EP0535311B1 - Lampe à décharge à haute pression de faible puissance - Google Patents
Lampe à décharge à haute pression de faible puissance Download PDFInfo
- Publication number
- EP0535311B1 EP0535311B1 EP92109933A EP92109933A EP0535311B1 EP 0535311 B1 EP0535311 B1 EP 0535311B1 EP 92109933 A EP92109933 A EP 92109933A EP 92109933 A EP92109933 A EP 92109933A EP 0535311 B1 EP0535311 B1 EP 0535311B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- discharge lamp
- pressure discharge
- lamp according
- filling
- halide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011734 sodium Substances 0.000 claims description 30
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 14
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 14
- 229910052794 bromium Inorganic materials 0.000 claims description 14
- 229910052708 sodium Inorganic materials 0.000 claims description 14
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 12
- 229910052740 iodine Inorganic materials 0.000 claims description 12
- 239000011630 iodine Substances 0.000 claims description 12
- 229910052716 thallium Inorganic materials 0.000 claims description 12
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 11
- 229910052706 scandium Inorganic materials 0.000 claims description 11
- 229910001507 metal halide Inorganic materials 0.000 claims description 10
- 150000005309 metal halides Chemical class 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- -1 sodium halide Chemical class 0.000 claims description 9
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 238000009825 accumulation Methods 0.000 claims description 7
- 229910052736 halogen Inorganic materials 0.000 claims description 7
- 150000002367 halogens Chemical class 0.000 claims description 7
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 7
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 5
- 229910052753 mercury Inorganic materials 0.000 claims description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 229910052756 noble gas Inorganic materials 0.000 claims 1
- 238000009877 rendering Methods 0.000 description 22
- 150000004820 halides Chemical class 0.000 description 13
- 230000007423 decrease Effects 0.000 description 9
- 229910018094 ScI3 Inorganic materials 0.000 description 7
- 238000004031 devitrification Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003326 scandium compounds Chemical class 0.000 description 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003388 sodium compounds Chemical class 0.000 description 1
- UAZMXAXHGIZMSU-UHFFFAOYSA-N sodium tin Chemical compound [Na].[Sn] UAZMXAXHGIZMSU-UHFFFAOYSA-N 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/12—Selection of substances for gas fillings; Specified operating pressure or temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/82—Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
- H01J61/827—Metal halide arc lamps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/12—Selection of substances for gas fillings; Specified operating pressure or temperature
- H01J61/125—Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/35—Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
Definitions
- the invention relates to a high-pressure discharge lamp of low power. This means the range of around 35 - 200 W.
- metal halide lamps for general lighting which are essentially characterized by a warm white light color (WDL) or neutral light color (NDL) corresponding to a color temperature of approximately 2600-4600 K.
- WDL warm white light color
- NNL neutral light color
- Criteria for the suitability in general lighting are in particular a long lifespan of ⁇ 6000 hours and the best possible color rendering, which is expressed in a high Ra index.
- a minimum value of Ra8 80 is sought for the overall color rendering index.
- the individual index R9 which forms a yardstick for the reproduction in the red spectral range, is of particular importance. So far it has not been possible to find a satisfactory compromise between long service life and good color rendering.
- DE-C-2 106 447 is one for the NDL light color developed filling from halides of sodium and various rare earth metals (SE) known.
- SE rare earth metals
- this filling is not suitable for the WDL light color, since too high a wall load would be required to achieve this light color, which, in connection with the fact that the major part of the rare earth material is present in the lamp as condensate, quickly becomes one chemical reaction of the filling substances with the quartz glass leads (devitrification), which significantly affects the service life.
- An important aspect of the invention is the consideration that with careful selection of the filling components, the wall load of a discharge vessel made of quartz glass can be chosen to be higher than the experts have assumed up to now.
- a limit of 20 W / cm2 has generally been regarded as the limit value, which can be seen, for example, in the "Technical and Scientific Treatments of the OSRAM Society” (TWAOG), Volume 12, Springer Verlag, Heidelberg 1986, page 11 et seq 15), is expressed.
- Another document is DE-A-40 13 039, page 3.
