EP0453893B1 - Lampe à décharge à haute pression - Google Patents

Lampe à décharge à haute pression Download PDF

Info

Publication number
EP0453893B1
EP0453893B1 EP91105786A EP91105786A EP0453893B1 EP 0453893 B1 EP0453893 B1 EP 0453893B1 EP 91105786 A EP91105786 A EP 91105786A EP 91105786 A EP91105786 A EP 91105786A EP 0453893 B1 EP0453893 B1 EP 0453893B1
Authority
EP
European Patent Office
Prior art keywords
halide
discharge lamp
pressure mercury
lamp according
mercury vapour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91105786A
Other languages
German (de)
English (en)
Other versions
EP0453893A1 (fr
Inventor
Jürgen Dr. Heider
Achim Gosslar
Ulrich Dr. Henger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0453893A1 publication Critical patent/EP0453893A1/fr
Application granted granted Critical
Publication of EP0453893B1 publication Critical patent/EP0453893B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/18Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent
    • H01J61/20Selection of substances for gas fillings; Specified operating pressure or temperature having a metallic vapour as the principal constituent mercury vapour

Definitions

  • the invention is based on a high-pressure discharge lamp according to the preamble of claim 1.
  • Such lamps are preferably used in general lighting. They have rather low power consumption of approx. 35 to 400 W, possibly also more. Typical power levels are 35, 70 or 150 W.
  • the lamps are normally squeezed on two sides and surrounded by an outer bulb. However, designs squeezed on one side are also possible.
  • the criteria for suitability in general lighting are in particular a long service life (6000 hours) and the best possible color rendering, which is expressed in a high Ra index.
  • the overall color index Ra8 should be at least 85.
  • the improvement of the individual index R9 for the reproduction in the red spectral range is currently the focus of interest. So far it has not been possible to find a satisfactory compromise between long service life and good color rendering even in the red spectral range. This applies in particular to fillings with warm white light color.
  • the 70 W lamp with WDL filling has so far been used no rare earth halides used, because it turns out that the warm white light color (WDL) with rare earths (SE) - using sodium and thallium additives - would only be achieved with such high wall loads (> 20 W / cm2) that the lamp life would be impaired by chemical reactions of the filling substances with the quartz glass.
  • WDL warm white light color
  • SE rare earths
  • thallium additives - sodium and thallium additives -
  • the lamp life would be impaired by chemical reactions of the filling substances with the quartz glass.
  • a filling is known for color temperatures between approx. 3300 and 3800 K from EP-A 342 762, which in addition to halides of dysprosium and thallium can contain further halides, in particular cerium, neodymium and praseodymium .
  • the only thallium-free filling described achieves a luminous efficacy of only 48 lm / W.
  • EP-OS 215 524 proposes to solve these problems by using a ceramic discharge vessel.
  • several geometric relationships with regard to the discharge space and the electrodes must be maintained.
  • indium or rare earth metal halides in addition to the proven components sodium and thallium, even for low color temperatures.
  • the solution is very elegant, but in practice it is unsatisfactory simply because the use of ceramic material is associated with considerable problems and additional costs. This applies in particular to the tightness of the implementation and the development of halogen-resistant glass solders and power supplies.
  • a discharge lamp with quartz glass bulbs optimized for light yield which, in addition to mercury, contains a praseodymium, neodymium or cerium halide in a total amount of 1.4 x 10 ⁇ 6 to 5.4 x 10 ⁇ 5 mol / cm electrode spacing and cesium halide in an amount of 3.5 x 10 ⁇ 7 to 5.4 x 10 ⁇ 5 mol / cm electrode spacing.
