EP0517735A1 - Plasmatron mit wasserdampf als plasmagas und verfahren zum stabilen betrieb des plasmatrons. - Google Patents
Plasmatron mit wasserdampf als plasmagas und verfahren zum stabilen betrieb des plasmatrons.Info
- Publication number
- EP0517735A1 EP0517735A1 EP91904221A EP91904221A EP0517735A1 EP 0517735 A1 EP0517735 A1 EP 0517735A1 EP 91904221 A EP91904221 A EP 91904221A EP 91904221 A EP91904221 A EP 91904221A EP 0517735 A1 EP0517735 A1 EP 0517735A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plasma
- water vapor
- plasmatron
- gas
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004157 plasmatron Methods 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000008569 process Effects 0.000 title claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 87
- 238000009833 condensation Methods 0.000 claims abstract description 41
- 230000005494 condensation Effects 0.000 claims abstract description 41
- 238000001816 cooling Methods 0.000 claims abstract description 37
- 239000002826 coolant Substances 0.000 claims abstract description 22
- 239000007789 gas Substances 0.000 claims description 63
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 238000001704 evaporation Methods 0.000 claims description 7
- 230000008020 evaporation Effects 0.000 claims description 7
- 230000006378 damage Effects 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000010891 toxic waste Substances 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- -1 hydrogen ions Chemical class 0.000 claims description 3
- 239000002699 waste material Substances 0.000 claims description 3
- 239000004215 Carbon black (E152) Substances 0.000 claims 1
- 210000002381 plasma Anatomy 0.000 abstract description 87
- 230000003628 erosive effect Effects 0.000 abstract description 14
- 239000000498 cooling water Substances 0.000 description 10
- 238000001311 chemical methods and process Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 231100001234 toxic pollutant Toxicity 0.000 description 2
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D3/00—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
- A62D3/10—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
- A62D3/19—Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to plasma
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/28—Cooling arrangements
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62D—CHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
- A62D2101/00—Harmful chemical substances made harmless, or less harmful, by effecting chemical change
- A62D2101/20—Organic substances
- A62D2101/22—Organic substances containing halogen
Definitions
- the present invention relates to plasma cartridges which are operated with water vapor as the plasma gas, and to a method for the stable operation of such plasma cartridges.
- Plasma cartridges that are used for chemical material conversion are mainly operated with a gas that is chemically inert to the piasmatron materials as the plasma gas.
- processes of plasma pyrolysis work with hydrogen as the plasma gas.
- Steam plasmas have the advantage of being high at relatively low temperatures of around 3000 ° K To have a concentration of chemically reactive, highly excited oxygen and hydrogen species and thus to be particularly suitable for a number of material conversion processes.
- the thermal load is high in all plasmatrons, so that there are downtimes as a result of thermal and / or chemical erosion, which prevent continuous operation of a plasmatron without intensive cooling. This applies primarily to the electrodes, but also to the gas chamber, the piasmatrone housing, the connecting pieces and, depending on the design, other components. Water with a temperature of approximately 20 ° C. is usually used as a coolant for such plasma cartridges.
- the erosion of the parts which are exposed to or are in contact with the arc is particularly high in the case of plasmatrons which are operated using water vapor as the plasma gas.
- This high erosion load therefore affects in particular the cathode and the anode.
- the relatively high loss of electrode mass leads to a short service life of the electrodes of the plasmatron, which is operated with water vapor as the plasma gas, so that continuous operation is practically impossible due to the frequently necessary change of electrodes.
- the invention is therefore based on the object of improving a plasmatron which is operated with water vapor as the plasma gas in such a way that the service life of the parts of the plasmatron which are subject to thermal stress is prolonged and stable, low-fluctuation or free operation of the plasmatron without substantial increase operating expenses can be achieved.