- the wall load increases with decreasing power level. This compensates for the heat losses that increase with the correspondingly small lamp dimensions. It is particularly critical for power levels below 100 W, which are particularly preferred for interior lighting.
- a molar ratio of Na-H.:Sc-H. from 5 ... 24: 1 (preferably from 5 ... 22: 1, particularly preferably from 5 ... 19: 1) and Na-H.:Tl-H. from 25 ... 73: 1 used.
- the sodium content is therefore reduced.
- the present invention is therefore essentially based on the knowledge of the different roles of these two sodium compounds in relation to the filling / wall reaction and on the consequences drawn from them.
- the result is a partially saturated lamp that is designed to be saturated with respect to the Na halides but unsaturated with respect to the complex compound and the Sc and Tl halides. If the Na-Sc ratio is below 5: 1, the desired color temperature cannot be achieved.
- the reduction in the amount of sodium is compensated for by two measures: the first is a corresponding increase in the cold spot temperature in order to achieve the same warm white light color. This is done using a reflective coating. In particular, it is heat accumulation at the two ends of the two-sided squeezed discharge vessel.
- the heat accumulation behavior must be optimized so that the cold spot temperature Tc exceeds 800 ° C; Previously common Tc values were around 600-800 ° C for quartz glass, whereas higher Tc values were previously only possible with ceramic discharge tubes.
- This temperature is achieved particularly elegantly by a layer thickness of the heat accumulation covering which is considerably increased compared to previous versions. This effect can be intensified by evacuating the outer bulb.
- the second measure is the use of Tl in the dosage according to the invention.
- the task of the Tl is not so much in its direct contribution to improving color rendering.
- the focus is rather on the fact that it partially takes on the function of Na as an electron supplier.
- the degree of ionization of the Na vapor phase is reduced accordingly.
- a large part of the sodium is therefore present as a neutral atom, which supports the broadening of the Na resonance line.
- the thallium additive is dimensioned so that the lamp, when baked (after approx. 100 hours), lies almost exactly on the Planck curve and thus harmonises well with other light sources.
- a Na-Tl ratio below 25: 1 would give the lamp a green tinge.
- a ratio above 73: 1 would have an unfavorable effect on the burning voltage and the reignition behavior.
- a Na / Tl ratio between 25: 1 and 50: 1 if iodine is used exclusively as the halide.
- the heat accumulation behavior can be influenced favorably by carefully designing the heat accumulation coating in the form of two calottes.
- the decisive factor here is the thickness of the covering, its purity and the distance between the two covering domes. Zirconium oxide or aluminum oxide with a purity of at least 97% according to DE-OS 38 32 643 is advantageously used. With regard to the layer thickness, the dimensioning of which has so far been given no particular attention, care must be taken that it is sufficiently large, namely optically thick.
- the thickness of an aluminum or zirconium oxide layer must be at least 0.15 mm.
- the distance between the two spherical caps of the covering should advantageously be chosen so that it is approximately 90 to 105% of the electrode distance.
- the absolute dosage of the Na-Sc-Tl system is preferably 2.5 to 5.5 mg / cm3, based on the internal volume of the discharge vessel, so that the system is just at the limit of saturation.
- Iodine possibly with a certain proportion of bromine, can be used as halogen.
- the Sc partial pressure decreases, since the Sc, unlike Na, has no replenishment from the soil. This is associated with a shift towards lower color temperatures. It is therefore advisable to add a small amount of elemental scandium as a compensation, which can reduce the color drift at the start of the burning time.
- bromine as the halide
- Typical values are 30%, regardless of the light color.
- the use of bromine is already known as a theoretical alternative to pure iodine fillings from US Pat. No. 4,866,342, but it has not yet been used in the lamps according to the invention. Only now has the behavior of a mixed filling of iodine and bromine been clarified to such an extent that their use appears to be particularly advantageous.
- bromine causes the decrease in luminous flux (previously up to 30%), the decrease in color temperature (previously up to 600 K) and the drift of the color locus (decrease in the y-coordinate up to 10 hundredths of a point) during the first 100 to 500 Operating hours is improved by more than 50%.
