EP0629265B1 - Fuel injecting device working according to the solid energy accumulator principle, for internal combustion engines - Google Patents

Fuel injecting device working according to the solid energy accumulator principle, for internal combustion engines Download PDF

Info

Publication number
EP0629265B1
EP0629265B1 EP93905299A EP93905299A EP0629265B1 EP 0629265 B1 EP0629265 B1 EP 0629265B1 EP 93905299 A EP93905299 A EP 93905299A EP 93905299 A EP93905299 A EP 93905299A EP 0629265 B1 EP0629265 B1 EP 0629265B1
Authority
EP
European Patent Office
Prior art keywords
fuel
piston
line
valve
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93905299A
Other languages
German (de)
French (fr)
Other versions
EP0629265A1 (en
Inventor
Wolfgang Heimberg
Wolfram Hellmich
Franz Kögl
Paul Malatinszky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ficht GmbH and Co KG
Original Assignee
Ficht GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4206817A external-priority patent/DE4206817C2/en
Application filed by Ficht GmbH and Co KG filed Critical Ficht GmbH and Co KG
Priority to EP96109438A priority Critical patent/EP0733798B1/en
Publication of EP0629265A1 publication Critical patent/EP0629265A1/en
Application granted granted Critical
Publication of EP0629265B1 publication Critical patent/EP0629265B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/462Arrangement of fuel conduits, e.g. with valves for maintaining pressure in the pipes after the engine being shut-down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D33/00Controlling delivery of fuel or combustion-air, not otherwise provided for
    • F02D33/003Controlling the feeding of liquid fuel from storage containers to carburettors or fuel-injection apparatus ; Failure or leakage prevention; Diagnosis or detection of failure; Arrangement of sensors in the fuel system; Electric wiring; Electrostatic discharge
    • F02D33/006Controlling the feeding of liquid fuel from storage containers to carburettors or fuel-injection apparatus ; Failure or leakage prevention; Diagnosis or detection of failure; Arrangement of sensors in the fuel system; Electric wiring; Electrostatic discharge depending on engine operating conditions, e.g. start, stop or ambient conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M39/00Arrangements of fuel-injection apparatus with respect to engines; Pump drives adapted to such arrangements
    • F02M39/005Arrangements of fuel feed-pumps with respect to fuel injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/04Pumps peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/007Venting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/027Injectors structurally combined with fuel-injection pumps characterised by the pump drive electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/38Pumps characterised by adaptations to special uses or conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/047Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves being formed by deformable nozzle parts, e.g. flexible plates or discs with fuel discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/06Use of pressure wave generated by fuel inertia to open injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/16Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors
    • F02M69/18Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air
    • F02M69/24Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air the device comprising a member for transmitting the movement of the air throttle valve actuated by the operator to the valves controlling fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/30Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
    • F02M69/34Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines with an auxiliary fuel circuit supplying fuel to the engine, e.g. with the fuel pump outlet being directly connected to injection nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2068Output circuits, e.g. for controlling currents in command coils characterised by the circuit design or special circuit elements
    • F02D2041/2075Type of transistors or particular use thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • F02M2037/085Electric circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/40Fuel-injection apparatus with fuel accumulators, e.g. a fuel injector having an integrated fuel accumulator

Definitions

  • the invention relates to a device for injecting fuel for internal combustion engines of the type specified in the preamble of claim 1.
  • Injection devices whose electrically operated reciprocating pumps operate according to the so-called solid-state energy storage principle, have a delivery piston or cylinder which is accelerated in a certain way almost without resistance, fuel being generally moved before the delivery pressure which builds up to Spraying the fuel through the injector is required. In this way, kinetic energy is absorbed or stored before the actual pressure build-up required for injection, which is then suddenly converted into a pressure increase in the fuel.
  • the fuel delivery chamber accommodating the delivery piston of the injection pump has, in a first section, axially parallel grooves in the inner wall through which Fuel can flow to the rear of the delivery piston if the delivery piston starts to move without any noticeable pressure build-up in the fuel.
  • the adjoining second section of the fuel delivery chamber is the actual pressure chamber, which has no grooves. If the accelerated delivery piston enters this pressure chamber, it is suddenly braked by the incompressible fuel, whereby the stored kinetic energy is converted into a pressure surge, through which the resistance of the injection valve is overcome, so that fuel is sprayed off.
  • the disadvantage here is that when the delivery plunger is immersed in the second section of the delivery space, because of unfavorable gap conditions, namely a relatively large gap width and a relatively small gap length, noticeably high pressure losses occur, which in particular reduce the possible speed and pressure level of the pressure build-up and thus make the spraying process unfavorable influence.
  • the pressure losses are caused by fuel flowing out of the pressure chamber into the pressure antechamber (first section of the fuel delivery chamber).
  • this disadvantage is to be avoided by mounting an impact body in the pressure chamber of the delivery cylinder on which the piston accelerates almost without resistance, so that the pressure loss during pressure build-up due to a relatively large gap length despite a relatively large gap width (large manufacturing tolerances ) between the impact body and the pressure chamber inner wall area can be kept reasonably small.
  • the disadvantage here is that the impacting process leads to a high level of wear on the bodies that meet.
  • the impact body is set into longitudinal vibrations by the impact, which are transferred to the fuel and disrupt the injection process there as high-frequency pressure vibrations.
  • a particular disadvantage of these known solid-state energy storage injection devices is that the injection process can be controlled only to a very limited extent, that is to say it can only be adapted to the load conditions of the engine to a very limited extent.
  • the reciprocating piston pump has a sleeve-shaped pump cylinder as a movable pump member, which is arranged in a longitudinally displaceable manner on a pump piston fixed in the pump housing and limits the pump pressure space, which is connected to the injection valve device via a longitudinal bore in the pump piston.
  • a cross hole in the pump cylinder allows fuel to flow to the back of the cylinder when storing energy. Passing over the front edge of the piston with the bore leads to pressure build-up and thus to fuel spraying. In this case, too, high gap losses occur when the pressure builds up.
  • the object of the invention is to provide a cost-effective, easy-to-manufacture device for injecting fuel of the type mentioned at the outset, with which wear-free fuel can be injected without any noticeable pressure losses when building up pressure, and fuel can be precisely controlled depending on the load, and which is particularly suitable for high-speed internal combustion engines.
  • an initial partial stroke of the delivery element of the injection pump in which the displacement of the fuel does not result in a pressure build-up
  • the delivery element partial stroke serving for energy storage expediently being provided by a storage volume e.g. is determined in the form of an empty volume and a stop element which, as will be explained in more detail below with reference to the exemplary embodiments, can be designed differently, for example in the form of a spring-loaded membrane or a spring-loaded piston element, against which fuel is conveyed and which is displaced on a stroke path "X" allow the fuel element to displace fuel; only when the spring-loaded element is pressed against a e.g. abuts a firm stop, an abrupt pressure build-up is generated in the fuel, so that a displacement of the fuel in the direction of the injection nozzle is effected.
  • the injection device according to FIG. 1 has an electromagnetically driven reciprocating piston pump 1, which is connected to an injection nozzle device 3 via a delivery line 2.
  • a suction line 4 branches off from the delivery line 2 and is connected to a fuel reservoir 5 (tank).
  • a volume storage element 6 is connected via a line 7 to the delivery line 2, for example in the area of the connection of the suction line 4.
  • the pump 1 is designed as a piston pump and has a housing 8 in which a magnet coil 9 is mounted, an armature 10 which is arranged in the region of the coil passage and is designed as a cylindrical body, for example as a solid body, and is guided in a housing bore 11 which is located in the region the central longitudinal axis the ring coil 9 is located, and is pressed by means of a compression spring 12 into an initial position in which it rests on the bottom 11a of the housing bore 11.
  • the compression spring 12 is supported on the end face of the armature 10 on the injection nozzle side and an annular step 13 of the housing bore 11 opposite this end face.
  • the spring 12 includes, with play, a delivery piston 14, which is fixed, for example in one piece, to the armature 10 on the armature end face acted upon by the spring 12 , connected is.
  • the delivery piston 14 plunges relatively deep into a cylindrical fuel delivery chamber 15 which is formed coaxially in the axial extension of the housing bore 11 in the pump housing 8 and is in transmission connection with the pressure line 2. Due to the immersion depth, pressure losses during the sudden pressure increase can be avoided, and the manufacturing tolerances between piston 14 and cylinder 15 can even be relatively large, for example need only be in the hundredths of a millimeter range, so that the manufacturing outlay is low.
  • a check valve 16 is arranged in the intake line 4.
  • a ball 18, for example, is arranged in the housing 17 of the valve 16 as a valve element, which in its rest position is pressed by a spring 19 against its valve seat 20 at the end of the valve housing 17 on the reservoir side.
  • the spring 19 is supported on the one hand on the ball 18 and on the other hand on the wall of the housing 17 opposite the valve seat 20 in the region of the mouth 21 of the intake line 4.
  • the storage element 6 has, for example, a two-part housing 22, in the cavity of which a membrane 23 is tensioned as the organ to be displaced, which separates a space filled with fuel from the pressure line and which, in the relaxed state, divides the cavity into two halves, which are sealed against each other by the membrane.
  • a spring force acting on it acts in an empty space
  • the storage volume for example a spring 24, which acts as a return spring for the membrane 23 is set up.
  • the spring 24 is supported with its end opposite the membrane on an inner wall of the cylindrically widened empty cavity.
  • the empty cavity of the housing 22 is delimited by an arched wall, which forms a stop surface 22a for the membrane 23.
  • the coil 9 of the pump 1 is connected to a control device 26 which serves as an electronic control for the injection device.
  • the armature 10 of the pump 1 is located on the bottom 11a due to the prestressing of the spring 12.
  • the fuel supply valve 16 is closed and the storage membrane 23 is held in the housing cavity by the spring 24 in its position away from the stop surface 22a.
  • the armature 10 with the piston 14 is moved in the direction of the injection valve 3 against the force of the spring 12.
  • the feed piston 14 connected to the armature 10 displaces fuel from the feed cylinder 15 into the space of the storage element 6.
  • the spring forces of the springs 12, 24 are relatively soft, so that fuel displaced by the feed piston 14 during the first partial stroke of the feed piston 14 presses the storage membrane 23 into the empty space almost without resistance.
  • the armature 10 can initially be accelerated almost without resistance until the storage volume or empty space volume of the storage element 6 is exhausted by the membrane 23 striking the arch wall 22a.
  • the displacement of the fuel is suddenly stopped and the fuel is suddenly compressed due to the already high kinetic energy of the delivery piston 14.
  • the kinetic energy of the armature 10 with the delivery piston 14 acts on the liquid. This creates a pressure surge that travels through the pressure line 2 to the nozzle 3 and there leads to the spraying of fuel.
  • the coil 9 is switched off.
  • the armature 10 is moved back to the bottom 11a by the spring 12.
  • the amount of liquid stored in the storage device 6 is sucked back via the lines 7 and 2 into the delivery cylinder 15 and the membrane 23 is pushed back into its starting position due to the action of the spring 24.
  • the fuel supply valve 16 opens, so that fuel is sucked out of the tank 5.
  • a valve 16a is expediently arranged in the pressure line 2 between the injection valve 3 and the branches 4, 7 and maintains a stand pressure in the space on the injection valve side, which pressure e.g. is higher than the vapor pressure of the liquid at the maximum temperature, so that bubbles are prevented.
  • the parking pressure valve can e.g. be designed as the valve 16.
  • a storage piston 31 can also be used as a displacement element for the storage element 6 instead of the membrane 23.
  • the stop which suddenly stops storing in this case, can be designed to be adjustable according to the invention, so that the path length of the acceleration stroke of armature 10 and delivery piston 14 can be changed.
  • a cable pull for example coupled to the throttle valve of the engine, is preferably used for this adjustment.
  • the adjustment can expediently be controlled by the control device 26, for example by means of an actuating magnet.
  • Figure 2 shows e.g. an embodiment of the storage element 6 with a displacement piston 31 adjustable by a cable 40.
  • the storage element 6 has a cylindrical housing 30 which can be formed integrally with the pressure line 2.
  • a storage piston 31 is used, which is guided with a close fit on the inner wall of the cylinder housing 30, so that no significant leakage can occur, with an empty volume 33c being provided in the cylinder 30, into which the piston 31 can be displaced.
  • Existing leakage fluid can escape from the empty volume space 33c through a drain hole 32 and is supplied to the fuel tank 5 (see FIG. 1).
  • the drain hole 32 is formed in the cylinder wall of the housing 30 in the region of the housing cover 33, which lies opposite the housing wall 33a, which is integrally formed with a wall section of the pressure line 2.
  • the drain hole 32 extends approximately radially to the central longitudinal axis 33b of the cylindrical housing 30.
  • a compression spring 34 is clamped between the inside of the housing cover 33 and the end face of the piston 31 opposite this wall, which presses the piston 31 into its rest position against the opposite end wall 33a of the housing, in which a bore 35 is formed which is in the central longitudinal axis 33b of the housing 30 lies and opens into the pressure line 2.
  • the housing cover 33 of the housing 30 is extended in a tubular manner in the axial direction, and in the passage of the extension tube 36 a stop bolt 37 is slidably guided like a piston and has a ring 38 at the end located in the space 33c.
  • the piston 31 abuts against the underside of the ring 38 when it is moved from its rest position towards the housing cover 33.
  • This stop element 37 is preloaded by means of a spring 39.
  • the spring 39 is supported on the one hand on the inside of the cover 33 and on the other hand on the ring step of the ring 38 of the bolt 37.
  • a cable 40 is fastened to the part of the bolt 37 arranged outside the cylinder 30 and is connected, for example, to the throttle valve of the engine.
  • the stop pin 37 can be adjusted in the direction of the central longitudinal axis 33b of the housing 30 by means of the cable 40, so that the possible stroke of the piston 31 can also be varied in accordance with the position of the stop ring 38.
  • the stop bolt 37 can be adjusted depending on the required acceleration stroke of the armature 10 of the pump 1 (FIG. 1).
  • the operation of the storage element 6 according to FIG. 2 corresponds essentially to that of the storage element 6 according to FIG. 1.
  • the storage piston 31 of the storage element 6 is displaced from it by displaced fuel Fig. 2 shown rest position, the return spring 34 is relatively soft, so that the fuel moved by the armature 10 on the delivery piston 14 can be displaced with almost no resistance of the storage piston 31.
  • the armature 10 with the delivery piston 14 is almost resistance-free on part of the stroke, i.e.
  • the adjustable stop pin 37 is also suitable for the exclusive control of the amount of fuel to be injected for certain engines.
  • the integral storage element feed valve 90 has a housing 91 which is constructed in a unitary manner with the housing 8 of the pump 1 and the pressure line 2.
  • a central longitudinal bore 92 is made in the housing 91, which ends at one end via an opening 93a in the pressure line 2 and at the other end opens into a cylindrical valve chamber 93, with channels 94 also leading from the bore 92 to the valve chamber 93.
  • the valve element is constructed in two parts and comprises a cylinder 95 guided in the valve chamber 93, in the cylindrical, continuous central step bore of which a piston 96 is displaceably guided. In the outer lateral surface of the cylinder 95, axially parallel grooves 97 are formed.
  • the cylinder 95 is pressed into its rest position by a spring 98, in which it rests with its one end face on the tank-side bottom of the valve chamber 93, into which a fuel supply line 99 coming from the fuel tank opens.
  • a spring 100 In the bore for receiving the piston 96 sits a spring 100 on the tank side, which presses the piston 96 against the pressure line side bottom of the valve chamber 93, so that the bore 92 is covered, a space 95a being formed for the piston 96 in the tank-side interior of the cylinder 95 becomes.
  • the valve 90 works as follows.
  • fuel is drawn from the line 99 in that the cylinder 95 is lifted off from the tank-side bottom surface of the valve chamber 93 by the negative pressure against the pressure of the spring 98, so that fuel via the longitudinal grooves 97, the valve chamber 93 and the channels 94 and the bore 92 can flow into the pressure line 2.
  • the piston 96 as shown in FIG. 3, on the pressure line-side bottom of the valve chamber 93.
  • the cylinder 95 is pressed by the spring 98 into the position shown in FIG. 3, in which the cylinder 95 again lies sealingly against the tank-side bottom of the valve chamber 93.
  • the piston 96 guided in the cylinder 95 is moved out of its abutment on the pressure line side bottom of the valve space 93 due to the relatively soft design of the spring force of the spring 100 and pressed into the free space 95a, the resulting additional space in the Valve chamber 93 flows fuel from the pressure chamber 15, 2, which is displaced during the conveying movement of the delivery piston 14, fuel on the end of the piston 96 on the tank side being pushed back by the piston 96 into the tank via the line 99.
  • the delivery stroke of the delivery piston 14 is ended in that the piston 96 strikes the end of the piston 95 with its end face acted upon by the spring 100 against the step in the central longitudinal bore of the piston 95.
  • a storage piston 80 serves as the storage element, which is pressed in a first central longitudinal axis step bore section 14b on the pressure line side of a step bore 14a centrally through the piston 14 and the armature 10 against a stop (not shown) on the pressure line side by a spring 81.
  • the piston 80 projects in the rest position with its one end face into the pressure chamber 15.
  • the bore section 14b in the delivery piston 14 receiving the storage piston 80 sits after the step 14c towards the armature 10 in a further stepped bore section 14d, on the step 14e of which the compression spring 81 is supported, which presses against the armature-side end face of the piston 80.
  • the bore 14a finally also passes through the armature 10 and opens into the empty armature space 11, so that air can be displaced.
  • the memory element of this embodiment works as follows. On a first part of the stroke of the delivery piston 14, the energy storage path, the storage piston 80 is pushed into the bore of the delivery piston 14 provided for the piston, whereby an additional space for displaced fuel is available on the pressure chamber side, so that the armature 10 during the first stroke section can be accelerated essentially without resistance together with the delivery piston 14.
  • the resistance-free acceleration of armature 10 and delivery piston 14 is ended when the armature-side end face of the storage piston 80 comes to bear against the annular shoulder 14c of the stepped bore 14a. The consequence of this is an abrupt pressure increase, by means of which fuel is sprayed off via the nozzle 3.
  • FIG. 5 shows an exemplary embodiment of the injection pump, which essentially has the structure of the injection pump 1 according to FIG. 1.
  • a cylindrical projection 10a is formed centrally on the back of the armature 10 in the manner of a piston-cylinder arrangement, which in the last section of the armature return movement suitably enters a pocket cylinder bore 11b in the base 11a, which on the stop surface 11a for the armature 10 in the housing 8 is trained.
  • Longitudinal grooves 10b are formed in the armature 10, which connect the armature-back space 11 to the armature-front space 11.
  • a medium for example air or fuel, which can flow through the grooves 10b when the armature 10 moves.
  • the depth of the blind cylinder bore 11b corresponds approximately to the length of the projection 10a (dimension Y in FIG. 8). Because the projection 10a can dip into the blind cylinder bore 11b, the armature return movement is greatly delayed in the last section, as a result of which the desired hydraulic damping of the armature return movement is brought about by displacement of the medium from the space 11b.
  • FIG. 6a shows a variant of the hydraulic damping.
  • the pump chamber 11 through which the delivery piston 14 passes is connected in front of the armature 10 to the space 11 adjoining the armature rear side, namely through bores 10d which open into a central overflow channel 10c in the region of the armature rear side.
  • a central pin 8a of a shock absorber 8b protrudes with its conical tip 8c in the direction of the mouth of the overflow channel 10c, reaches through a hole 8d in the bottom 11a at the rear, which opens into a damping space 8e, and ends in the damping space with a ring 8f which has a larger diameter than the hole 8d.
  • the damping device 8b is ineffective in the acceleration movement of the armature 10, so that there is no impairment of the lifting phase.
  • the mouth of the overflow channel meets the cone tip 8c and is closed, so that the flow through the channels 10c and 10d is interrupted.
  • the armature 10 presses the pin 8a against the spring force and against the medium in the room 8e, which is also in the room 11 and flows out through the channel 8h into the room 11. The flows and spring forces are selected so that optimal damping is guaranteed.
  • a displacement hole 8i can be arranged centrally in the pin 8a according to FIG. 6b, through which the damping medium can be pressed into the overflow channel 10c.
  • the energy stored in the return spring 12 of the armature 10 is used to advantage in the return movement of the armature 10.
  • this can take place, for example, in that the anchor when resetting, a pumping device is used, which can be used for the fuel supply to the injection device to stabilize the system and to prevent bubbles or as a separate oil pump for engine lubrication.
  • 7 shows a corresponding exemplary embodiment of an oil pump 260 connected to the fuel injection pump 1.
  • the fuel injection device shown in FIG. 7 is otherwise designed in accordance with FIG. 4, that is to say has a fuel inflow and outflow control element for controlling the first partial stroke of the delivery piston 14.
  • the oil pump 260 is connected to the rear bottom 11a of the pump housing 8.
  • the oil pump 260 comprises a housing 261 which is connected to the housing 8 of the injection pump and in the pump chamber 261b of which a pump piston 262 is arranged, the piston rod 262a of which projects into the working chamber 11 of the armature 10, the piston 262 being acted upon by a return spring 263, which is supported on the housing base 261a in the region of an outlet 264.
  • the pump chamber 261b of the housing is connected to an oil reservoir 266 via an oil supply line 265.
  • a check valve 267 is used in the oil supply line 265, the structure of which is similar to the valve 16 in FIG. 1.
  • the oil pump 260 works as follows. If the armature 10 of the injection pump 1 is moved in the direction of the injection nozzle 3 during its working stroke, the volume of the pump chamber 11 in the housing 8 behind the armature 10 is increased, as a result of which the oil pump piston 262 is moved in the direction of the armature 10 and finally by the action of the return spring 263 is transferred to its rest position. Oil is sucked from the reservoir 266 into the working space 261b of the oil pump 260 via the valve 267. During the return movement of the armature 10 of the pump 1 in the direction of its stop 11a, the oil pump piston 262 is pushed into the oil pump chamber 261b at least over part of the return path of the armature 10. It is by the Pump pressure closes the valve 267 and oil is discharged via the outlet 264 in the direction of arrow 264a from the oil pump and pressed to the locations of the engine to be supplied with oil.
  • the oil pump 260 can alternatively also be used as a fuel back pressure pump, wherein the fuel can be supplied to the valve device 70. It is advantageous here that the pump 260 can generate a static pressure in the fuel supply system which prevents vapor bubbles from forming e.g. counteracts heating of the entire system.
  • the inventive design of the additional pump 260 on the pump 1 causes rapid damping of the armature 10, so that the armature 10 does not rebound against the stop 11a.
  • FIG. 8a and 8b show a particularly effective and simple damping device.
  • the structure of the pump device 1 is the same as that shown in FIG. 9.
  • the blind cylinder bore 11b according to FIG. 12a is larger in diameter than the diameter of the cylindrical projection 10a.
  • the projection 10a is surrounded by a sealing lip ring 10e projecting in the direction of the blind cylinder bore 11b and made of an elastic material which fits into the blind cylinder bore 11b.
  • An insertion bevel at the mouth of the blind cylinder bore 11b facilitates the entry of the lips of the sealing lip ring 10e into the blind cylinder bore 11b.
  • This damping device provides good damping when the armature 10 strikes and does not hinder the acceleration stroke of the armature.
  • the elastic damping element 10e with sealing lips projecting axially parallel plunges positively into the pocket cylinder bore 11b during the return stroke of the armature 10 and rests against the inside wall of the pocket cylinder bore 11b in a sealing manner to the outside.
  • the blind cylinder bore 11b according to FIG. 8b is also larger in diameter than the cylindrical projection 10a.
  • a sealing ring 10f made of elastic material sits positively on the wall of the blind cylinder bore 11b and points in the area of the Mouth inward-facing sealing lips 10g.
  • the cylindrical projection 10a is plunged into the elastic sealing element 10f, the sealing lips 10g being pressed against the cylindrical projection 10a due to the outflowing damping medium, so that particularly good damping of the armature 10 is achieved.
  • an engine start without a battery and an engine emergency run without a battery can be operated. This possibility is described in more detail below with reference to FIGS. 9, 10, 11.
  • the electrically driven or electronically controlled injection requires sufficient electrical energy to start and run.
  • the possibility according to the invention should be created to start engines with the injection according to the invention even without electrical energy, for example by means of a hand crank drive.
  • the required fuel is provided by an auxiliary device, as explained in more detail below. If the engine reaches a speed at which the generator provides sufficient energy, the fuel auxiliary device is switched off according to the invention and the injection is controlled electrically or electronically, corresponding to the normal case.
  • engines that are started without electrical energy, e.g. by hand or kick start device. These include small motors from hand tools, two-wheelers or outboards. This starting device is required because there is no battery to start and / or run. In addition, engines should be able to start without electrical energy, for example even when the battery is discharged.
  • the possibility of starting engines without electrical energy by means of an auxiliary device is achieved in that the fuel supply condition present on each engine, for example the inlet gradient or the pressure of the fuel feed pump at starting speed, is used.
  • the fuel is fed directly to the intake manifold or the overflow in two-stroke engines or a metering device. Then the engine reaches a speed at which the generator has sufficient energy for the Provides injection, a valve blocks the direct fuel supply to the engine, the fuel is fed to the injector and this then takes over the fuel supply to the engine.
  • FIG. 9 shows an arrangement according to the invention for supplying fuel to an engine 500.
  • a fuel back pressure pump 501 which is connected on the suction side to a fuel reservoir 502
  • the fuel supply to the engine is branched.
  • an injection device 504 which is connected to a generator 503 and is constructed in accordance with one of the above exemplary embodiments, is inactive, and an, for example, electromagnetically actuated control valve 505 is opened for the fuel supply to an atomizer 506 on the engine 500.
  • the fuel pressure supplied by the pre-pressure pump 501 is supplied to the atomizer 506 located on the engine 500 via the opened control valve 505.
  • the flow resistance of the control valve 505 and / or the atomizer 506 is dimensioned such that the supply of pressure from the admission pressure pump 501 at the starting speed covers the fuel required for the start.
  • an injection control 507 becomes active, which is also fed by the generator 503 and is connected to the injection device 504 via a control line.
  • the control valve 505 is closed by means of a current signal, so that no more fuel can be fed directly to the engine.
  • the injection device 504, controlled by the injection control 507 takes over the injection via the injection nozzle 508.
  • a hand pump 509 present on many engines can optionally also be used during the starting process for the direct fuel supply to the engine via the atomizer 506.
  • the Hand pump 509 is arranged in the connecting line 511 from the pump 501 to the control valve 505.
  • the control valve 505 is activated by the injection control 507 via a control line 510.
  • FIG. 10 shows a modification of the arrangement according to FIG. 9, in which the control valve 505 is arranged in the injection line 511 between the injection device 504 and the injection nozzle 508.
  • the function of stormless starting corresponds to the function explained above with reference to FIG. 9.
  • the flow resistance of the injection device 504 is kept small. It is advantageous here that the injection device 504 and the injection line 511 can be vented without problems. If the injection device 504 is to be vented, the control valve 505 is de-energized via an off switch 512 in the line from the injection control 507 to the control valve 505, unless this has already been done by the injection control 507. As a result, the control valve 505 is opened in the direction of the atomizer 506, and the air in the system can escape with simultaneous pumping, for example with the form pressure pump 501 or the hand pump 509.
  • FIGS. 9 and 10 can also be used for the emergency operation of the engine, in which, for example due to failure of the generator, there is insufficient energy available for the injection control and the injection device.
  • a quantity variation of the fuel takes place by a metering device, for example by an adjustable throttle in the control valve coupled to the throttle valve in the air intake pipe, which allows the engine load to be controlled in a makeshift manner.
  • the control valve 505 has a housing 520, into which a coil 521 is inserted, which serves to drive an armature 522, which is shown in FIG a bore 523 of the housing 520 is slidably mounted and in its rest position is pushed by a return spring 524 against an adjustable stop 525 arranged in the housing 520, to which a cable pull 526 is connected outside the housing.
  • Longitudinal grooves 527 are formed in the armature 522, which allow fuel in the bore 523 to communicate between the front and rear of the armature 522.
  • the piston-shaped stop 525 extends through the housing end wall 520b and is biased in the housing 520 by means of a spring 528 with respect to the housing end wall 520b.
  • a metering piston 527 is formed uniformly with the end face of the armature 522 opposite the stop 525. This end face is also acted upon by the return spring 524, which is supported at the other end against the end wall 520a of the housing 520.
  • the metering piston 527 protrudes with a conically tapering tip end into the delivery line 511, from which a connecting line 511a branches off to the atomizer 506.
  • the cable pull 526 which is connected to the stop 525 biased under spring force against the armature 522, is connected to the throttle valve 530 (see FIGS. 10, 11). The throttle valve position is thereby transferred directly to the stop 525.
  • control valve 505 The function of the control valve 505 is as follows. In the de-energized state of the coil 521, the armature 522 and the metering piston 527 rest against the stop 525 by the return spring 524. The fuel can flow from the feed pump 501 through the feed line 511 to the atomizer 506. If the control valve 505 is excited by the control device, the armature 522 presses the metering piston 527 against the force of the spring 524 to the extent Delivery direction until the inlet cross section 531 of the delivery line 511 is closed.
  • the control valve 505 is de-energized and thus the inlet cross section 531 in the line 511 to the atomizer 506 is released.
  • the conical metering piston 527 is pressed more or less far into the bore of the inlet cross section 531 via the armature 522 through the stop 525.
  • the coupling to the throttle valve 530 is chosen so that the cross-section 531 is opened more with increasing opening of the throttle valve 530. In the idle position of throttle valve 530, a minimal gap remains at cross section 531, which allows the amount of idle fuel to pass to atomizer 506.
  • FIG. 12 shows a preferred circuit for controlling the armature excitation coil of the injection pumps according to the invention, which ensures optimum acceleration of the armature.
  • the excitation ie the product of the number of turns of the coil and the current strength of the current that passes through the coil
  • the electromagnetic-mechanical energy conversion is decisive for the electromagnetic-mechanical energy conversion.
  • an exclusive control of the current amplitude allows the switching behavior of the drive magnet to be independent of the effects of coil heating and a fluctuating supply voltage to be clearly defined.
  • such a control system takes into account in particular the electrical voltage conditions and the different temperature conditions, which usually fluctuate strongly in motors.
  • FIG. 12 shows a two-point control circuit according to the invention for the current amplitude of the current controlling a pump drive coil 600.
  • the drive coil 600 is connected to a power transistor 601 which is connected to ground via a measuring resistor 602.
  • a comparator 603 with its output is applied to the control input of transistor 601, for example to the transistor base.
  • the non-inverting input of the comparator is acted upon by a current setpoint, which is obtained, for example, by means of a microcomputer, and the inverting input of the comparator 603 is connected to the side of the measuring resistor which is connected to the transistor 601.
  • the current consumed by the coil 600 is measured by the measuring resistor 602. If this current reaches the limit value specified by a microprocessor as the current setpoint, the comparator switches off the current for the coil 600 via the power transistor 601. As soon as the actual current value drops below the current setpoint, the transistor switches the coil current back on via the comparator.
  • the current rise delay caused by the inductance of the coil 600 prevents the maximum permissible current from being exceeded too quickly.
  • the next switching cycle can then begin, and this clocking of the coil current of the coil 600 takes place as long as the reference voltage supplying the current setpoint is present at the non-inverting input of the comparator 603.
  • the circuit represents a clocked current source, the clocking only after reaching the one provided by the microprocessor Current setpoint.
  • the energy and thus the quantity control of the pump device 1 can take place with this circuit in combination of the duration and / or the amount of the reference voltage provided by the microprocessor.
  • FIG. 13, 14 and 15 show particularly advantageous embodiments of the injection nozzle (e.g. nozzle 3) for the injection device according to the invention.
  • This injection nozzle comprises a valve seat tube 701, at the free lower end of which the membrane 70 is arranged, optionally a jet-shaping pin insert 702 (which is seated in a central hole in the membrane 704), a nozzle holder 703, a membrane plate 704 biased towards the valve seat, and a snap ring 705 , a pressure line 706 which opens on the valve seat side into an annular channel 708 which is open towards the membrane 704 and is covered by the membrane, a pressure screw 707, a seal 709 for the nozzle holder 703 and a receptacle 710 for the nozzle holder 703.
  • the valve works almost without moving masses and is characterized by a specially designed metal membrane that works with a fixed flat valve seat.
  • the membrane - at the same time because of the preload of the valve spring - can be preloaded against the direction of opening (eg by arching) by means of suitable, defined and permanent deformation.
  • This allows fuel atomization at low pressures the nozzle opening formed by the central hole in the membrane 704, for example at low speeds and small injections (in low part-load operation). Machining the nozzle hole (rounding the edges, etc.) is easily possible from both directions.
  • the seat ring width of the flat seat (Fig. 14) can be matched to the preload of the membrane plate.
  • the correct choice of the dimensions of the lower groove in the valve seat contributes to this, which results in the force acting on the membrane at a given standing pressure of the fuel in front of the valve seat.
  • the membrane is effectively cooled by the fuel stored in the puncture or flowing through it.
  • the nozzle requires no lubrication and is therefore particularly suitable for petrol, alcohol and mixtures thereof. Due to the way it works - there is no volume downstream of the valve seat - comparatively lower hydrocarbon emissions from the engine are to be expected in this nozzle than with inwardly opening nozzles.
  • the nozzle consists of a few parts, so it is very easy and inexpensive to manufacture, mass-produce, maintain, check and replace parts.
  • Fuel supply systems for fuel injection systems are flushed with fuel to cool them and to remove vapor bubbles during operation. This means that the fuel delivery pump provides a larger amount of fuel than is required by the engine. This additional quantity is returned to the tank via a line and is used for heat dissipation and for the removal of fuel vapor bubbles. Vapor bubbles occur during engine operation due to the effects of heat and can disrupt or even prevent the function of the injection system. A restart of the still warm engine can also be caused by steam bubbles difficult or even prevented.
  • a fuel supply device with a fuel injection device according to the invention is therefore designed without a return line to the tank, wherein heat and steam bubbles can nevertheless be removed.
  • the invention solves this problem by using a second fuel pump, a gas separation chamber with a floating valve and a cooler.
  • This arrangement can be attached directly to the engine and thus avoids pressurized fuel lines outside the engine compartment or the engine capsule. This is enough to meet the legal safety regulations.
  • a pump 801 sucks the fuel 802 from the tank 803 and feeds it through a fuel line 804 to a gas separation chamber 805.
  • the gas separation chamber 805 has a float 806 which operates a ventilation valve 807 which acts on a gas discharge line 808 arranged in the ceiling area above the liquid level 805a.
  • a fuel line 809 is branched off from the bottom of the gas separation chamber 805 and is connected to a pump 810 and leads to an injection valve 811 according to the invention, which is connected via a fuel line 812 to the gas separation container 805, which opens into the gas separation container 805 above the liquid level 805a.
  • a pressure regulator 813 and a cooler 814 are seated in the fuel line 812 starting from the injection valve 811.
  • the new fuel supply device for a fuel injection device works as follows:
  • the pump 801 sucks the fuel 802 out of the tank 803 and feeds it to the gas separation chamber 805 until the vent valve 807 is closed by the float 806.
  • the pump 810 takes the fuel from the bottom of the gas separation chamber 805 and builds up the pressure required for the respective injection system upstream of the pressure regulator 813.
  • the pump 810 is designed such that it applies the amount of fuel required for cooling and flushing the injection valve 811 and supplies it to the gas separation chamber 805 via the cooler 814.
  • the float 806 opens the vent valve 807 until the pump 801 has delivered to the original level 805a.
  • the vent valve 807 is connected to the air intake pipe 808 of the engine, so that the fuel vapors drawn from the air intake pipe cannot get unburned into the environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Steroid Compounds (AREA)

