EP0597522B1 - Verfahren zur selektiven Flotation eines sulfidischen Kupfer-Blei-Zinkerzes - Google Patents

Verfahren zur selektiven Flotation eines sulfidischen Kupfer-Blei-Zinkerzes Download PDF

Info

Publication number
EP0597522B1
EP0597522B1 EP93203068A EP93203068A EP0597522B1 EP 0597522 B1 EP0597522 B1 EP 0597522B1 EP 93203068 A EP93203068 A EP 93203068A EP 93203068 A EP93203068 A EP 93203068A EP 0597522 B1 EP0597522 B1 EP 0597522B1
Authority
EP
European Patent Office
Prior art keywords
flotation
redox potential
copper
ore
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93203068A
Other languages
English (en)
French (fr)
Other versions
EP0597522A1 (de
Inventor
Ali-Naghi Dr. Beyzavi
Leo Kitschen
Friedrich Rosenstock
Horst Dittmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0597522A1 publication Critical patent/EP0597522A1/de
Application granted granted Critical
Publication of EP0597522B1 publication Critical patent/EP0597522B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • B03D1/06Froth-flotation processes differential

Definitions

  • the present invention relates to a process for the selective flotation of a sulfidic copper-lead-zinc ore, wherein the raw ore is ground and slurried with water, the suspension formed is aerated to set a certain redox potential, then successively with SO2, with Ca (OH) 2 and is conditioned with collectors and foamers and then the Cu flotation takes place.
  • the ore was finely ground, then slurried in water, then the suspension was filtered and the filter cake was washed intensively with fresh water to remove the so-called toxic "constituents", e.g. B. S2 ⁇ , S2O32 ⁇ , S4O62 ⁇ , SO32 ⁇ and SO42 ⁇ to remove.
  • the solids were reslurried and the slurry was first aerated to set a certain redox potential, then conditioned with SO2, then conditioned with CaO and finally with collectors and foamers.
  • the redox potential and the Oxygen content and the pH values measured.
  • the redox potential selected for the Cu flotation was adjusted by the amount of oxygen supplied in the aeration before conditioning with SO2.
  • the invention has for its object to provide an economical method for flotation of a sulfidic copper-lead-zinc ore, wherein the maximum yield of copper with the highest selectivity for the copper and with minimal losses of lead and zinc is obtained in the copper flotation.
  • the optimal redox potential is set during aeration before SO2 conditioning, this value increases further during flotation.
  • redox potentials are achieved in the Cu flotation, in which other metal sulfides, such as PbS (galena) and ZnS (zinc blende) are activated and discharged with the foam of the Cu flotation, which reduces the selectivity of the copper in the Cu flotation.
  • Cu flotation is to be understood as the flotation stage in which the copper is applied.
  • the non-selectivity also results in losses of Pb or / and Zn.
  • the redox potential is to be 70 to 90% of the redox potential required for selective copper flotation, 70 to 90% of the amount of oxygen required to achieve the optimal redox potential is introduced during the aeration.
  • SO2 it has proven to be very advantageous to add 1000 g of SO2 per ton of solid to the slurry.
  • a preferred embodiment of the invention is that the optimum redox potential desired for Cu flotation is 60 to 75 mV. It has advantageously been found that for copper-lead-zinc ores, the 0.6 to 1.4% by weight of Cu, 0.6 to 1.4% by weight of Pb and 2.0 to 3.0% by weight Contain Zn, with which the highest yield of copper and the highest selectivity for copper in the Cu flotation were achieved with the Cu flotation.
  • a preferred embodiment of the invention is that the optimum redox potential desired for Cu flotation is from 155 to 170 mV. It has been found to be advantageous for copper-lead-zinc ores containing 4 to 6% by weight of Cu, 0.1 to 0.5% by weight of Pb and 11.0 to 12.5% by weight of Zn of copper flotation under these conditions, the highest copper yield and the highest selectivity for copper were achieved in the copper flotation.
  • a preferred embodiment of the invention is that the optimum redox potential desired for Cu flotation is from 325 to 340 mV. It has advantageously been found that copper-lead-zinc ores containing 0.4 to 1.5% by weight of Cu, 0.01 to 0.1% by weight of Pb and 0.02 to 0.15% by weight of Zn contain, with the copper flotation under these conditions the highest yield of copper and the highest selectivity for copper in the copper flotation were achieved.
  • a preferred embodiment of the invention is that when the suspension is aerated before the Cu flotation, a redox potential of 75 to 85% of the optimum redox potential desired for the Cu flotation is set.
  • a preferred embodiment of the invention is that the Cu flotation takes place at a pH of 9.0 to 9.7.
  • a particularly preferred embodiment of the invention is that the Cu flotation takes place at a pH of 9.3 to 9.5.
  • a preferred embodiment of the invention is that the suspension resulting from the Cu flotation is adjusted to a pH of 9.3 to 12 with Ca (OH) 2, is used in a Pb flotation with collectors and foamers and Pb with the foam is removed. It has advantageously been found that the application of Pb is particularly high in this pH range and the selectivity of Pb over Zn is very favorable.
  • a particularly preferred embodiment of the invention is that the optimum redox potential of 80 to 360 mV desired for the Pb flotation is set by the ventilation in the Pb flotation. It has advantageously been found that in the Pb flotation, a very particularly high yield of Pb and a very particularly favorable selectivity towards Zn are achieved in this area for the redox potential.
  • a preferred embodiment of the invention is that the resulting as the Pb flotation suspension is conditioned with CuSO4 and then adjusted to a pH of 11.5 to 12.5 with Ca (OH) 2, with collectors and foamers in Zn flotation is used and Zn is removed with the foam. It has proven to be advantageous to set the course of the Pb flotation in this pH range, in which a particularly large amount of Zn present could be observed.
  • a particularly preferred embodiment of the invention is that the optimum redox potential of 110 to 450 mV desired for the Zn flotation is set by the ventilation during the Zn flotation. It has advantageously been found that the application of Zn in this area is particularly high for the redox potential.
  • Comparative Example 2 Ore type E 1 6) Staging 3) Salary 4) Spread 5) mV % Cu Pb Zn Cu Pb Zn I. 68 5.7 12.1 0.80 1.50 80.2 5.4 3.6 2) the comparative example is taken from the prior art publication by AN Beysavi and LP Kitschen. 3) In the comparative example, discharge means the percentage of the ore used that was discharged with the flotation foam. In Examples 1 to 3, discharge means the balanced amount of solids discharged. 4) In the comparative example, content means the percentage distribution in the discharge. In Examples 1 to 3, content means the proportions of Cu, Pb and Zn in% by weight in the discharge.
  • the comparative example shows what percentage of the amounts of Cu, Pb and Zn originally present in the ore were discharged.
  • yield reflects the weight percentages of Cu, Pb and Zn, based on the amounts of Cu, Pb and Zn originally present in the ore.
  • the appropriate amount of lime milk (suspension of 10 g CaO and 90 ml H2O) was then added to adjust the desired pH to 9.5. Lime milk lasted 2 minutes. A mixture of 40 mg Na isopropyl xanthate and 40 mg Hostaflot (R) was then added to the flotation cell as a collector in 1923. The action time of the collectors was 5 minutes.
  • discharge means the percentage of the ore used that was discharged with the flotation foam.
  • discharge means the balanced amount of solids discharged.
  • content means the percentage distribution in the discharge.
  • content means the proportions of Cu, Pb and Zn in% by weight in the discharge.
  • the comparative example shows what percentage of the amounts of Cu, Pb and Zn originally present in the ore were discharged.
  • yield reflects the weight percentages of Cu, Pb and Zn, based on the amounts of Cu, Pb and Zn originally present in the ore.
  • Example 2 carried out as Example 1, with the difference that before the SO2 addition as much air was introduced into the flotation cell until a redox potential of 142 mV was set and the optimal redox potential of 164 mV was measured at the end of the flotation.
  • discharge means the percentage of the ore used that was discharged with the flotation foam.
  • discharge means the balanced amount of solids discharged.
  • content means the percentage distribution in the discharge.
  • Example 1 to 3 content means the proportions of Cu, Pb and Zn in% by weight in the discharge.
  • the comparative example shows what percentage of the amounts of Cu, Pb and Zn originally present in the ore were discharged.
  • yield reflects the weight percentages of Cu, Pb and Zn, based on the amounts of Cu, Pb and Zn originally present in the ore.
  • Example 2 carried out as Example 1, with the difference that before the SO2 addition as much air was introduced into the flotation cell until a redox potential of 262 mV was set and the optimal redox potential of 327 mV was measured at the end of the flotation.
  • discharge means the percentage of the ore used that was discharged with the flotation foam.
  • discharge means the balanced amount of solids discharged.
  • content means the percentage distribution in the discharge.
  • Example 1 to 3 content means the proportions of Cu, Pb and Zn in% by weight in the discharge.
  • the comparative example shows what percentage of the amounts of Cu, Pb and Zn originally present in the ore were discharged.
  • yield reflects the weight percentages of Cu, Pb and Zn, based on the amounts of Cu, Pb and Zn originally present in the ore.