- Na-Sc ratio 5 ... 13: 1 (based on the halides) is preferred for the exclusive addition of iodine as the halide, in the case of an I / Br mixed filling a higher value, in particular up to 22: 1 , possibly even up to 24: 1, recommended.
- the reason is that the addition of bromine causes a higher color temperature due to the partial elimination of the iodine-related absorption in the blue spectral range. This must be compensated for by increasing the Na-Sc ratio.
- zirconium and / or hafnium halides can also be used in a total amount of up to 4 mol% of the metal halide filling.
- Zr is also suitable for improving the R9 index because it also emits in the red spectral range.
- Another important dimensioning is the ratio of the maximum inside diameter of the Discharge vessel to the electrode gap. It is advantageously about 1.1 to 1.4 and is thus significantly higher than the previously usual values of typically 0.9.
- the term maximum inner diameter also indicates that the discharge vessel should preferably be bulged in the middle. In particular, a barrel body has proven itself. Another option is an ellipsoid. The degree of bulging is chosen in particular so that the so-called effective average inner diameter is approximately 0.9 to 1.2 times the electrode spacing.
- the effective mean inner diameter is defined by the root of the inner volume that has been divided by the electrode spacing (cf. EP-B-215 524).
- a particular advantage of the lamp according to the invention is that the operating voltage of 100 V remains constant over a good approximation.
- the lamp can be operated in any burning position without any significant change in the color values. This makes the lamp particularly suitable for illuminating large areas (e.g. halls), since the individual lamps have only slightly different color values.
- the invention creates high-pressure discharge lamps of low power which are suitable for interior lighting. With a lifespan of 6000 hours, a color rendering index Ra8 ⁇ 80 and an R9 of ⁇ -30 are created. The proportion of red increases from 15% to more than 20%.
- the 75 W high-pressure discharge lamp 1 shown in FIG. 1 consists of a discharge vessel 2 made of quartz glass, which is squeezed on both sides and is enclosed by an evacuated outer bulb 3, which has a base on both sides.
- the electrodes 4, 5 - shown schematically - are melted gas-tight into the discharge vessel 2 by means of foils 6, 7 and via the current leads 8, 9, the sealing foils 10, 11 of the outer bulb 3 and via further short current leads with the electrical connections of the ceramic base (R7s ) 12, 13 connected.
- the current leads 8, 9 are encased by a fabric made of quartz fibers (not visible), which suppresses the formation of photoelectrons in the outer bulb. As a result, the lifespan can be significantly extended over 6000 hours.
- a getter material 14 applied to a metal plate is additionally melted potential-free via a piece of wire.
- the ends of the discharge vessel 2 are provided with a heat-reflecting coating 15, 16 made of zirconium dioxide with a layer thickness of provided about 0.2 mm, so that the cold spot temperature is kept well above 800 ° C.
- the coating forms two domes, the inner edges of which are arranged at the level of the electrode tips.
- the electrode distance of 7 mm also corresponds to the distance between the inner edges.
- the discharge vessel 2 is bulged in a barrel shape.
- the generatrix of the barrel body is a circular arc with a radius of 11.1 mm.
- the inside length of the discharge vessel is 14 mm, its inside volume is 0.69 m3 with a wall load of up to 22 W / cm2.
- the quartz glass is about 1.3 mm thick.
- the discharge vessel 2 contains a total of 2 mg of the following metal halides (molar fraction in% of the total metal halides): 89% NaI, 8.3 in order to achieve a warm white light color (WDL) with a color temperature of 3000 K in addition to 16 mg of mercury and 120 mbar argon % ScI3 and 2.7% TlI.
- WDL warm white light color
- the luminous flux (100 hours value) increases by 20% to 6000 lm compared to a lamp with a known filling with the halides of sodium, tin, thallium, indium and lithium.
- the luminous efficacy is 77 lm / W instead of 67 lm / W (15% increase).
- the index R9 improves from -90 to -20, with the red component increasing from 15 to 21%.
- the service life is 6000 hours.
- the color scatter is reduced from ⁇ 300 K to ⁇ 130 K.
