsbehälter (266) steht, wobei in die Ölzufuhrleitung (265) ein Rückschlagventil (267) eingesetzt ist.
  26. Vorrichtung nach Anspruch 18 und/oder 19,
    dadurch gekennzeichnet,
    daß die Sackzylinderbohrung (11b) im Durchmesser größer als der Durchmesser des zylindrischen Vorsprungs (10a) ist und der Vorsprung (10a) oder die Sackzylinderbohrung (11b) einen Dichtlippenring (10e) bzw. (10d) aufweisen, wobei die Dichtlippenringe die Kolbenabdichtung für den Vorsprung (10a) bilden.
  27. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 26,
    gekennzeichnet durch
    eine Hilfsstarteinrichtung, die ein an einen Zerstäuber (506) des Motors (500) angeschlossenes, vom Kraftstofftank (502) mit Kraftstoff beaufschlagtes Steuerventil aufweist, dessen Strömungswiderstand zusammen mit demjenigen des Zerstäubers (506) so bemessen ist, daß mit dem Druckangebot einer Vordruckpumpe (501) bei Startdrehzahl der für den Start erforderliche Kraftstoffbedarf auch ohne elektrische Energiezufügung zur Einspritzvorrichtung (504) gedeckt werden kann.
  28. Vorrichtung nach Anspruch 27,
    dadurch gekennzeichnet,
    daß nach der Kraftstoffvordruckpumpe (501), die ansaugseitig mit dem Kraftstoffvorratsbehälter (502) verbunden ist, eine Verzweigung des Kraftstoffzulaufs zum Motor vorgesehen ist, wobei im stromlosen Zustand eine an einen Generator (503) angeschlossene Einspritzvorrichtung (504), die entsprechend der Erfindung insbesondere einem der erfindungsgemäßen Ausführungsbeispiele aufgebaut ist, inaktiv ist und das beispielsweise elektromagnetisch betätigte Steuerventil (505) für den Kraftstoffzulauf zu dem Zerstäuber (506) am Motor (500) geöffnet ist.
  29. Vorrichtung nach Anspruch 27 und/oder 28,
    dadurch gekennzeichnet,
    daß eine am Motor vorhandene Handpumpe (509) zusätzlich beim Startvorgang für die direkte Kraftstoffzuführung zum Motor über den Zerstäuber (506) verwendet wird, die in der Verbindungsleitung (511) von der Pumpe (501) zum Steuerventil (505) angeordnet ist, wobei die Ansteuerung des Steuerventils (505) durch die Einspritzsteuerung (507) über eine Steuerleitung (510) erfolgt.
  30. Vorrichtung nach Anspruch 27,
    dadurch gekennzeichnet,
    daß das Steuerventil (505) in der Einspritzleitung (511) zwischen der Einspritzvorrichtung (504) und der Einspritzdüse (508) angeordnet ist.
  31. Vorrichtung nach Anspruch 30,
    gekennzeichnet durch
    einen Ausschalter in der Leitung von der Einspritzsteuerung (507) zum Steuerventil (505).
  32. Vorrichtung nach Anspruch 30 und/oder 31,
    dadurch gekennzeichnet,
    daß die erfindungsgemäße Hilfsstarteinrichtung für den Notbetrieb des Motors verwendet wird, wobei ein Dosierventil (505) eine Mengenvariation des Kraftstoffes bewirkt.
  33. Vorrichtung nach Anspruch 32,
    dadurch gekennzeichnet,
    daß das Dosierventil (505) ein Gehäuse (520) aufweist, in das eine Spule (521) eingesetzt ist, die zum Antrieb eines Ankers (522) dient, der in einer Bohrung (523) des Gehäuses (520) verschiebbar gelagert ist und in seiner Ruhestellung durch eine Rückstellfeder (524) gegen ein im Gehäuse (520) angeordneten einstellbaren Anschlag (525) gedrängt ist, an den außerhalb des Gehäuses ein Seilzug (526) angeschlossen ist, wobei im Anker (522) peripher Längsnuten (527) ausgebildet sind, die eine Kommunizierung vom in der Bohrung (523) vorhandenem Kraftstoff zwischen der Vorderseite und der Rückseite des Ankers (522) zulassen, und wobei der kolbenförmig ausgebildete Anschlag (525) die Gehäusestirnwandung (520b) durchgreift und im Gehäuse (520) mittels einer Feder (528) gegenüber der Gehäusestirnwandung (520b) vorgespannt ist, und wobei mit der dem Anschlag (525) gegenüberliegenden Stirnseite des Ankers (522) ein Dosierkolben (527) einheitlich ausgebildet ist, und wobei diese Stirnseite zudem von der Rückstellfeder (524) beaufschlagt ist, die sich anderendig gegen die Stirnwand (520a) des Gehäuses (520) abstützt, und wobei der Dosierkolben (527) mit einem konisch zulaufenden Spitzende in die Förderleitung (511) ragt, von der außerdem eine Verbindungsleitung (511a) zum Zerstäuber (506) abzweigt, und wobei der Seilzug ( 526), der an den unter Federkraft gegen den Anker (522) vorgespannten Anschlag (525) angeschlossen ist, mit der Drosselklappe (530) verbunden ist.