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treating Waste Gases (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur selektiven Flotation eines sulfidischen Kupfer-Blei-Zinkerzes, wobei das Roherz gemahlen und mit Wasser aufgeschlämmt wird, die gebildete Suspension zur Einstellung eines bestimmten Redoxpotentials belüftet wird, dann nacheinander mit SO₂, mit Ca(OH)₂ sowie mit Sammlern und Schäumern konditioniert wird und anschließend die Cu-Flotation erfolgt.
  • Der Einfluß der Sauerstoffkonzentration, des Redoxpotentials und des pH-Wertes des Flotationsmediums für die Höhe des Ausbringens und für die Qualität der Selektivität einzelner durch die Flotation aus Erzen gewonnenen Metalle ist als Stand der Technik mehrfach beschrieben.
  • In "The role of oxygen in sulfide ore flotation", Panaiotov, V.: Semkov, N.; Arnaudov, R.: Mirchev, V. (Bulg.) Obogashch. Rud (Leningrad) 1986, (4), 16 - 18 (Russ) wird beschrieben, daß die Erhöhung der Sauerstoffkonzentration unterschiedliche Wirkungen auf das Ausbringen unterschiedlicher Metalle hat. Desweiteren wird gefolgert, daß die Kontrolle des Redoxpotentials zur Optimierung des selektiven Ausbringens von Mineralien aus komplexen Erzen durch Flotation verwendet werden kann.
  • In "Algorithms of the conditioning of a slurry of uniform copper-nickel sulfide ores", K. G. Bakinov, Yu. V. Shtabov (USSR) Teor. Osn. Kontrol Protsessov of Flotatsii 1980, 198 bis 204 (Russ) wird die Verbesserung der Flotation sulfidischer polymetallischer Erze durch eine Optimierung des Redoxpotentials beschrieben.
  • In "Evaluation of processes occuring the flotation of pulp", S. B. Leonov, O. N. Bel'kova, Veshchestv. Sostav Obogatimost Miner. Syr'ya 1978, 74-8 (Russ) werden Wirkungen beschrieben, die sich u. a. durch die Redoxpotentiale in der wässrigen Phase und in sulfidischen Mineralien in der Flotationstrübe und der Hydrophobierung der sulfidischen Erze ergeben. Weiterhin wird die selektive Flotation von Bleisulfid, Zinksulfid und Kupfersulfid beschrieben.
  • Aus der offengelegten sowjetischen Patentanmeldung SU-A-1 066 657 geht ein Verfahren hervor, bei dem das Redoxpotential durch Verändern des Grades der Belüftung, nämlich durch Verändern der Belüftungsmenge in die Trübe erreicht wird. Dabei wird die Belüftungszeit, sowie die Zeit der Änderungsraten der Redoxpotentiale über die gesamte gemessene Belüftungszeit in Minuten gemessen.
  • Aus XVI International Mineral Processing Congress, edited by E. Forssberg, Elsevier Science Publishers B. V., Amsterdam 1988 "Selective Flotation of a sulfidic complex ores with special reference to the interaction of specific surface, redox potential and oxygen content", A. N. Beysavi, L. P. Kitschen, Seite 565 - 578, geht die selektive Cu-Flotation aus Kupfer-Blei-Zinkerzen hervor, die insbesondere reich an Pyrit sind. Dabei wurde gezeigt, daß eine optimale Einstellung des Redoxpotentials vor der ersten Flotationsstufe, daher der Kupfer-Flotationsstufe, eine bemerkenswerte Verbesserung der Selektivität bewirkt. Desweiteren geht aus der Publikation hervor, daß das Redoxpotential selbst von der Korngröße des gemahlenen Erzes, dem pH-Wert und den Regulatoren abhängt. Das Erz wurde fein gemahlen, dann in Wasser aufgeschlämmt, danach wurde die Suspension filtriert und der Filterkuchen intensiv mit frischem Wasser gewaschen, um die sogenannten toxischen "Bestandteile", z. B. S²⁻, S₂O₃²⁻, S₄O₆²⁻, SO₃²⁻ und SO₄²⁻ zu entfernen. Die Feststoffe wurden erneut aufgeschlämmt und die Trübe zunächst belüftet, um ein bestimmtes Redoxpotential einzustellen, dann mit SO₂ konditioniert, danach mit CaO und schließlich mit Sammlern und Schäumern konditioniert. Während der gesamten Zeit wurden das Redoxpotential und der Sauerstoffgehalt sowie die pH-Werte gemessen. Dabei wurde das für die Cu-Flotation gewählte Redoxpotential durch die zugeführte Menge an Sauerstoff in der Belüftung vor der Konditionierung mit SO₂ eingestellt. Die Untersuchungen haben die große Abhängigkeit der Cu-Flotation von dem Redoxpotential gezeigt. Die Versuche wurden im Redoxpotentialbereich von -260 mV bis +183 mV durchgeführt. Es hat sich gezeigt, daß z. B. bei -260 mV der Schaum fast ausschließlich aus Pyrit besteht und nur 1,3 % des Feststoffs im Schaum Kupfer ist. Bei Redoxpotentialen von 171 mV bis 183 mV konnte gezeigt werden, daß bereits Bleiglanz beginnt in den Schaum überzugehen und daher 34 bis 41 % des im Erz vorhandenen Bleies bereits im Schaum vorhanden waren. Es konnte auch gezeigt werden, daß für die untersuchten Erze ein optimaler Bereich für das Redoxpotential existiert, in dem sowohl das Ausbringen für das Kupfer einen hohen Prozentsatz erreicht, wie auch eine gute Selektivität des Kupfers in der Cu-Flotation erhalten wird. Diese Publikation lehrt, daß sich die Werte für das Ausbringen des Kupfers und für die Selektivität der Kupfer-Abtrennung nicht mehr weiter optimieren lassen. Die anderen vorstehend diskutierten Publikationen enthalten auch keinen Hinweis darauf, wie das Ausbringen und die Selektivität weiter optimiert werden können.