- FIG. 2 shows a comparison of the spectrum of a 75 W lamp with the known sodium-tin filling (dashed line) with a structurally identical lamp which contains the above sodium-scandium-thallium filling.
- the color temperature is set to 3300 K.
- the spectrum has additional single lines (a) that contribute to the improved color rendering index. They are caused by the addition of scandium.
- the uniformity of the spectrum is significantly improved. Strong single lines in the spectrum of the conventional lamp, such as the lines of sodium (b), lithium (c), indium (d), mercury (e) and thallium (f) are more or less leveled (lithium is still present as an impurity).
- Another embodiment is a similarly constructed 150 W lamp with warm white light color (WDL), the filling of which, in addition to mercury and argon, has a total of 4 mg of the same metal halide component as in the previous embodiment.
- WDL warm white light color
- This lamp also has a lifespan of at least 6000 hours.
- the color scatter decreases from ⁇ 300 K to ⁇ 130 K.
- the older comparison values relate to a filling that contains the iodides of dysprosium, holmium, thulium, sodium and thallium as metal halides.
- the NaI content can be partially (typically 30%) replaced by NaBr.
- elemental Sc in an amount of 0.03 mg can be added to the Na-Sc-Tl filling of the first exemplary embodiment. This compensates for the inevitable loss of filling quantity in the first 100 hours, so that the constancy of the color values and also the burning voltage is improved.
- Another scandium compound that releases Sc in substoichiometric amounts is suitable for this, e.g. ScI2.
- the dimensions of the discharge vessels mentioned above are particularly advantageous because they avoid acoustic resonances when operating on high-frequency ballasts.
- HPS filling color temperature 4000 K
- metal halide component proportions in mol%): 81.9% NaI, 14% ScI3, 2.7% HfI4 and 1 , 4% TlI.
- the molar ratio NaI / ScI3 is 6: 1 and the ratio NaJ / TlJ is 58: 1.
- the invention has its main advantages in those of particular interest for interior lighting Color temperatures in the range of about 3000 K unfolded, corresponding to a light color WDL.
- the addition of thallium is of very great importance here, corresponding to a halide ratio Na / Tl of 25 ... 50: 1 for pure iodine fillings or up to 73: 1 for mixed fillings.
- the principle of the invention can also be transferred to color temperatures of approximately 4300 K (corresponding to the light color NDL).
- the influence of thallium naturally decreases, so that in this case a halide ratio Na / Tl up to 70: 1 is recommended for pure iodine fillings; a ratio of 50: 1 ... 65: 1 is particularly advantageous.
- a ratio of 50: 1 ... 73: 1 is particularly suitable for mixed fillings.
Landscapes
- Discharge Lamp (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
Claims (14)
- Lampe à décharge à haute pression et de faible puissance ayant les caractéristiques suivantes :- une enceinte de décharge (2) en verre au quartz,- une ampoule extérieure (3) transparente, dans laquelle est disposée l'enceinte de décharge (2), un système d'entrée du courant passant à travers les parois de l'ampoule extérieure et de l'enceinte de décharge en allant à deux électrodes (4, 5) dans l'enceinte de décharge,- un remplissage ionisable dans l'enceinte de décharge, qui contient du gaz rare, du mercure ainsi qu'un halogénure métallique essentiellement à base des métaux que sont le sodium, le scandium et le thallium,- le rapport molaire entre la proportion de l'halogénure de sodium (Na.-H.) et de l'halogénure de scandium (Sc.-H.) est compris entre 5:1 et 14:1,- le rapport molaire entre l'halogénure de sodium (Na.-H.) et l'halogénure de thallium (Tl.-H.) est compris entre 25:1 et 73:1,- l'enceinte de décharge (2) est munie d'une couche de réflexion (15, 16) pour améliorer le comportement à l'accumulation de chaleur.
- Lampe à décharge à haute pression suivant la revendication 1, caractérisée en ce que pour obtenir une couleur de la lumière blanc neutre (NDL), correspondant à une température de couleur typiquement de 3800 K à 4600 K, le rapport molaire entre la proportion de Na.-H. et de Tl.-H. est compris entre 50:1 et 73:1.
