EP0517735A1 - Plasmatron a vapeur d'eau comme gaz de plasma et procede de fonctionnement stable du plasmatron. - Google Patents

Plasmatron a vapeur d'eau comme gaz de plasma et procede de fonctionnement stable du plasmatron.

Info

Publication number
EP0517735A1
EP0517735A1 EP91904221A EP91904221A EP0517735A1 EP 0517735 A1 EP0517735 A1 EP 0517735A1 EP 91904221 A EP91904221 A EP 91904221A EP 91904221 A EP91904221 A EP 91904221A EP 0517735 A1 EP0517735 A1 EP 0517735A1
Authority
EP
European Patent Office
Prior art keywords
plasma
water vapor
plasmatron
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91904221A
Other languages
German (de)
English (en)
Other versions
EP0517735B1 (fr
Inventor
Hans-Ulrich Dummersdorf
Dietrich Hebecker
Lengerken Dirk Von
Carsten Winter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MASCHINEN- und ANLAGENBAU GRIMMA GmbH
GRIMMA MASCH ANLAGEN GmbH
Original Assignee
MASCHINEN- und ANLAGENBAU GRIMMA GmbH
GRIMMA MASCH ANLAGEN GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MASCHINEN- und ANLAGENBAU GRIMMA GmbH, GRIMMA MASCH ANLAGEN GmbH filed Critical MASCHINEN- und ANLAGENBAU GRIMMA GmbH
Publication of EP0517735A1 publication Critical patent/EP0517735A1/fr
Application granted granted Critical
Publication of EP0517735B1 publication Critical patent/EP0517735B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/19Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/28Cooling arrangements
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/22Organic substances containing halogen