- the " differences that exist in plasmatons with water vapor plasmas compared to other gas plasmas with regard to significantly higher electrode erosion and strong, disadvantageous operating fluctuations are to be eliminated with the same thermal process conditions and intensive cooling of all thermally highly stressed parts, in particular electrodes.
- the invention is also based on the object of specifying a method for the stable operation of a plasma cartridge, which is operated with water vapor as the plasma gas, by means of which, with intensive cooling, all parts subject to high thermal stress, in particular the electrodes of the plasma cartridge, and in the other conventional thermal process conditions Continuous operation by increasing the service life of parts of the plasmatron that are subject to high thermal stress and by reducing or avoiding fluctuations in the operating parameters of the plasmatron can be achieved.
- the causes are to be eliminated, which lead to a substantially higher electrode erosion and to fluctuations in the operating parameters in the case of plasmatrons with water vapor as plasma gas in comparison with plasmatrons with other gas plasmas, without, on the other hand, disadvantageous changes in the thermal process conditions or in the cooling area.
- a plasmatron with water vapor as the plasma gas and a cooling device with a coolant for thermally highly stressed parts, in particular the electrodes in that by controlling the operating parameters, in particular the temperature of the thermally highly stressed parts and / or the condensation temperature of the Plasma gas condensation of the plasma gas is avoided on the thermally highly stressed and therefore cooled parts.
- a plasmatron is used for chemical substance treatment, in particular for total destruction of toxic products, in particular chlorinated or fluorinated hydrocarbons, which works with a water vapor plasma as the plasma gas and whose thermally highly stressed parts, in particular electrodes, are used as coolants by hot water a temperature of at least about 80 ° C is operated.
- a method for the stabilized operation of a plasma cartridge working with water vapor as a plasma gas which permits an increase in the electrode service life and an essentially fluctuation-free operation with a high degree of efficiency of the desired chemical substance conversion
- a method is provided according to the invention such that operating parameters , in particular the temperature of the coolant and / or the composition of the plasma gas can be controlled in such a way that condensation of the plasma gas consisting at least essentially of water vapor on the cooled parts of the plasma cartridge is avoided.
- hot water is preferably used as the coolant, the cooling temperature of which is preferably at least 80 ° C.
- a further improvement of the method according to the invention for reducing condensation problems with regard to the water vapor plasma on the hot water-cooled parts of the plasmatron, in particular the anode and cathode thermally acted upon by the arc, is achieved according to a further preferred embodiment of the method according to the invention in that the cooling of the thermally highly stressed parts of the plasma cartridge, in particular the electrodes, are combined by hot water with a temperature of at least 80 ° C. with a lowering of the condensation temperature of the plasma gas by admixing a gas with a low condensation temperature.
- Air is preferably added to the plasma vapor after the evaporation stage to lower the condensation temperature of the plasma gas mixture, the Condensation temperature of
- Water vapor plasma gas partial component in e.g. 80 ° C, while in this case the electrode cooling according to the invention by means of hot water maintains an electrode temperature of more than 80 ° C.
- the solution to the problems on which the invention is based consists in a plasmatron that works with at least essentially water vapor as the plasma gas and in a method for stable operation thereof with a limitation of the cooling of the thermally highly stressed and therefore cooled parts of the plasmatron by using hot water as a coolant a temperature of at least approx. 80 ° C.
- the limitation of the cooling is «only by reducing the thermal driving force. reached between the electron surface, preferably the anode inner wall, and the cooling water.
- a particularly effective solution is achieved according to an advantageous embodiment of the invention by a combination of the limitation of cooling in conjunction with the use of hot water as a coolant and the simultaneous lowering of the condensation temperature of the water vapor plasma by admixing a gas with a condensation temperature lower than that of water vapor, the
- Cooling water inlet temperature is controlled so that the surface temperature of the cathode and anode of the plasma cartridge is at least close to that of the condensation temperature of the plasma gas mixture corresponding to the new water vapor partial pressure.
- Air is preferably additionally mixed into the water vapor as the gas reducing the condensation temperature of the water vapor plasma.