  34. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 33,
    gekennzeichnet durch
    eine Schaltung zur Ansteuerung der Ankererregerspule (9, 600), die an einen Leistungstransistor (601) angeschlossen ist, der über einen Meßwiderstand (602) an Masse anliegt, wobei an den Steuereingang des Transistors (601), beispielsweise an die Transistorbasis, ein Komparator (603) mit seinem Ausgang angelegt ist, und wobei der nicht invertierende Eingang des Komparators (603) von einem Stromsollwert beaufschlagt wird, der beispielsweise mittels eines Mikrocomputers gewonnen wird und wobei der invertierende Eingang des Komparators (603) an der Seite des Meßwiderstandes angeschlossen ist, die mit dem Transistor (601) verbunden ist.
  35. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 34, mit einer Einspritzdüse
    gekennzeichnet durch
    ein Ventilsitzrohr (701) mit einem endseitigen Ringkanal (708), eine in Richtung Ventilsitz vorgespannte Membranplatte (704) mit zentralem Loch, die den Ringkanal (708) abdeckt, gegebenenfalls einen Zapfeneinsatz (702) im Loch der Membrane (704), einen Sprengring (705) und eine Druckleitung (706).
  36. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 35,
    gekennzeichnet durch
    eine Kraftstoffversorgungseinrichtung ohne Rückleitung zum Tank, wobei eine zweite Kraftstoffpumpe, eine Gasabscheidekammer mit Schwimmventil und ein Kühler verwendet wird.
  37. Vorrichtung nach Anspruch 35,
    gekennzeichnet durch
    eine Gasabscheidekammer (805), in die aus einem Tank (803) Kraftstoff (802) mittels einer Pumpe (801) über eine Leitung (804) gepumpt wird, aus der mittels einer Pumpe (810) über eine Kraftstoffleitung (809) Kraftstoff einem Einspritzventil (811) zugeführt wird, wobei vom Einspritzventil (811) eine Leitung (812) in die Gasabscheidekammer (805) zurückgeführt wird, in der ein Druckregler (813) und ein Kühler (814) angeordnet sind, wobei im Gasabscheider (805) ein Schwimmer (806) vorgesehen ist, der ein Entlüftungsventil (807) bedient, das in einer Ablaufleitung (808) sitzt, die in die Gasabscheidekammer (805) mündet.
  38. Vorrichtung nach Anspruch 37,
    dadurch gekennzeichnet,
    daß die Kraftstoffleitung (812) oberhalb des Flüssigkeitsspiegels (805a) in die Gasabscheidekammer (805) mündet.
  39. Vorrichtung nach Anspruch 36 und/oder 38,
    dadurch gekennzeichnet,
    daß die Entlüftungsleitung (808) oberhalb des Flüssigkeitsspiegels (805a) in die Gasabscheidekammer (805) mündet.
  40. Vorrichtung nach einem oder mehreren der Ansprüche 37 bis 39,
    dadurch gekennzeichnet,
    daß die Kraftstoffleitung (804) oberhalb des Flüssigkeitsspiegels (805a) in die Gasabscheidekammer (805) einmündet.
  41. Vorrichtung nach einem oder mehreren der Ansprüche 37 bis 40,
    dadurch gekennzeichnet,
    daß bis auf denk Tank (803) alle Einrichtungen der Kraftstoffeinspritzanlage im Motorraum (815) angeordnet sind.
EP93905299A 1992-03-04 1993-03-04 Kraftstoff-einspritzvorrichtung nach dem festkörper-energiespeicher-prinzip für brennkraftmaschinen Expired - Lifetime EP0629265B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP96109438A EP0733798B1 (de) 1992-03-04 1993-03-04 Kraftstoff-Einspritzvorrichtung nach dem Festkörper-Energiespeicherprinzip für Brennkraftmaschinen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4206817A DE4206817C2 (de) 1991-10-07 1992-03-04 Kraftstoff-Einspritzvorrichtung nach dem Festkörper-Energiespeicher-Prinzip für Brennkraftmaschinen
DE4206817 1992-03-04
PCT/EP1993/000495 WO1993018297A1 (de) 1992-03-04 1993-03-04 Kraftstoff-einspritzvorrichtung nach dem festkörper-energiespeicher-prinzip für brennkraftmaschinen