Definitions

  • the present invention relates to plasma cartridges which are operated with water vapor as the plasma gas, and to a method for the stable operation of such plasma cartridges.
  • Plasma cartridges that are used for chemical material conversion are mainly operated with a gas that is chemically inert to the piasmatron materials as the plasma gas.
  • processes of plasma pyrolysis work with hydrogen as the plasma gas.
  • Steam plasmas have the advantage of being high at relatively low temperatures of around 3000 ° K To have a concentration of chemically reactive, highly excited oxygen and hydrogen species and thus to be particularly suitable for a number of material conversion processes.
  • the thermal load is high in all plasmatrons, so that there are downtimes as a result of thermal and / or chemical erosion, which prevent continuous operation of a plasmatron without intensive cooling. This applies primarily to the electrodes, but also to the gas chamber, the piasmatrone housing, the connecting pieces and, depending on the design, other components. Water with a temperature of approximately 20 ° C. is usually used as a coolant for such plasma cartridges.
  • the erosion of the parts which are exposed to or are in contact with the arc is particularly high in the case of plasmatrons which are operated using water vapor as the plasma gas.
  • This high erosion load therefore affects in particular the cathode and the anode.
  • the relatively high loss of electrode mass leads to a short service life of the electrodes of the plasmatron, which is operated with water vapor as the plasma gas, so that continuous operation is practically impossible due to the frequently necessary change of electrodes.
  • the invention is therefore based on the object of improving a plasmatron which is operated with water vapor as the plasma gas in such a way that the service life of the parts of the plasmatron which are subject to thermal stress is prolonged and stable, low-fluctuation or free operation of the plasmatron without substantial increase operating expenses can be achieved.
  • the " differences that exist in plasmatons with water vapor plasmas compared to other gas plasmas with regard to significantly higher electrode erosion and strong, disadvantageous operating fluctuations are to be eliminated with the same thermal process conditions and intensive cooling of all thermally highly stressed parts, in particular electrodes.
  • the invention is also based on the object of specifying a method for the stable operation of a plasma cartridge, which is operated with water vapor as the plasma gas, by means of which, with intensive cooling, all parts subject to high thermal stress, in particular the electrodes of the plasma cartridge, and in the other conventional thermal process conditions Continuous operation by increasing the service life of parts of the plasmatron that are subject to high thermal stress and by reducing or avoiding fluctuations in the operating parameters of the plasmatron can be achieved.
  • the causes are to be eliminated, which lead to a substantially higher electrode erosion and to fluctuations in the operating parameters in the case of plasmatrons with water vapor as plasma gas in comparison with plasmatrons with other gas plasmas, without, on the other hand, disadvantageous changes in the thermal process conditions or in the cooling area.
  • a plasmatron with water vapor as the plasma gas and a cooling device with a coolant for thermally highly stressed parts, in particular the electrodes in that by controlling the operating parameters, in particular the temperature of the thermally highly stressed parts and / or the condensation temperature of the Plasma gas condensation of the plasma gas is avoided on the thermally highly stressed and therefore cooled parts.
  • a plasmatron is used for chemical substance treatment, in particular for total destruction of toxic products, in particular chlorinated or fluorinated hydrocarbons, which works with a water vapor plasma as the plasma gas and whose thermally highly stressed parts, in particular electrodes, are used as coolants by hot water a temperature of at least about 80 ° C is operated.
  • a method for the stabilized operation of a plasma cartridge working with water vapor as a plasma gas which permits an increase in the electrode service life and an essentially fluctuation-free operation with a high degree of efficiency of the desired chemical substance conversion
  • a method is provided according to the invention such that operating parameters , in particular the temperature of the coolant and / or the composition of the plasma gas can be controlled in such a way that condensation of the plasma gas consisting at least essentially of water vapor on the cooled parts of the plasma cartridge is avoided.
  • hot water is preferably used as the coolant, the cooling temperature of which is preferably at least 80 ° C.
  • a further improvement of the method according to the invention for reducing condensation problems with regard to the water vapor plasma on the hot water-cooled parts of the plasmatron, in particular the anode and cathode thermally acted upon by the arc, is achieved according to a further preferred embodiment of the method according to the invention in that the cooling of the thermally highly stressed parts of the plasma cartridge, in particular the electrodes, are combined by hot water with a temperature of at least 80 ° C. with a lowering of the condensation temperature of the plasma gas by admixing a gas with a low condensation temperature.
  • Air is preferably added to the plasma vapor after the evaporation stage to lower the condensation temperature of the plasma gas mixture, the Condensation temperature of
  • Water vapor plasma gas partial component in e.g. 80 ° C, while in this case the electrode cooling according to the invention by means of hot water maintains an electrode temperature of more than 80 ° C.
  • the solution to the problems on which the invention is based consists in a plasmatron that works with at least essentially water vapor as the plasma gas and in a method for stable operation thereof with a limitation of the cooling of the thermally highly stressed and therefore cooled parts of the plasmatron by using hot water as a coolant a temperature of at least approx. 80 ° C.