- the invention is explained in more detail below on the basis of an exemplary embodiment for the destruction of toxic waste products with the aid of a chemical substance conversion by treatment in plasma cartridges which are operated essentially with water vapor as the plasma gas.
- a plasma system for the destruction of toxic waste products preferably for the chemical conversion of waste products containing chlorinated or fluorinated "hydrocarbons contain from 10 plasmatron of 30 -kw power to the respective reactors and the necessary auxiliary equipment in a conventional manner.
- the system is operated with 25 kg / h of steam at a temperature of 300 ° C. at 0.1 Pa as the plasma gas.
- the plasmatron has a cooling device which uses cooling water as a coolant for cooling the thermally highly stressed parts of the plasmatron, in particular the anode and cathode.
- the cooling water inlet temperature at the anode and increased the cathode by reducing the cooling in the cooling water circuits of the system to preferably 80 ° C., so that the thermally highly stressed parts of the plasmatons are subject to hot water cooling.
- a cooling water speed of 50 to 70 m / s a cooling water outlet temperature of 81 to 82 ° C is reached.
- Such a cooling water temperature which is normally kept at room temperature, only insignificantly reduces the thermal driving force due to the temperature difference between the surface temperature of the electrode and the original cooling water temperature, ie sufficient cooling of the electrodes can also be achieved with hot water.
- a second preferred embodiment of the invention in the form of the use of hot water according to the invention with a temperature of preferably ⁇ o at least 80 ° C cooled plasma cartridges for the destruction of toxic waste products by chemical conversion, the fluctuations in the operating mode of the plasma cartridges that may still remain despite the reduction of the electrode cooling through the use of hot water cooling are not justifiable, as this, though to a small extent, still results in the leakage toxic pollutants could occur.
- the thermally particularly stressed Piasmatronmaschine in particular the electrode, with hot water combined with a lowering of the condensation temperature to apply the water-steam plasma gas ".
- the condensation temperature may be those with over by admixing a foreign gas lower water vapor condensation temperature In this case, for example, 62.5 m 3 / h of air are preferably mixed into the plasma vapor after the evaporation stage
- the condensation temperature of the water vapor plasma partial component is now 80 ° C.
- the electrode temperature with the electrode cooling after the In the present invention is preferably slightly above 80 ° C., so that condensation of water vapor can be completely prevented, so that the cause of fluctuations in the operation of the plas matrons are completely eliminated and a continuous flow of the material conversion processes is guaranteed. In this way, breakthroughs of toxic substances through a water vapor plasmatron can be completely avoided.
- the invention provides a plasmatron and a method for the stable operation of a plasmatron with water vapor as the plasma gas, in which the fluctuations typical of water vapor plasmas, sudden fluctuations of the ⁇
- Water vapor plasma atmosphere can be additionally increased by adding a gas to the water vapor at a lower condensation temperature than the water vapor, so that the condensation temperature of the plasma gas mixture corresponding to the current water vapor partial pressure is below the temperature, even at the most cooled points of the plasmatron, the electrodes, as the surface temperature is held so that condensation and resulting