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP96109438A Division EP0733798B1 (de) 1992-03-04 1993-03-04 Kraftstoff-Einspritzvorrichtung nach dem Festkörper-Energiespeicherprinzip für Brennkraftmaschinen
EP96109438.0 Division-Into 1996-06-12

Publications (2)

Publication Number Publication Date
EP0629265A1 EP0629265A1 (de) 1994-12-21
EP0629265B1 true EP0629265B1 (de) 1997-06-04

Family

ID=6453209

Family Applications (5)

Application Number Title Priority Date Filing Date
EP96109438A Expired - Lifetime EP0733798B1 (de) 1992-03-04 1993-03-04 Kraftstoff-Einspritzvorrichtung nach dem Festkörper-Energiespeicherprinzip für Brennkraftmaschinen
EP93905299A Expired - Lifetime EP0629265B1 (de) 1992-03-04 1993-03-04 Kraftstoff-einspritzvorrichtung nach dem festkörper-energiespeicher-prinzip für brennkraftmaschinen
EP96101218A Expired - Lifetime EP0725215B1 (de) 1992-03-04 1993-03-04 Kraftstoff-Einspritzvorrichtung nach dem Festkörper-Energiespeicher-Prinzip für Brennkraftmaschinen
EP93905298A Expired - Lifetime EP0629264B1 (de) 1992-03-04 1993-03-04 Hubkolbenpumpe
EP93905295A Expired - Lifetime EP0630442B1 (de) 1992-03-04 1993-03-04 Kraftstoff-einspritzvorrichtung nach dem festkörper-energiespeicher-prinzip für brennkraftmaschinen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP96109438A Expired - Lifetime EP0733798B1 (de) 1992-03-04 1993-03-04 Kraftstoff-Einspritzvorrichtung nach dem Festkörper-Energiespeicherprinzip für Brennkraftmaschinen

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP96101218A Expired - Lifetime EP0725215B1 (de) 1992-03-04 1993-03-04 Kraftstoff-Einspritzvorrichtung nach dem Festkörper-Energiespeicher-Prinzip für Brennkraftmaschinen
EP93905298A Expired - Lifetime EP0629264B1 (de) 1992-03-04 1993-03-04 Hubkolbenpumpe
EP93905295A Expired - Lifetime EP0630442B1 (de) 1992-03-04 1993-03-04 Kraftstoff-einspritzvorrichtung nach dem festkörper-energiespeicher-prinzip für brennkraftmaschinen

Country Status (9)