  • the limitation of the cooling is «only by reducing the thermal driving force. reached between the electron surface, preferably the anode inner wall, and the cooling water.
  • a particularly effective solution is achieved according to an advantageous embodiment of the invention by a combination of the limitation of cooling in conjunction with the use of hot water as a coolant and the simultaneous lowering of the condensation temperature of the water vapor plasma by admixing a gas with a condensation temperature lower than that of water vapor, the
  • Cooling water inlet temperature is controlled so that the surface temperature of the cathode and anode of the plasma cartridge is at least close to that of the condensation temperature of the plasma gas mixture corresponding to the new water vapor partial pressure.
  • Air is preferably additionally mixed into the water vapor as the gas reducing the condensation temperature of the water vapor plasma.
  • the invention is explained in more detail below on the basis of an exemplary embodiment for the destruction of toxic waste products with the aid of a chemical substance conversion by treatment in plasma cartridges which are operated essentially with water vapor as the plasma gas.
  • a plasma system for the destruction of toxic waste products preferably for the chemical conversion of waste products containing chlorinated or fluorinated "hydrocarbons contain from 10 plasmatron of 30 -kw power to the respective reactors and the necessary auxiliary equipment in a conventional manner.
  • the system is operated with 25 kg / h of steam at a temperature of 300 ° C. at 0.1 Pa as the plasma gas.
  • the plasmatron has a cooling device which uses cooling water as a coolant for cooling the thermally highly stressed parts of the plasmatron, in particular the anode and cathode.
  • the cooling water inlet temperature at the anode and increased the cathode by reducing the cooling in the cooling water circuits of the system to preferably 80 ° C., so that the thermally highly stressed parts of the plasmatons are subject to hot water cooling.
  • a cooling water speed of 50 to 70 m / s a cooling water outlet temperature of 81 to 82 ° C is reached.
  • Such a cooling water temperature which is normally kept at room temperature, only insignificantly reduces the thermal driving force due to the temperature difference between the surface temperature of the electrode and the original cooling water temperature, ie sufficient cooling of the electrodes can also be achieved with hot water.
  • a second preferred embodiment of the invention in the form of the use of hot water according to the invention with a temperature of preferably ⁇ o at least 80 ° C cooled plasma cartridges for the destruction of toxic waste products by chemical conversion, the fluctuations in the operating mode of the plasma cartridges that may still remain despite the reduction of the electrode cooling through the use of hot water cooling are not justifiable, as this, though to a small extent, still results in the leakage toxic pollutants could occur.
  • the thermally particularly stressed Piasmatronmaschine in particular the electrode, with hot water combined with a lowering of the condensation temperature to apply the water-steam plasma gas ".
  • the condensation temperature may be those with over by admixing a foreign gas lower water vapor condensation temperature In this case, for example, 62.5 m 3 / h of air are preferably mixed into the plasma vapor after the evaporation stage
  • the condensation temperature of the water vapor plasma partial component is now 80 ° C.
  • the electrode temperature with the electrode cooling after the In the present invention is preferably slightly above 80 ° C., so that condensation of water vapor can be completely prevented, so that the cause of fluctuations in the operation of the plas matrons are completely eliminated and a continuous flow of the material conversion processes is guaranteed. In this way, breakthroughs of toxic substances through a water vapor plasmatron can be completely avoided.
  • the invention provides a plasmatron and a method for the stable operation of a plasmatron with water vapor as the plasma gas, in which the fluctuations typical of water vapor plasmas, sudden fluctuations of the ⁇
  • Water vapor plasma atmosphere can be additionally increased by adding a gas to the water vapor at a lower condensation temperature than the water vapor, so that the condensation temperature of the plasma gas mixture corresponding to the current water vapor partial pressure is below the temperature, even at the most cooled points of the plasmatron, the electrodes, as the surface temperature is held so that condensation and resulting
  • Cooling is used, was achieved and a particularly complete solution to the condensation problem can be achieved by additionally adding air to the water vapor to form the plasma gas atmosphere in order to lower the condensation temperature of the water vapor plasma gas, the invention is not restricted to this. Rather, taking into account the heat dissipation capacity of the cooling medium, the pressure conditions in the plasma reactor and the respective phase transition points, deviations and modifications can be carried out, with the aim of solving the problems of plasmatron parts which result from the condensation of water vapor on cooled piasmatron parts and which essentially contain water vapor as plasma gas, to be avoided by ensuring, by choosing the cooling and / or condensation conditions, that condensation of the plasma gas or gas mixture or parts thereof does not occur at the cooled areas, in particular the electrodes of the plasmatron.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)
  • Paints Or Removers (AREA)
  • External Artificial Organs (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Paper (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Drying Of Semiconductors (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Physical Vapour Deposition (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