- Cooling is used, was achieved and a particularly complete solution to the condensation problem can be achieved by additionally adding air to the water vapor to form the plasma gas atmosphere in order to lower the condensation temperature of the water vapor plasma gas, the invention is not restricted to this. Rather, taking into account the heat dissipation capacity of the cooling medium, the pressure conditions in the plasma reactor and the respective phase transition points, deviations and modifications can be carried out, with the aim of solving the problems of plasmatron parts which result from the condensation of water vapor on cooled piasmatron parts and which essentially contain water vapor as plasma gas, to be avoided by ensuring, by choosing the cooling and / or condensation conditions, that condensation of the plasma gas or gas mixture or parts thereof does not occur at the cooled areas, in particular the electrodes of the plasmatron.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Plasma Technology (AREA)
- Paints Or Removers (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Paper (AREA)
- Physical Vapour Deposition (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
- External Artificial Organs (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Coating By Spraying Or Casting (AREA)
- Drying Of Semiconductors (AREA)
- Treatment Of Fiber Materials (AREA)
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DD90338145A DD299613A7 (de) | 1990-02-26 | 1990-02-26 | Verfahren zum stabilen betrieb von plasmatrons mit wasserdampf als plasmagas |
DD338145 | 1990-02-26 | ||
PCT/EP1991/000348 WO1991013532A1 (de) | 1990-02-26 | 1991-02-26 | Plasmatron mit wasserdampf als plasmagas und verfahren zum stabilen betrieb des plasmatrons |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0517735A1 true EP0517735A1 (de) | 1992-12-16 |
EP0517735B1 EP0517735B1 (de) | 1995-12-27 |
Family
ID=5616667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91904221A Expired - Lifetime EP0517735B1 (de) | 1990-02-26 | 1991-02-26 | Verfahren zum stabilen betrieb eines plasmatrons mit wasserdampf als plasmagas |
Country Status (12)
Country | Link |
---|---|
US (1) | US5498826A (de) |
EP (1) | EP0517735B1 (de) |
JP (1) | JPH0821474B2 (de) |
AT (1) | ATE132316T1 (de) |
DD (1) | DD299613A7 (de) |
DE (1) | DE59107163D1 (de) |
DK (1) | DK0517735T3 (de) |
ES (1) | ES2084155T3 (de) |
FI (1) | FI923813A0 (de) |
GR (1) | GR3019093T3 (de) |
RU (1) | RU2067790C1 (de) |
WO (1) | WO1991013532A1 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2724806A1 (fr) * | 1994-09-16 | 1996-03-22 | Pompes Maupu Entreprise | Procede et dispositif d'assistance par plasma au vapo-craquage non-catalytique de composes hydrocarbones et halogeno-organiques |
JP2985762B2 (ja) * | 1996-03-18 | 1999-12-06 | 日本電気株式会社 | 排気ガスの処理方法及び処理装置 |
WO2004048851A1 (en) * | 2002-11-25 | 2004-06-10 | David Systems Technology, S.L. | Integrated plasma-frequency induction process for waste treatment, resource recovery and apparatus for realizing same |
WO2014124521A1 (en) | 2013-02-15 | 2014-08-21 | Pyrogenesis Canada Inc. | High power dc non transferred steam plasma torch system |
RU2721931C1 (ru) * | 2020-01-13 | 2020-05-25 | Общество С Ограниченной Ответственностью "Плазариум" | Прямоточный парогенератор для плазменной системы, плазменная система с таким парогенератором и способ генерации перегретого пара |
CN111246649A (zh) * | 2020-01-16 | 2020-06-05 | 江苏河海新能源股份有限公司 | 水蒸汽等离子发生装置 |
CN111586954B (zh) * | 2020-06-08 | 2022-09-09 | 江苏帕斯玛环境科技有限公司 | 水蒸气等离子体产生的方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE215325C (de) * | ||||
DE218984C (de) * | 1908-04-16 | |||
DE1417746A1 (de) * | 1960-11-28 | 1969-02-13 | Berghaus Elektrophysik Anst | Verfahren zur Durchfuehrung chemischer Prozesse |
HU184389B (en) * | 1981-02-27 | 1984-08-28 | Villamos Ipari Kutato Intezet | Method and apparatus for destroying wastes by using of plasmatechnic |