  • Der Erfindung liegt die Aufgabe zugrunde, ein wirtschaftliches Verfahren zur Flotation eines sulfidischen Kupfer-Blei-Zinkerzes bereitzustellen, wobei in der Cu-Flotation das maximale Ausbringen an Kupfer mit der höchsten Selektivität für das Kupfer sowie mit minimalen Verlusten an Blei und Zink erhalten wird.
  • Die Aufgabe wird durch die im Kennzeichen des Patentanspruchs 1 genannten Verfahrensschritte (a), (b) und (c) gelöst.
  • Wird während der Belüftung vor der SO₂-Konditionierung das optimale Redoxpotential eingestellt, steigt dieser Wert während der Flotation weiter an. Dadurch werden in der Cu-Flotation Redoxpotentiale erreicht, bei denen andere Metallsulfide, wie PbS (Bleiglanz) und ZnS (Zinkblende) aktiviert werden und mit dem Schaum der Cu-Flotation ausgetragen werden, was die Selektivität des Kupfers in der Cu-Flotation mindert. Unter Cu-Flotation ist die Flotationsstufe zu verstehen, in der das Ausbringen des Kupfers erfolgt. Neben der Verschlechterung der Qualität des Cu-Konzentrats bringt die Unselektivität auch Verluste an Pb- oder/und Zn. Werden 70 bis 90% des optimalen Redoxpotentials vor der Cu-Flotation, daher vor der SO₂-Konditionierung erreicht, sind 90 % des Kupferkies' (CuFeS₂) bereits vor der Cu-Flotation aktiviert, wobei PbS und ZnS noch nicht aktiviert sind. Erst während der Cu-Flotation erreicht das Redoxpotential seinen optimalen Wert. Zu diesem Zeitpunkt ist der Übergang des Kupfers aus der Trübe in den Schaum beendet und Kupfer mit dem Schaum bereits ausgetragen. Das Kupfer kann somit selektiv mit dem Schaum ausgetragen werden. Das Redoxpotential während der Belüftung vor der SO₂-Konditionierung wird dadurch eingestellt, daß die entsprechende prozentuale Menge des Sauerstoffes, die notwendig ist, um den optimalen Wert für das Redoxpotential zu erreichen, eingeleitet wird. Wenn das Redoxpotential 70 bis 90 % des für die selektive Kupferflotation erforderlichen Redoxpotentials betragen soll, werden 70 bis 90 % der für die Erreichung des optimalen Redoxpotentials erforderlichen Menge Sauerstoffs während der Belüftung eingeleitet. Bei der anschließenden SO₂-Zugabe hat es sich als sehr günstig erwiesen, 1000 g SO₂ je Tonne Feststoff der Trübe zuzusetzen.
  • Eine bevorzugte Ausgestaltung der Erfindung ist, daß das für die Cu-Flotation gewünschte optimale Redoxpotential 60 bis 75 mV beträgt. Es wurde vorteilhafterweise gefunden, daß für Kupfer-Blei-Zinkerze, die 0,6 bis 1,4 Gew.-% Cu, 0,6 bis 1,4 Gew.-% Pb und 2,0 bis 3,0 Gew-% Zn enthalten, bei der Cu-Flotation unter diesen Bedingungen das höchste Ausbringen an Kupfer und die höchste Selektivität für Kupfer in der Cu-Flotation erreicht wurden.
  • Eine bevorzugte Ausgestaltung der Erfindung ist, daß das für die Cu-Flotation gewünschte optimale Redoxpotential von 155 bis 170 mV beträgt. Es wurde vorteilhafterweise gefunden, daß für Kupfer-Blei-Zinkerze, die 4 bis 6 Gew.-% Cu, 0,1 bis 0,5 Gew.-% Pb und 11,0 bis 12,5 Gew-% Zn enthalten, bei der Cu-Flotation unter diesen Bedingungen das höchste Ausbringen an Kupfer und die höchste Selektivität für Kupfer in der Cu-Flotation erreicht wurden.
  • Eine bevorzugte Ausgestaltung der Erfindung ist, daß das für die Cu-Flotation gewünschte optimale Redoxpotential von 325 bis 340 mV beträgt. Es wurde vorteilhafterweise gefunden, daß Kupfer-Blei-Zinkerze, die 0,4 bis 1,5 Gew.-% Cu, 0,01 bis 0,1 Gew.-% Pb und 0,02 bis 0,15 Gew-% Zn enthalten, bei der Cu-Flotation unter diesen Bedingungen das höchste Ausbringen an Kupfer und die höchste Selektivität für Kupfer in der Cu-Flotation erreicht wurden.
  • Eine bevorzugte Ausgestaltung der Erfindung ist, daß bei der Belüftung der Suspension vor der Cu-Flotation ein Redoxpotential von 75 bis 85% des für die Cu-Flotation gewünschten optimalen Redoxpotentials eingestellt wird.
  • Eine bevorzugte Ausgestaltung der Erfindung ist, daß die Cu-Flotation bei einem pH-Wert von 9,0 bis 9,7 verläuft.