Abstract

The fuel injection system has a unit for producing increase in pressure which includes an impingement device (25), e.g. a rear wall or a piston type stop. The impingement device is provided in a fuel storage element (6) arranged outside an injection pump (1), connected at a pressure line (2) between the injection pump and the injection nozzle (3). The storage element (6) includes a fuel storage chamber (22), in which a spring preloaded diaphragm (23) is arranged. One side of the chamber is arranged at a specified distance to the diaphragm.

Description

Die Erfindung betrifft eine Vorrichtung zum Einspritzen von Kraftstoff für Brennkraftmaschinen der im Oberbegriff des Anspruchs 1 angegebenen Art.The invention relates to a device for injecting fuel for internal combustion engines of the type specified in the preamble of claim 1.

Einspritzvorrichtungen, deren elektrisch betriebene Hubkolbenpumpen nach dem sogenannten Festkörper-Energiespeicher-Prinzip arbeiten, weisen einen Förderkolben oder -zylinder auf, der auf einem bestimmten Weg nahezu widerstandslos beschleunigt wird, wobei in der Regel Kraftstoff bewegt wird, bevor derjenige Förderdruck aufgebaut wird, der zum Abspritzen des Kraftstoffes über die Einspritzdüse erforderlich ist. Auf diese Weise wird vor dem eigentlichen zum Einspritzen erforderlichen Druckaufbau kinetische Energie aufgenommen bzw. gespeichert, die dann schlagartig in einen Druckanstieg im Kraftstoff umgewandelt wird.Injection devices, whose electrically operated reciprocating pumps operate according to the so-called solid-state energy storage principle, have a delivery piston or cylinder which is accelerated in a certain way almost without resistance, fuel being generally moved before the delivery pressure which builds up to Spraying the fuel through the injector is required. In this way, kinetic energy is absorbed or stored before the actual pressure build-up required for injection, which is then suddenly converted into a pressure increase in the fuel.

Bei einem aus der DD-PS 120 514 bekannten sogenannten Pumpe-Düse-Element, das nach dem Festkörper-Energiespeicher-Prinzip arbeitet, weist der den Förderkolben der Einspritzpumpe aufnehmende Kraftstofförderraum in einem ersten Abschnitt axial parallel angeordnete Nuten in der Innenwandung auf, durch die Kraftstoff zur Rückseite des Förderkolbens abfließen kann, wenn sich der Förderkolben in Bewegung setzt, ohne daß es zu einem merklichen Druckaufbau im Kraftstoff kommt.In a so-called pump-nozzle element known from DD-PS 120 514, which works according to the solid-state energy storage principle, the fuel delivery chamber accommodating the delivery piston of the injection pump has, in a first section, axially parallel grooves in the inner wall through which Fuel can flow to the rear of the delivery piston if the delivery piston starts to move without any noticeable pressure build-up in the fuel.

Der sich anschließende zweite Abschnitt des Kraftstofförderraumes ist der eigentliche Druckraum, der keine Nuten aufweist. Tritt der beschleunigte Förderkolben in diesen Druckraum ein, wird er durch den inkompressiblen Kraftstoff schlagartig abgebremst, wodurch die gespeicherte kinetische Energie in einen Druckstoß umgewandelt wird, durch den der Widerstand des Einspritzventils überwunden wird, so daß es zum Abspritzen von Kraftstoff kommt. Nachteilig hierbei ist, daß beim Eintauchen des Förderkolbens in den zweiten Abschnitt des Förderraumes aufgrund ungünstiger Spaltbedingungen, nämlich einer relativ großen Spaltbreite und einer relativ kleinen Spaltlänge, spürbar hohe Druckverluste auftreten, die insbesondere die mögliche Geschwindigkeit und Druckhöhe des Druckaufbaus reduzieren und damit den Abspritzvorgang ungünstig beeinflussen. Die Druckverluste werden durch Abfließen von Kraftstoff aus dem Druckraum in den Druckvorraum (erster Abschnitt des Kraftstofförderraumes) verursacht.The adjoining second section of the fuel delivery chamber is the actual pressure chamber, which has no grooves. If the accelerated delivery piston enters this pressure chamber, it is suddenly braked by the incompressible fuel, whereby the stored kinetic energy is converted into a pressure surge, through which the resistance of the injection valve is overcome, so that fuel is sprayed off. The disadvantage here is that when the delivery plunger is immersed in the second section of the delivery space, because of unfavorable gap conditions, namely a relatively large gap width and a relatively small gap length, noticeably high pressure losses occur, which in particular reduce the possible speed and pressure level of the pressure build-up and thus make the spraying process unfavorable influence. The pressure losses are caused by fuel flowing out of the pressure chamber into the pressure antechamber (first section of the fuel delivery chamber).