- Lampe à décharge à haute pression suivant la revendication 1 ou 2, caractérisée en ce que le remplissage contient comme halogène exclusivement de l'iode, le rapport molaire Na.-H. à Sc.-H. étant compris entre 5:1 et 13:1.
- Lampe à décharge à haute pression suivant la revendication 3, caractérisée en ce que pour obtenir une couleur de lumière blanche chaude (WDL) correspondant à une température de couleur typiquement de 2600 à 3500 K, le rapport molaire entre les proportions de Na.-H. et de Tl.-H. est compris entre 25:1 et 50:1.
- Lampe à décharge à haute pression suivant la revendication 1 ou 2, caractérisée en ce que le remplissage contient comme halogène un mélange d'iode et de brome, le rapport molaire de Na.-H. à Sc.-H. étant compris entre 8:1 et 24:1.
- Lampe à décharge à haute pression suivant la revendication 5, caractérisée en ce que la proportion du brome représente jusqu'à 70 % de la quantité d'halogène.
- Lampe à décharge à haute pression suivant la revendication 2 ou 6, caractérisée en ce que pour obtenir une couleur de lumière blanche chaude, la proportion du brome représente jusqu'à 40 % de la quantité d'halogène.
- Lampe à décharge à haute pression suivant la revendication 1, caractérisée en ce que l'ampoule extérieure (3) est mise sous vide.
- Lampe à décharge à haute pression suivant la revendication 1, caractérisée en ce que les halogénures métalliques contiennent en outre des composés de l'hafnium et/ou du zirconium.
- Lampe à décharge à haute pression suivant la revendication 1, caractérisée en ce que le remplissage contient en outre du scandium élémentaire.
- Lampe à décharge à haute pression suivant la revendication 1, caractérisée en ce que l'enceinte de décharge (2) est pincée des deux côtés, le revêtement étant en forme de calotte de chaque côté et la distance entre les deux calottes (15, 16) représentant de 105 à 90 % environ de la distance entre les électrodes.
- Lampe à décharge à haute pression suivant la revendication 11, caractérisée en ce que la distance entre les électrodes EA (en mm) est déterminée en fonction de la puissance L (en watt) par la formule EA = 0,85 (± 0,1) x √L.
- Lampe à décharge à haute pression suivant la revendication 1, caractérisée en ce que le revêtement est en oxyde de zirconium en une couche d'au moins 0,15 mm d'épaisseur.
- Lampe à décharge à haute pression suivant la revendication 1, caractérisée en ce que la raie de résonance du sodium (b) apparaît auto-absorbée et forme deux ailes (b1, b2), la distance entre les valeurs maximum (crêtes) des deux ailes étant comprise entre 7 et 12 nm environ.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4132530A DE4132530A1 (de) | 1991-09-30 | 1991-09-30 | Hochdruckentladungslampe kleiner leistung |
DE4132530 | 1991-09-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0535311A1 EP0535311A1 (fr) | 1993-04-07 |
EP0535311B1 true EP0535311B1 (fr) | 1994-03-16 |
Family
ID=6441817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92109933A Expired - Lifetime EP0535311B1 (fr) | 1991-09-30 | 1992-06-12 | Lampe à décharge à haute pression de faible puissance |
Country Status (8)
Country | Link |
---|---|
US (1) | US5363007A (fr) |
EP (1) | EP0535311B1 (fr) |
JP (1) | JPH05205697A (fr) |
KR (1) | KR100232590B1 (fr) |
CN (1) | CN1047689C (fr) |
CA (1) | CA2079438A1 (fr) |
DE (2) | DE4132530A1 (fr) |