  • Eine besonders bevorzugte Ausgestaltung der Erfindung ist, daß die Cu-Flotation bei einem pH-Wert von 9,3 bis 9,5 verläuft.
  • Eine bevorzugte Ausgestaltung der Erfindung ist, daß die als Ablauf der Cu-Flotation anfallende Suspension mit Ca(OH)₂ auf einen pH-Wert von 9,3 bis 12 eingestellt wird, mit Sammlern und Schäumern in eine Pb-Flotation eingesetzt wird und Pb mit dem Schaum entfernt wird. Es wurde vorteilhafterweise gefunden, daß in diesem pH-Bereich das Ausbringen an Pb besonders hoch ist und die Selektivität von Pb gegenüber Zn sehr günstig ist.
  • Eine besonders bevorzugte Ausgestaltung der Erfindung ist, daß das für die Pb-Flotation gewünschte optimale Redoxpotential von 80 bis 360 mV durch die Belüftung bei der Pb-Flotation eingestellt wird. Es wurde vorteilhafterweise gefunden, daß in der Pb-Flotation bevorzugt in diesem Bereich für das Redoxpotential ein ganz besonders hohes Ausbringen an Pb und eine ganz besonders günstige Selektivität gegenüber Zn erreicht werden.
  • Eine bevorzugte Ausgestaltung der Erfindung ist, daß die als Ablauf der Pb-Flotation anfallende Suspension mit CuSO₄ konditioniert wird und anschließend mit Ca(OH)₂ auf einen pH-Wert von 11,5 bis 12,5 eingestellt wird, mit Sammlern und Schäumern in eine Zn-Flotation eingesetzt wird und Zn mit dem Schaum entfernt wird. Es hat sich als vorteilhaft erwiesen, den Ablauf der Pb-Flotation in diesem pH-Bereich einzustellen, in dem ein besonders großes Ausbringen an vorhandenem Zn beobachtet werden konnte.
  • Eine besonders bevorzugte Ausgestaltung der Erfindung ist, daß das für die Zn-Flotation gewünschte optimale Redoxpotential von 110 bis 450 mV durch die Belüftung bei der Zn-Flotation eingestellt wird. Es wurde vorteilhafterweise gefunden, daß das Ausbringen an Zn in diesem Bereich für das Redoxpotential ganz besonders hoch ist.
  • Die Erfindung wird anhand von Beispielen erläutert.
  • BEISPIELE
  • Die Versuche wurden mit den nachstehend aufgeführten Erzen mit den tabellarisch verzeichneten Gehalten an Cu, Pb und Zn durchgeführt.
    Erztyp Cu Pb Zn Eopt 1)
    Gew.-% Gew.-% Gew.-% mV
    Portugiesiches Erz I 0,85 0,85 2,37 68
    Türkisches Erz (Cayeli) II 5,00 0,21 11,7 164
    Türkisches Erz (Küre) III 0,97 0,05 0,07 327
    1) optimales Redoxpotential
  • Vergleichsbeispiel2)
    Erztyp E 16) Austragung3) Gehalt4) Ausbringen5)
    mV % Cu Pb Zn Cu Pb Zn
    I 68 5,7 12,1 0,80 1,50 80,2 5,4 3,6
    2) das Vergleichsbeispiel ist der als Stand der Technik gewürdigten Publikation von A. N. Beysavi und L. P. Kitschen entnommen.
    3) Austragung bedeutet im Vergleichsbeispiel die prozentuale Menge des eingesetzten Erzes, die mit dem Flotationsschaum ausgetragen wurde. In den Beispielen 1 bis 3 bedeutet Austragung die ausgewogene Menge der ausgetragenen Feststoffe.
    4) Gehalt bedeutet im Vergleichsbeispiel die prozentuale Verteilung in der Austragung. In den Beispielen 1 bis 3 bedeutet Gehalt die Anteile von Cu, Pb und Zn in Gew.-% in der Austragung.
    5) Im Vergleichsbeispiel wird angegeben, wieviel Prozent der im Erz ursprünglich vorhandenen Mengen an Cu, Pb und Zn ausgetragen wurden. In den Beispielen 1 bis 3 gibt Ausbringen die Gew.-%-Mengen von Cu, Pb und Zn, bezogen auf die ursprünglich im Erz vorhandenen Mengen von Cu, Pb und Zn wieder.
    6) Redoxpotential, eingestellt in der Belüftung vor der SO₂-Einleitung (im Vergleichsbeispiel = optimales Redoxpotential)
  • Beispiel 1
  • Ein kg Erz (Erztyp I) wurde in einer Naßmühle auf eine Korngröße von d₈₀ = 18 µm gemahlen und in eine Flotationszelle (2 Liter) gegeben. Es wurde soviel Wasser zugegeben, bis ein Feststoffgehalt von 500 g/l in der Suspension erreicht wurde. Dann wurde so lange Luft (2 l/min) in die Flotationszelle eingeleitet, bis das Redoxpotential von 55 mV eingestellt war. Nach Einstellen des Redoxpotentials von 55 mV wurde die Einleitung von Luft abgestellt. Dann wurden 20 ml einer 5 Gew.-% SO₂ enthaltenden wässrigen Lösung in die Flotationszelle gegeben. Die Wirkungszeit der SO₂ enthaltenden wässrigen Lösung dauerte 5 Minuten. Danach wurde zur Einstellung des gewünschten pH-Wertes von 9,5 die entsprechende Menge Kalkmilch (Suspension aus 10 g CaO und 90 ml H₂O) hinzugegeben. Die Wirkungszeit der Kalkmilch dauerte 2 min. Dann wurde ein Gemisch aus 40 mg Na-Isopropylxanthat und 40 mg Hostaflot(R) 1923 als Sammler in die Flotationszelle gegeben. Die Wirkungszeit der Sammler betrug 5 Minuten.