Country Link
US (3) US5469828A (de)
EP (5) EP0733798B1 (de)
JP (8) JP2626677B2 (de)
AT (5) ATE146851T1 (de)
AU (5) AU671100B2 (de)
CA (3) CA2127799C (de)
DE (5) DE59310057D1 (de)
HK (1) HK1013676A1 (de)
WO (3) WO1993018290A1 (de)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59310057D1 (de) * 1992-03-04 2000-07-13 Ficht Gmbh & Co Kg Kraftstoff-Einspritzvorrichtung nach dem Festkörper-Energiespeicherprinzip für Brennkraftmaschinen
FR2713717B1 (fr) * 1993-12-07 1996-01-26 Rahban Thierry Pompe à actionnement électromagnétique à collision élastique de l'équipage mobile.
DE4421145A1 (de) * 1994-06-16 1995-12-21 Ficht Gmbh Ölbrenner
US5630401A (en) * 1994-07-18 1997-05-20 Outboard Marine Corporation Combined fuel injection pump and nozzle
US5562428A (en) * 1995-04-07 1996-10-08 Outboard Marine Corporation Fuel injection pump having an adjustable inlet poppet valve
DE19515774C2 (de) * 1995-04-28 1999-04-01 Ficht Gmbh & Co Kg Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen
US6715464B2 (en) * 1995-04-28 2004-04-06 Bombardier Motor Corporation Of America Fuel injection device for internal combustion engines
DE19515782A1 (de) * 1995-04-28 1996-10-31 Ficht Gmbh Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen
DE19515775C2 (de) * 1995-04-28 1998-08-06 Ficht Gmbh Verfahren zum Ansteuern einer Erregerspule einer elektromagnetisch angetriebenen Hubkolbenpumpe
US5687050A (en) * 1995-07-25 1997-11-11 Ficht Gmbh Electronic control circuit for an internal combustion engine
US5779454A (en) * 1995-07-25 1998-07-14 Ficht Gmbh & Co. Kg Combined pressure surge fuel pump and nozzle assembly
DE19527550A1 (de) * 1995-07-27 1997-01-30 Ficht Gmbh Verfahren zum Steuern des Zündzeitpunktes bei Brennkraftmaschinen
DE19541508A1 (de) * 1995-11-08 1997-05-15 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
FR2748783B1 (fr) * 1996-05-17 1998-08-14 Melchior Jean F Dispositif d'injection de combustible liquide pour moteur a combustion interne
US6161525A (en) * 1996-08-30 2000-12-19 Ficht Gmbh & Co. Kg Liquid gas engine
DE19643886C2 (de) * 1996-10-30 2002-10-17 Ficht Gmbh & Co Kg Verfahren zum Betreiben einer Brennkraftmaschine
US6280867B1 (en) 1997-12-05 2001-08-28 Griff Consulting, Inc. Apparatus for pumping a fluid in a fuel cell system
DE19845441C2 (de) * 1998-10-02 2003-01-16 Ficht Gmbh & Co Kg Verfahren zum elektronischen Trimmen einer Einspritzvorrichtung
DE19860573A1 (de) * 1998-12-29 2000-07-06 Eberspaecher J Gmbh & Co Brennstoffdosierpumpe für ein Heizgerät, insbesondere für einen Zuheizer oder eine Standheizung eines Kraftfahrzeuges
DE19918984A1 (de) * 1999-04-27 2000-11-02 Deutz Ag Kraftstoffversorgungssystem einer Brennkraftmaschine
US6283095B1 (en) * 1999-12-16 2001-09-04 Bombardier Motor Corporation Of America Quick start fuel injection apparatus and method
DE10002721A1 (de) * 2000-01-22 2001-08-02 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
US6966760B1 (en) 2000-03-17 2005-11-22 Brp Us Inc. Reciprocating fluid pump employing reversing polarity motor
US6364281B1 (en) * 2000-03-22 2002-04-02 Eaton Corporation Method of energizing solenoid operated valves
US6295972B1 (en) * 2000-03-30 2001-10-02 Bombardier Motor Corporation Of America Fuel delivery using multiple fluid delivery assemblies per combustion chamber