  • this lamp (140 lm / W) is inevitably correlated with a poor overall color index Ra8 and in particular with a very poor red index R9. This is also indicated by the "cold spot" temperatures of only approx. 600 ° C. In the end, this lamp shows a strong green cast due to the cerium radiation in the wavelength range 480-580 nm. Such a lamp is therefore unsuitable for general lighting purposes, where the focus is on the optimization of color rendering at the expense of light output.
  • a particular advantage of the filling according to the invention is that it does not necessarily rely on ceramic discharge vessels, but is also suitable for quartz glass bulbs.
  • lamps with a neutral white light color can be produced with this filling, in which the sodium is completely replaced by cesium. This makes it possible for the first time to equip these lamps with an outer bulb with a base on one side, which has so far been prevented by serious problems with sodium diffusion.
  • thallium which was previously used for color locus correction, is now replaced by the rare earth elements cerium and / or praseodymium and / or lanthanum and / or neodymium.
  • Thallium is a line source in the green.
  • the lamps appear green during underload operation because the other fillers (essentially rare earths, such as dysprosium, holmium, thulium) have a significantly lower vapor pressure at comparable temperatures compared to thallium.
  • Another consequence of this "intolerance" is the high one Color scatter of these lamps, which has now been reduced by more than half.
  • halides of the two groups of rare earth metals also opens up the possibility, at least in part, of the problematic sodium halide even with neutral white and warm white light colors using another alkali metal halide (AM-H), namely that of To replace cesium and thus have a favorable influence on the sodium rare earth complexes of dysprosium or thulium which damage the quartz glass to take.
  • a molar ratio AM-H: SE-H of 70:30 to 90:10 is particularly advantageous for warm white light colors, sodium being predominantly used as the alkali metal.
  • Corresponding values for neutral white or daylight-like light colors are 18:82 to 55:45 respectively.
  • dysprosium alone or dysprosium and thulium are used together, since this leads best to a multi-line spectrum with a broad continuum.
  • Holmium may also be added.
  • Cerium or neodymium are preferably used alone as the rare earth metal of the "second group" for color correction, since their color locations lie furthest above the Planck curve.
  • cerium halide its proportion in the total metal halide is preferably between 2 and 17 mol%.
  • Iodine is preferably used as the halogen due to the high vapor pressure and the low aggressiveness of the filling.
  • bromine is also provided.
  • the known HgJ2 and / or HgBr2 are particularly suitable.
  • the 70 W high-pressure discharge lamp 1 shown in FIG. 1 consists of a discharge vessel 2 made of quartz glass, which is squeezed on both sides and is enclosed by an evacuated outer bulb 3 which is base on both sides.
  • the electrodes 4, 5 - shown schematically - are melted gas-tight into the discharge vessel 2 by means of foils 6, 7 and via the current leads 8, 9, the sealing foils 10, 11 of the outer bulb 3 and via further short current leads with the electrical connections of the ceramic base (R7s ) 12, 13 connected.
  • a getter material 14 applied to a metal plate is additionally melted potential-free - via a piece of wire.
  • the ends 15, 16 of the discharge vessel 2 are provided with a heat-reflecting coating, so that the cold spot temperature is kept above 870 ° C.
  • the discharge vessel 2 contains a filling to achieve one warm white light color (WDL) with a color temperature of 3100 K in addition to 12 mg of mercury and argon a total of 27 »mol of the following metal halides (molar percentage in% of the total metal halides): 3% DyJ3, 15% TmJ3, 5% CeJ3, 77% NaJ. This corresponds to a specific proportion of the metal halides of 3.9 »mol / mm arc length and a specific arc power of 10.7 W / mm.
  • the wall load is 19 W / cm2.
  • the luminous flux increases by 8% to 5400 lm compared to a lamp with a known filling with the halides of sodium, tin, thallium, indium and lithium.
  • the luminous efficacy is 72 lm / W instead of 67 lm / W (7.5% increase).
  • the index R9 improves from -90 to +15.