  • Dann wurden 20 mg Flotol(R)B als Schäumer in die Flotationszelle gegeben. Die Wirkungszeit des Schäumers betrug 1 min. Dann wurde Luft (2 l/min) in die Flotationszelle geleitet. Der Flotationsschaum wurde fortlaufend beobachtet, indem regelmäßig Proben des neugebildeten Schaumes entnommen und mikroskopisch untersucht wurden. Die Flotation wurde solange fortgesetzt, bis die Austragung von Kupfer im neugebildeten Schaum gemäß der mikroskopischen Untersuchung sehr gering wurde. Danach wurde die Flotation beendet. Beim Beenden der Flotation wurde der für die Cu-Flotation gewünschte optimale Wert für das Redoxpotential von 68 mV gemessen. Die Menge des ausgetragenen Feststoffs im Flotationsschaum betrug 50 g. Die Versuchsergebnisse gehen aus der nachstehend aufgeführten Tabelle hervor.
    Erztyp E 16) E 27) Austragung3) Gehalt4) Ausbringen5)
    mV mV g Cu Pb Zn Cu Pb Zn
    I 55 68 50 13,9 0,75 1,35 81,3 4,4 2,9
    3) Austragung bedeutet im Vergleichsbeispiel die prozentuale Menge des eingesetzten Erzes, die mit dem Flotationsschaum ausgetragen wurde. In den Beispielen 1 bis 3 bedeutet Austragung die ausgewogene Menge der ausgetragenen Feststoffe.
    4) Gehalt bedeutet im Vergleichsbeispiel die prozentuale Verteilung in der Austragung. In den Beispielen 1 bis 3 bedeutet Gehalt die Anteile von Cu, Pb und Zn in Gew.-% in der Austragung.
    5) Im Vergleichsbeispiel wird angegeben, wieviel Prozent der im Erz ursprünglich vorhandenen Mengen an Cu, Pb und Zn ausgetragen wurden. In den Beispielen 1 bis 3 gibt Ausbringen die Gew.-%-Mengen von Cu, Pb und Zn, bezogen auf die ursprünglich im Erz vorhandenen Mengen von Cu, Pb und Zn wieder.
    6) Redoxpotential, eingestellt in der Belüftung vor der SO₂-Einleitung (im Vergleichsbeispiel = optimales Redoxpotential)
    7) Redoxpotential, gemessen in der Cu-Flotation (in Beispielen 1 bis 3 = optimales Redoxpotential)
  • Beispiel 2
  • durchgeführt wie Beispiel 1, mit dem Unterschied, daß vor der SO₂-Zugabe soviel Luft in die Flotationszelle eingeleitet wurde, bis ein Redoxpotential von 142 mV eingestellt war und das optimale Redoxpotential von 164 mV bei Beendigung der Flotation gemessen wurde.
    Erztyp E 16) E 27) Austragung3) Gehalt4) Ausbringen5)
    mV mV g Cu Pb Zn Cu Pb Zn
    II 142 164 52 23 0,3 3,8 88,0 30,0 6,9
    3) Austragung bedeutet im Vergleichsbeispiel die prozentuale Menge des eingesetzten Erzes, die mit dem Flotationsschaum ausgetragen wurde. In den Beispielen 1 bis 3 bedeutet Austragung die ausgewogene Menge der ausgetragenen Feststoffe.
    4) Gehalt bedeutet im Vergleichsbeispiel die prozentuale Verteilung in der Austragung. In den Beispielen 1 bis 3 bedeutet Gehalt die Anteile von Cu, Pb und Zn in Gew.-% in der Austragung.
    5) Im Vergleichsbeispiel wird angegeben, wieviel Prozent der im Erz ursprünglich vorhandenen Mengen an Cu, Pb und Zn ausgetragen wurden. In den Beispielen 1 bis 3 gibt Ausbringen die Gew.-%-Mengen von Cu, Pb und Zn, bezogen auf die ursprünglich im Erz vorhandenen Mengen von Cu, Pb und Zn wieder.
    6) Redoxpotential, eingestellt in der Belüftung vor der SO₂-Einleitung (im Vergleichsbeispiel = optimales Redoxpotential)
    7) Redoxpotential, gemessen in der Cu-Flotation (in Beispielen 1 bis 3 = optimales Redoxpotential)
  • Beispiel 3
  • durchgeführt wie Beispiel 1, mit dem Unterschied, daß vor der SO₂-Zugabe soviel Luft in die Flotationszelle eingeleitet wurde, bis ein Redoxpotential von 262 mV eingestellt war und das optimale Redoxpotential von 327 mV bei Beendigung der Flotation gemessen wurde.
    Erztyp E 16) E 27) Austragung3) Gehalt4) Ausbringen5)
    mV mV g Cu Pb Zn Cu Pb Zn
    III 262 327 54 9,5 0,05 0,22 81,0 8,3 26,0
    3) Austragung bedeutet im Vergleichsbeispiel die prozentuale Menge des eingesetzten Erzes, die mit dem Flotationsschaum ausgetragen wurde. In den Beispielen 1 bis 3 bedeutet Austragung die ausgewogene Menge der ausgetragenen Feststoffe.
    4) Gehalt bedeutet im Vergleichsbeispiel die prozentuale Verteilung in der Austragung. In den Beispielen 1 bis 3 bedeutet Gehalt die Anteile von Cu, Pb und Zn in Gew.-% in der Austragung.
    5) Im Vergleichsbeispiel wird angegeben, wieviel Prozent der im Erz ursprünglich vorhandenen Mengen an Cu, Pb und Zn ausgetragen wurden. In den Beispielen 1 bis 3 gibt Ausbringen die Gew.-%-Mengen von Cu, Pb und Zn, bezogen auf die ursprünglich im Erz vorhandenen Mengen von Cu, Pb und Zn wieder.
    6) Redoxpotential, eingestellt in der Belüftung vor der SO₂-Einleitung (im Vergleichsbeispiel = optimales Redoxpotential)
    7) Redoxpotential, gemessen in der Cu-Flotation (in Beispielen 1 bis 3 = optimales Redoxpotential)