US6792968B1 (en) * 2000-05-30 2004-09-21 Robert H. Breeden Pump assembly and method
WO2002012708A1 (fr) * 2000-08-02 2002-02-14 Mikuni Corporation Injecteur de carburant a commande electronique
JP4431268B2 (ja) * 2000-11-17 2010-03-10 株式会社ミクニ 電子制御燃料噴射装置
CN1133810C (zh) * 2001-02-16 2004-01-07 郗大光 电动燃油喷射装置
JP2003003889A (ja) * 2001-06-20 2003-01-08 Denso Corp 内燃機関の燃料供給装置
WO2003046363A1 (fr) * 2001-11-29 2003-06-05 Mikuni Corporation Procede d'entrainement de pompe d'injection de carburant
US6693787B2 (en) * 2002-03-14 2004-02-17 Ford Global Technologies, Llc Control algorithm for soft-landing in electromechanical actuators
AU2006210785C1 (en) * 2005-02-02 2009-12-17 Brp Us Inc. Method of controlling a pumping assembly
DE102006003484A1 (de) * 2005-03-16 2006-09-21 Robert Bosch Gmbh Vorrichtung zum Einspritzen von Kraftstoff
US20070075285A1 (en) * 2005-10-05 2007-04-05 Lovejoy Kim A Linear electrical drive actuator apparatus with tandem fail safe hydraulic override for steam turbine valve position control
US7857281B2 (en) * 2006-06-26 2010-12-28 Incova Technologies, Inc. Electrohydraulic valve control circuit with magnetic hysteresis compensation
DE102007037869A1 (de) * 2007-08-10 2009-02-12 Robert Bosch Gmbh Aktuator für eine Brennkraftmaschine sowie Verfahren zum Betreiben eines Aktuators
DE102007039794A1 (de) 2007-08-23 2009-03-12 Eberspächer Unna GmbH & Co. KG Dosiersystem und Verfahren zum Dosieren eines flüssigen Reduktionsmittels in ein Abgassystem einer Brennkraftmaschine
DE102008007349B4 (de) * 2008-02-04 2021-07-08 Robert Bosch Gmbh Kompakte Einspritzvorrichtung mit reduzierter Dampfblasenneigung
DE102009012688B3 (de) * 2009-03-11 2010-07-22 Continental Automotive Gmbh Ventil zum Einblasen von Gas
DE102009014444A1 (de) * 2009-03-23 2010-10-07 Continental Automotive Gmbh Tankentlüftungsvorrichtung für eine aufgeladene Brennkraftmaschine und zugehöriges Steuerverfahren
DE102011077059A1 (de) * 2011-06-07 2012-12-13 Robert Bosch Gmbh Kraftstoffeinspritzventil
DE102011078159A1 (de) * 2011-06-28 2013-01-03 Robert Bosch Gmbh Kraftstoffeinspritzventil
AU2013334273B2 (en) 2012-10-25 2016-03-10 Briggs & Stratton, Llc Fuel injection system
US20170030298A1 (en) * 2015-07-31 2017-02-02 Briggs & Stratton Corporation Atomizing fuel delivery system
JP6245238B2 (ja) 2015-09-11 2017-12-13 トヨタ自動車株式会社 燃料ポンプ
DE102015014350B4 (de) * 2015-11-05 2017-06-14 L'orange Gmbh Druckbetätigter Injektor
DE102015014349B4 (de) * 2015-11-05 2017-06-14 L'orange Gmbh Druckstoßbetätigter Injektor
US10030961B2 (en) 2015-11-27 2018-07-24 General Electric Company Gap measuring device
US10197025B2 (en) 2016-05-12 2019-02-05 Briggs & Stratton Corporation Fuel delivery injector
US10859073B2 (en) 2016-07-27 2020-12-08 Briggs & Stratton, Llc Reciprocating pump injector
US10947940B2 (en) 2017-03-28 2021-03-16 Briggs & Stratton, Llc Fuel delivery system
DE102018200715A1 (de) * 2018-01-17 2019-07-18 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe
DE102018211338A1 (de) * 2018-07-10 2020-01-16 Robert Bosch Gmbh Kraftstofffördereinrichtung für kryogene Kraftstoffe und Verfahren zum Betreiben einer Kraftstofffördereinrichtung
US11668270B2 (en) 2018-10-12 2023-06-06 Briggs & Stratton, Llc Electronic fuel injection module
KR102572903B1 (ko) * 2021-01-07 2023-08-30 주식회사 현대케피코 고압 연료펌프의 유량제어밸브 구조