HU (1) | HU214135B (fr) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4322115A1 (de) * | 1993-07-02 | 1995-01-12 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Metallhalogenid-Hochruckentladungslampe |
DE4325679A1 (de) * | 1993-07-30 | 1995-02-02 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Elektrische Lampe mit Halogenfüllung |
DE9401436U1 (de) * | 1994-01-28 | 1994-03-31 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 81543 München | Metallhalogenidentladungslampe für Projektionszwecke |
WO1996015548A1 (fr) * | 1994-11-10 | 1996-05-23 | Philips Electronics N.V. | Lampe electrique |
RU2071619C1 (ru) * | 1995-03-22 | 1997-01-10 | Акционерное общество закрытого типа Научно-техническое агентство "Интеллект" | Способ получения оптического излучения и разрядная лампа для его осуществления |
US5576598A (en) * | 1995-08-31 | 1996-11-19 | Osram Sylvania Inc. | Lamp with glass sleeve and method of making same |
US5714839A (en) * | 1996-03-01 | 1998-02-03 | Osram Sylvania Inc. | Metal halide lamp with reduced quartz devitrification comprising sodium, scandium, lithium and cesium iodides |
US5694002A (en) * | 1996-05-08 | 1997-12-02 | Osram Sylvania Inc. | Metal halide lamp with improved color characteristics |
DE69824681T2 (de) * | 1997-04-25 | 2005-06-30 | Koninklijke Philips Electronics N.V. | Hochdruck-Entladungslampe |
DE19727430A1 (de) * | 1997-06-27 | 1999-01-07 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Metallhalogenidlampe mit keramischem Entladungsgefäß |
DE19731168A1 (de) * | 1997-07-21 | 1999-01-28 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Beleuchtungssystem |
CN1324643C (zh) * | 1998-02-20 | 2007-07-04 | 松下电器产业株式会社 | 无汞金属卤化物灯 |
US6376988B1 (en) | 1998-08-28 | 2002-04-23 | Matsushita Electric Industrial Co., Ltd. | Discharge lamp for automobile headlight and the automobile headlight |
JP3603723B2 (ja) * | 1999-03-26 | 2004-12-22 | 松下電工株式会社 | メタルハライドランプ及び放電灯点灯装置 |
DE29905662U1 (de) | 1999-03-26 | 2000-08-10 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 81543 München | Metallhalogenid-Entladungslampe mit langer Lebensdauer |
JP3655126B2 (ja) * | 1999-06-14 | 2005-06-02 | 株式会社小糸製作所 | メタルハライドランプ |
JP2003507877A (ja) * | 1999-08-25 | 2003-02-25 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | メタルハライドランプ |
JP2004527881A (ja) * | 2001-03-30 | 2004-09-09 | アドバンスド ライティング テクノロジイズ,インコーポレイティド | 改良されたプラズマランプ及び方法 |
JP3907041B2 (ja) * | 2001-10-11 | 2007-04-18 | 日本碍子株式会社 | 高圧放電灯用放電管および高圧放電灯 |
DE10163584C1 (de) * | 2001-11-26 | 2003-04-17 | Philips Corp Intellectual Pty | Verfahren und Vorrichtung zur Herstellung von Lampenkolben mit nicht-rotationssymmetrischer und/oder konkaver innerer und/oder äußerer Form |
DE10204691C1 (de) * | 2002-02-06 | 2003-04-24 | Philips Corp Intellectual Pty | Quecksilberfreie Hochdruckgasentladungslampe und Beleuchtungseinheit mit einer solchen Hochdruckgasentladungslampe |
DE10222954A1 (de) * | 2002-05-24 | 2003-12-04 | Philips Intellectual Property | Hochdruckgasentladungslampe |
JP4036039B2 (ja) * | 2002-06-19 | 2008-01-23 | ウシオ電機株式会社 | ショートアーク型放電ランプ |
DE10234758B4 (de) * | 2002-07-30 | 2006-02-16 | Sli Lichtsysteme Gmbh | Metall-Halogendampflampe niedriger Leistung |
US6888312B2 (en) * | 2002-12-13 | 2005-05-03 | Welch Allyn, Inc. | Metal halide lamp for curing adhesives |
WO2004088698A2 (fr) | 2003-02-12 | 2004-10-14 | Advanced Lighting Technologies, Inc. | Lampe a plasma amelioree et procede |
JP4295700B2 (ja) * | 2003-08-29 | 2009-07-15 | パナソニック株式会社 | メタルハライドランプの点灯方法及び照明装置 |