DD218984A1 (de) * | 1983-06-01 | 1985-02-20 | Adw Ddr | Verduesungsvorrichtung fuer fluessigkeiten in hochtemperaturplasmen |
US4582004A (en) * | 1983-07-05 | 1986-04-15 | Westinghouse Electric Corp. | Electric arc heater process and apparatus for the decomposition of hazardous materials |
DE3330750A1 (de) * | 1983-08-26 | 1985-03-14 | Chemische Werke Hüls AG, 4370 Marl | Verfahren zur erzeugung von acetylen und synthese- oder reduktionsgas aus kohle in einem lichtbogenprozess |
US4642440A (en) * | 1984-11-13 | 1987-02-10 | Schnackel Jay F | Semi-transferred arc in a liquid stabilized plasma generator and method for utilizing the same |
SE453920B (sv) * | 1985-03-01 | 1988-03-14 | Skf Steel Eng Ab | Sett och anordning for forgasning av fossila brenslen samt reformering av gasformiga brenslen |
CA1324823C (en) * | 1988-08-08 | 1993-11-30 | Robert Chrong-Wen Chang | Method and apparatus for plasma pyrolysis of liquid waste |
DE3922383C2 (de) * | 1988-08-11 | 1994-06-09 | Grimma Masch Anlagen Gmbh | Verfahren zur Vernichtung toxischer Abprodukte und Vorrichtung zur Durchführung des Verfahrens |
JPH084707B2 (ja) * | 1988-11-10 | 1996-01-24 | 工業技術院長 | 有機ハロゲン化合物の分解方法 |
US5026464A (en) * | 1988-08-31 | 1991-06-25 | Agency Of Industrial Science And Technology | Method and apparatus for decomposing halogenated organic compound |
JPH0722607B2 (ja) * | 1989-09-01 | 1995-03-15 | 工業技術院長 | プラズマ反応法による有機ハロゲン化合物の分解方法および装置 |
JPH03242158A (ja) * | 1990-02-20 | 1991-10-29 | Mitsubishi Heavy Ind Ltd | フルオロカーボンの分解処理方法 |
JP2617144B2 (ja) * | 1990-04-13 | 1997-06-04 | 新日本製鐵株式会社 | ハロゲン化有機化合物のプラズマ分解処理方法 |
-
1990
- 1990-02-26 DD DD90338145A patent/DD299613A7/de not_active IP Right Cessation
-
1991
- 1991-02-26 JP JP3504220A patent/JPH0821474B2/ja not_active Expired - Lifetime
- 1991-02-26 EP EP91904221A patent/EP0517735B1/de not_active Expired - Lifetime
- 1991-02-26 ES ES91904221T patent/ES2084155T3/es not_active Expired - Lifetime
- 1991-02-26 DE DE59107163T patent/DE59107163D1/de not_active Expired - Fee Related
- 1991-02-26 DK DK91904221.8T patent/DK0517735T3/da active
- 1991-02-26 US US08/323,590 patent/US5498826A/en not_active Expired - Fee Related
- 1991-02-26 AT AT91904221T patent/ATE132316T1/de not_active IP Right Cessation
- 1991-02-26 RU SU915053005A patent/RU2067790C1/ru active
- 1991-02-26 WO PCT/EP1991/000348 patent/WO1991013532A1/de active IP Right Grant
-
1992
- 1992-08-25 FI FI923813A patent/FI923813A0/fi not_active Application Discontinuation
-
1996
- 1996-02-23 GR GR960400513T patent/GR3019093T3/el unknown
Non-Patent Citations (1)
Title |
---|
See references of WO9113532A1 * |
Also Published As
Publication number | Publication date |
---|---|
JPH05506536A (ja) | 1993-09-22 |
GR3019093T3 (en) | 1996-05-31 |
RU2067790C1 (ru) | 1996-10-10 |
EP0517735B1 (de) | 1995-12-27 |
FI923813A (fi) | 1992-08-25 |
FI923813A0 (fi) | 1992-08-25 |
JPH0821474B2 (ja) | 1996-03-04 |
DE59107163D1 (de) | 1996-02-08 |
DD299613A7 (de) | 1992-04-30 |
ES2084155T3 (es) | 1996-05-01 |
WO1991013532A1 (de) | 1991-09-05 |
DK0517735T3 (da) | 1996-03-18 |
ATE132316T1 (de) | 1996-01-15 |
US5498826A (en) | 1996-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69416073T2 (de) | Herstellung von Fluorkohlenstoffverbindungen | |
DE3144192C2 (de) | Verfahren zum Bedampfen einer Oberfläche mit Hartstoffen und Anwendung des Verfahrens | |
EP0250865B1 (de) | Schneidwerkzeug | |
DD155140A5 (de) | Verfahren zur hochtemperaturbehandlung von kohlenstoffhaltigen materialien | |
DE3615670A1 (de) | Verfahren und vorrichtung zur behandlung von gasen mittels entladung | |
EP0306612A1 (de) | Verfahren zur Aufbringung von Schichten auf Substraten | |
DE3614384A1 (de) | Verfahren zur beschichtung von substraten in einer vakuumkammer | |
DE3522888A1 (de) | Vorrichtung zum erzeugen eines plasmastrahls | |
DE3150591A1 (de) | Verfahren zur herstellung von metallueberzuegen durch zerstaeubungsionenbeschichtung | |