  • the lifespan is 6000 hours.
  • the color scatter is reduced from ⁇ 300 K to ⁇ 100 K.
  • FIG. 2 shows a comparison of the spectrum of a 70 W lamp with the known sodium-tin filling (dashed line) with a structurally identical lamp which contains the above sodium rare earth filling.
  • the uniformity of the spectrum is significantly improved. Strong single lines, such as those of thallium (1), sodium (2), lithium (3), indium (4) and mercury (5) are eliminated or strongly leveled.
  • the red component in particular is significantly increased (+50%) in accordance with the improved color rendering index. This means that all saturated colors are reproduced much more naturally. This is of particular interest for interior lighting, food lighting and shop window lighting.
  • Another embodiment is a similarly constructed 150 W lamp with neutral white light color (NDL), the filling of which, in addition to mercury and argon, contains a total of 14.5 »mol of the following metal halides (molar fraction in% of the total metal halides): 32% DyJ3, 24% TmJ3, 10% CeJ3 and 34% NaJ. This corresponds to a specific proportion of the metal halides of 1.5 »mol / mm arc length and a specific arc power of 15 W / mm.
  • NDL neutral white light color
  • This lamp also has a lifespan of 6000 hours.
  • the color scatter decreases from ⁇ 300 K to ⁇ 100 K.
  • the older comparison values refer to a filling that contains the iodides of dysprosium, holmium, thulium, sodium and thallium as metal halides.
  • a further exemplary embodiment is a 400 W lamp with a similarly structured light color (D), the filling of which contains a total of 37 »mol of the following metal halides in addition to mercury and argon (molar fraction in% of the total metal halides: 40% DyJ3, 23% TmJ3, 13% CeJ3 and 24% CsJ. This corresponds to a specific proportion of the metal halides of 1.15 »mol / mm arc length and a specific arc power of 12.5 W / mm.
  • D similarly structured light color
  • the color scatter is reduced from ⁇ 500 K to ⁇ 250 K compared to a filling that contains the iodides of dysprosium, holmium, thulium, sodium and thallium as metal halides.
  • the end of the discharge vessel does not require any heat accumulation.
  • FIG. 3 shows a further exemplary embodiment of a 400 W lamp 1 with a neutral white light color, the same reference numerals as in FIG. 1 being used for similar components.
  • the discharge vessel 2 is squeezed on two sides and is enclosed by a cylindrical (or also elliptical) outer bulb 3 made of tempered glass, which has a base on one side.
  • One end of the outer bulb has a rounded tip 17, while the other end has a screw base 12.
  • a holding frame 18 fixes the discharge vessel 2 axially in the interior of the bulb.
  • the holding frame 18 consists, in a manner known per se, of two supply wires, one of which is connected to the power supply 8 of the discharge vessel near the base, while the second is guided to the power supply 9 remote from the base via a solid metal support rod which extends along the discharge vessel 2 and further a guide element at the end 15 of the discharge vessel near the base (in the form of a stamped sheet metal part) and a support near the top 17 in the form of a pitch circle.
  • the discharge vessel 2 is equipped with large areas of heat accumulation at its two ends 15, 16.
  • the filling contains a total of 37 »mol of the following metal halides (molar fraction in% of the total metal halides): 42% DyJ3, 24% TmJ3, 14% CeJ3 and 20 CsJ. This corresponds to 1.25 »mol / mm arc length and a specific arc power of 13 W / mm.
  • Another embodiment of a 70 W lamp with warm white light color uses a filling with 3.6 mg NaJ, 2.6 mg TmJ3 and 0.8 mg CeJ3 and 12 mg mercury.
  • the ratio AM-H: SE-H is 79:21.
  • the color temperature is around 3300 K.
  • Neodymium can also be used instead of cerium.
  • the halide portion of the filling is composed of 3.6 mg NaJ, 2.0 mg TmJ3 and 1.4 mg NdJ3, so that the ratio AM-H: SE-H is also 79: Is 21.
  • the color temperature increases to around 3600 K.
  • Another embodiment has in addition to 2.9 mg NaJ, 0.4 mg DyJ3 and 2.7 mg TmJ3 only 0.7 mg NdJ3.
  • the color temperature is 3450 K.