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE213472C (de) *
CH328209A (de) * 1953-12-23 1958-02-28 Cav Ltd Brennstoffeinspritzpumpe für Brennkraftmaschinen
FR1150971A (fr) * 1956-05-24 1958-01-22 Perfectionnements apportés à des dispositifs d'injection de combustible
US2881749A (en) * 1956-11-13 1959-04-14 Studebaker Packard Corp Combination accumulator and starting pump for fuel injection system
FR1183662A (fr) * 1957-10-01 1959-07-10 Pompe d'injection électromagnétique pour moteurs à combustion interne
DE1278792B (de) * 1963-12-05 1968-09-26 Vyzk Ustav Prislusenstvi Motor Kraftstoffeinspritzpumpe mit Pumpen- und Verteilerrotor und Regelung der Einspritzmenge durch einen Ausweichkolben
DE2306875A1 (de) * 1973-02-13 1974-08-15 Bosch Gmbh Robert Elektromagnetische dosierpumpe
DE2307435A1 (de) * 1973-02-15 1974-08-22 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung fuer brennkraftmaschinen
JPS51120321A (en) * 1975-04-14 1976-10-21 Yanmar Diesel Engine Co Ltd Fuel injection pump for diesel engine
DD120514A1 (de) * 1975-06-09 1976-06-12
CH597596A5 (de) * 1975-06-27 1978-04-14 Hoffmann La Roche
GB1574128A (en) * 1976-01-20 1980-09-03 Lucas Industries Ltd Fuel pump injector
GB1574132A (en) * 1976-03-20 1980-09-03 Lucas Industries Ltd Fuel injection pumps
DE2634282C2 (de) * 1976-07-28 1978-04-13 Mannesmann Ag, 4000 Duesseldorf Verfahren zum kontinuierlichen Einbringen von Zusatzmitteln in ein mit flüssigem Metall gefülltes Gefäß
DE2720144A1 (de) * 1977-05-05 1978-11-16 Volkswagenwerk Ag Einspritzvorrichtung, insbesondere fuer eine brennkraftmaschine
DE2809122A1 (de) * 1978-03-03 1979-09-06 Bosch Gmbh Robert Einspritzvorrichtung fuer eine brennkraftmaschine
NL7810629A (nl) * 1978-10-25 1980-04-29 Holec Nv Inrichting voor het afgeven van brandstof aan een verbrandingsmotor.
US4355620A (en) * 1979-02-08 1982-10-26 Lucas Industries Limited Fuel system for an internal combustion engine
JPS5749059A (en) * 1980-09-08 1982-03-20 Toshiba Corp Driving circuit of injector
US4327695A (en) * 1980-12-22 1982-05-04 Ford Motor Company Unit fuel injector assembly with feedback control
JPS5851233A (ja) * 1981-09-21 1983-03-25 Hitachi Ltd 燃料噴射弁駆動回路
DE3237258C1 (de) * 1982-10-08 1983-12-22 Daimler-Benz Ag, 7000 Stuttgart Elektrisch vorgesteuerte Ventilanordnung
DD213472B5 (de) * 1983-02-04 1999-12-30 Ficht Gmbh Pumpe-Duese-System fuer Brennkraftmaschinen
DE3329734A1 (de) * 1983-08-17 1985-03-07 Mannesmann Rexroth GmbH, 8770 Lohr Proportionalmagnet
JPS6062658A (ja) * 1983-09-16 1985-04-10 Mitsubishi Heavy Ind Ltd ジャ−ク式燃料ポンプの噴射開始タイミング変更装置
GB8402470D0 (en) * 1984-01-31 1984-03-07 Lucas Ind Plc Drive circuits
EP0174261B1 (de) * 1984-08-14 1989-01-11 Ail Corporation Fördermengensteuersystem
NL8501647A (nl) * 1985-06-06 1987-01-02 Volvo Car Bv Brandstofinjector.
JPS61286540A (ja) * 1985-06-14 1986-12-17 Nippon Denso Co Ltd 燃料噴射制御装置
JPS62107265A (ja) * 1985-11-02 1987-05-18 Nippon Soken Inc 電歪式油圧制御弁
JP2546231B2 (ja) * 1986-03-12 1996-10-23 日本電装株式会社 圧電素子の駆動装置
FR2607278B1 (fr) * 1986-11-26 1989-06-23 Bendix Electronics Sa Circuit integrable de regulation de courant dans une charge inductive et son application a la commande de bobine d'allumage d'un moteur a combustion interne
DE3701872A1 (de) * 1987-01-23 1988-08-04 Pierburg Gmbh Elektromagnetisch getaktetes einspritzventil fuer gemischverdichtende brennkraftmaschinen
GB8703419D0 (en) * 1987-02-13 1987-03-18 Lucas Ind Plc Fuel injection pump
EP0309753A1 (de) * 1987-09-30 1989-04-05 Siemens Aktiengesellschaft Verfahren zur Überwachung einer induktiven Last
NZ222499A (en) * 1987-11-10 1990-08-28 Nz Government Fuel injector pump: flow rate controlled by controlling relative phase of reciprocating piston pumps
JP2568603B2 (ja) * 1988-01-11 1997-01-08 日産自動車株式会社 燃料噴射装置
DE3903313A1 (de) * 1989-02-04 1990-08-09 Bosch Gmbh Robert Speicherkraftstoffeinspritzvorrichtung
JPH03107568A (ja) * 1989-09-22 1991-05-07 Aisin Seiki Co Ltd 燃料噴射装置
DE4106015A1 (de) * 1991-02-26 1992-08-27 Ficht Gmbh Druckstoss-kraftstoffeinspritzung fuer verbrennungsmotoren
DE59310057D1 (de) * 1992-03-04 2000-07-13 Ficht Gmbh & Co Kg Kraftstoff-Einspritzvorrichtung nach dem Festkörper-Energiespeicherprinzip für Brennkraftmaschinen
US5437255A (en) * 1994-03-15 1995-08-01 Sadley; Mark L. Fuel injection sytem employing solid-state injectors for liquid fueled combustion engines