Nach der DD-PS 213 472 soll dieser Nachteil vermieden werden, indem im Druckraum des Förderzylinders ein Schlagkörper gelagert wird, auf den der nahezu widerstandslos beschleunigte Kolben auftrifft, so daß der Druckverlust beim Druckaufbau durch eine relativ große Spaltlänge trotz relativ großer Spaltbreite (große Fertigungstoleranzen) zwischen dem Schlagkörper und der Druckrauminnenwandungsfläche vertretbar klein gehalten werden kann. Nachteilig hierbei ist jedoch, daß es durch den Schlagvorgang zu einem hohen Verschleiß der aufeinandertreffenden Körper kommt. Zudem wird der Schlagkörper durch den Schlag in Longitudinalschwingungen versetzt, die sich auf den Kraftstoff übertragen und dort als hochfrequente Druckschwingungen den Einspritzvorgang stören.According to DD-PS 213 472, this disadvantage is to be avoided by mounting an impact body in the pressure chamber of the delivery cylinder on which the piston accelerates almost without resistance, so that the pressure loss during pressure build-up due to a relatively large gap length despite a relatively large gap width (large manufacturing tolerances ) between the impact body and the pressure chamber inner wall area can be kept reasonably small. The disadvantage here, however, is that the impacting process leads to a high level of wear on the bodies that meet. In addition, the impact body is set into longitudinal vibrations by the impact, which are transferred to the fuel and disrupt the injection process there as high-frequency pressure vibrations.

Ein besonderer Nachteil dieser bekannten Festkörper-Energiespeicher-Einspritzvorrichtungen besteht darin, daß der Einspritzvorgang nur sehr begrenzt steuerbar ist, sich also nur sehr beschränkt an die Lastverhältnisse des Motors anpassen läßt. Das Gleiche gilt für die Kraftstoffeinspritzvorrichtung nach der DE-OS 23 07 435, bei der die Hubkolbenpumpe als bewegliches Pumpenglied einen hülsenförmigen Pumpenzylinder hat, der längsverschieblich auf einem im Pumpengehäuse fest sitzenden Pumpenkolben angeordnet ist und den Pumpendruckraum begrenzt, der über eine Längsbohrung im Pumpenkolben mit der Einspritzventileinrichtung in Verbindung steht. Eine Querbohrung im Pumpenzylinder ermöglicht das Abfließen von Kraftstoff auf die Rückseite des Zylinders beim Energiespeichern. Das Überfahren der Kolbenstirnkante mit der Bohrung führt zum Druckaufbau und damit zum Abspritzen von Kraftstoff. Auch in diesem Fall treten hohe Spaltverluste beim Druckaufbau auf.A particular disadvantage of these known solid-state energy storage injection devices is that the injection process can be controlled only to a very limited extent, that is to say it can only be adapted to the load conditions of the engine to a very limited extent. The same applies to the fuel injection device according to DE-OS 23 07 435, in which the reciprocating piston pump has a sleeve-shaped pump cylinder as a movable pump member, which is arranged in a longitudinally displaceable manner on a pump piston fixed in the pump housing and limits the pump pressure space, which is connected to the injection valve device via a longitudinal bore in the pump piston. A cross hole in the pump cylinder allows fuel to flow to the back of the cylinder when storing energy. Passing over the front edge of the piston with the bore leads to pressure build-up and thus to fuel spraying. In this case, too, high gap losses occur when the pressure builds up.

Aufgabe der Erfindung ist, eine kostengünstige, einfach zu fertigende Vorrichtung zum Einspritzen von Kraftstoff der eingangs genannten Art zu schaffen, mit der ohne spürbare Druckverluste beim Druckaufbau verschleißfrei, sowie lastabhängig genau steuerbar Kraftstoff eingespritzt werden kann und die insbesondere für schnellaufende Brennkraftmaschinen geeignet ist.The object of the invention is to provide a cost-effective, easy-to-manufacture device for injecting fuel of the type mentioned at the outset, with which wear-free fuel can be injected without any noticeable pressure losses when building up pressure, and fuel can be precisely controlled depending on the load, and which is particularly suitable for high-speed internal combustion engines.

Gelöst wird diese Aufgabe durch die kennzeichnenden Merkmale des Anspruchs 1. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.This object is achieved by the characterizing features of claim 1. Advantageous further developments of the invention are characterized in the subclaims.

Anhand der Zeichnung wird die Erfindung beispielhaft näher erläutert. Es zeigen:

  • Fig. 1 bis 8 schematisch im Längsschnitt verschiedene Ausführungsformen der erfindungsgemäßen Einspritzvorrichtung,
  • Fig. 9, 10 und 11 schematisch eine der erfindungsgemäßen Einspritzvorrichtung zuarbeitende Kraftstoffzuführeinrichtung für einen Motorstart und einen Motor-Notlauf ohne Batterie,
  • Fig. 12 schematisch eine bevorzugte Schaltung zur Ansteuerung der Spule der erfindungsgemäßen Einspritzvorrichtung,
  • Fig. 13, 14 und 15 bevorzugte Ausführungsformen des Einspritzventils der erfindungsgemäßen Einspritzvorrichtung im Längsschnitt, und
  • Fig. 16 eine Kraftstoffversorgungseinrichtung ohne Rückleitung zum Tank.
The invention is explained in more detail by way of example with reference to the drawing. Show it:
  • 1 to 8 schematically in longitudinal section different embodiments of the injection device according to the invention,
  • 9, 10 and 11 schematically a fuel supply device for the injection device according to the invention for an engine start and an engine emergency operation without a battery,
  • 12 schematically shows a preferred circuit for controlling the coil of the injection device according to the invention,
  • 13, 14 and 15 preferred embodiments of the injection valve of the injection device according to the invention in longitudinal section, and
  • 16 shows a fuel supply device without return line to the tank.

Bei der Erfindung ist ein anfänglicher Teilhub des Förderelements der Einspritzpumpe vorgesehen, bei dem die Verdrängung des Kraftstoffes keinen Druckaufbau zur Folge hat, wobei der der Energiespeicherung dienende Förderelementteilhub zweckmäßigerweise durch ein Speichervolumen z.B. in Form eines Leervolumens und ein Anschlagelement bestimmt wird, die, wie nachfolgend anhand der Ausführungsbeispiele näher ausgeführt ist, unterschiedlich gestaltet sein können, beispielsweise in Form einer federbelasteten Membran oder eines federbelasteten Kolbenelements, gegen die Kraftstoff gefördert wird und die auf einem Hubweg "X" des Förderelements die Verdrängung von Kraftstoff zulassen; erst dann, wenn das federbelastete Element während der Verdrängung an einen z.B. festen Anschlag stößt, wird ein schlagartiger Druckaufbau im Kraftstoff erzeugt, so daß eine Verdrängung des Kraftstoffes in Richtung Einspritzdüse bewirkt wird.In the invention, an initial partial stroke of the delivery element of the injection pump is provided, in which the displacement of the fuel does not result in a pressure build-up, the delivery element partial stroke serving for energy storage expediently being provided by a storage volume e.g. is determined in the form of an empty volume and a stop element which, as will be explained in more detail below with reference to the exemplary embodiments, can be designed differently, for example in the form of a spring-loaded membrane or a spring-loaded piston element, against which fuel is conveyed and which is displaced on a stroke path "X" allow the fuel element to displace fuel; only when the spring-loaded element is pressed against a e.g. abuts a firm stop, an abrupt pressure build-up is generated in the fuel, so that a displacement of the fuel in the direction of the injection nozzle is effected.

Die Einspritzvorrichtung nach Fig. 1 weist eine elektromagnetisch angetriebene Hubkolbenpumpe 1 auf, die über eine Förderleitung 2 an eine Einspritzdüseneinrichtung 3 angeschlossen ist. Von der Förderleitung 2 zweigt eine Ansaugleitung 4 ab, die mit einem Kraftstoff-Vorratsbehälter 5 (Tank) in Verbindung steht. Zudem ist an die Förderleitung 2 etwa im Bereich des Anschlusses der Ansaugleitung 4 ein Volumenspeicherelement 6 über eine Leitung 7 angeschlossen.The injection device according to FIG. 1 has an electromagnetically driven reciprocating piston pump 1, which is connected to an injection nozzle device 3 via a delivery line 2. A suction line 4 branches off from the delivery line 2 and is connected to a fuel reservoir 5 (tank). In addition, a volume storage element 6 is connected via a line 7 to the delivery line 2, for example in the area of the connection of the suction line 4.

Die Pumpe 1 ist als Kolbenpumpe ausgebildet und hat ein Gehäuse 8, in dem eine Magnetspule 9 lagert, einen im Bereich des Spulendurchgangs angeordneten Anker 10, der als zylindrischer Körper, beispielsweise als Vollkörper ausgebildet und in einer Gehäusebohrung 11 geführt ist, die sich im Bereich der Zentrallängsachse der Ringspule 9 befindet, und mittels einer Druckfeder 12 in eine Ausgangsstellung gedrückt wird, in welcher er am Boden 11a der Gehäusebohrung 11 anliegt. Abgestützt ist die Druckfeder 12 an der einspritzdüsenseitigen Stirnfläche des Ankers 10 und einer dieser Stirnfläche gegenüberliegenden Ringstufe 13 der Gehäusebohrung 11. Die Feder 12 umfaßt mit Spiel einen Förderkolben 14, der mit dem Anker 10 an der von der Feder 12 beaufschlagten Ankerstirnfläche fest, z.B. einstückig, verbunden ist. Der Förderkolben 14 taucht relativ tief in einen zylindrischen Kraftstofförderraum 15 ein, der koaxial in axialer Verlängerung der Gehäusebohrung 11 im Pumpengehäuse 8 ausgebildet ist und in Übertragungsverbindung mit der Druckleitung 2 steht. Aufgrund der Eintauchtiefe können Druckverluste während des schlagartigen Druckanstiegs vermieden werden, wobei die Fertigungstoleranzen zwischen Kolben 14 und Zylinder 15 sogar relativ groß sein können, z.B. lediglich im Hundertstel Millimeterbereich zu liegen brauchen, so daß der Herstellungsaufwand gering ist.The pump 1 is designed as a piston pump and has a housing 8 in which a magnet coil 9 is mounted, an armature 10 which is arranged in the region of the coil passage and is designed as a cylindrical body, for example as a solid body, and is guided in a housing bore 11 which is located in the region the central longitudinal axis the ring coil 9 is located, and is pressed by means of a compression spring 12 into an initial position in which it rests on the bottom 11a of the housing bore 11. The compression spring 12 is supported on the end face of the armature 10 on the injection nozzle side and an annular step 13 of the housing bore 11 opposite this end face. The spring 12 includes, with play, a delivery piston 14, which is fixed, for example in one piece, to the armature 10 on the armature end face acted upon by the spring 12 , connected is. The delivery piston 14 plunges relatively deep into a cylindrical fuel delivery chamber 15 which is formed coaxially in the axial extension of the housing bore 11 in the pump housing 8 and is in transmission connection with the pressure line 2. Due to the immersion depth, pressure losses during the sudden pressure increase can be avoided, and the manufacturing tolerances between piston 14 and cylinder 15 can even be relatively large, for example need only be in the hundredths of a millimeter range, so that the manufacturing outlay is low.

In der Ansaugleitung 4 ist ein Rückschlagventil 16 angeordnet. Im Gehäuse 17 des Ventils 16 ist als Ventilelement beispielsweise eine Kugel 18 angeordnet, die in ihrer Ruhestellung durch eine Feder 19 gegen ihren Ventilsitz 20 am vorratsbehälterseitigen Ende des Ventilgehäuses 17 gedrückt wird. Zu diesem Zweck ist die Feder 19 einerseits abgestützt an der Kugel 18 und andererseits an der dem Ventilsitz 20 gegenüberliegenden Wandung des Gehäuses 17 im Bereich der Mündung 21 der Ansaugleitung 4.A check valve 16 is arranged in the intake line 4. A ball 18, for example, is arranged in the housing 17 of the valve 16 as a valve element, which in its rest position is pressed by a spring 19 against its valve seat 20 at the end of the valve housing 17 on the reservoir side. For this purpose, the spring 19 is supported on the one hand on the ball 18 and on the other hand on the wall of the housing 17 opposite the valve seat 20 in the region of the mouth 21 of the intake line 4.

Das Speicherelement 6 weist ein z.B. zweiteilig ausgebildetes Gehäuse 22 auf, in dessen Hohlraum als zu verdrängendes Organ eine Membran 23 gespannt ist, die von dem Hohlraum einen druckleitungsseitigen, mit Kraftstoff gefüllten Raum abtrennt, und die im entspannten Zustand den Hohlraum in zwei Häften teilt, die durch die Membran gegeneinander abgedichtet sind. An der der Leitung 7 abgewandten Seite der Membran 23 greift in einem Leerraum, dem Speichervolumen, eine diese beaufschlagende Federkraft z.B. eine Feder 24 an, die als Rückstellfeder für die Membran 23 eingerichtet ist. Die Feder 24 ist mit ihrem der Membran gegenüberliegenden Ende an einer Innenwandung des zylindrisch erweiterten leeren Hohlraums gelagert. Der leere Hohlraum des Gehäuses 22 ist durch eine gewölbeförmige Wandung begrenzt, die eine Anschlagfläche 22a für die Membran 23 ausbildet.The storage element 6 has, for example, a two-part housing 22, in the cavity of which a membrane 23 is tensioned as the organ to be displaced, which separates a space filled with fuel from the pressure line and which, in the relaxed state, divides the cavity into two halves, which are sealed against each other by the membrane. On the side of the membrane 23 facing away from the line 7, a spring force acting on it acts in an empty space, the storage volume, for example a spring 24, which acts as a return spring for the membrane 23 is set up. The spring 24 is supported with its end opposite the membrane on an inner wall of the cylindrically widened empty cavity. The empty cavity of the housing 22 is delimited by an arched wall, which forms a stop surface 22a for the membrane 23.

Die Spule 9 der Pumpe 1 ist an eine Steuereinrichtung 26 angeschlossen, die als elektronische Steuerung für die Einspritzvorrichtung dient.The coil 9 of the pump 1 is connected to a control device 26 which serves as an electronic control for the injection device.

Im stromlosen Zustand der Spule 9 befindet sich der Anker 10 der Pumpe 1 durch die Vorspannung der Feder 12 am Boden lla. Das Kraftstoffzulaufventil 16 ist dabei geschlossen und die Speichermembran 23 wird durch die Feder 24 in ihrer von der Anschlagfläche 22a abgerückten Stellung im Gehäusehohlraum gehalten.In the de-energized state of the coil 9, the armature 10 of the pump 1 is located on the bottom 11a due to the prestressing of the spring 12. The fuel supply valve 16 is closed and the storage membrane 23 is held in the housing cavity by the spring 24 in its position away from the stop surface 22a.

Bei Ansteuerung der Spule 9 über die Steuereinrichtung 26 wird der Anker 10 mit Kolben 14 gegen die Kraft der Feder 12 in Richtung Einspritzventil 3 bewegt. Dabei verdrängt der mit dem Anker 10 in Verbindung stehende Förderkolben 14 aus dem Förderzylinder 15 Kraftstoff in den Raum des Speicherelements 6. Die Federkräfte der Federn 12, 24 sind relativ weich ausgebildet, so daß durch den Förderkolben 14 verdrängten Kraftstoff während des ersten Teilhubes des Förderkolbens 14 nahezu ohne Widerstand die Speichermembran 23 in den Leerraum drückt. Dadurch kann der Anker 10 zunächst fast widerstandsfrei beschleunigt werden bis das Speichervolumen bzw. Leerraumvolumen des Speicherelements 6 durch Auftreffen der Membran 23 auf die Gewölbewandung 22a erschöpft ist. Die Verdrängung des Kraftstoffs wird dadurch plötzlich gestoppt und der Kraftstoff infolge der bereits hohen kinetischen Energie des Förderkolbens 14 schlagartig verdichtet. Die kinetische Energie des Ankers 10 mit Förderkolben 14 wirkt auf die Flüssigkeit ein. Dabei entsteht ein Druckstoß, der durch die Druckleitung 2 zur Düse 3 wandert und dort zum Abspritzen von Kraftstoff führt.When the coil 9 is actuated via the control device 26, the armature 10 with the piston 14 is moved in the direction of the injection valve 3 against the force of the spring 12. The feed piston 14 connected to the armature 10 displaces fuel from the feed cylinder 15 into the space of the storage element 6. The spring forces of the springs 12, 24 are relatively soft, so that fuel displaced by the feed piston 14 during the first partial stroke of the feed piston 14 presses the storage membrane 23 into the empty space almost without resistance. As a result, the armature 10 can initially be accelerated almost without resistance until the storage volume or empty space volume of the storage element 6 is exhausted by the membrane 23 striking the arch wall 22a. The displacement of the fuel is suddenly stopped and the fuel is suddenly compressed due to the already high kinetic energy of the delivery piston 14. The kinetic energy of the armature 10 with the delivery piston 14 acts on the liquid. This creates a pressure surge that travels through the pressure line 2 to the nozzle 3 and there leads to the spraying of fuel.

Für das Förderende wird die Spule 9 stromlos geschaltet. Der Anker 10 wird durch die Feder 12 zum Boden lla zurückbewegt. Dabei wird die in der Speichereinrichtung 6 gespeicherte Flüssigkeitsmenge über die Leitungen 7 und 2 in den Förderzylinder 15 zurückgesaugt und die Membran 23 infolge der Wirkung der Feder 24 in ihre Ausgangsstellung zurückgedrückt. Gleichzeitig öffnet das Kraftstoffzulaufventil 16, so daß Kraftstoff aus dem Tank 5 nachgesaugt wird.For the end of the delivery, the coil 9 is switched off. The armature 10 is moved back to the bottom 11a by the spring 12. The amount of liquid stored in the storage device 6 is sucked back via the lines 7 and 2 into the delivery cylinder 15 and the membrane 23 is pushed back into its starting position due to the action of the spring 24. At the same time, the fuel supply valve 16 opens, so that fuel is sucked out of the tank 5.

Zweckmäßigerweise ist in der Druckleitung 2 zwischen dem Einspritzventil 3 und den Abzweigungen 4, 7 ein Ventil 16a angeordnet, das in dem einspritzventilseitigen Raum einen Standdruck aufrecht erhält, der z.B. höher ist als der Dampfdruck der Flüssigkeit bei maximal auftretender Temperatur, so daß Blasenbildung verhindert wird. Das Standdruckventil kann z.B. wie das Ventil 16 ausgebildet sein.A valve 16a is expediently arranged in the pressure line 2 between the injection valve 3 and the branches 4, 7 and maintains a stand pressure in the space on the injection valve side, which pressure e.g. is higher than the vapor pressure of the liquid at the maximum temperature, so that bubbles are prevented. The parking pressure valve can e.g. be designed as the valve 16.

Als Verdrängungorgan für das Speicherelement 6 kann anstelle der Membran 23 auch ein Speicherkolben 31 verwendet werden. Der Anschlag, der in diesem Fall das Speichern plötzlich stoppt, kann erfindungsgemäß verstellbar ausgebildet sein, so daß die Weglänge des Beschleunigungshubes von Anker 10 und Förderkolben 14 verändert werden kann. Zu dieser Verstellung wird bevorzugt ein beispielsweise mit der Drosselklappe des Motors gekoppelter Seilzug verwendet. Alternativ kann die Verstellung zweckmäßigerweise durch die Steuereinrichtung 26, beispielsweise mittels eines Stellmagneten gesteuert werden. Fig. 2 zeigt z.B. ein Ausführungsbeispiel des Speicherelements 6 mit einem durch einen Seilzug 40 verstellbaren Verdrängungkolben 31.A storage piston 31 can also be used as a displacement element for the storage element 6 instead of the membrane 23. The stop, which suddenly stops storing in this case, can be designed to be adjustable according to the invention, so that the path length of the acceleration stroke of armature 10 and delivery piston 14 can be changed. A cable pull, for example coupled to the throttle valve of the engine, is preferably used for this adjustment. Alternatively, the adjustment can expediently be controlled by the control device 26, for example by means of an actuating magnet. Figure 2 shows e.g. an embodiment of the storage element 6 with a displacement piston 31 adjustable by a cable 40.