Claims (11)

  1. Verfahren zur selektiven Flotation eines sulfidischen Kupfer-Blei-Zinkerzes, wobei das Roherz gemahlen und mit Wasser aufgeschlämmt wird, die gebildete Suspension zur Einstellung eines bestimmten Redoxpotentials belüftet wird, dann nacheinander mit SO₂, mit Ca(OH)₂ sowie mit Sammlern und Schäumern konditioniert wird und anschließend die Cu-Flotation erfolgt, gekennzeichnet, durch die Verfahrensschritte
    a) Belüften der Suspension vor der Cu-Flotation, wobei durch Einleiten einer entsprechenden Menge an Sauerstoff ein Redoxpotential von 70 bis 90 % des für die Cu-Flotation gewünschten optimalen Redoxpotentials eingestellt wird,
    b) Konditionieren der Suspension aus (a) mit SO₂, Ca(OH)₂ sowie mit mindestens einem Sammler und Schäumer und
    c) Belüften der konditionierten Suspension zur Cu-Flotation, wobei das gewünschte optimale Redoxpotential von 60 bis 340 mV eingestellt wird, die Cu-Flotation bei einem pH-Wert von 8,5 bis 10,5 verläuft und Cu mit dem Schaum aus der Flotation entfernt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das für die Cu-Flotation gewünschte optimale Redoxpotential 60 bis 75 mV beträgt.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das für die Cu-Flotation gewünschte optimale Redoxpotential 155 bis 170 mV beträgt.
  4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das für die Cu-Flotation gewünschte optimale Redoxpotential 325 bis 340 mV beträgt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß bei der Belüftung der Suspension vor der Cu-Flotation ein Redoxpotential von 75 bis 85 % des für die Cu-Flotation gewünschten optimalen Redoxpotentials eingestellt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Cu-Flotation bei einem pH-Wert von 9,0 bis 9,7 verläuft.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Cu-Flotation bei einem pH-Wert von 9,3 bis 9,5 verläuft.
  8. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die als Ablauf der Cu-Flotation anfallende Suspension mit Ca(OH)₂ auf einen pH-Wert von 9,3 bis 12 eingestellt wird, mit Sammlern und Schäumern in eine Pb-Flotation eingesetzt wird und Pb mit dem Schaum entfernt wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das für die Pb-Flotation gewünschte Redoxpotential von 80 bis 360 mV durch die Belüftung bei der Pb-Flotation eingestellt wird.
  10. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die als Ablauf der Pb-Flotation anfallende Suspension mit CuSO₄ konditioniert und anschließend mit Ca(OH)₂ auf einen pH-Wert von 11,5 bis 12,5 eingestellt wird, mit Sammlern und Schäumern in eine Zn-Flotation eingesetzt wird und Zn mit dem Schaum entfernt wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß das für die Zn-Flotation gewünschte Redoxpotential von 110 bis 450 mV durch die Belüftung bei der Zn-Flotation eingestellt wird.
EP93203068A 1992-11-12 1993-11-02 Verfahren zur selektiven Flotation eines sulfidischen Kupfer-Blei-Zinkerzes Expired - Lifetime EP0597522B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4238244A DE4238244C2 (de) 1992-11-12 1992-11-12 Verfahren zur selektiven Flotation eines sulfidischen Kupfer-Blei-Zinkerzes
DE4238244 1992-11-12