Landscapes

  • Discharge Lamp (AREA)

Claims (11)

  1. Lampe à décharge haute pression à vapeur de mercure pour l'éclairage général, comportant une enceinte de décharge, qui entoure un espace de décharge ayant un remplissage ionisable qui contient, outre un gaz rare et du mercure, également des halogénures de terres rares (SE-H) et de métaux alcalins (AM-H), des électrodes qui sont reliées à un système d'alimentation de courant qui ressort à l'extérieur étant montées à l'intérieur de cette enceinte de décharge, caractérisée par le fait que le remplissage contient respectivement au moins un halogénure d'un premier groupe de métaux des terres rares, à savoir le dysprosium, le thulium et un halogénure d'un second groupe de métaux des terres rares, à savoir le cérium, le néodyme, le praséodyme, le lanthane, et en outre un halogénure du groupe des métaux alcalins que sont le sodium et le césium, à l'exclusion d'un halogénure du thallium, le rendement lumineux étant égal à au moins 68 lm/W.
  2. Lampe à décharge haute pression à vapeur de mercure suivant la revendication 1, caractérisée par le fait qu'on obtient une couleur de lumière blanche à chaud au moyen d'un rapport molaire de mélange AM-H:SE-H compris entre 70:30 et 90:10, le métal alcalin étant de façon prépondérante du sodium.
  3. Lampe à décharge haute pression à vapeur de mercure suivant la revendication 1, caractérisée par le fait qu'une couleur de lumière blanc neutre est obtenue au moyen d'un rapport molaire de mélange AM-H:SE-H compris entre 18:82 et 55:45, le métal alcalin étant du sodium et/ou du césium.
  4. Lampe à décharge haute pression à vapeur de mercure suivant la revendication 1, caractérisée par le fait qu'une couleur de lumière semblable à la lumière du jour est obtenue au moyen d'un rapport molaire de mélange AM-H:SE-H compris entre 10:90 et 50:50, le métal alcalin étant de préférence du césium.
  5. Lampe à décharge haute pression à vapeur de mercure suivant la revendication 3, caractérisée par le fait qu'une enceinte de décharge à pincement des deux côtés est retenue axialement dans une ampoule extérieure à culot d'un seul côté, le césium étant utilisé comme métal alcalin.
  6. Lampe à décharge haute pression à vapeur de mercure suivant la revendication 1, caractérisée par le fait que l'halogénure d'un métal de terre rare du second groupe est un halogénure du cérium et/ou du néodyme.
  7. Lampe à décharge haute pression à vapeur de mercure suivant la revendication 6, caractérisée par le fait que le pourcentage d'halogénure de cérium dans la totalité des halogénures métalliques est compris entre 2 et 17 % en moles.
  8. Lampe à décharge haute pression à vapeur de mercure suivant la revendication 1, caractérisée par le fait qu'on utilise comme halogénure d'un métal de terre rare du premier groupe, aussi bien du dysprosium que du thulium.
  9. Lampe à décharge haute pression à vapeur de mercure suivant la revendication 1, caractérisée par le fait qu'on utilise principalement de l'iode comme halogène.
  10. Lampe à décharge haute pression à vapeur de mercure suivant la revendication 1, caractérisée par le fait que le remplissage contient en outre du HgI₂ et/ou du HgBr₂.
  11. Lampe à décharge haute pression à vapeur de mercure suivant la revendication 1, caractérisée par le fait qu'on utilise en outre un halogénure de holmium comme premier halogénure de métal de terre rare.
EP91105786A 1990-04-24 1991-04-11 Lampe à décharge à haute pression Expired - Lifetime EP0453893B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4013039A DE4013039A1 (de) 1990-04-24 1990-04-24 Hochdruckentladungslampe
DE4013039 1990-04-24

Publications (2)

Publication Number Publication Date
EP0453893A1 EP0453893A1 (fr) 1991-10-30
EP0453893B1 true EP0453893B1 (fr) 1995-07-19

Family

ID=6404976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91105786A Expired - Lifetime EP0453893B1 (fr) 1990-04-24 1991-04-11 Lampe à décharge à haute pression

Country Status (4)