Das Speicherelement 6 gemäß Fig. 2 hat ein zylindrisches Gehäuse 30, das integral mit der Druckleitung 2 ausgebildet sein kann. Als zu verdrängendes Organ dient ein Speicherkolben 31, der mit einem engen Paßsitz an der Innenwandung des Zylindergehäuses 30 geführt ist, so daß keine nennenswerte Leckage auftreten kann, wobei im Zylinder 30 ein Leervolumen 33c vorgesehen ist, in das der Kolben 31 verdrängt werden kann. Vorhandene Leckageflüssigkeit kann durch eine Ablaufbohrung 32 aus dem Leervolumenraum 33c entweichen und wird dem Kraftstoffbehälter 5 (s. Fig. 1) zugeführt. Die Ablaufbohrung 32 ist in der Zylinderwandung des Gehäuses 30 im Bereich des Gehäusedeckels 33 ausgebildet, die der Gehäusewand 33a gegenüberliegt, die integral ausgebildet ist mit einem Wandungsabschnitt der Druckleitung 2. Die Ablaufbohrung 32 verläuft etwa radial zur Mittenlängsachse 33b des zylindrischen Gehäuses 30.The storage element 6 according to FIG. 2 has a cylindrical housing 30 which can be formed integrally with the pressure line 2. As the organ to be displaced, a storage piston 31 is used, which is guided with a close fit on the inner wall of the cylinder housing 30, so that no significant leakage can occur, with an empty volume 33c being provided in the cylinder 30, into which the piston 31 can be displaced. Existing leakage fluid can escape from the empty volume space 33c through a drain hole 32 and is supplied to the fuel tank 5 (see FIG. 1). The drain hole 32 is formed in the cylinder wall of the housing 30 in the region of the housing cover 33, which lies opposite the housing wall 33a, which is integrally formed with a wall section of the pressure line 2. The drain hole 32 extends approximately radially to the central longitudinal axis 33b of the cylindrical housing 30.

Zwischen der Innenseite des Gehäusedeckels 33 und der dieser Wand gegenüberliegenden Stirnfläche des Kolbens 31 ist eine Druckfeder 34 eingespannt, die den Kolben 31 in seine Ruhestellung gegen die gegenüberliegende Gehäuseendwand 33a drückt, in welcher eine Bohrung 35 ausgebildet ist, die in der Mittenlängsachse 33b des Gehäuses 30 liegt und in die Druckleitung 2 mündet.A compression spring 34 is clamped between the inside of the housing cover 33 and the end face of the piston 31 opposite this wall, which presses the piston 31 into its rest position against the opposite end wall 33a of the housing, in which a bore 35 is formed which is in the central longitudinal axis 33b of the housing 30 lies and opens into the pressure line 2.

Der Gehäusedeckel 33 des Gehäuses 30 ist in axialer Richtung rohrförmig verlängert, und im Durchgang des Verlängerungsrohres 36 ist kolbenartig ein Anschlagbolzen 37 gleitend geführt, der am im Raum 33c befindlichen Ende einen Ring 38 aufweist. Gegen die Unterseite des Rings 38 stößt der Kolben 31, wenn er aus seiner Ruhestellung in Richtung auf den Gehäusedeckel 33 bewegt wird. Dieses Anschlagelement 37 ist mittels einer Feder 39 vorgespannt gelagert. Zu diesem Zweck stützt sich die Feder 39 einerseits an der Innenseite des Deckels 33 und andererseits an der Ringstufe des Ringes 38 des Bolzens 37 ab. Am außerhalb des Zylinders 30 angeordneten Teil des Bolzens 37 ist ein Seilzug 40 befestigt, der beispielsweise mit der Drosselklappe des Motors verbunden ist. Über den Seilzug 40 ist der Anschlagbolzen 37 in Richtung der Mittenlängsachse 33b des Gehäuses 30 verstellbar, so daß auch der mögliche Hubweg des Kolbens 31 der Stellung des Anschlagringes 38 entsprechend variiert werden kann. Der Anschlagbolzen 37 kann je nach erforderlichem Beschleunigungshub des Ankers 10 der Pumpe 1 (Fig. 1) verstellt werden.The housing cover 33 of the housing 30 is extended in a tubular manner in the axial direction, and in the passage of the extension tube 36 a stop bolt 37 is slidably guided like a piston and has a ring 38 at the end located in the space 33c. The piston 31 abuts against the underside of the ring 38 when it is moved from its rest position towards the housing cover 33. This stop element 37 is preloaded by means of a spring 39. For this purpose, the spring 39 is supported on the one hand on the inside of the cover 33 and on the other hand on the ring step of the ring 38 of the bolt 37. A cable 40 is fastened to the part of the bolt 37 arranged outside the cylinder 30 and is connected, for example, to the throttle valve of the engine. The stop pin 37 can be adjusted in the direction of the central longitudinal axis 33b of the housing 30 by means of the cable 40, so that the possible stroke of the piston 31 can also be varied in accordance with the position of the stop ring 38. The stop bolt 37 can be adjusted depending on the required acceleration stroke of the armature 10 of the pump 1 (FIG. 1).

Die Funktionsweise des Speicherelements 6 gemäß Fig. 2 entspricht im wesentlichen derjenigen des Speicherelements 6 nach Fig. 1. Bei einem ersten Teilhub des Förderkolbens 14 und des Ankers 10 (Fig. 1) wird der Speicherkolben 31 des Speicherelements 6 durch verdrängten Kraftstoff aus seiner in Fig. 2 gezeigten Ruhestellung gedrückt, wobei die Rückstellfeder 34 relativ weich ausgebildet ist, so daß der durch den am Anker 10 sitzenden Förderkolben 14 bewegte Kraftstoff fast ohne Widerstand des Speicherkolbens 31 verdrängt werden kann. Dadurch wird der Anker 10 mit Förderkolben 14 auf einem Teil des Hubes nahezu widerstandsfrei, d.h. im wesentlichen nur gegen die Federkraft der Federn 12, 34 beschleunigt, bis der Speicherkolben 31 mit seiner federbeauschlagten Stirnfläche gegen den Anschlagring 38 stößt, wodurch der im Förderzylinder 15 und in der Druckleitung 2 befindliche Kraftstoff schlagartig infolge der hohen kinetischen Energie des Ankers 10 und Förderkolbens 14 verdichtet und diese kinetische Energie an die Flüssigkeit übertragen wird. Der daraus resultierende Druckstoß führt dann zum Abspritzen von Kraftstoff über die Düse 3.The operation of the storage element 6 according to FIG. 2 corresponds essentially to that of the storage element 6 according to FIG. 1. During a first partial stroke of the delivery piston 14 and the armature 10 (FIG. 1), the storage piston 31 of the storage element 6 is displaced from it by displaced fuel Fig. 2 shown rest position, the return spring 34 is relatively soft, so that the fuel moved by the armature 10 on the delivery piston 14 can be displaced with almost no resistance of the storage piston 31. As a result, the armature 10 with the delivery piston 14 is almost resistance-free on part of the stroke, i.e. essentially accelerated only against the spring force of the springs 12, 34 until the storage piston 31 abuts with its spring-loaded end face against the stop ring 38, as a result of which the fuel located in the delivery cylinder 15 and in the pressure line 2 abruptly due to the high kinetic energy of the armature 10 and delivery piston 14 compresses and this kinetic energy is transferred to the liquid. The resulting pressure surge then leads to fuel being sprayed out via the nozzle 3.

Der verstellbare Anschlagbolzen 37 eignet sich auch zur ausschließlichen Steuerung der einzuspritzenden Kraftstoffmenge für bestimmte Motoren.The adjustable stop pin 37 is also suitable for the exclusive control of the amount of fuel to be injected for certain engines.

Fig. 3 zeigt ein Ventil 90, das als integrales Speicherelement-Zulaufventil ausgebildet ist. Das integrale Speicherelement-Zulaufventil 90 weist ein Gehäuse 91 auf, das baueinheitlich ausgebildet ist mit dem Gehäuse 8 der Pumpe 1 und der Druckleitung 2. In das Gehäuse 91 ist eine Mittenlängsbohrung 92 eingebracht, die einendig über eine Öffnung 93a in die Druckleitung 2 und anderendig in einen zylindrischen Ventilraum 93 mündet, wobei zudem Rinnen 94 von der Bohrung 92 zum Ventilraum 93 führen. Das Ventilelement ist zweiteilig ausgebildet und umfaßt einen im Ventilraum 93 geführten Zylinder 95, in dessen zylindrischer, durchgehender Zentralstufenbohrung ein Kolben 96 verschiebbar geführt wird. In der Außenmantelfläche des Zylinders 95 sind axialparallel verlaufende Nuten 97 ausgebildet. Der Zylinder 95 wird durch eine Feder 98 in seine Ruhestellung gedrückt, in welcher er mit seiner einen Stirnfläche auf dem tankseitigen Boden des Ventilraums 93 aufsitzt, in den eine vom Kraftstoffbehälter kommende Kraftstoffzuführleitung 99 mündet. In der Bohrung zur Aufnahme des Kolbens 96 sitzt tankseitig eine Feder 100, die den Kolben 96 gegen den druckleitungsseitigen Boden des Ventilraums 93 drückt, so daß die Bohrung 92 abgedeckt ist, wobei im tankseitigen Innenraum des Zylinders 95 ein Freiraum 95a für den Kolben 96 gebildet wird.3 shows a valve 90 which is designed as an integral storage element feed valve. The integral storage element feed valve 90 has a housing 91 which is constructed in a unitary manner with the housing 8 of the pump 1 and the pressure line 2. A central longitudinal bore 92 is made in the housing 91, which ends at one end via an opening 93a in the pressure line 2 and at the other end opens into a cylindrical valve chamber 93, with channels 94 also leading from the bore 92 to the valve chamber 93. The valve element is constructed in two parts and comprises a cylinder 95 guided in the valve chamber 93, in the cylindrical, continuous central step bore of which a piston 96 is displaceably guided. In the outer lateral surface of the cylinder 95, axially parallel grooves 97 are formed. The cylinder 95 is pressed into its rest position by a spring 98, in which it rests with its one end face on the tank-side bottom of the valve chamber 93, into which a fuel supply line 99 coming from the fuel tank opens. In the bore for receiving the piston 96 sits a spring 100 on the tank side, which presses the piston 96 against the pressure line side bottom of the valve chamber 93, so that the bore 92 is covered, a space 95a being formed for the piston 96 in the tank-side interior of the cylinder 95 becomes.

Das Ventil 90 funktioniert wie folgt. Wenn der Förderkolben 14 einen Saughub ausführt, wird Kraftstoff aus der Leitung 99 dadurch angesaugt, daß der Zylinder 95 von der tankseitigen Bodenfläche des Ventilraums 93 durch den Unterdruck gegen den Druck der Feder 98 abgehoben wird, so daß Kraftstoff über die Längsnuten 97, den Ventilraum 93 und die Rinnen 94 sowie die Bohrung 92 in die Druckleitung 2 fließen kann. Bei diesem Vorgang liegt der Kolben 96, wie in Fig. 3 gezeigt, an dem druckleitungsseitigen Boden des Ventilraums 93 an. Mit Beendigung des Saughubs wird der Zylinder 95 durch die Feder 98 in die in Fig. 3 gezeigte Stellung gedrückt, in welcher der Zylinder 95 wieder am tankseitigen Boden des Ventilraums 93 dichtend anliegt.The valve 90 works as follows. When the delivery piston 14 performs a suction stroke, fuel is drawn from the line 99 in that the cylinder 95 is lifted off from the tank-side bottom surface of the valve chamber 93 by the negative pressure against the pressure of the spring 98, so that fuel via the longitudinal grooves 97, the valve chamber 93 and the channels 94 and the bore 92 can flow into the pressure line 2. In this process lies the piston 96, as shown in FIG. 3, on the pressure line-side bottom of the valve chamber 93. At the end of the suction stroke, the cylinder 95 is pressed by the spring 98 into the position shown in FIG. 3, in which the cylinder 95 again lies sealingly against the tank-side bottom of the valve chamber 93.

Mit Beginn des Förderhubs des Förderkolbens 14 wird der im Zylinder 95 geführte Kolben 96 aufgrund der relativ weichen Ausbildung der Federkraft der Feder 100 aus seiner Anlage am druckleitungsseitigen Boden des Ventilraums 93 wegbewegt und in den Freiraum 95a gedrückt, wobei in den dadurch entstehenden zusätzlichen Raum im Ventilraum 93 Kraftstoff aus dem Druckraum 15, 2 strömt, der bei der Förderbewegung des Förderkolbens 14 verdrängt wird, wobei auf der tankseitigen Stirnseite des Kolbens 96 vom Kolben 96 Kraftstoff über die Leitung 99 in den Tank zurückgedrückt wird. Der Förderhub des Förderkolbens 14 wird dadurch beendet, daß der Kolben 96 mit seiner tankseitigen von der Feder 100 beaufschlagten Stirnfläche an der Stufe in der Mittenlängsbohrung des Kolbens 95 anschlägt. Infolge dieser abrupten Beendigung des im wesentlichen widerstandsfreien Beschleunigungshubes des Ankers 10 mit Förderkolben 14 wird die Ausbildung eines sehr steilen Druckanstiegs in der Druckleitung 2 bewirkt, wodurch Kraftstoff mit hohem Druck über die Düse 3 abgespritzt wird.At the beginning of the delivery stroke of the delivery piston 14, the piston 96 guided in the cylinder 95 is moved out of its abutment on the pressure line side bottom of the valve space 93 due to the relatively soft design of the spring force of the spring 100 and pressed into the free space 95a, the resulting additional space in the Valve chamber 93 flows fuel from the pressure chamber 15, 2, which is displaced during the conveying movement of the delivery piston 14, fuel on the end of the piston 96 on the tank side being pushed back by the piston 96 into the tank via the line 99. The delivery stroke of the delivery piston 14 is ended in that the piston 96 strikes the end of the piston 95 with its end face acted upon by the spring 100 against the step in the central longitudinal bore of the piston 95. As a result of this abrupt termination of the essentially resistance-free acceleration stroke of the armature 10 with the delivery piston 14, the formation of a very steep pressure rise in the pressure line 2 is brought about, as a result of which fuel is sprayed off via the nozzle 3 at high pressure.

Gemäß einer weiteren Variante der Erfindung ist vorgesehen, das Speicherelement 6 baueinheitlich auszubilden mit dem Förderkolben der Hubkolbenpumpe 1. Ein dementsprechendes Ausführungsbeispiel ist in Fig. 4 dargestellt. Als Speicherelement dient ein Speicherkolben 80, der in einem druckleitungsseitigen ersten Mittenlängsachsstufenbohrungsabschnitt 14b einer zentral durch den Kolben 14 und den Anker 10 gehenden Stufenbohrung 14a gegen einen druckleitungsseitigen Anschlag (nicht dargestellt) von einer Feder 81 gedrückt wird. Der Kolben 80 ragt dabei in der Ruhestellung mit seiner einen Stirnfläche in den Druckraum 15. Der den Speicherkolben 80 aufnehmende Bohrungsabschnitt 14b im Förderkolben 14 setzt sich nach der Stufe 14c zum Anker 10 hin in einem weiteren Stufenbohrungsabschnitt 14d fort, auf dessen Stufe 14e sich die Druckfeder 81 abstützt, die gegen die ankerseitige Stirnfläche des Kolbens 80 drückt. Die Bohrung 14a durchsetzt nach der Stufe 14e schließlich auch den Anker 10 und mündet in den leeren Ankerraum 11, so daß Luft verdrängt werden kann.According to a further variant of the invention, provision is made for the storage element 6 to be constructed in a unitary manner with the delivery piston of the reciprocating piston pump 1. A corresponding exemplary embodiment is shown in FIG. 4. A storage piston 80 serves as the storage element, which is pressed in a first central longitudinal axis step bore section 14b on the pressure line side of a step bore 14a centrally through the piston 14 and the armature 10 against a stop (not shown) on the pressure line side by a spring 81. The piston 80 projects in the rest position with its one end face into the pressure chamber 15. The bore section 14b in the delivery piston 14 receiving the storage piston 80 sits after the step 14c towards the armature 10 in a further stepped bore section 14d, on the step 14e of which the compression spring 81 is supported, which presses against the armature-side end face of the piston 80. After step 14e, the bore 14a finally also passes through the armature 10 and opens into the empty armature space 11, so that air can be displaced.

Das Speicherelement dieser Ausführungsform funktioniert wie folgt. Auf einem ersten Teil des Hubes des Förderkolbens 14, dem Energiespeicherweg, wird der Speicherkolben 80 in die für den Kolben vorgesehene Bohrung des Förderkolbens 14 hineingedrängt, wodurch druckraumseitig ein zusätzlicher Raum für verdrängten Kraftstoff zur Verfügung steht, so daß der Anker 10 während des ersten Hubabschnitts zusammen mit dem Förderkolben 14 im wesentlichen widerstandsfrei beschleunigt werden kann. Die widerstandslose Beschleunigung von Anker 10 und Förderkolben 14 wird beendet, wenn die ankerseitige Stirnfläche des Speicherkolbens 80 gegen die Ringschulter 14c der Stufenbohrung 14a zur Anlage kommt. Die Folge hiervon ist ein schlagartiger Druckanstieg, durch welchen Kraftstoff über die Düse 3 abgespritzt wird.The memory element of this embodiment works as follows. On a first part of the stroke of the delivery piston 14, the energy storage path, the storage piston 80 is pushed into the bore of the delivery piston 14 provided for the piston, whereby an additional space for displaced fuel is available on the pressure chamber side, so that the armature 10 during the first stroke section can be accelerated essentially without resistance together with the delivery piston 14. The resistance-free acceleration of armature 10 and delivery piston 14 is ended when the armature-side end face of the storage piston 80 comes to bear against the annular shoulder 14c of the stepped bore 14a. The consequence of this is an abrupt pressure increase, by means of which fuel is sprayed off via the nozzle 3.

Fig. 5 zeigt ein Ausführungsbeispiel der Einspritzpumpe, die im wesentlichen den Aufbau der Einspritzpumpe 1 nach Fig. 1 aufweist. Für die hydraulische Dämpfung ist nach Art einer Kolbenzylinderanordnung an der Rückseite des Ankers 10 zentral ein zylindrischer Vorsprung 10a ausgebildet, der im letzten Abschnitt der Ankerrückstellbewegung in eine Sackzylinderbohrung llb im Boden lla passend eintritt, die an der Anschlagfläche lla für den Anker 10 im Gehäuse 8 ausgebildet ist. Im Anker 10 sind in Längsrichtung verlaufende Nuten 10b ausgebildet, die den ankerrückseitigen Raum 11 mit dem ankervorderseitigen Raum 11 verbinden. Im Raum 11 befindet sich ein Medium, z.B. Luft oder Kraftstoff, das bei der Bewegung des Ankers 10 durch die Nuten 10b fließen kann. Die Tiefe der Sackzylinderbohrung 11b entspricht etwa der Länge des Vorsprungs 10a (Abmessung Y in Fig. 8). Dadurch, daß der Vorsprung 10a in die Sackzylinderbohrung 11b eintauchen kann, wird die Ankerrückbewegung im letzten Abschnitt stark verzögert, wodurch die erwünschte hydraulische Dämpfung der Ankerrückstellbewegung durch Verdrängung des Mediums aus dem Raum llb bewirkt wird.FIG. 5 shows an exemplary embodiment of the injection pump, which essentially has the structure of the injection pump 1 according to FIG. 1. For the hydraulic damping, a cylindrical projection 10a is formed centrally on the back of the armature 10 in the manner of a piston-cylinder arrangement, which in the last section of the armature return movement suitably enters a pocket cylinder bore 11b in the base 11a, which on the stop surface 11a for the armature 10 in the housing 8 is trained. Longitudinal grooves 10b are formed in the armature 10, which connect the armature-back space 11 to the armature-front space 11. In the space 11 there is a medium, for example air or fuel, which can flow through the grooves 10b when the armature 10 moves. The depth of the blind cylinder bore 11b corresponds approximately to the length of the projection 10a (dimension Y in FIG. 8). Because the projection 10a can dip into the blind cylinder bore 11b, the armature return movement is greatly delayed in the last section, as a result of which the desired hydraulic damping of the armature return movement is brought about by displacement of the medium from the space 11b.

Fig. 6a zeigt eine Variante der hydraulischen Dämpfung. Auch bei diesem Ausführungsbeispiel ist der vom Förderkolben 14 durchsetzte Pumpraum 11 vor dem Anker 10 verbunden mit dem an der Ankerrückseite angrenzenden Raum 11, und zwar durch Bohrungen 10d, die im Bereich der Ankerrückseite in einen zentralen Überströmkanal 10c münden. Ein zentraler Stift 8a eines Stoßdämpfers 8b ragt mit seiner Kegelspitze 8c in Richtung Mündung des Überströmkanals 10c, durchgreift rückwärtig ein Loch 8d im Boden 11a, das in einen Dämpfungsraum 8e mündet, und endet im Dämfungsraum mit einem Ring 8f, der einen größeren Druchmesser aufweist als das Loch 8d. Eine sich am Boden des Dämpfungsraums abstützende Feder 8g drückt gegen den Ring 8f und damit den Stift 8a in seine Ruhestellung (Fig. 6a). Ein Kanal 8h verbindet den Dämfungsraum 8e mit dem rückwärtigen Ankerraum 11. Die Kanäle 10c und 10d ermöglichen dem Anker 10 eine nahezu widerstandsfreie Bewegung während der Beschleunigungsphase.6a shows a variant of the hydraulic damping. In this exemplary embodiment, too, the pump chamber 11 through which the delivery piston 14 passes is connected in front of the armature 10 to the space 11 adjoining the armature rear side, namely through bores 10d which open into a central overflow channel 10c in the region of the armature rear side. A central pin 8a of a shock absorber 8b protrudes with its conical tip 8c in the direction of the mouth of the overflow channel 10c, reaches through a hole 8d in the bottom 11a at the rear, which opens into a damping space 8e, and ends in the damping space with a ring 8f which has a larger diameter than the hole 8d. A spring 8g supported on the bottom of the damping space presses against the ring 8f and thus the pin 8a into its rest position (FIG. 6a). A channel 8h connects the damping space 8e to the rear armature space 11. The channels 10c and 10d allow the armature 10 to move almost without resistance during the acceleration phase.