Also Published As

Publication number Publication date
US5469828A (en) 1995-11-28
DE59306679D1 (de) 1997-07-10
JPH11107883A (ja) 1999-04-20
JP2626677B2 (ja) 1997-07-02
JPH09170519A (ja) 1997-06-30
AU667345B2 (en) 1996-03-21
AU3630593A (en) 1993-10-05
DE59304903D1 (de) 1997-02-06
WO1993018297A1 (de) 1993-09-16
ATE140768T1 (de) 1996-08-15
JP2867334B2 (ja) 1999-03-08
AU3630793A (en) 1993-10-05
HK1013676A1 (en) 1999-09-03
AU664739B2 (en) 1995-11-30
AU679648B2 (en) 1997-07-03
ATE193753T1 (de) 2000-06-15
EP0733798A3 (de) 1996-12-11
AU681827B2 (en) 1997-09-04
CA2127800C (en) 1999-06-29
JPH07504475A (ja) 1995-05-18
JPH07504476A (ja) 1995-05-18
ATE169376T1 (de) 1998-08-15
JP2002089413A (ja) 2002-03-27
EP0725215A2 (de) 1996-08-07
US6188561B1 (en) 2001-02-13
JPH11101169A (ja) 1999-04-13
CA2127800A1 (en) 1993-09-16
EP0725215B1 (de) 1998-08-05
CA2127801A1 (en) 1993-09-16
ATE154100T1 (de) 1997-06-15
ATE146851T1 (de) 1997-01-15
EP0733798A2 (de) 1996-09-25
AU671100B2 (en) 1996-08-15
JP2626678B2 (ja) 1997-07-02
CA2127799A1 (en) 1993-09-16
CA2127801C (en) 1999-06-15
AU5627396A (en) 1996-10-03
JP3330544B2 (ja) 2002-09-30
EP0629264B1 (de) 1996-07-24
DE59310057D1 (de) 2000-07-13
JPH07504954A (ja) 1995-06-01
JP3282711B2 (ja) 2002-05-20
EP0629265A1 (de) 1994-12-21
EP0629264A1 (de) 1994-12-21
EP0725215A3 (de) 1996-08-21
EP0630442B1 (de) 1996-12-27
DE59303326D1 (de) 1996-08-29
JPH09177636A (ja) 1997-07-11
EP0630442A1 (de) 1994-12-28
AU3630893A (en) 1993-10-05
DE59308851D1 (de) 1998-09-10
WO1993018290A1 (de) 1993-09-16
WO1993018296A1 (de) 1993-09-16
CA2127799C (en) 1999-06-29
EP0733798B1 (de) 2000-06-07
US5520154A (en) 1996-05-28
AU3790995A (en) 1996-03-07