Country Link
US (1) US5239232A (fr)
EP (1) EP0453893B1 (fr)
JP (1) JPH04230946A (fr)
DE (2) DE4013039A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4132530A1 (de) * 1991-09-30 1993-04-01 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Hochdruckentladungslampe kleiner leistung
DE69401394T2 (de) * 1993-07-13 1997-04-24 Matsushita Electric Ind Co Ltd Metall-Halogen Entladungslampe, optischer Beleuchtungsapparat und Bildvorführungssystem
DE4325679A1 (de) * 1993-07-30 1995-02-02 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Elektrische Lampe mit Halogenfüllung
CA2130424A1 (fr) * 1993-09-23 1995-03-24 Hsueh-Rong Chang Utilisation d'argent pour controler le niveau d'iode dans les lampes a decharge a haute intensite sans electrode
US5594302A (en) * 1995-08-22 1997-01-14 Lamptech Ltd. Metal halide lamp including iron and molybdenum
DE69825700T2 (de) * 1997-04-09 2005-08-25 Koninklijke Philips Electronics N.V. Metallhalogenidlampe
JP3307291B2 (ja) * 1997-09-04 2002-07-24 松下電器産業株式会社 高圧水銀放電ランプ
KR100762531B1 (ko) * 1999-04-29 2007-10-01 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 금속 할로겐화물 램프
JP2001185080A (ja) * 1999-12-27 2001-07-06 Toshiba Lighting & Technology Corp 高圧放電ランプ、高圧放電ランプ装置および照明装置
DE60206215T2 (de) 2001-06-27 2006-05-04 Matsushita Electric Industrial Co., Ltd., Kadoma Metall-Halogen-Lampe
JP2003016998A (ja) 2001-06-28 2003-01-17 Matsushita Electric Ind Co Ltd メタルハライドランプ
JP3990582B2 (ja) 2001-06-29 2007-10-17 松下電器産業株式会社 メタルハライドランプ
US6731068B2 (en) * 2001-12-03 2004-05-04 General Electric Company Ceramic metal halide lamp
US6979958B2 (en) 2002-01-31 2005-12-27 Matsushita Electric Industrial Co., Ltd. High efficacy metal halide lamp with praseodymium and sodium halides in a configured chamber
CN1669113A (zh) * 2002-07-17 2005-09-14 皇家飞利浦电子股份有限公司 金属卤化物灯
US6888312B2 (en) * 2002-12-13 2005-05-03 Welch Allyn, Inc. Metal halide lamp for curing adhesives
JP4295700B2 (ja) * 2003-08-29 2009-07-15 パナソニック株式会社 メタルハライドランプの点灯方法及び照明装置
JP4273951B2 (ja) * 2003-12-12 2009-06-03 パナソニック株式会社 メタルハライドランプ、およびこれを用いた照明装置
JP2007053004A (ja) * 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd メタルハライドランプおよびそれを用いた照明装置
JP5045065B2 (ja) * 2006-11-06 2012-10-10 岩崎電気株式会社 セラミックメタルハライドランプ
EP2168142A1 (fr) * 2007-07-16 2010-03-31 Osram Gesellschaft mit beschränkter Haftung Lampe à décharge haute pression
US7893619B2 (en) * 2008-07-25 2011-02-22 General Electric Company High intensity discharge lamp
US8482202B2 (en) * 2010-09-08 2013-07-09 General Electric Company Thallium iodide-free ceramic metal halide lamp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1342762A2 (fr) * 2002-03-07 2003-09-10 Basf Corporation Dispersion a haute teneur en solides pour des adhesifs qui sont sensibles a la pression et qui sont utilisables dans une large gamme de temperatures
EP2169510A1 (fr) * 2008-09-26 2010-03-31 Newform S.p.a. Mélangeur thermostatique électronique pour distribuer de l'eau à une température et un débit déterminés, en particulier pour des usages civils