Die Dämpfungseinrichtung 8b ist bei der Beschleunigungsbewegung des Ankers 10 unwirksam, so daß keine Beeinträchtigung der Hubphase erfolgt. Bei der Rückstellbewegung trifft die Mündung des Überströmkanals auf die Kegelspitze 8c und wird verschlossen, so daß die Strömung durch die Kanäle 10c und 10d unterbrochen wird. Der Anker 10 drückt den Stift 8a gegen die Federkraft und gegen das im Raum 8e befindliche Medium, das sich auch im Raum 11 befindet und über den Kanal 8h ausströmt in den Raum 11. Dabei sind die Strömungen und Federkräfte so gewählt, daß eine optimale Dämpfung gewährleistet wird.The damping device 8b is ineffective in the acceleration movement of the armature 10, so that there is no impairment of the lifting phase. During the return movement, the mouth of the overflow channel meets the cone tip 8c and is closed, so that the flow through the channels 10c and 10d is interrupted. The armature 10 presses the pin 8a against the spring force and against the medium in the room 8e, which is also in the room 11 and flows out through the channel 8h into the room 11. The flows and spring forces are selected so that optimal damping is guaranteed.

Anstelle des Kanals 8h kann gemäß Fig. 6b eine Verdrängungsbohrung 8i zentral im Stift 8a angeordnet sein, durch die Dämpfungsmedium in den Überströmkanal 10c gedrückt werden kann.Instead of the channel 8h, a displacement hole 8i can be arranged centrally in the pin 8a according to FIG. 6b, through which the damping medium can be pressed into the overflow channel 10c.

Gemäß einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Einspritzvorrichtung ist vorgesehen, die in der Rückstellfeder 12 des Ankers 10 gespeicherte Energie bei der Rückstellbewegung des Ankers 10 nutzbringend einzusetzen. Dies kann erfindungsgemäß beispielsweise dadurch erfolgen, daß der Anker bei der Rückstellung eine Pumpeinrichtung bedient, die für die Kraftstoffversorgung der Einspritzvorrichtung zur Stabilisierung des Systems sowie zur Verhinderung einer Blasenbildung oder als eine separate Ölpumpe für die Motorschmierung verwendet werden kann. Fig. 7 zeigt ein entsprechendes Ausführungsbeispiel einer an die Kraftstoffeinspritzpumpe 1 angeschlossenen Ölpumpe 260.According to a further advantageous embodiment of the injection device according to the invention, it is provided that the energy stored in the return spring 12 of the armature 10 is used to advantage in the return movement of the armature 10. According to the invention, this can take place, for example, in that the anchor when resetting, a pumping device is used, which can be used for the fuel supply to the injection device to stabilize the system and to prevent bubbles or as a separate oil pump for engine lubrication. 7 shows a corresponding exemplary embodiment of an oil pump 260 connected to the fuel injection pump 1.

Die in Fig. 7 gezeigte Kraftstoffeinspritzvorrichtung ist im übrigen entsprechend Fig. 4 ausgebildet, weist also ein Kraftstoffzu- und -abflußsteuerelement zur Steuerung des ersten Teilhubes des Förderkolbens 14 auf. Die Ölpumpe 260 ist an den rückwärtigen Boden lla des Pumpengehäuses 8 angeschlossen. Im einzelnen umfaßt die Ölpumpe 260 ein Gehäuse 261, das mit dem Gehäuse 8 der Einspritzpumpe verbunden ist, und in dessen Pumpenraum 261b ein Pumpenkolben 262 angeordnet ist, dessen Kolbenstange 262a in den Arbeitsraum 11 des Ankers 10 ragt, wobei der Kolben 262 beaufschlagt wird von einer Rückstellfeder 263, die sich am Gehäuseboden 261a im Bereich eines Auslasses 264 abstützt.The fuel injection device shown in FIG. 7 is otherwise designed in accordance with FIG. 4, that is to say has a fuel inflow and outflow control element for controlling the first partial stroke of the delivery piston 14. The oil pump 260 is connected to the rear bottom 11a of the pump housing 8. Specifically, the oil pump 260 comprises a housing 261 which is connected to the housing 8 of the injection pump and in the pump chamber 261b of which a pump piston 262 is arranged, the piston rod 262a of which projects into the working chamber 11 of the armature 10, the piston 262 being acted upon by a return spring 263, which is supported on the housing base 261a in the region of an outlet 264.

Außerdem steht der Pumpenraum 261b des Gehäuses über eine Ölzufuhrleitung 265 in Verbindung mit einem Ölvorratsbehälter 266. In der Ölzufuhrleitung 265 ist ein Rückschlagventil 267 eingesetzt, dessen Aufbau dem Ventil 16 in Fig. 1 gleicht.In addition, the pump chamber 261b of the housing is connected to an oil reservoir 266 via an oil supply line 265. A check valve 267 is used in the oil supply line 265, the structure of which is similar to the valve 16 in FIG. 1.

Die Ölpumpe 260 funktioniert wie folgt. Wird der Anker 10 der Einspritzpumpe 1 während seines Arbeitshubes in Richtung auf die Einspritzdüse 3 bewegt, wird der Pumpenraum 11 im Gehäuse 8 hinter dem Anker 10 bezüglich seines Volumens vergrößert, wodurch der Ölpumpenkolben 262 in Richtung Anker 10 bewegt wird und schließlich durch Einwirkung der Rückstellfeder 263 in seine Ruhelage überführt wird. Dabei wird aus dem Vorratsbehälter 266 über das Ventil 267 Öl in den Arbeitsraum 261b der Ölpumpe 260 eingesaugt. Während der Rückstellbewegung des Ankers 10 der Pumpe 1 in Richtung auf seinen Anschlag lla wird der Ölpumpenkolben 262 zumindest auf einem Teil des Rückstellweges des Ankers 10 in den Ölpumpenraum 261b geschoben. Dabei wird durch den Pumpendruck das Ventil 267 verschlossen und es wird Öl über den Auslaß 264 in Richtung des Pfeils 264a von der Ölpumpe abgegeben und an die mit Öl zu versorgenden Stellen des Motors gedrückt.The oil pump 260 works as follows. If the armature 10 of the injection pump 1 is moved in the direction of the injection nozzle 3 during its working stroke, the volume of the pump chamber 11 in the housing 8 behind the armature 10 is increased, as a result of which the oil pump piston 262 is moved in the direction of the armature 10 and finally by the action of the return spring 263 is transferred to its rest position. Oil is sucked from the reservoir 266 into the working space 261b of the oil pump 260 via the valve 267. During the return movement of the armature 10 of the pump 1 in the direction of its stop 11a, the oil pump piston 262 is pushed into the oil pump chamber 261b at least over part of the return path of the armature 10. It is by the Pump pressure closes the valve 267 and oil is discharged via the outlet 264 in the direction of arrow 264a from the oil pump and pressed to the locations of the engine to be supplied with oil.

Die Ölpumpe 260 kann alternativ auch als Kraftstoffvordruckpumpe verwendet werden, wobei der Kraftstoff der Ventileinrichtung 70 zugeführt werden kann. Vorteilhaft ist dabei, daß die Pumpe 260 einen Standdruck im Kraftstoffversorgungssystem erzeugen kann, der einer Dampfblasenbildung z.B. bei Erwärmung des Gesamtsystems entgegenwirkt.The oil pump 260 can alternatively also be used as a fuel back pressure pump, wherein the fuel can be supplied to the valve device 70. It is advantageous here that the pump 260 can generate a static pressure in the fuel supply system which prevents vapor bubbles from forming e.g. counteracts heating of the entire system.

Außerdem bewirkt die erfindungsgemäße Ausbildung der zusätzlichen Pumpe 260 an der Pumpe 1 eine schnelle Dämpfung des Ankers 10, so daß der Anker 10 am Anschlag 11a nicht nachprellt.In addition, the inventive design of the additional pump 260 on the pump 1 causes rapid damping of the armature 10, so that the armature 10 does not rebound against the stop 11a.

Figuren 8a und 8b zeigen eine besonders effektive und einfache Dämpfungseinrichtung. Der Aufbau der Pumpeneinrichtung 1 gleicht dem in Figur 9 dargestellten. Die Sackzylinderbohrung llb nach Figur 12a ist im Durchmesser größer als der Durchmesser des zylindrischen Vorsprungs 10a beträgt. Der Vorsprung 10a ist von einem in Richtung Sackzylinderbohrung 11b vorspringenden Dichtlippenring 10e aus einem elastischen Material umgeben, der in die Sackzylinderbohrung 11b paßt. Eine Einführschräge an der Mündung der Sackzylinderbohrung 11b erleichtert den Eintritt der Lippen den Dichtlippenrings 10e in die Sackzylinderbohrung llb. Diese Dämpfungseinrichtung erbringt eine gute Dämpfung beim Anschlag des Ankers 10 und behindert den Beschleunigungshub des Ankers nicht. Das elastische Dämpfungselement 10e mit achsparallel abstehenden Dichtlippen taucht beim Rückstellhub des Ankers 10 in die Sackzylinderbohrung 11b formschlüssig ein und legt sich nach außen dichtend an der Innenwandung der Sackzylinderbohrung 11b an.Figures 8a and 8b show a particularly effective and simple damping device. The structure of the pump device 1 is the same as that shown in FIG. 9. The blind cylinder bore 11b according to FIG. 12a is larger in diameter than the diameter of the cylindrical projection 10a. The projection 10a is surrounded by a sealing lip ring 10e projecting in the direction of the blind cylinder bore 11b and made of an elastic material which fits into the blind cylinder bore 11b. An insertion bevel at the mouth of the blind cylinder bore 11b facilitates the entry of the lips of the sealing lip ring 10e into the blind cylinder bore 11b. This damping device provides good damping when the armature 10 strikes and does not hinder the acceleration stroke of the armature. The elastic damping element 10e with sealing lips projecting axially parallel plunges positively into the pocket cylinder bore 11b during the return stroke of the armature 10 and rests against the inside wall of the pocket cylinder bore 11b in a sealing manner to the outside.

Die Sackzylinderbohrung 11b nach Fig. 8b ist im Durchmesser ebenfalls größer als der zylindrische Vorsprung 10a. Ein Dichtring 10f aus elastischem Material sitzt formschlüssig an der Wandung der Sackzylinderbohrung 11b und weist im Bereich der Mündung einwärts gerichtete Dichtlippen 10g auf. In das elastische Dichtelement 10f taucht der zylindrische Vorsprung 10a kolbenartig ein, wobei die Dichtlippen 10g infolge des ausströmenden Dämpfungsmediums gegen den zylindrischen Vorsprung 10a gepreßt werden, so daß eine besonders gute Dämpfung des Ankers 10 erreicht wird.The blind cylinder bore 11b according to FIG. 8b is also larger in diameter than the cylindrical projection 10a. A sealing ring 10f made of elastic material sits positively on the wall of the blind cylinder bore 11b and points in the area of the Mouth inward-facing sealing lips 10g. The cylindrical projection 10a is plunged into the elastic sealing element 10f, the sealing lips 10g being pressed against the cylindrical projection 10a due to the outflowing damping medium, so that particularly good damping of the armature 10 is achieved.

Mit Hilfe der erfindungsgemäßen Einspritzvorrichtung läßt sich ein Motorstart ohne Batterie sowie ein Motornotlauf ohne Batterie betreiben. Anhand der Fig. 9, 10, 11 wird diese Möglichkeit im folgenden näher beschrieben.With the aid of the injection device according to the invention, an engine start without a battery and an engine emergency run without a battery can be operated. This possibility is described in more detail below with reference to FIGS. 9, 10, 11.

Die elektrisch angetriebene bzw. elektronisch gesteuerte Einspritzung benötigt zum Start und Lauf ausreichend elektrische Energie. Für den Fall, daß die elektrische Energie nicht in ausreichender Größe zur Verfügung steht, soll erfindungsgemäß die Möglichkeit geschaffen werden, Motoren mit der erfindungsgemäßen Einspritzung auch ohne elektrische Energie zu starten, beispielsweise per Handkurbeltrieb. Der erforderliche Kraftstoff wird dabei, wie nachstehend näher ausgeführt, durch eine Hilfseinrichtung zur Verfügung gestellt. Erreicht der Motor eine Drehzahl, bei der der Generator ausreichend Energie bereitstellt, wird die Kraftstoffhilfseinrichtung erfindungsgemäß abgeschaltet und die Einspritzung erfolgt elektrisch bzw. elektronisch gesteuert, dem Normalfall entsprechend.The electrically driven or electronically controlled injection requires sufficient electrical energy to start and run. In the event that the electrical energy is not available in sufficient size, the possibility according to the invention should be created to start engines with the injection according to the invention even without electrical energy, for example by means of a hand crank drive. The required fuel is provided by an auxiliary device, as explained in more detail below. If the engine reaches a speed at which the generator provides sufficient energy, the fuel auxiliary device is switched off according to the invention and the injection is controlled electrically or electronically, corresponding to the normal case.

Es gibt Motoren, die ohne elektrische Energie gestartet werden, z.B. durch Hand- oder Kickstarteinrichtung. Dazu gehören kleine Motoren von Handarbeitsgeräten, Zweiradfahrzeugen oder Außenborder. Diese Starteinrichtung ist erforderlich, weil keine Batterie zum Starten und/oder Laufen vorhanden ist. Darüber hinaus sollen Motoren, beispielsweise auch bei entladener Batterie ohne elektrische Energie startfähig sein.There are engines that are started without electrical energy, e.g. by hand or kick start device. These include small motors from hand tools, two-wheelers or outboards. This starting device is required because there is no battery to start and / or run. In addition, engines should be able to start without electrical energy, for example even when the battery is discharged.

Erfindungsgemäß wird die Möglichkeit, Motoren ohne elektrische Energie per Hilfseinrichtung zu starten dadurch erreicht, daß die an jedem Motor vorhandene Kraftstoffzuführbedingung, z.B. das Zulaufgefälle oder der Druck der Kraftstofförderpumpe bei Startdrehzahl genutzt wird. Dabei wird der Kraftstoff dem Saugrohr bzw. den Überströmern bei Zweitaktmotoren oder einer Dosiereinrichtung direkt zugeführt. Erreicht der Motor dann eine Drehzahl, bei der der Generator ausreichende Energie für die Einspritzung bereit stellt, sperrt ein Ventil die direkte Kraftstoffzuführung zum Motor, der Kraftstoff wird der Einspritzvorrichtung zugeführt und diese übernimmt dann die Kraftstoffversorgung des Motors.According to the invention, the possibility of starting engines without electrical energy by means of an auxiliary device is achieved in that the fuel supply condition present on each engine, for example the inlet gradient or the pressure of the fuel feed pump at starting speed, is used. The fuel is fed directly to the intake manifold or the overflow in two-stroke engines or a metering device. Then the engine reaches a speed at which the generator has sufficient energy for the Provides injection, a valve blocks the direct fuel supply to the engine, the fuel is fed to the injector and this then takes over the fuel supply to the engine.

Fig. 9 zeigt eine erfindungsgemäße Anordnung zur Kraftstoffversorgung eines Motors 500. Dabei ist nach einer Kraftstoffvordruckpumpe 501, die ansaugseitig mit einem Kraftstoffvorratsbehälter 502 verbunden ist, eine Verzweigung des Kraftstoffzulaufs zum Motor vorgesehen. Im stromlosen Zustand ist eine an einen Generator 503 angeschlossene Einspritzvorrichtung 504, die entsprechend einem der vorstehenden Ausführungsbeispiele aufgebaut ist, inaktiv, und ein beispielsweise elektromagnetisch betätigtes Steuerventil 505 ist für den Kraftstoffzulauf zu einem Zerstäuber 506 am Motor 500 geöffnet.9 shows an arrangement according to the invention for supplying fuel to an engine 500. In this case, after a fuel back pressure pump 501, which is connected on the suction side to a fuel reservoir 502, the fuel supply to the engine is branched. In the de-energized state, an injection device 504, which is connected to a generator 503 and is constructed in accordance with one of the above exemplary embodiments, is inactive, and an, for example, electromagnetically actuated control valve 505 is opened for the fuel supply to an atomizer 506 on the engine 500.

Beim Start des Motors 500 wird der von der Vordruckpumpe 501 gelieferte Kraftstoffdruck über das geöffnete Steuerventil 505 dem am Motor 500 befindlichen Zerstäuber 506 zugeführt. Der Strömungswiderstand des Steuerventils 505 und/oder des Zerstäubers 506 ist dabei so bemessen, daß mit dem Druckangebot der Vordruckpumpe 501 bei Startdrehzahl der für den Start erforderliche Kraftstoffbedarf gedeckt wird. Erreicht der mit dem Motor gekoppelte Generator 503 eine Drehzahl, bei der der für die Einspritzvorrichtung 504 erforderliche Energiebedarf gedeckt ist, wird eine Einspritzsteuerung 507 aktiv, die ebenfalls vom Generator 503 gespeist wird und über eine Steuerleitung an die Einspritzvorrichtung 504 angeschlossen ist. Dazu wird mittels eines Stromsignals das Steuerventil 505 geschlossen, so daß kein Kraftstoff mehr dem Motor direkt zugeführt werden kann. Gleichzeitig übernimmt die Einspritzvorrichtung 504, gesteuert durch die Einspritzsteuerung 507, über die Einspritzdüse 508 die Einspritzung.When the engine 500 is started, the fuel pressure supplied by the pre-pressure pump 501 is supplied to the atomizer 506 located on the engine 500 via the opened control valve 505. The flow resistance of the control valve 505 and / or the atomizer 506 is dimensioned such that the supply of pressure from the admission pressure pump 501 at the starting speed covers the fuel required for the start. When the generator 503 coupled to the engine reaches a speed at which the energy required for the injection device 504 is covered, an injection control 507 becomes active, which is also fed by the generator 503 and is connected to the injection device 504 via a control line. For this purpose, the control valve 505 is closed by means of a current signal, so that no more fuel can be fed directly to the engine. At the same time, the injection device 504, controlled by the injection control 507, takes over the injection via the injection nozzle 508.

Eine an vielen Motoren vorhandene Handpumpe 509 kann gegebenenfalls zusätzlich beim Startvorgang für die direkte Kraftstoffzuführung zum Motor über den Zerstäuber 506 benutzt werden. Die Handpumpe 509 ist in der Verbindungsleitung 511 von der Pumpe 501 zum Steuerventil 505 angeordnet. Die Ansteuerung des Steuerventils 505 erfolgt durch die Einspritzsteuerung 507 über eine Steuerleitung 510.A hand pump 509 present on many engines can optionally also be used during the starting process for the direct fuel supply to the engine via the atomizer 506. The Hand pump 509 is arranged in the connecting line 511 from the pump 501 to the control valve 505. The control valve 505 is activated by the injection control 507 via a control line 510.

Fig. 10 zeigt eine Abwandlung der Anordnung nach Fig. 9, bei der das Steuerventil 505 in der Einspritzleitung 511 zwischen der Einspritzvorrichtung 504 und der Einspritzdüse 508 angeordnet ist. Die Funktion des stormlosen Startens entspricht der vorstehend anhand von Fig. 9 erläuterten Funktion.FIG. 10 shows a modification of the arrangement according to FIG. 9, in which the control valve 505 is arranged in the injection line 511 between the injection device 504 and the injection nozzle 508. The function of stormless starting corresponds to the function explained above with reference to FIG. 9.