Publications (2)

Publication Number Publication Date
EP0597522A1 EP0597522A1 (de) 1994-05-18
EP0597522B1 true EP0597522B1 (de) 1996-04-17

Family

ID=6472748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93203068A Expired - Lifetime EP0597522B1 (de) 1992-11-12 1993-11-02 Verfahren zur selektiven Flotation eines sulfidischen Kupfer-Blei-Zinkerzes

Country Status (9)

Country Link
US (1) US5439115A (de)
EP (1) EP0597522B1 (de)
CN (1) CN1087559A (de)
AU (1) AU661618B2 (de)
CA (1) CA2107275A1 (de)
DE (2) DE4238244C2 (de)
ES (1) ES2086872T3 (de)
TR (1) TR28263A (de)
ZA (1) ZA938467B (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2082831C (en) * 1992-11-13 1996-05-28 Sadan Kelebek Selective flotation process for separation of sulphide minerals
AU691312B2 (en) * 1994-07-06 1998-05-14 Boc Gases Australia Limited Physical separation processes for mineral slurries
AUPM668094A0 (en) * 1994-07-06 1994-07-28 Hoecker, Walter Physical separation processes for mineral slurries
JPH08224497A (ja) * 1995-02-20 1996-09-03 Sumitomo Metal Mining Co Ltd 非鉄金属有価鉱物の浮遊選鉱方法
AUPO590997A0 (en) * 1997-03-26 1997-04-24 Boc Gases Australia Limited A process to improve mineral flotation separation by deoxygenating slurries and mineral surfaces
US6041941A (en) * 1997-06-26 2000-03-28 Boc Gases Australia Limited Reagent consumption in mineral separation circuits
US6170669B1 (en) * 1998-06-30 2001-01-09 The Commonwealth Of Australia Commonwealth Scientific And Industrial Research Organization Separation of minerals
AU775403B2 (en) * 2000-03-03 2004-07-29 Bhp Billiton Nickel West Pty Ltd Separation of minerals
BR0314395A (pt) * 2002-09-16 2005-07-19 Wmc Resources Ltd Processo de flotação contìnua para sulfuretos que contêm ferro em minérios e aparelho para condicionar continuamente esses sulfuretos
FI119226B (fi) * 2007-02-02 2008-09-15 Outotec Oyj Menetelmä kuparin selektiiviseksi vaahdottamiseksi
CN101172267B (zh) * 2007-12-03 2011-05-11 西部矿业股份有限公司 一种提高复杂硫化铜矿矿石浮选指标的工艺
US8163258B2 (en) * 2009-10-05 2012-04-24 Korea Institute Of Geoscience And Mineral Resources (Kigam) Pyrometallurgical process for treating molybdenite containing lead sulfide
US9346062B2 (en) 2009-12-04 2016-05-24 Barrick Gold Corporation Separation of copper minerals from pyrite using air-metabisulfite treatment
CN101786049A (zh) * 2010-04-13 2010-07-28 中南大学 一种高氧化率铅锌硫化矿浮选方法
FI122099B (fi) * 2010-04-30 2011-08-31 Outotec Oyj Menetelmä arvometallien talteen ottamiseksi
CN105689151B (zh) * 2014-11-25 2018-03-16 北京有色金属研究总院 一种从高含量泥化脉石的金精矿浸渣中回收铅、锌和硫的工艺
CN105013618A (zh) * 2015-07-29 2015-11-04 昆明理工大学 一种氧化锌矿中矿矿浆加热浮选法
CN106269290B (zh) * 2016-10-26 2018-07-27 中国科学院过程工程研究所 从高品位硫精矿中除铜铅锌的浮选方法
CN106881201B (zh) * 2017-01-20 2019-02-22 内蒙古科技大学 一种基于表面氧化-选择性沉淀原理的铜铅浮选分离方法
CN110465411B (zh) * 2019-09-05 2021-06-11 紫金矿业集团股份有限公司 铜铅硫化矿物的优先浮选方法
CN111790527A (zh) * 2020-07-17 2020-10-20 厦门紫金矿冶技术有限公司 一种高硫铜锌矿的低碱分离方法
CN112916196B (zh) * 2020-12-29 2022-08-23 内蒙古黄岗矿业有限责任公司 一种从低铜高锌硫化矿中获取独立铜、锌精矿的选矿工艺
CN115155820B (zh) * 2022-07-11 2024-07-23 中南大学 一种强化锌-硫分离浮选的方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1636974A (en) * 1927-07-26 Selective flotation of minerals from crude ores
US1067485A (en) * 1911-09-01 1913-07-15 Minerals Separation Ltd Ore concentration.
US1678259A (en) * 1927-06-30 1928-07-24 Harold S Martin Process of concentrating mixed-sulphide ores
US1869532A (en) * 1927-10-04 1932-08-02 American Metal Co Ltd Process of separating ore
US1893517A (en) * 1930-08-19 1933-01-10 Gaudin Antoine Marc Separation of minerals by flotation
US1973558A (en) * 1931-12-15 1934-09-11 Frederic A Brinker Flotation method
US2048370A (en) * 1932-03-29 1936-07-21 Frederic A Brinker Method of froth flotation ore separation
US1955978A (en) * 1932-08-23 1934-04-24 Ruth Company Method of ore separation
US2150114A (en) * 1937-11-06 1939-03-07 American Cyanamid Co Differential flotation of lead-zinc ores
US2205194A (en) * 1939-04-24 1940-06-18 Combined Metals Reduction Comp Process of differential flotation of mixed sulphide ore
US2898196A (en) * 1953-10-22 1959-08-04 Sherritt Gordon Mines Ltd Method of treating pyrrhotitic mineral sulphides containing non-ferrous metal values for the recovery of said metal values and sulfur
US3102854A (en) * 1960-11-28 1963-09-03 Duval Sulphur & Potash Company Method of recovering molybdenite
DE1150031B (de) * 1961-11-24 1963-06-12 Unterharzer Berg Und Huettenwe Verfahren zur Flotation von Kupfer- und Bleimineralien aus fein verwachsenen komplexen und pyritischen Blei-Kupfer-Zink-Erzen
US3655044A (en) * 1970-01-20 1972-04-11 Anaconda Co Separation of molybdenum sulfide from copper sulfide with depressants
US3883421A (en) * 1972-09-12 1975-05-13 Dale Emerson Cutting Measurement of oxidation reduction potential in ore beneficiation
US4011072A (en) * 1975-05-27 1977-03-08 Inspiration Consolidated Copper Company Flotation of oxidized copper ores
SU629974A1 (ru) * 1977-02-16 1978-10-30 Всесоюзный Ордена Трудового Красного Знамени Научно-Исследовательский И Проектный Институт Механической Обработки Полезных Ископаемых Способ автоматического регулировани стадийного процесса флотации коллективного медно-свинцового концентрата
US4283017A (en) * 1979-09-07 1981-08-11 Amax Inc. Selective flotation of cubanite and chalcopyrite from copper/nickel mineralized rock
JPS5916503B2 (ja) * 1980-04-14 1984-04-16 同和鉱業株式会社 優先浮選法
SU1066657A1 (ru) * 1982-06-28 1984-01-15 Ленинградский Ордена Ленина,Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Горный Институт Им.Г.В.Плеханова Способ автоматического регулировани процесса подготовки руды к флотации
FI65025C (fi) * 1982-11-02 1984-03-12 Outokumpu Oy Foerfarande foer att flotatinsanrika komplexa metallfoereningar
US4460459A (en) * 1983-02-16 1984-07-17 Anschutz Mining Corporation Sequential flotation of sulfide ores
US4585549A (en) * 1984-01-30 1986-04-29 Exxon Research & Enginerring Company Flotation of upper zone copper sulfide ores
FI78990C (fi) * 1984-10-30 1989-10-10 Outokumpu Oy Foerfarande foer maetning och reglering av den elektrokemiska potentialen och/eller komponenthalten i en behandlingsprocess av vaerdematerial.
CA1238430A (en) * 1984-12-19 1988-06-21 Gordon E. Agar Flotation separation of pentlandite from pyrrhotite using sulfur dioxide-air conditioning
US4879022A (en) * 1987-07-14 1989-11-07 The Lubrizol Corporation Ore flotation process and use of mixed hydrocarbyl dithiophosphoric acids and salts thereof
FI82773C (fi) * 1988-05-13 1991-04-10 Outokumpu Oy Foerfarande foer styrning av process.
US5074994A (en) * 1990-10-18 1991-12-24 The Doe Run Company Sequential and selective flotation of sulfide ores
US5110455A (en) * 1990-12-13 1992-05-05 Cyprus Minerals Company Method for achieving enhanced copper flotation concentrate grade by oxidation and flotation