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1370020A (en) * 1971-01-21 1974-10-09 Westinghouse Electric Corp Arc-discharge lamp
US3842307A (en) * 1971-02-11 1974-10-15 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh High pressure mercury vapor discharge lamp with metal halide additives
US3798487A (en) * 1972-07-21 1974-03-19 Westinghouse Electric Corp Discharge lamp which incorporates divalent cerium halide and cesium halide and a high mercury loading
DE2655167C2 (de) * 1976-12-06 1986-12-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Hochdruckentladungslampe mit Metallhalogeniden
JPS5454467A (en) * 1977-10-11 1979-04-28 Iwasaki Electric Co Ltd Metal vapor discharge lamp
DE3425894A1 (de) * 1984-07-13 1986-01-23 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Elektrische lampe
DE3427280C2 (de) * 1984-07-24 1986-06-12 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Metallhalogenid-Hochdruckentladungslampe
NL8502509A (nl) * 1985-09-13 1987-04-01 Philips Nv Hogedrukkwikdampontladingslamp.
US4801846A (en) * 1986-12-19 1989-01-31 Gte Laboratories Incorporated Rare earth halide light source with enhanced red emission
HU196861B (en) * 1987-01-23 1989-01-30 Tungsram Reszvenytarsasag Low colour-temperature high-pressure metal-halide lamp with good colour reproduction
US4978884A (en) * 1988-05-19 1990-12-18 U.S. Phillips Corporation Metal halide discharge lamp having low color temperature and improved color rendition
JP2650463B2 (ja) * 1989-05-31 1997-09-03 岩崎電気株式会社 メタルハライドランプ
JPH0395849A (ja) * 1989-09-07 1991-04-22 Matsushita Electron Corp メタルハライドランプ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1342762A2 (fr) * 2002-03-07 2003-09-10 Basf Corporation Dispersion a haute teneur en solides pour des adhesifs qui sont sensibles a la pression et qui sont utilisables dans une large gamme de temperatures
EP2169510A1 (fr) * 2008-09-26 2010-03-31 Newform S.p.a. Mélangeur thermostatique électronique pour distribuer de l'eau à une température et un débit déterminés, en particulier pour des usages civils

Also Published As

Publication number Publication date
DE59106003D1 (de) 1995-08-24
US5239232A (en) 1993-08-24
EP0453893A1 (fr) 1991-10-30
DE4013039A1 (de) 1991-10-31
JPH04230946A (ja) 1992-08-19
JPH0565977B2 (fr) 1993-09-20

Similar Documents

Publication Publication Date Title
EP0453893B1 (fr) Lampe à décharge à haute pression
DE60019698T2 (de) Metallhalogenidlampe
DE69817140T2 (de) Quecksilberfreie metallhalogenidlampe
EP0535311B1 (fr) Lampe à décharge à haute pression de faible puissance
EP0193086B1 (fr) Lampe à décharge à haute pression compacte
DE69911878T2 (de) Metallhalogenid lampe
EP1076353B1 (fr) Lampe aux halogènures métalliques sans mercure
DE1940539A1 (de) Quecksilberdampf-Hochdruckentladungslampe mit Metallhalogenidzusatz
EP0714551B1 (fr) Lampe a halogenure de metal pour usages photo-optiques
DE2707204C2 (de) Hochdruck-Entladungslampe mit Metallhalogenid-Zusatz
EP0492205B1 (fr) Lampe à décharge à haute pression à halogénure métallique
EP0706713B1 (fr) Lampe a halogenures metalliques a decharge sous haute pression
EP0702394B1 (fr) Lampe à décharge haute pression à halogénure métallique
DE60033228T2 (de) Metall halogen lampe
DE2106447C2 (de) Quecksilberdampf-Hochdruckentladungslampe mit einem Zusatz von Metallhalogeniden
DE2422576C3 (de) Quecksilberdampflampe
DE1489406C3 (de) Hochdruck-Quecksilberdampf entladungslampe
DE4413548A1 (de) Metallhalogenlampe
DE3640990A1 (de) Einseitig gequetschte hochdruckentladungslampe
DE3044121C2 (de) Natriumhochdrucklampe
EP1735814B1 (fr) Lampe a decharge haute pression
DE102005025418A1 (de) Metallhalogenidlampe
EP1032021B1 (fr) Lampe à halogénure métallique
EP0925602B1 (fr) Lampe a decharge aux halogenures de metal presentant une longue duree de vie
DE3731134C2 (de) Hochdruck-Metallhalogenidentladungslampe mit niedriger Farbtemperatur und guter Farbwiedergabe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT

17P Request for examination filed

Effective date: 19911127

17Q First examination report despatched

Effective date: 19931227

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

REF Corresponds to:

Ref document number: 59106003

Country of ref document: DE

Date of ref document: 19950824

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950922

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020409

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020426

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020430

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20030430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040621

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101