KR101123190B1 (ko) * | 2004-09-02 | 2012-03-19 | 코닌클리즈케 필립스 일렉트로닉스 엔.브이. | 최적화된 염류 충전재를 갖는 방전 램프 |
JP2008293912A (ja) * | 2007-05-28 | 2008-12-04 | Phoenix Denki Kk | 高圧放電灯およびこれを用いた光源装置 |
JP5023959B2 (ja) * | 2007-10-22 | 2012-09-12 | ウシオ電機株式会社 | 高圧放電ランプおよび高圧放電ランプ装置 |
WO2012063205A2 (fr) * | 2010-11-10 | 2012-05-18 | Koninklijke Philips Electronics N.V. | Lampes aux halogénures métalliques à quartz ne contenant pas de thorium |
CN103839751B (zh) * | 2013-12-20 | 2016-08-03 | 广西南宁智翠科技咨询有限公司 | 一种金属卤化物灯药丸 |
US9875886B1 (en) * | 2016-12-04 | 2018-01-23 | Robert Su | Double-ended ceramic metal halide lamp |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3514659A (en) * | 1967-07-03 | 1970-05-26 | Sylvania Electric Prod | High pressure vapor discharge lamp with cesium iodide |
US3842307A (en) * | 1971-02-11 | 1974-10-15 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | High pressure mercury vapor discharge lamp with metal halide additives |
NL7203720A (fr) * | 1972-03-20 | 1973-09-24 | ||
DE2422411A1 (de) * | 1974-05-09 | 1975-12-11 | Philips Patentverwaltung | Hochdruckquecksilberdampfentladungslampe |
US3979624A (en) * | 1975-04-29 | 1976-09-07 | Westinghouse Electric Corporation | High-efficiency discharge lamp which incorporates a small molar excess of alkali metal halide as compared to scandium halide |
DE2655167C2 (de) * | 1976-12-06 | 1986-12-18 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München | Hochdruckentladungslampe mit Metallhalogeniden |
DE2718735C2 (de) * | 1977-04-27 | 1986-06-05 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München | Quecksilberdampfhochdruckentladung |
NL184550C (nl) * | 1982-12-01 | 1989-08-16 | Philips Nv | Gasontladingslamp. |
US4890030A (en) * | 1984-06-18 | 1989-12-26 | Gte Products Corporation | Metal halide discharge lamp with arc tube temperature equalizing means |
US4709184A (en) * | 1984-08-20 | 1987-11-24 | Gte Products Corporation | Low wattage metal halide lamp |
CA1246653A (fr) * | 1984-08-20 | 1988-12-13 | William M. Keeffe | Lampe aux halogenures a faible intensite |
NL8502509A (nl) * | 1985-09-13 | 1987-04-01 | Philips Nv | Hogedrukkwikdampontladingslamp. |
DE3680070D1 (de) * | 1985-10-25 | 1991-08-08 | Gen Electric | Asymmetrische bogenkammer fuer eine entladungslampe. |
US4866342A (en) * | 1986-12-29 | 1989-09-12 | North American Philips Corporation | Metal halide lamp with improved lumen output |
EP0276514A1 (fr) * | 1986-12-29 | 1988-08-03 | North American Philips Corporation | Lampe à halogénures métalliques |
CA1301238C (fr) * | 1988-02-18 | 1992-05-19 | Rolf Sverre Bergman | Lampe au xenon et aux halogenures pour vehicules automobiles |
DE3832643A1 (de) * | 1988-09-26 | 1990-03-29 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Verfahren zur herstellung einer reflexionsbeschichtung bei hochdruckentladungslampen |
US4983889A (en) * | 1989-05-15 | 1991-01-08 | General Electric Company | Discharge lamp using acoustic resonant oscillations to ensure high efficiency |
DE4013039A1 (de) * | 1990-04-24 | 1991-10-31 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Hochdruckentladungslampe |
JPH04292848A (ja) * | 1991-03-20 | 1992-10-16 | Toshiba Lighting & Technol Corp | 金属蒸気放電灯 |
-
1991
- 1991-09-30 DE DE4132530A patent/DE4132530A1/de not_active Withdrawn
-
1992
- 1992-06-12 DE DE92109933T patent/DE59200089D1/de not_active Expired - Fee Related
- 1992-06-12 EP EP92109933A patent/EP0535311B1/fr not_active Expired - Lifetime