DE102007015587A1 (de) | Abscheidung nahezu "Droplet" freier Verschleißschutzschichten mittels kathodischem Arc-Beschichtungsverfahren | |
EP0517735B1 (de) | Verfahren zum stabilen betrieb eines plasmatrons mit wasserdampf als plasmagas | |
CH661616A5 (de) | Verfahren zur vorbehandlung der kontakte und elektroden elektrischer vakuumgeraete. | |
DE3001614C2 (de) | Verfahren zum elektrolytischen Zersetzen von Chlorwasserstoffsäure in einer Elektrolysiervorrichtung | |
DE1257121B (de) | Vorrichtung zur Herstellung von Ozon | |
EP0142083A2 (de) | Verfahren und Einrichtung zum Herstellen metallischer Überzüge | |
DE1924201A1 (de) | Verfahren zum Betrieb eines Plasmabrenners und zur Durchfuehrung des Verfahrens geeigneter Brenner | |
DE3102773A1 (de) | Plasmagenerator | |
DE2820183C3 (de) | Verfahren und Vorrichtung zum Überziehen der Oberfläche eines elektrisch leitenden Werkstücks | |
DE3303677C2 (de) | Plasmakanone | |
DE102010036332B4 (de) | Verfahren zum Beschichten von Elektroden für die Elektrolyse mittels eines Lichtbogens | |
DD299614A7 (de) | Verfahren zum stabilen betrieb von wasserdampfplasmatrons | |
AT524127A4 (de) | Vorrichtung und Verfahren zur Herstellung von hypochloriger Säure durch Elektrolyse | |
CH667605A5 (de) | Spanendes werkzeug und verfahren zu dessen herstellung. | |
WO2005097213A1 (de) | Vorrichtung und verfahren zur reinigung von flüssigkeiten | |
DE3217990C2 (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19920518 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19940719 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 132316 Country of ref document: AT Date of ref document: 19960115 Kind code of ref document: T |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19960201 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19960202 Year of fee payment: 6 |
|
REF | Corresponds to: |
Ref document number: 59107163 Country of ref document: DE Date of ref document: 19960208 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 19960228 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BOVARD AG PATENTANWAELTE |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960217 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3019093 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2084155 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19970228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970820 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19970821 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 19970825 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19970826 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19970827 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19970828 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19970829 Year of fee payment: 7 Ref country code: DE Payment date: 19970829 Year of fee payment: 7 Ref country code: AT Payment date: 19970829 Year of fee payment: 7 |
|
BERE | Be: lapsed |
Owner name: MASCHINEN- UND ANLAGENBAU GRIMMA G.M.B.H. Effective date: 19970228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19970831 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: MM2A Free format text: 3019093 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980226 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980227 Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 19980227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980228 Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19980228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980901 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980226 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed |
Ref document number: 91904221.8 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981103 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20000601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050226 |