Um das Durchströmen des Kraftstoffes ohne Pumpunterstützung der Einspritzvorrichtung 504 zu gewährleisten, ist der Strömungswiderstand der Einspritzvorrichtung 504 klein gehalten. Vorteilhaft ist dabei, daß das Entlüften der Einspritzvorrichtung 504 und der Einspritzleitung 511 problemlos möglich ist. Soll die Einspritzvorrichtung 504 entlüftet werden, so wird das Steuerventil 505 über einen Ausschalter 512 in der Leitung von der Einspritzsteuerung 507 zum Steuerventil 505 stromlos gemacht, soweit dies nicht durch die Einspritzsteuerung 507 bereits erfolgt ist. Dadurch ist das Steuerventil 505 in Richtung Zerstäuber 506 geöffnet, und die im System befindliche Luft kann bei gleichzeitigem Pumpen, beispielsweise mit der Vordruckpumpe 501 oder der Handpumpe 509, entweichen.In order to ensure the flow of fuel without pump support of the injection device 504, the flow resistance of the injection device 504 is kept small. It is advantageous here that the injection device 504 and the injection line 511 can be vented without problems. If the injection device 504 is to be vented, the control valve 505 is de-energized via an off switch 512 in the line from the injection control 507 to the control valve 505, unless this has already been done by the injection control 507. As a result, the control valve 505 is opened in the direction of the atomizer 506, and the air in the system can escape with simultaneous pumping, for example with the form pressure pump 501 or the hand pump 509.

Anhand von Fig. 11 wird nachfolgend der erfindungsgemäß vorgesehene Motornotlauf ohne Batterie näher beschrieben werden.The engine emergency running without battery provided according to the invention will be described in more detail below with reference to FIG. 11.

Die in den Fig. 9 und 10 dargestellte Anordnung kann auch für den Notbetrieb des Motors verwendet werden, bei dem beispielsweise durch Ausfall des Generators kein ausreichendes Energieangebot für die Einspritzsteuerung und die Einspritzvorrichtung vorhanden ist. Dabei erfolgt erfindungsgemäß durch eine Dosiereinrichtung, beispielsweise durch eine verstellbare, mit der Drosselklappe im Luftansaugrohr gekoppelten Drossel im Steuerventil eine Mengenvariation des Kraftstoffes, was eine Steuerung der Motorlast notdürftig erlaubt.The arrangement shown in FIGS. 9 and 10 can also be used for the emergency operation of the engine, in which, for example due to failure of the generator, there is insufficient energy available for the injection control and the injection device. According to the invention, a quantity variation of the fuel takes place by a metering device, for example by an adjustable throttle in the control valve coupled to the throttle valve in the air intake pipe, which allows the engine load to be controlled in a makeshift manner.

Fig. 11 zeigt ein hierfür geeignetes Ausführungsbeispiel des Steuerventils bzw. des Dosierventils 505 in den Fig. 9 und 10. Das Steuerventil 505 weist ein Gehäuse 520 auf, in das eine Spule 521 eingesetzt ist, die zum Antrieb eines Ankers 522 dient, der in einer Bohrung 523 des Gehäuses 520 verschiebbar gelagert ist und in seiner Ruhestellung durch eine Rückstellfeder 524 gegen einen im Gehäuse 520 angeordneten, einstellbaren Anschlag 525 gedrängt ist, an den außerhalb des Gehäuses ein Seilzug 526 angeschlossen ist. Im Anker 522 sind peripher Längsnuten 527 ausgebildet, die eine Kommunikation von in der Bohrung 523 vorhandenem Kraftstoff zwischen der Vorderseite und Rückseite des Ankers 522 zulassen. Der kolbenförmig ausgebildete Anschlag 525 durchgreift die Gehäusestirnwandung 520b und ist im Gehäuse 520 mittels einer Feder 528 gegenüber der Gehäusestirnwandung 520b vorgespannt.11 shows a suitable embodiment of the control valve or the metering valve 505 in FIGS. 9 and 10. The control valve 505 has a housing 520, into which a coil 521 is inserted, which serves to drive an armature 522, which is shown in FIG a bore 523 of the housing 520 is slidably mounted and in its rest position is pushed by a return spring 524 against an adjustable stop 525 arranged in the housing 520, to which a cable pull 526 is connected outside the housing. Longitudinal grooves 527 are formed in the armature 522, which allow fuel in the bore 523 to communicate between the front and rear of the armature 522. The piston-shaped stop 525 extends through the housing end wall 520b and is biased in the housing 520 by means of a spring 528 with respect to the housing end wall 520b.

Einheitlich ausgebildet mit der dem Anschlag 525 gegenüberliegenden Stirnseite des Ankers 522 ist ein Dosierkolben 527. Diese Stirnseite ist zudem von der Rückstellfeder 524 beaufschlagt, die sich anderendig gegen die Stirnwand 520a des Gehäuses 520 abstützt. Der Dosierkolben 527 ragt mit einem konisch zulaufenden Spitzende in die Förderleitung 511, von der außerdem eine Verbindungsleitung 511a zum Zerstäuber 506 abzweigt.A metering piston 527 is formed uniformly with the end face of the armature 522 opposite the stop 525. This end face is also acted upon by the return spring 524, which is supported at the other end against the end wall 520a of the housing 520. The metering piston 527 protrudes with a conically tapering tip end into the delivery line 511, from which a connecting line 511a branches off to the atomizer 506.

Der Seilzug 526, der an dem unter Federkraft gegen den Anker 522 vorgespannten Anschlag 525 angeschlossen ist, ist mit der Drosselklappe 530 (s. Fig. 10, 11) verbunden. Die Drosselklappenstellung wird dadurch unmittelbar auf den Anschlag 525 übertragen.The cable pull 526, which is connected to the stop 525 biased under spring force against the armature 522, is connected to the throttle valve 530 (see FIGS. 10, 11). The throttle valve position is thereby transferred directly to the stop 525.

Die Funktion des Steuerventils 505 ist wie folgt. Im entregten Zustand der Spule 521 liegen Anker 522 und Dosierkolben 527 durch die Rückstellfeder 524 am Anschlag 525 an. Der Kraftstoff kann dabei von der Förderpumpe 501 kommend durch die Förderleitung 511 zum Zerstäuber 506 fließen. Wird das Steuerventil 505 durch die Steuereinrichtung erregt, drückt der Anker 522 den Dosierkolben 527 entgegen der Kraft der Feder 524 soweit in Förderrichtung, bis der Zulaufquerschnitt 531 der Förderleitung 511 verschlossen ist.The function of the control valve 505 is as follows. In the de-energized state of the coil 521, the armature 522 and the metering piston 527 rest against the stop 525 by the return spring 524. The fuel can flow from the feed pump 501 through the feed line 511 to the atomizer 506. If the control valve 505 is excited by the control device, the armature 522 presses the metering piston 527 against the force of the spring 524 to the extent Delivery direction until the inlet cross section 531 of the delivery line 511 is closed.

Wird der Motor im Notbetrieb ohne Einspritzung betrieben, ist das Steuerventil 505 stromlos und somit der Zulaufquerschnitt 531 in der Leitung 511 zum Zerstäuber 506 freigegeben. Entsprechend der Drosselklappenstellung wird der konische Dosierkolben 527 über den Anker 522 durch den Anschlag 525 mehr oder weniger weit in die Bohrung des Zulaufquerschnitts 531 gedrückt. Die Kopplung zur Drosselklappe 530 ist dabei so gewählt, daß mit zunehmender Öffnung der Drosselklappe 530 der Querschnitt 531 mehr geöffnet wird. In der Leerlaufstellung der Drosselklappe 530 verbleibt ein minimaler Spalt am Querschnitt 531, der die Leerlaufmenge des Kraftstoffs zum Zerstäuber 506 durchläßt.If the engine is operated in emergency mode without injection, the control valve 505 is de-energized and thus the inlet cross section 531 in the line 511 to the atomizer 506 is released. Corresponding to the throttle valve position, the conical metering piston 527 is pressed more or less far into the bore of the inlet cross section 531 via the armature 522 through the stop 525. The coupling to the throttle valve 530 is chosen so that the cross-section 531 is opened more with increasing opening of the throttle valve 530. In the idle position of throttle valve 530, a minimal gap remains at cross section 531, which allows the amount of idle fuel to pass to atomizer 506.

Fig. 12 zeigt eine bevorzugte Schaltung zur Ansteuerung der Ankererregerspule der erfindungsgemäßen Einspritzpumpen, die eine optimale Beschleunigung des Ankers gewährleistet.12 shows a preferred circuit for controlling the armature excitation coil of the injection pumps according to the invention, which ensures optimum acceleration of the armature.

Bekannt ist, die Dosierung der abzuspritzenden Kraftstoffmenge beispielsweise zeitlich gesteuert vorzunehmen. Eine rein zeitliche Steuerung hat sich jedoch als nachteilig erwiesen, weil das Zeitfenster, welches sich zwischen minimal und maximal abzuspritzender Kraftstoffmenge ergibt, zu klein ist, um das im Motorbetrieb erforderliche Mengenspektrum differenziert und reproduzierbar genug zu beherrschen. Über die erfindungsgemäße reine Intensitätssteuerung des Stromflusses läßt sich jedoch eine genügend differenzierbare Mengendosierung erreichen.It is known to dose the amount of fuel to be sprayed, for example in a time-controlled manner. A purely time-based control has proven to be disadvantageous, however, because the time window that results between the minimum and maximum amount of fuel to be sprayed is too small to differentiate the quantity spectrum required in engine operation in a differentiated and reproducible manner. However, a sufficiently differentiable quantity metering can be achieved via the pure intensity control of the current flow according to the invention.

Im Falle des elektromagnetischen Antriebes der erfindungsgemäßen Kraftstoff-Einspritzvorrichtungen ist insbesondere die Erregung, d.h. das Produkt aus Windungszahl der Spule und Stromstärke des Stroms, der die Spule durchsetzt, bestimmend für die elektromagnetomechanische Energieumwandlung. Das heißt, eine ausschließliche Steuerung der Stromamplitude erlaubt es, das Schaltverhalten des Antriebmagneten unabhängig von Einflüssen der Spulenerwärmung und einer schwankenden Versorgungsspannung eindeutig definiert zu gestalten. Damit trägt eine derartige Steuerung insbesondere den bei Motoren üblicherweise stark schwankenden elektrischen Spannungsverhältnissen und den unterschiedlichen Temperaturverhältnissen Rechnung.In the case of the electromagnetic drive of the fuel injection devices according to the invention, in particular the excitation, ie the product of the number of turns of the coil and the current strength of the current that passes through the coil, is decisive for the electromagnetic-mechanical energy conversion. This means that an exclusive control of the current amplitude allows the switching behavior of the drive magnet to be independent of the effects of coil heating and a fluctuating supply voltage to be clearly defined. In this way, such a control system takes into account in particular the electrical voltage conditions and the different temperature conditions, which usually fluctuate strongly in motors.

Fig. 12 zeigt eine erfindungsgemäße Zweipunktregelungsschaltung für die Stromamplitude des eine Pumpenantriebsspule 600 steuernden Stroms. Die Antriebsspule 600 ist an einen Leistungstransistor 601 angeschlossen, der über einen Meßwiderstand 602 an Masse liegt. An den Steuereingang des Transistors 601, beispielsweise an die Transistorbasis, ist ein Komparator 603 mit seinem Ausgang angelegt. Der nicht invertierende Eingang des Komparators wird von einem Stromsollwert beaufschlagt, der beispielsweise mittels eines Mikrocomputers gewonnen wird, und der invertierende Eingang des Komparators 603 ist an der Seite des Meßwiderstands angeschlossen, die mit dem Transistor 601 verbunden ist.FIG. 12 shows a two-point control circuit according to the invention for the current amplitude of the current controlling a pump drive coil 600. The drive coil 600 is connected to a power transistor 601 which is connected to ground via a measuring resistor 602. A comparator 603 with its output is applied to the control input of transistor 601, for example to the transistor base. The non-inverting input of the comparator is acted upon by a current setpoint, which is obtained, for example, by means of a microcomputer, and the inverting input of the comparator 603 is connected to the side of the measuring resistor which is connected to the transistor 601.

Um den Energiefluß in der Antriebsspule 600 unabhängig von der Versorgungsspannung zu steuern, wird der von der Spule 600 aufgenommene Strom durch den Meßwiderstand 602 gemessen. Erreicht dieser Strom den von einem Mikroprozessor als Stromsollwert vorgegebenen Grenzwert, schaltet der Komparator über den Leistungstransistor 601 den Strom für die Spule 600 aus. Sobald der Stromistwert unter den Stromsollwert sinkt, schaltet der Transistor über den Komparator den Spulenstrom wieder ein. Die durch die Induktivität der Spule 600 bedingte Stromanstiegsverzögerung verhindert ein zu schnelles Überschreiten des maximal zulässigen Stroms.In order to control the energy flow in the drive coil 600 independently of the supply voltage, the current consumed by the coil 600 is measured by the measuring resistor 602. If this current reaches the limit value specified by a microprocessor as the current setpoint, the comparator switches off the current for the coil 600 via the power transistor 601. As soon as the actual current value drops below the current setpoint, the transistor switches the coil current back on via the comparator. The current rise delay caused by the inductance of the coil 600 prevents the maximum permissible current from being exceeded too quickly.

Danach kann der nächste Schaltzyklus beginnen, und dieses Takten des Spulenstroms der Spule 600 findet so lange statt, wie die den Stromsollwert liefernde Referenzspannung am nicht invertierenden Eingang des Komparators 603 anliegt.The next switching cycle can then begin, and this clocking of the coil current of the coil 600 takes place as long as the reference voltage supplying the current setpoint is present at the non-inverting input of the comparator 603.

Die Schaltung stellt eine getaktete Stromquelle dar, wobei das Takten erst nach Erreichen des vom Mikroprozessor bereitgestellten Stromsollwerts einsetzt. Die Energie- und damit die Mengensteuerung der Pumpeinrichtung 1 kann mit dieser Schaltung in Kombination von Dauer oder/und Höhe der vom Mikroprozessor bereitgestellten Referenzspannung erfolgen.The circuit represents a clocked current source, the clocking only after reaching the one provided by the microprocessor Current setpoint. The energy and thus the quantity control of the pump device 1 can take place with this circuit in combination of the duration and / or the amount of the reference voltage provided by the microprocessor.

Die Fig. 13, 14 und 15 zeigen besonders vorteilhafte Ausführungsformen der Einspritzdüse (z.B. Düse 3) für die erfindungsgemaße Einspritzvorrichtung.13, 14 and 15 show particularly advantageous embodiments of the injection nozzle (e.g. nozzle 3) for the injection device according to the invention.

Diese Einspritzdüse umfaßt ein Ventilsitzrohr 701, an dessen freiem unteren Ende die Membran 70 angeordnet ist, gegebenenfalls einen strahlformenden Zapfeneinsatz 702 (der in einem zentralen Loch der Membran 704 sitzt), einen Düsenhalter 703, eine in Richtung Ventilsitz vorgespannte Membranplatte 704, einen Sprengring 705, eine Druckleitung 706, die ventilsitzseitig in einen zur Membran 704 hin offenen, von der Membran abgedeckten Ringkanal 708 mündet, eine Druckschraube 707, eine Dichtung 709 für den Düsenhalter 703 und eine Aufnahme 710 für den Düsenhalter 703.This injection nozzle comprises a valve seat tube 701, at the free lower end of which the membrane 70 is arranged, optionally a jet-shaping pin insert 702 (which is seated in a central hole in the membrane 704), a nozzle holder 703, a membrane plate 704 biased towards the valve seat, and a snap ring 705 , a pressure line 706 which opens on the valve seat side into an annular channel 708 which is open towards the membrane 704 and is covered by the membrane, a pressure screw 707, a seal 709 for the nozzle holder 703 and a receptacle 710 for the nozzle holder 703.

Mit der in den Fig. 13, 14 und 15 gezeigten Membran-Flachsitzdüse mit Düsenzapfen 702 (Fig. 14) und ohne Düsenzapfen 702 (Fig. 15) wird eine gute Brennstoffzerstäubung auf der Oberfläche eines gewölbten Kegelmantels erreicht. Die Form und Abmessungen dieses Mantels sind u.a. von den Abmessungen und der Gestaltung der Austrittsöffnung in der Membran (Fig. 14) abhängig und können gegebenenfalls mit Hilfe eines Richtzapfens oder Drosselzapfens mit den bekannten Funktionsvorteilen den Erfordernissen des Motorbetriebes zusätzlich angepaßt werden.With the membrane flat seat nozzle shown in FIGS. 13, 14 and 15 with nozzle pin 702 (FIG. 14) and without nozzle pin 702 (FIG. 15), good fuel atomization is achieved on the surface of an arched cone jacket. The shape and dimensions of this jacket include dependent on the dimensions and design of the outlet opening in the membrane (FIG. 14) and can optionally be adapted to the requirements of engine operation with the aid of a known pin or throttle pin with the known functional advantages.

Das Ventil arbeitet fast ohne bewegte Massen und ist durch eine speziell ausgebildete Metallmembran gekennzeichnet, die mit einem feststehenden flachen Ventilsitz zusammenarbeitet. Die Membran - zugleich wegen der Vorspannung Ventilfeder - kann durch geeignete, definierte und bleibende Deformation gegen die Richtung des Öffnens (z.B. durch Wölbung) vorgespannt werden. Damit kann die Brennstoffzerstäubung bei niedrigen Drücken vor der Düsenöffnung, die durch das zentrale Loch in der Membran 704 gebildet wird, z.B. bei niedrigen Drehzahlen und kleinen Einspritzungen (in niedrigem Teillastbetrieb), verbessert werden. Die Bearbeitung des Düsenloches (Rundung der Kanten etc.) ist von beiden Richtungen leicht möglich.The valve works almost without moving masses and is characterized by a specially designed metal membrane that works with a fixed flat valve seat. The membrane - at the same time because of the preload of the valve spring - can be preloaded against the direction of opening (eg by arching) by means of suitable, defined and permanent deformation. This allows fuel atomization at low pressures the nozzle opening formed by the central hole in the membrane 704, for example at low speeds and small injections (in low part-load operation). Machining the nozzle hole (rounding the edges, etc.) is easily possible from both directions.

Um den guten Schließeffekt am Ventil der nach außen öffnenden Einspritzdüse zu verstärken, kann die Sitzringbreite des Flachsitzes (Fig. 14) mit der Vorspannung der Membranplatte abgestimmt werden. Hierzu trägt die richtige Wahl der Abmessungen des unteren Ringeinstiches im Ventilsitz bei, wodurch sich bei gegebenem Standdruck des Brennstoffes vor Ventilsitz die auf die Membran wirkende Kraft ergibt. Andererseits wird die Membran durch den im Ringeinstich lagernden bzw. den hier durchströmenden Brennstoff wirksam gekühlt.In order to enhance the good closing effect on the valve of the injection nozzle opening outwards, the seat ring width of the flat seat (Fig. 14) can be matched to the preload of the membrane plate. The correct choice of the dimensions of the lower groove in the valve seat contributes to this, which results in the force acting on the membrane at a given standing pressure of the fuel in front of the valve seat. On the other hand, the membrane is effectively cooled by the fuel stored in the puncture or flowing through it.

Die Düse bedarf keiner Schmierung und ist deshalb für Benzin, Alkohol und dessen Mischungen besonders geeignet. Aufgrund der Funktionsweise - es ist kein dem Ventilsitz nachgeschaltetes Volumen vorhanden - sind in dieser Düse vergleichsweise niedrigere Kohlenwasserstoff-Emissionen des Motors zu erwarten als mit nach innen öffnenden Düsen.The nozzle requires no lubrication and is therefore particularly suitable for petrol, alcohol and mixtures thereof. Due to the way it works - there is no volume downstream of the valve seat - comparatively lower hydrocarbon emissions from the engine are to be expected in this nozzle than with inwardly opening nozzles.

Die Düse besteht aus wenigen Teilen, ihre Herstellung in Massenproduktion, Wartung, Überprüfung und Teileaustausch ist deshalb sehr einfach und preiswert.The nozzle consists of a few parts, so it is very easy and inexpensive to manufacture, mass-produce, maintain, check and replace parts.