- 1992-07-28 US US07/920,782 patent/US5363007A/en not_active Expired - Fee Related
- 1992-08-12 KR KR1019920014497A patent/KR100232590B1/ko not_active IP Right Cessation
- 1992-09-01 HU HU9202811A patent/HU214135B/hu not_active IP Right Cessation
- 1992-09-26 CN CN92111588A patent/CN1047689C/zh not_active Expired - Fee Related
- 1992-09-29 CA CA002079438A patent/CA2079438A1/fr not_active Abandoned
- 1992-09-29 JP JP4285335A patent/JPH05205697A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
KR100232590B1 (ko) | 1999-12-01 |
HUT62422A (en) | 1993-04-28 |
HU9202811D0 (en) | 1992-11-30 |
HU214135B (en) | 1997-12-29 |
EP0535311A1 (fr) | 1993-04-07 |
DE4132530A1 (de) | 1993-04-01 |
CA2079438A1 (fr) | 1993-03-31 |
CN1073804A (zh) | 1993-06-30 |
CN1047689C (zh) | 1999-12-22 |
JPH05205697A (ja) | 1993-08-13 |
DE59200089D1 (de) | 1994-04-21 |
KR930006808A (ko) | 1993-04-21 |
US5363007A (en) | 1994-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0535311B1 (fr) | Lampe à décharge à haute pression de faible puissance | |
DE1940539C3 (de) | Quecksilberdampf-Hochdruckentladungslampe mit Zusatz von Halogeniden der Seltenen Erden | |
DE10354868B4 (de) | Quecksilber-freie Bogenentladungsröhre für eine Entladungslampeneinheit | |
DE69812069T2 (de) | Metallhalogenidlampe | |
EP0453893B1 (fr) | Lampe à décharge à haute pression | |
EP0714551B1 (fr) | Lampe a halogenure de metal pour usages photo-optiques | |
DE3813421A1 (de) | Hochdruck-quecksilberdampfentladungslampe | |
DE1464181B2 (de) | Elektrische hochdruck dampfentladungslampe | |
DE69318638T2 (de) | Universelle Metallhalogenidlampe | |
DE2455277C2 (de) | Hochdruck-Zinnhalogenidentladungslampe | |
DE3917792C2 (de) | Elektrodenlose Metallhalogenid-Entladungslampe hoher Intensität | |
DE3506295A1 (de) | Kompakte hochdruckentladungslampe | |
DE69015700T2 (de) | Metallhalogenidlampe. | |
DE69703079T2 (de) | Hochdruck Quecksilber-Ultravioletlampe | |
DE2031449C3 (de) | Hochdruck-Metalldampf lampe mit einer in ausgewählten Spektralbereichen konzentrierten Strahlung | |
DE2225308C3 (de) | Hochdruckgasentladungslampe | |
DE3038993C2 (de) | Metalldampfentladungslampe | |
EP0869538B1 (fr) | Lampe à arc court à courant continu | |
DE69327275T2 (de) | Metall iodid lampe | |
DE68916346T2 (de) | Metallhalogenidentladungslampe mit verbesserter Farbwiedergabe. | |
EP0869537B1 (fr) | Lampe à arc à courant continu | |
DE60019847T2 (de) | Quecksilberfreie Metallhalogenidbogenentladungsgefäss und Lampe | |
DE3404661A1 (de) | Hochdruck-metalldampflampe mit verbesserter farbwiedergabe | |
DE3731134C2 (de) | Hochdruck-Metallhalogenidentladungslampe mit niedriger Farbtemperatur und guter Farbwiedergabe | |
DE2456757A1 (de) | Metallhalogenid-hochdruckgasentladungslampe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19930422 |
|
17Q | First examination report despatched |
Effective date: 19930630 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 59200089 Country of ref document: DE Date of ref document: 19940421 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940525 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19980629 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990616 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990629 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990820 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20000101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000612 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050612 |