Similar Documents

Publication Publication Date Title
EP0629265B1 (de) Kraftstoff-einspritzvorrichtung nach dem festkörper-energiespeicher-prinzip für brennkraftmaschinen
EP0685646B1 (de) Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen
DE3700687C2 (de) Kraftstoffeinspritzanlage für eine Brennkraftmaschine
DE4233273C2 (de) Hochdruck-Pumpe für eine Kraftstoff-Einspritzanlage mit einer gemeinsamen Druckleitung (common rail)
DE60123628T2 (de) Elektronisch geregelte Einspritzvorrichtung
DE60126173T2 (de) Magnetventil und Brennstoffeinspritzventil unter Verwendung desselben
DE4206817C2 (de) Kraftstoff-Einspritzvorrichtung nach dem Festkörper-Energiespeicher-Prinzip für Brennkraftmaschinen
EP0764254B1 (de) Ölbrenner
DE102009027214B4 (de) Kraftstoffeinspritzgerät
EP0603616A1 (de) Brennstoffeinspritzventil
WO1995034786A9 (de) Ölbrenner
WO1996034196A1 (de) Kraftstoff-einspritzvorrichtung für brennkraftmaschinen
EP1861617B1 (de) Vorrichtung zum einspritzen von kraftstoff
EP0467072B1 (de) Brennstoffeinspritzvorrichtung für luftverdichtende Brennkraftmaschinen
DE69920825T2 (de) Brennstoffeinspritzpumpe mit Speicher zur Dampfverhinderung
EP0656472B1 (de) Zur Vor- und Haupteinspritzung von Kraftstoff eingerichtete Einspritzvorrichtung
DE19523878C2 (de) Einspritzvorrichtung zum Einspritzen von Kraftstoff und einem zweiten Fluid in einen Brennraum eines Dieselmotors
DE19515774C2 (de) Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen
EP2166217B1 (de) Verbrennungskraftmaschine
DE3716173A1 (de) Voreinspritzventil
EP0962649A1 (de) Kraftstoffeinspritzvorrichtung
DE19746949A1 (de) Einstellbares Brennstoff-Injektionssystem für Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT SE

17Q First examination report despatched

Effective date: 19950919

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FICHT GMBH & CO. KG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT SE

DX Miscellaneous (deleted)
REF Corresponds to:

Ref document number: 154100

Country of ref document: AT

Date of ref document: 19970615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59306679

Country of ref document: DE

Date of ref document: 19970710

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970704

ITF It: translation for a ep patent filed

Owner name: ORGANIZZAZIONE D'AGOSTINI

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990330

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000304

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020306

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020527

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030226

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030310

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030313

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

BERE Be: lapsed

Owner name: *FICHT G.M.B.H. & CO. K.G.

Effective date: 20030331

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050304