Kraftstoffversorgungseinrichtungen für Kraftstoffeinspritzanlagen werden zu deren Kühlung und zur Abfuhr von Dampfblasen während des Betriebs mit Kraftstoff durchspült. Das heißt, die Kraftstoff-Förderpumpe stellt eine größere Menge Kraftstoff bereit, als vom Motor benötigt wird. Diese Mehrmenge wird über eine Leitung zum Tank zurückgeführt und dient zur Wärmeabfuhr und zur Abfuhr von Kraftstoff-Dampfblasen. Dampfblasen entstehen im Motorbetrieb durch Wärmeeinwirkung und können die Funktion der Einspritzanlage stören oder gar verhindern. Auch ein erneutes Starten des noch betriebswarmen Motors kann durch Dampfblasen erschwert oder gar verhindert werden.Fuel supply systems for fuel injection systems are flushed with fuel to cool them and to remove vapor bubbles during operation. This means that the fuel delivery pump provides a larger amount of fuel than is required by the engine. This additional quantity is returned to the tank via a line and is used for heat dissipation and for the removal of fuel vapor bubbles. Vapor bubbles occur during engine operation due to the effects of heat and can disrupt or even prevent the function of the injection system. A restart of the still warm engine can also be caused by steam bubbles difficult or even prevented.

Bei bestimmten Motoranwendungen, z.B. als Außenbordmotor an Booten, ist jedoch eine Rückleitung zum Tank aus Sicherheitsgründen vom Gesetzgeber nicht zugelassen.In certain engine applications, e.g. as an outboard motor on boats, a return line to the tank is not permitted by law for safety reasons.

Eine Kraftstoffversorgungseinrichtung mit einer erfindungsgemäßen Kraftstoffeinspritzvorrichtung wird nach einer weiteren Ausführungsform der Erfindung deshalb ohne Rückleitung zum Tank ausgebildet, wobei dennoch Wärme und Dampfblasen abgeführt werden können.According to a further embodiment of the invention, a fuel supply device with a fuel injection device according to the invention is therefore designed without a return line to the tank, wherein heat and steam bubbles can nevertheless be removed.

Die Erfindung löst dieses Problem durch Verwendung einer zweiten Kraftstoffpumpe, einer Gasabscheidekammer mit Schwimmventil und eines Kühlers. Diese Anordnung kann direkt am Motor angebracht werden und vermeidet damit unter Druck stehende Kraftstoffleitungen außerhalb des Motorraumes oder der Motorkapsel. Damit ist den gesetzlichen Sicherheitsbestimmungen genüge getan.The invention solves this problem by using a second fuel pump, a gas separation chamber with a floating valve and a cooler. This arrangement can be attached directly to the engine and thus avoids pressurized fuel lines outside the engine compartment or the engine capsule. This is enough to meet the legal safety regulations.

Anhand der Fig. 16 wird diese Kraftstoffversorgungseinrichtung im folgenden beispielhaft näher erläutert.16, this fuel supply device is explained in more detail below by way of example.

Eine Pumpe 801 saugt den Kraftstoff 802 aus dem Tank 803 und führt ihn durch eine Kraftstoffleitung 804 einer Gasabscheidekammer 805 zu. Die Gasabscheidekammer 805 weist einen Schwimmer 806 auf, der ein Entlüftungsventil 807 bedient, das auf eine im Deckenbereich oberhalb des Flüssigkeitsspiegels 805a angeordnete Gasabführleitung 808 einwirkt.A pump 801 sucks the fuel 802 from the tank 803 and feeds it through a fuel line 804 to a gas separation chamber 805. The gas separation chamber 805 has a float 806 which operates a ventilation valve 807 which acts on a gas discharge line 808 arranged in the ceiling area above the liquid level 805a.

Vom Boden der Gasabscheidekammer 805 ist eine Kraftstoffleitung 809 abgezweigt, die mit einer Pumpe 810 in Verbindung steht und zu einem erfindungsgemäßen Einspritzventil 811 führt, das über eine Kraftstoffleitung 812 mit dem Gasabscheidebehälter 805 verbunden ist, die oberhalb des Flüssigkeitsspiegels 805a in den Gasabscheidebehälter 805 mündet. In der Kraftstoffleitung 812 sitzt in der Folge vom Einspritzventil 811 ausgehend ein Druckregler 813 und ein Kühler 814.A fuel line 809 is branched off from the bottom of the gas separation chamber 805 and is connected to a pump 810 and leads to an injection valve 811 according to the invention, which is connected via a fuel line 812 to the gas separation container 805, which opens into the gas separation container 805 above the liquid level 805a. As a result, a pressure regulator 813 and a cooler 814 are seated in the fuel line 812 starting from the injection valve 811.

Die neue Kraftstoffversorgungseinrichtung für eine erfindungsgemäße Kraftstoffeinspritzvorrichtung funktioniert wie folgt: Die Pumpe 801 saugt den Kraftstoff 802 aus den Tank 803 und führt ihn der Gasabscheidekammer 805 zu, bis das Entlüftungsventil 807 vom Schwimmer 806 geschlossen wird. Die Pumpe 810 entnimmt am Boden der Gasabscheidekammer 805 den Kraftstoff und baut vor dem Druckregler 813 den für das jeweilige Einspritzsystem erforderlichen Druck auf. In ihrer Fördercharakteristik ist die Pumpe 810 so ausgelegt, daß sie die zur Kühlung und Durchspülung des Einspritzventils 811 erforderliche Menge an Kraftstoff aufbringt und über den Kühler 814 der Gasabscheidekammer 805 zuführt. Werden nur Dampfblasen 805b in die Gasabscheidekammer 805 abgeführt, so wird das Kraftstoffniveau 805a sinken, der Schwimmer 806 öffnet das Entlüftungsventil 807 so lange, bis die Pumpe 801 zum ursprünglichen Niveau 805a nachgefördert hat. Das Entlüftungsventil 807 steht in Verbindung mit dem Luftansaugrohr 808 des Motors, so daß die aus dem Luftansaugrohr abgezogenen Kraftstoffdämpfe nicht unverbrannt in die Umwelt gelangen können.The new fuel supply device for a fuel injection device according to the invention works as follows: The pump 801 sucks the fuel 802 out of the tank 803 and feeds it to the gas separation chamber 805 until the vent valve 807 is closed by the float 806. The pump 810 takes the fuel from the bottom of the gas separation chamber 805 and builds up the pressure required for the respective injection system upstream of the pressure regulator 813. In terms of its delivery characteristic, the pump 810 is designed such that it applies the amount of fuel required for cooling and flushing the injection valve 811 and supplies it to the gas separation chamber 805 via the cooler 814. If only steam bubbles 805b are discharged into the gas separation chamber 805, the fuel level 805a will decrease, the float 806 opens the vent valve 807 until the pump 801 has delivered to the original level 805a. The vent valve 807 is connected to the air intake pipe 808 of the engine, so that the fuel vapors drawn from the air intake pipe cannot get unburned into the environment.

Claims (41)

  1. Fuel injection device which operates in accordance with the principle of the solid-state energy store, in which a reciprocating piston element guided in a pump cylinder of a reciprocating pump driven by means of an electromagnet displaces in the pump region, before the injection, during an acceleration phase virtually without resistance, during which the reciprocating piston element stores kinetic energy, partial quantities of the fuel to be injected, and the displacement is suddenly stopped by a means interrupting the displacement so that a pressure impulse is generated in the fuel situated in a closed-off pressure chamber by the stored kinetic energy of the reciprocating piston element being transmitted directly to the fuel situated in the pressure chamber, and in which the pressure impulse is used for the injection of fuel through an injection nozzle device, characterised in that the means interrupting the displacement and generating the pressure impulse is a volume storage element (6) which is provided for the displacement of fuel during the acceleration phase and which is arranged outside the leading, fluid-tight contact region between reciprocating piston element and reciprocating piston cylinder of the reciprocating pump.
  2. Device according to Claim 1, characterised in that the means for interrupting the displacement and for generating the pressure increase are constructed as a device (6, 50, 70, 90, 125, 218/223) having a stop means.
  3. Device according to Claim 1 and/or 2, characterised in that the stop means (e.g. 37) is constructed to be adjustable in position.
  4. Device according to one or more of Claims 1 to 3, characterised in that it has an electromagnetically driven reciprocating pump (1) which is connected to an injection nozzle device (3) via a delivery line (2), a suction line (4), in communication with a fuel reservoir (5), branching off from the delivery line (2) and the volume storage element (6) being corrected to the delivery line (2) via a line (7)
  5. Device according to Claim 4, characterised in that the pump (1) has a housing (8) in which a toroidal coil (9) is mounted, a rotor (10) being arranged in the region of the coil passage and being constructed as a cylindrical body and guided in a housing cylinder, which rotor is situated in the region of the central longitudinal axis of the toroidal coil (9) and is pressed by means of a compression spring (12) into a starting position in which it bears against the floor (11a) of the housing cylinder, a delivery piston (14) being attached to the end face of the rotor (10) on the injection-nozzle side and plunging relatively deeply into a cylindrical fuel delivery space (15) which is arranged coaxially with the housing cylinder and is in transmitting communication with the pressure line (2).
  6. Device according to Claim 4 and/or 5, characterised in that a non-return valve (16) is arranged in the suction line (4).
  7. Device according to one or more of Claims 1 to 6, characterised in that the storage element (6) has a housing (22), in the hollow space of which a diaphragm (23) is fitted as the member to be displaced, which diaphragm separates off from the hollow space a fuel-filled space on the pressure-line side and in the relaxed state divides the hollow space into two halves scaled off from each other by the diaphragm, an empty space which has a vault-shaped wall (22a) as the stop means for the diaphragm (23) being arranged on that side of the diaphragm facing away from the line (7).
  8. Device according to Claim 7, characterised in that a spring (24) which acts on the diaphragm (23) and functions as a return spring for the diaphragm (23) is arranged in the empty space on that side of the diaphragm (23) facing away from the line (7).
  9. Device according to one or more of Claims 6 to 8, characterised in that a non-return valve (16a) which forms, in the space on the injection-valve side, a retaining space for maintaining a particular static pressure in the fuel is arranged in the pressure line (2) between the injection valve (3) and the pressure chamber, upstream of the branches (4, 7).
  10. Device according to one or more of Claims 1 to 6 and 9, characterised in that a storage piston (31) guided in a cylindrical housing (30) in communication with the line (7) is used as the displacement member for the storage element (6), the cylinder (30) making available an empty volume (33c) into which the piston (31) coil be displaced by the fuel.
  11. Device according to Claim 10, characterised in that a discharge bore (32) is provided in the region of the empty-space volume (33c).
  12. Device according to Claim 10 and/or 11, characterised in that a compression spring (34) which presses the piston (31) into its rest position against a housing wall (33a) on the pressure-line side is fitted in the empty-space volume (33c).
  13. Device according to one or more of Claims 10 to 12, characterised in that an axially adjustable stop pin (37) for the piston (31), which passes through the housing wall and is in communication with an adjusting means outside the housing, is arranged in the empty-space volume (33c).
  14. Device according to one or more of Claims 1 to 6 and 9, characterised in that the fuel inlet valve (16) is also constructed as a storage element valve (50).
  15. Device according to Claim 14, characterised by an integral storage element/inlet valve device (90), having a housing (91) in which there is formed a central longitudinal bore (92) which, at one end, opens into the pressure line (2) via an opening (93a) and, at the other end, opens into a cylindrical valve space (93), channels (94) additionally leading from the bore (92) to the valve space (93) and the valve element being constructed in two parts and comprising a cylinder (95) which is guided in the valve space (93) and in the cylindrical central stepped through-bore of which a piston (96) is displaceably guided, and there being formed in the outer circumferential surface of the cylinder (95) grooves (97) running axially parallel and the cylinder (95) being pressed by a spring (98) into its rest position, in which it rests with its one end face on the tank-side floor of the valve space (93), into which there opens a fuel supply line (99) coming from the fuel reservoir, and there being seated on the tank side in the bore, for the purpose of receiving the piston (96), a spring (100) which presses the piston (96) against the floor of the valve space (93) on the pressure-line side so that the bore (92) is covered, a free space (95a) for the piston (96) being formed in the tank-side interior space of the cylinder (95).
  16. Device according to one or more of Claims 1 to 6 and 9, characterised in that the storage element (6) is of unitary construction with the delivery piston (14) of the reciprocating pump (1).
  17. Device according to Claim 16, characterised in that as the storage element use is made of a storage piston (80) which, in a first central longitudinal-axial stepped bore portion (14b), on the pressure-line side, of a stepped bore (14a) passing centrally through the piston (14) and the rotor (10), is pressed by a spring (81) against a stop on the pressure-line side, the piston (80) projecting, in the rest position, with its one end face into the pressure chamber (13) and the bore portion (14b), which receives the storage piston (80), in the delivery piston (14) continuing, after a step (14c), towards the rotor (10) in a further stepped bore portion (14d), on the step (14e) of which there is supported a compression spring (81) which presses against the rotor-side end face of the piston (80).
  18. Device according to one or more of Claims 1 to 17, characterised by a hydraulic damping device for the rotor element (10) of the reciprocating pump.
  19. Device according to Claim 18, characterised in that the hydraulic damping device is constructed in the manner of a piston-and-cylinder arrangement, there being formed centrally on the rotor (10) a cylindrical projection (10a) which, in the last portion of the rotor return movement, fits into a blind cylinder bore (11b) in the floor (11a) of the cylinder, grooves (10b) being provided, running in the longitudinal direction, in the rotor (10) which connect the space at the rear side of the rotor to the space at the front side of the rotor in the pump cylinder.
  20. Device according to Claim 18, characterised in that the pump space (11), through which passes the delivery piston (14), is connected upstream of the piston (10) to the space (11) adjoining the rear side of the rotor by bores (10d) which open, in the region of the rear side of the rotor, into a central overflow channel (10c), a central pin (8a) of a shock damper (8b) projecting with a conical point (8c) in the direction of the mouth of the overflow channel (10c).
  21. Device according to Claim 20, characterised in that the central pin (8a) passes, at the rear, through a hole (8d) in the floor (11a), which hole opens into damping space (8e), the pin (8a) ending in the damping space with a ring (8f) which has a greater diameter than the hole (8d), and there being supported on the floor of the damping space a spring (8g) which presses against the ring (8f), and a channel (8h) connecting the damping space (8e) to the rear rotor space (11).
  22. Device according to Claim 20, characterised in that there is provided centrally in the pin (8a) a displacement through-bore (8i), through which the damping medium can be forced into the overflow channel (10c).
  23. Device according to Claim 18, characterised in that, during the return movement, the rotor (10) operates a pumping device which at the same time provides a damping device for the rotor (10).
  24. Device according to Claim 23, characterised in that an oil pump (260) is connected to the rear floor (11a) of the pump housing (8), which oil pump has a housing (261) in the pump space (261b) of which there is arranged a pump piston (262), the piston rod (262a) of which projects into the working space (11) of the rotor (10), the piston (262) being acted on by a return spring (263) supported on the housing floor (261a) in the region of an outlet (264).
  25. Device according to Claim 24, characterised in that the pump space (261b) is in communication with an oil reservoir (266) via an oil supply line (265), a non-return valve (267) being inserted into the oil supply line (265).
  26. Device according to Claim 18 and/or 19, characterised in that the blind cylinder bore (11b) is greater in diameter than the diameter of the cylindrical projection (10a) and the projection (10a) or the blind cylinder bore (11b) have a sealing-lip ring (10e) or (10d), respectively, the scaling-lip rings forming the piston seal for the projection (10a).
  27. Device according to one or more of Claims 1 to 26, characterised by an auxiliary starting device, having a control valve which is connected to an atomiser (506) of the engine (500) and is impinged by fuel from the fuel tank (502), and the flow resistance of which, together with that of the atomiser (506), is so dimensioned that at the starting speed the fuel demand required for starting can be met by the pressure supply of a pre-pressure pump (501), even without the addition of electrical energy to the injection device (504).
  28. Device according to Claim 27, characterised in that there is provision, downstream of the fuel pre-pressure pump (501), which is connected on the suction side to the fuel reservoir (502), for a branching of the fuel supply to the engine, in the currentless state an injection device (504) which is connected to a generator (503) and is constructed in accordance with the invention, in particular with one of the exemplary embodiments according to the invention, being inactive and the control valve (505), which is for example electromagnetically actuated, being open for the fuel supply to the atomiser (506) on the engine (500).
  29. Device according to Claim 27 and/or 28, characterised in that a hand primer (509), present on the engine, is additionally used during the starting process for direct fuel supply to the engine by means of the atomiser (506), which hand primer is arranged in the connecting line (511) from the pump (501) to the control valve (505), the control valve (505) being driven by the injection control device (507) via a control line (510).
  30. Device according to Claim 27, characterised in that the control valve (505) is arranged in the injection line (511) between the injection device (504) and the injection nozzle (508).
  31. Device according to Claim 30, characterised by a circuit breaker in the line line from the injection control device (507) to the control valve (505).
  32. Device according to Claim 30 and/or 31, characterised in that the auxiliary starting device according to the invention is used for the emergency operation of the engine, a metering valve (505) bringing about a variation of the quantity of fuel.
  33. Device according to Claim 32, characterised in that the metering valve (505) has a housing (520), into which there is inserted a coil (521) serving to drive a rotor (522) which is displaceably mounted in a bore (523) of the housing (520) and is urged in its rest position by a return spring (524) against an adjustable stop (525) which is arranged in the housing (520) and to which a cable pull (526) is attached outside the housing, longitudinal grooves (527) which allow a communication of the fuel present in the bore (523) between the front side and the rear side of the rotor (522) being formed peripherally in the rotor (522), and the stop (525), constructed in the form of a piston, passing through the housing end wall (520b) and being prestressed in the housing (520) with respect to the housing end wall (520b) by means of a spring (528), and a metering piston (527) being of unitary construction with that end face of the rotor (522) lying opposite the stop (525), and this end face additionally being acted on by the retum spring (524) which is supported, at the other end, against the end wall (520a) of the housing (520), and the metering piston (527) projecting with a conically tapering pointed end into the delivery line (511), from which furthermore a connecting line (511a) branches off to the atomiser (506), and the cable pull (526), which is attached to the stop (525) prestressed under spring force against the rotor (522), being connected to the throttle valve (530).
  34. Device according to one or more of Claims 1 to 33, characterised by a circuit for driving the rotor-exciting coil (9, 600), which is connected to a power transistor (601) connected to earth via a precision resistor (602), a comparator (603) being connected by its output to the control input of the transistor (601), for example to the transistor base, and the non-inverting input of the comparator (603) receiving a current desired value obtained, for example, by means of a microcomputer and the inverting input of the comparator (603) being connected to that side of the precision resistor which is connected to the transistor (601).
  35. Device according to one or more of Claims 1 to 34, having an injection nozzle characterised by a valve-seat tube (701) with an annular channel (708) at the end, a diaphragm plate (704) which is prestressed in the direction of the valve seat, has a central hole and covers the annular channel (708), if desired a spigot insert (702) in the hole of the diaphragm (704), a circlip (705) and a pressure line (706).
  36. Device according to one or more of Claims 1 to 35, characterised by a fuel supply device without a return line to the tank, use being made of a second fuel pump, gas-separating chamber with float valve, and a cooler.
  37. Device according to Claim 35, characterised by a gas-separating chamber (805), into which fuel (802) is pumped from a tank (803) by means of a pump (801) via a line (804), and from which fuel is supplied to an injection valve (811) by means of a pump (810) via a fuel line (809), a line (812) in which a pressure regulator (813) and a cooler (814) are arranged being led back into the gas-separating chamber (805) from the injection valve (811), there being provided in the gas separator (805) a float (806) which operates a vent valve (807) seated in a discharge line (808) which opens into the gas-separating chamber (805).
  38. Device according to Claim 37, characterised in that the fuel line (812) opens into the gas-separating chamber (805) above the liquid level (805a).
  39. Device according to Claim 36 and/or 38, characterised in that the vent line (808) opens into the gas-separating chamber (805) above the liquid level (805a).
  40. Device according to one or more of Claims 37 to 39, characterised in that the fuel line (804) opens into the gas-separating chamber (805) above the liquid level (805a).
  41. Device according to one or more of Claims 37 to 40, characterised in that all the devices of the fuel injection system are arranged in the engine compartment (815), except for the tank (803).
EP93905299A 1992-03-04 1993-03-04 Fuel injecting device working according to the solid energy accumulator principle, for internal combustion engines Expired - Lifetime EP0629265B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP96109438A EP0733798B1 (en) 1992-03-04 1993-03-04 Fuel injection device working according to the solid energy accumulator principle, for internal combustion engines

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4206817 1992-03-04
DE4206817A DE4206817C2 (en) 1991-10-07 1992-03-04 Fuel injection device based on the solid-state energy storage principle for internal combustion engines
PCT/EP1993/000495 WO1993018297A1 (en) 1992-03-04 1993-03-04 Fuel injecting device working according to the solid energy accumulator principle, for internal combustion engines