Also Published As

Publication number Publication date
CN1087559A (zh) 1994-06-08
ZA938467B (en) 1995-05-12
AU661618B2 (en) 1995-07-27
DE4238244A1 (de) 1994-05-19
DE59302259D1 (de) 1996-05-23
CA2107275A1 (en) 1994-05-13
EP0597522A1 (de) 1994-05-18
DE4238244C2 (de) 1994-09-08
ES2086872T3 (es) 1996-07-01
AU5058893A (en) 1994-05-26
TR28263A (tr) 1996-04-25
US5439115A (en) 1995-08-08

Similar Documents

Publication Publication Date Title
EP0597522B1 (de) Verfahren zur selektiven Flotation eines sulfidischen Kupfer-Blei-Zinkerzes
DE2312998A1 (de) Baryt-, coelestin- und fluoritflotation
DE2403461C3 (de) Verfahren zur flotativen Anreicherung von Blei und Silber aus den Rückständen von Laugungsprozessen, die Blei in oxidierter Form enthalten
DE860032C (de) Verfahren zum Entschlaemmen von Sylvinit
DE2348029A1 (de) Verfahren und vorrichtung zur flotationsbehandlung eines flotationskonzentrates
DE2900620C2 (de)
DE1181141B (de) Verfahren zur Schaumflotation von niobhaltigen Mineralien
DE1284371B (de) Verfahren zur Flotation von Erzen, die Blei, Zink oder Kupfer enthalten
DE2014470A1 (de) Verfahren zur Aufbereitung von Molybdänit enthaltenden Haufwerken mit unlöslichen nichtsulfidischen Anteilen
DE4010911A1 (de) Verfahren und mittel zur flotation eines erdalkalimetall enthaltenden minerals
DE69204300T2 (de) 2-mercapto-benzoxazolderivate als kollektoren für die selektive flotation von erzen.
EP0344553A1 (de) Tensidmischungen als Sammler für die Flotation nichtsulfidischer Erze
DE3036848C2 (de) Verfahren zur Gewinnung von Silber aus komplexverwachsenen Silbererzen
US1955978A (en) Method of ore separation
DE649032C (de) Verfahren zum Reinigen von Ultramarin
DE897388C (de) Flotation von fluorithaltigen Zinkblende-Komplexerzen
DE555598C (de) Verfahren zur Aufbereitung von Mineralien nach dem Schwimmverfahren
DE864834C (de) Verfahren zur Aufbereitung von sulfidischen Mischerzen
DE598240C (de) Verfahren zur Schwimmaufbereitung oxydischer Erze und Mineralien
DE321159C (de) Verfahren zur Scheidung der Zinksulfide von den Bleisulfiden eines Erzes unter Anwendung eines Schaumschwimmverfahrens
DE657159C (de) Verfahren zum Reinigen von Wasser
DE565890C (de) Verfahren zum Niederhalten des Fluorits aus Schaumkonzentraten bei der Schwimmaufbereitung
AT223145B (de) Verfahren zur Flotation von nichtsulfidischen und nichtsilikatischen Mineralien
DE3022976A1 (de) Verfahren zur abtrennung von scheelit aus mineralkonzentraten
DE600863C (de) Verfahren zum Schwimmaufbereiten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB PT

17P Request for examination filed

Effective date: 19940616

17Q First examination report despatched

Effective date: 19950712

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB PT

REF Corresponds to:

Ref document number: 59302259

Country of ref document: DE

Date of ref document: 19960523

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2086872

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960614

SC4A Pt: translation is available

Free format text: 960429 AVAILABILITY OF NATIONAL TRANSLATION

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 19961022

Year of fee payment: 4

Ref country code: FR

Payment date: 19961022

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961024

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19961118

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19971102

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 19980531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19981212