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP96109438A Division EP0733798B1 (en) 1992-03-04 1993-03-04 Fuel injection device working according to the solid energy accumulator principle, for internal combustion engines
EP96109438.0 Division-Into 1996-06-12

Publications (2)

Publication Number Publication Date
EP0629265A1 EP0629265A1 (en) 1994-12-21
EP0629265B1 true EP0629265B1 (en) 1997-06-04

Family

ID=6453209

Family Applications (5)

Application Number Title Priority Date Filing Date
EP96101218A Expired - Lifetime EP0725215B1 (en) 1992-03-04 1993-03-04 Fuel injection device working according to the solid energy accumulator principle, for internal combustion engines
EP93905295A Expired - Lifetime EP0630442B1 (en) 1992-03-04 1993-03-04 Fuel injection device working according to the solid energy accumulator principal, for internal combustion engines
EP93905298A Expired - Lifetime EP0629264B1 (en) 1992-03-04 1993-03-04 Reciprocating piston pump
EP93905299A Expired - Lifetime EP0629265B1 (en) 1992-03-04 1993-03-04 Fuel injecting device working according to the solid energy accumulator principle, for internal combustion engines
EP96109438A Expired - Lifetime EP0733798B1 (en) 1992-03-04 1993-03-04 Fuel injection device working according to the solid energy accumulator principle, for internal combustion engines

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP96101218A Expired - Lifetime EP0725215B1 (en) 1992-03-04 1993-03-04 Fuel injection device working according to the solid energy accumulator principle, for internal combustion engines
EP93905295A Expired - Lifetime EP0630442B1 (en) 1992-03-04 1993-03-04 Fuel injection device working according to the solid energy accumulator principal, for internal combustion engines
EP93905298A Expired - Lifetime EP0629264B1 (en) 1992-03-04 1993-03-04 Reciprocating piston pump

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP96109438A Expired - Lifetime EP0733798B1 (en) 1992-03-04 1993-03-04 Fuel injection device working according to the solid energy accumulator principle, for internal combustion engines

Country Status (9)

Country Link
US (3) US5520154A (en)
EP (5) EP0725215B1 (en)
JP (8) JP2626677B2 (en)
AT (5) ATE154100T1 (en)
AU (5) AU664739B2 (en)
CA (3) CA2127801C (en)
DE (5) DE59303326D1 (en)
HK (1) HK1013676A1 (en)
WO (3) WO1993018297A1 (en)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0725215B1 (en) * 1992-03-04 1998-08-05 Ficht GmbH & Co. KG Fuel injection device working according to the solid energy accumulator principle, for internal combustion engines
FR2713717B1 (en) * 1993-12-07 1996-01-26 Rahban Thierry Electromagnetic actuation pump with elastic collision of the moving part.
DE4421145A1 (en) * 1994-06-16 1995-12-21 Ficht Gmbh Oil burner
US5630401A (en) * 1994-07-18 1997-05-20 Outboard Marine Corporation Combined fuel injection pump and nozzle
US5562428A (en) * 1995-04-07 1996-10-08 Outboard Marine Corporation Fuel injection pump having an adjustable inlet poppet valve
DE19515775C2 (en) * 1995-04-28 1998-08-06 Ficht Gmbh Method for controlling an excitation coil of an electromagnetically driven reciprocating pump
DE19515782A1 (en) * 1995-04-28 1996-10-31 Ficht Gmbh Fuel injection device for internal combustion engines
DE19515774C2 (en) * 1995-04-28 1999-04-01 Ficht Gmbh & Co Kg Fuel injection device for internal combustion engines
DE59604781D1 (en) * 1995-04-28 2000-04-27 Ficht Gmbh & Co Kg FUEL INJECTION DEVICE FOR INTERNAL COMBUSTION ENGINES
US5687050A (en) * 1995-07-25 1997-11-11 Ficht Gmbh Electronic control circuit for an internal combustion engine
US5779454A (en) * 1995-07-25 1998-07-14 Ficht Gmbh & Co. Kg Combined pressure surge fuel pump and nozzle assembly
DE19527550A1 (en) * 1995-07-27 1997-01-30 Ficht Gmbh Method for controlling the ignition timing in internal combustion engines
DE19541508A1 (en) * 1995-11-08 1997-05-15 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
FR2748783B1 (en) * 1996-05-17 1998-08-14 Melchior Jean F LIQUID FUEL INJECTION DEVICE FOR INTERNAL COMBUSTION ENGINE
US6161525A (en) * 1996-08-30 2000-12-19 Ficht Gmbh & Co. Kg Liquid gas engine
DE19643886C2 (en) * 1996-10-30 2002-10-17 Ficht Gmbh & Co Kg Method for operating an internal combustion engine
US6280867B1 (en) 1997-12-05 2001-08-28 Griff Consulting, Inc. Apparatus for pumping a fluid in a fuel cell system
DE19845441C2 (en) * 1998-10-02 2003-01-16 Ficht Gmbh & Co Kg Method for electronically trimming an injector
DE19860573A1 (en) * 1998-12-29 2000-07-06 Eberspaecher J Gmbh & Co Fuel metering pump for a heater, in particular for an auxiliary heater or auxiliary heater of a motor vehicle
DE19918984A1 (en) * 1999-04-27 2000-11-02 Deutz Ag Fuel supply system of an internal combustion engine
US6283095B1 (en) * 1999-12-16 2001-09-04 Bombardier Motor Corporation Of America Quick start fuel injection apparatus and method
DE10002721A1 (en) * 2000-01-22 2001-08-02 Bosch Gmbh Robert Valve for controlling liquids
US6966760B1 (en) 2000-03-17 2005-11-22 Brp Us Inc. Reciprocating fluid pump employing reversing polarity motor
US6364281B1 (en) * 2000-03-22 2002-04-02 Eaton Corporation Method of energizing solenoid operated valves
US6295972B1 (en) * 2000-03-30 2001-10-02 Bombardier Motor Corporation Of America Fuel delivery using multiple fluid delivery assemblies per combustion chamber
US6792968B1 (en) * 2000-05-30 2004-09-21 Robert H. Breeden Pump assembly and method
WO2002012708A1 (en) * 2000-08-02 2002-02-14 Mikuni Corporation Electronically controlled fuel injector
JP4431268B2 (en) * 2000-11-17 2010-03-10 株式会社ミクニ Electronically controlled fuel injection device
CN1133810C (en) * 2001-02-16 2004-01-07 郗大光 Electronic fuel oil jetter
JP2003003889A (en) * 2001-06-20 2003-01-08 Denso Corp Fuel supply device for internal combustion engine
US7100578B2 (en) * 2001-11-29 2006-09-05 Mikuni Corporation Method for driving fuel injection pump
US6693787B2 (en) * 2002-03-14 2004-02-17 Ford Global Technologies, Llc Control algorithm for soft-landing in electromechanical actuators
US7753657B2 (en) * 2005-02-02 2010-07-13 Brp Us Inc. Method of controlling a pumping assembly
DE102006003484A1 (en) * 2005-03-16 2006-09-21 Robert Bosch Gmbh Device for injecting fuel
US20070075285A1 (en) * 2005-10-05 2007-04-05 Lovejoy Kim A Linear electrical drive actuator apparatus with tandem fail safe hydraulic override for steam turbine valve position control
US7857281B2 (en) * 2006-06-26 2010-12-28 Incova Technologies, Inc. Electrohydraulic valve control circuit with magnetic hysteresis compensation
DE102007037869A1 (en) * 2007-08-10 2009-02-12 Robert Bosch Gmbh Actuator for an internal combustion engine and method for operating an actuator
DE102007039794A1 (en) 2007-08-23 2009-03-12 Eberspächer Unna GmbH & Co. KG Dosing system for dosing liquid reducing agent in exhaust system of internal combustion engine, has dosing valve for delivering reducing agent in exhaust system
DE102008007349B4 (en) * 2008-02-04 2021-07-08 Robert Bosch Gmbh Compact injection device with reduced tendency towards vapor bubbles
DE102009012688B3 (en) * 2009-03-11 2010-07-22 Continental Automotive Gmbh Valve for injecting gas to internal-combustion engine of natural gas motor vehicle, has delivery opening opened in position of closing member that is provided with distance in open position in which delivery opening is completely opened
DE102009014444A1 (en) * 2009-03-23 2010-10-07 Continental Automotive Gmbh Tank ventilation device for a supercharged internal combustion engine and associated control method
DE102011077059A1 (en) * 2011-06-07 2012-12-13 Robert Bosch Gmbh Fuel injection valve
DE102011078159A1 (en) * 2011-06-28 2013-01-03 Robert Bosch Gmbh Fuel injection valve
EP2912300B1 (en) 2012-10-25 2018-05-30 Picospray, Inc. Fuel injection system
US20170030298A1 (en) * 2015-07-31 2017-02-02 Briggs & Stratton Corporation Atomizing fuel delivery system
JP6245238B2 (en) * 2015-09-11 2017-12-13 トヨタ自動車株式会社 Fuel pump
DE102015014350B4 (en) * 2015-11-05 2017-06-14 L'orange Gmbh Pressurized injector
DE102015014349B4 (en) * 2015-11-05 2017-06-14 L'orange Gmbh Pressure-actuated injector
US10030961B2 (en) 2015-11-27 2018-07-24 General Electric Company Gap measuring device
EP3455498B1 (en) 2016-05-12 2024-07-03 Briggs & Stratton, LLC Fuel delivery injector
CN109790806B (en) 2016-07-27 2021-05-25 布里格斯斯特拉顿有限责任公司 Reciprocating pump injector
US10947940B2 (en) 2017-03-28 2021-03-16 Briggs & Stratton, Llc Fuel delivery system
DE102018200715A1 (en) * 2018-01-17 2019-07-18 Robert Bosch Gmbh Fuel delivery device for cryogenic fuels
DE102018211338A1 (en) * 2018-07-10 2020-01-16 Robert Bosch Gmbh Fuel delivery device for cryogenic fuels and method for operating a fuel delivery device
WO2020077181A1 (en) 2018-10-12 2020-04-16 Briggs & Stratton Corporation Electronic fuel injection module
KR102572903B1 (en) * 2021-01-07 2023-08-30 주식회사 현대케피코 Flow control valve structure of high pressure fuel pump

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE213472C (en) *
CH328209A (en) * 1953-12-23 1958-02-28 Cav Ltd Fuel injection pump for internal combustion engines
FR1150971A (en) * 1956-05-24 1958-01-22 Improvements to fuel injection devices
US2881749A (en) * 1956-11-13 1959-04-14 Studebaker Packard Corp Combination accumulator and starting pump for fuel injection system
FR1183662A (en) * 1957-10-01 1959-07-10 Electromagnetic injection pump for internal combustion engines
DE1278792B (en) * 1963-12-05 1968-09-26 Vyzk Ustav Prislusenstvi Motor Fuel injection pump with pump and distributor rotor and regulation of the injection quantity by means of an escape piston
DE2306875A1 (en) * 1973-02-13 1974-08-15 Bosch Gmbh Robert ELECTROMAGNETIC DOSING PUMP
DE2307435A1 (en) * 1973-02-15 1974-08-22 Bosch Gmbh Robert FUEL INJECTION DEVICE FOR COMBUSTION MACHINERY
JPS51120321A (en) * 1975-04-14 1976-10-21 Yanmar Diesel Engine Co Ltd Fuel injection pump for diesel engine
DD120514A1 (en) * 1975-06-09 1976-06-12
CH597596A5 (en) * 1975-06-27 1978-04-14 Hoffmann La Roche
GB1574128A (en) * 1976-01-20 1980-09-03 Lucas Industries Ltd Fuel pump injector
GB1574132A (en) * 1976-03-20 1980-09-03 Lucas Industries Ltd Fuel injection pumps
DE2634282C2 (en) * 1976-07-28 1978-04-13 Mannesmann Ag, 4000 Duesseldorf Process for the continuous introduction of additives into a vessel filled with liquid metal
DE2720144A1 (en) * 1977-05-05 1978-11-16 Volkswagenwerk Ag INJECTION DEVICE, IN PARTICULAR FOR A COMBUSTION ENGINE
DE2809122A1 (en) * 1978-03-03 1979-09-06 Bosch Gmbh Robert High precision IC engine fuel injector - has cooler in fuel line at injector with solenoid actuator
NL7810629A (en) * 1978-10-25 1980-04-29 Holec Nv DEVICE FOR DELIVERING FUEL TO A COMBUSTION ENGINE.
US4355620A (en) * 1979-02-08 1982-10-26 Lucas Industries Limited Fuel system for an internal combustion engine
JPS5749059A (en) * 1980-09-08 1982-03-20 Toshiba Corp Driving circuit of injector
US4327695A (en) * 1980-12-22 1982-05-04 Ford Motor Company Unit fuel injector assembly with feedback control
JPS5851233A (en) * 1981-09-21 1983-03-25 Hitachi Ltd Fuel injection valve driving circuit
DE3237258C1 (en) * 1982-10-08 1983-12-22 Daimler-Benz Ag, 7000 Stuttgart Electrically pilot operated valve arrangement
DD213472B5 (en) * 1983-02-04 1999-12-30 Ficht Gmbh Pump-duese system for internal combustion engines
DE3329734A1 (en) * 1983-08-17 1985-03-07 Mannesmann Rexroth GmbH, 8770 Lohr PROPORTIONAL MAGNET
JPS6062658A (en) * 1983-09-16 1985-04-10 Mitsubishi Heavy Ind Ltd Injection start timing changer of jerk type fuel pump
GB8402470D0 (en) * 1984-01-31 1984-03-07 Lucas Ind Plc Drive circuits
EP0174261B1 (en) * 1984-08-14 1989-01-11 Ail Corporation Fuel delivery control system
NL8501647A (en) * 1985-06-06 1987-01-02 Volvo Car Bv FUEL INJECTOR.
JPS61286540A (en) * 1985-06-14 1986-12-17 Nippon Denso Co Ltd Fuel injection controller
JPS62107265A (en) * 1985-11-02 1987-05-18 Nippon Soken Inc Electrostriction type oil pressure control valve
JP2546231B2 (en) * 1986-03-12 1996-10-23 日本電装株式会社 Driving device for piezoelectric element
FR2607278B1 (en) * 1986-11-26 1989-06-23 Bendix Electronics Sa INTEGRATED CIRCUIT FOR CURRENT REGULATION IN AN INDUCTIVE LOAD AND ITS APPLICATION TO THE IGNITION COIL CONTROL OF AN INTERNAL COMBUSTION ENGINE
DE3701872A1 (en) * 1987-01-23 1988-08-04 Pierburg Gmbh ELECTROMAGNETICLY CLOCKED INJECTION VALVE FOR MIXTURING COMPRESSING ENGINES
GB8703419D0 (en) * 1987-02-13 1987-03-18 Lucas Ind Plc Fuel injection pump
EP0309753A1 (en) * 1987-09-30 1989-04-05 Siemens Aktiengesellschaft Method for monitoring an inductive load
NZ222499A (en) * 1987-11-10 1990-08-28 Nz Government Fuel injector pump: flow rate controlled by controlling relative phase of reciprocating piston pumps
JP2568603B2 (en) * 1988-01-11 1997-01-08 日産自動車株式会社 Fuel injection device
DE3903313A1 (en) * 1989-02-04 1990-08-09 Bosch Gmbh Robert STORAGE FUEL INJECTION DEVICE
JPH03107568A (en) * 1989-09-22 1991-05-07 Aisin Seiki Co Ltd Fuel injection device
DE4106015A1 (en) * 1991-02-26 1992-08-27 Ficht Gmbh PUSHBULE FUEL INJECTION FOR COMBUSTION ENGINES
EP0725215B1 (en) * 1992-03-04 1998-08-05 Ficht GmbH & Co. KG Fuel injection device working according to the solid energy accumulator principle, for internal combustion engines
US5437255A (en) * 1994-03-15 1995-08-01 Sadley; Mark L. Fuel injection sytem employing solid-state injectors for liquid fueled combustion engines

Also Published As

Publication number Publication date
AU679648B2 (en) 1997-07-03
AU664739B2 (en) 1995-11-30
JPH11107883A (en) 1999-04-20
AU3630893A (en) 1993-10-05
EP0733798A2 (en) 1996-09-25
ATE140768T1 (en) 1996-08-15
WO1993018296A1 (en) 1993-09-16
JP2002089413A (en) 2002-03-27
EP0725215A2 (en) 1996-08-07
EP0630442B1 (en) 1996-12-27
JP3330544B2 (en) 2002-09-30
CA2127800A1 (en) 1993-09-16
AU3630593A (en) 1993-10-05
DE59310057D1 (en) 2000-07-13
EP0629264B1 (en) 1996-07-24
EP0725215B1 (en) 1998-08-05
EP0733798A3 (en) 1996-12-11
JPH09177636A (en) 1997-07-11
WO1993018290A1 (en) 1993-09-16
CA2127801C (en) 1999-06-15
AU671100B2 (en) 1996-08-15
AU667345B2 (en) 1996-03-21
EP0629265A1 (en) 1994-12-21
ATE169376T1 (en) 1998-08-15
EP0630442A1 (en) 1994-12-28
JPH07504475A (en) 1995-05-18
EP0725215A3 (en) 1996-08-21
US5520154A (en) 1996-05-28
JPH11101169A (en) 1999-04-13
JP2626677B2 (en) 1997-07-02
DE59306679D1 (en) 1997-07-10
AU3790995A (en) 1996-03-07
AU5627396A (en) 1996-10-03
EP0733798B1 (en) 2000-06-07
WO1993018297A1 (en) 1993-09-16
EP0629264A1 (en) 1994-12-21
JPH09170519A (en) 1997-06-30
DE59303326D1 (en) 1996-08-29
CA2127799C (en) 1999-06-29
ATE154100T1 (en) 1997-06-15
JP2626678B2 (en) 1997-07-02
US6188561B1 (en) 2001-02-13
CA2127799A1 (en) 1993-09-16
DE59308851D1 (en) 1998-09-10
AU3630793A (en) 1993-10-05
ATE193753T1 (en) 2000-06-15
ATE146851T1 (en) 1997-01-15
DE59304903D1 (en) 1997-02-06
CA2127800C (en) 1999-06-29
HK1013676A1 (en) 1999-09-03
JP3282711B2 (en) 2002-05-20
JPH07504476A (en) 1995-05-18
JPH07504954A (en) 1995-06-01
US5469828A (en) 1995-11-28
JP2867334B2 (en) 1999-03-08
CA2127801A1 (en) 1993-09-16
AU681827B2 (en) 1997-09-04

Similar Documents

Publication Publication Date Title
EP0629265B1 (en) Fuel injecting device working according to the solid energy accumulator principle, for internal combustion engines
EP0685646B1 (en) Fuel injection device for internal combustion engines
DE3700687C2 (en) Fuel injection system for an internal combustion engine
DE4233273C2 (en) High pressure pump for a fuel injection system with a common pressure line (common rail)
DE60123628T2 (en) Electronically controlled injector
DE60126173T2 (en) Solenoid valve and fuel injector using the same
DE4206817C2 (en) Fuel injection device based on the solid-state energy storage principle for internal combustion engines
EP0764254B1 (en) Oil burner
DE102010063589A1 (en) Constant residual pressure valve
DE102009027214B4 (en) Fuel injection device
EP0603616A1 (en) Fuel injection valve
WO1995034786A9 (en) OIL BURNER
WO1996034196A1 (en) Fuel injection device for internal combustion engines
EP1861617B1 (en) Fuel injection device
DE69920825T2 (en) Fuel injection pump with storage for steam prevention
EP0656472B1 (en) Fuel injection device for pilot and main injection
DE19523878C2 (en) Injection device for injecting fuel and a second fluid into a combustion chamber of a diesel engine
DE19515774C2 (en) Fuel injection device for internal combustion engines
EP2166217B1 (en) Combustion engine
DE3716173A1 (en) Pre-Injection Valve
DE19746949A1 (en) Adjustable fuel injection system for IC engine
EP0962649A1 (en) Fuel injection apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940503

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT SE

17Q First examination report despatched

Effective date: 19950919

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FICHT GMBH & CO. KG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT SE

DX Miscellaneous (deleted)
REF Corresponds to:

Ref document number: 154100

Country of ref document: AT

Date of ref document: 19970615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59306679

Country of ref document: DE

Date of ref document: 19970710

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970704

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990330

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000304

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020306

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020527

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030226

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030310

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030313

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

BERE Be: lapsed

Owner name: *FICHT G.M.B.H. & CO. K.G.

Effective date: 20030331

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041001

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050304