L'invention concerne un plasmatron ainsi qu'un procédé de fonctionnement stable d'un plasmatron avec de la vapeur d'eau comme gaz de plasma dans lequel on doit éviter les fluctuations typiques des plasmas à vapeur d'eau en fonctionnement ainsi que l'érosion accrue des électrodes. L'invention atteint cet objectif en limitant le refroidissement des électrodes par utilisation d'eau chaude comme moyen de refroidissement à une température d'au moins 80 °C. On peut, le cas échéant, exclure la condensation de vapeur d'eau aux électrodes, complémentairement au refroidissement par eau chaude, en ajoutant un gaz abaissant la température de condensation de la vapeur d'eau.
EP91904221A 1990-02-26 1991-02-26 Procede de fonctionnement stable d'un plasmatron a vapeur d'eau comme gaz de plasma Expired - Lifetime EP0517735B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DD338145 1990-02-26
DD90338145A DD299613A7 (de) 1990-02-26 1990-02-26 Verfahren zum stabilen betrieb von plasmatrons mit wasserdampf als plasmagas
PCT/EP1991/000348 WO1991013532A1 (fr) 1990-02-26 1991-02-26 Plasmatron a vapeur d'eau comme gaz de plasma et procede de fonctionnement stable du plasmatron

Publications (2)

Publication Number Publication Date
EP0517735A1 true EP0517735A1 (fr) 1992-12-16
EP0517735B1 EP0517735B1 (fr) 1995-12-27

Family

ID=5616667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91904221A Expired - Lifetime EP0517735B1 (fr) 1990-02-26 1991-02-26 Procede de fonctionnement stable d'un plasmatron a vapeur d'eau comme gaz de plasma

Country Status (12)

Country Link
US (1) US5498826A (fr)
EP (1) EP0517735B1 (fr)
JP (1) JPH0821474B2 (fr)
AT (1) ATE132316T1 (fr)
DD (1) DD299613A7 (fr)
DE (1) DE59107163D1 (fr)
DK (1) DK0517735T3 (fr)
ES (1) ES2084155T3 (fr)
FI (1) FI923813A (fr)
GR (1) GR3019093T3 (fr)
RU (1) RU2067790C1 (fr)
WO (1) WO1991013532A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2724806A1 (fr) * 1994-09-16 1996-03-22 Pompes Maupu Entreprise Procede et dispositif d'assistance par plasma au vapo-craquage non-catalytique de composes hydrocarbones et halogeno-organiques
JP2985762B2 (ja) * 1996-03-18 1999-12-06 日本電気株式会社 排気ガスの処理方法及び処理装置
WO2004048851A1 (fr) * 2002-11-25 2004-06-10 David Systems Technology, S.L. Procede a induction et frequence plasmique integree pour traitement de dechets, recuperation de ressources et dispositif associe
CA2901485A1 (fr) 2013-02-15 2014-08-21 Pyrogenesis Canada Inc. Systeme de torche a plasma de vapeur sans transfert a courant continu a grande puissance
RU2721931C1 (ru) * 2020-01-13 2020-05-25 Общество С Ограниченной Ответственностью "Плазариум" Прямоточный парогенератор для плазменной системы, плазменная система с таким парогенератором и способ генерации перегретого пара
CN111246649A (zh) * 2020-01-16 2020-06-05 江苏河海新能源股份有限公司 水蒸汽等离子发生装置
CN111586954B (zh) * 2020-06-08 2022-09-09 江苏帕斯玛环境科技有限公司 水蒸气等离子体产生的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE215325C (fr) *
DE218984C (fr) * 1908-04-16
DE1417746A1 (de) * 1960-11-28 1969-02-13 Berghaus Elektrophysik Anst Verfahren zur Durchfuehrung chemischer Prozesse
HU184389B (en) * 1981-02-27 1984-08-28 Villamos Ipari Kutato Intezet Method and apparatus for destroying wastes by using of plasmatechnic
DD218984A1 (de) * 1983-06-01 1985-02-20 Adw Ddr Verduesungsvorrichtung fuer fluessigkeiten in hochtemperaturplasmen
US4582004A (en) * 1983-07-05 1986-04-15 Westinghouse Electric Corp. Electric arc heater process and apparatus for the decomposition of hazardous materials
DE3330750A1 (de) * 1983-08-26 1985-03-14 Chemische Werke Hüls AG, 4370 Marl Verfahren zur erzeugung von acetylen und synthese- oder reduktionsgas aus kohle in einem lichtbogenprozess
US4642440A (en) * 1984-11-13 1987-02-10 Schnackel Jay F Semi-transferred arc in a liquid stabilized plasma generator and method for utilizing the same
SE453920B (sv) * 1985-03-01 1988-03-14 Skf Steel Eng Ab Sett och anordning for forgasning av fossila brenslen samt reformering av gasformiga brenslen
CA1324823C (fr) * 1988-08-08 1993-11-30 Robert Chrong-Wen Chang Procede et dispositif de pyrolyse au plasma de dechets liquides
AT402338B (de) * 1988-08-11 1997-04-25 Grimma Masch Anlagen Gmbh Verfahren zur vernichtung toxischer abprodukte sowie plasmatischer reaktor zur durchführung des verfahrens
JPH0722607B2 (ja) * 1989-09-01 1995-03-15 工業技術院長 プラズマ反応法による有機ハロゲン化合物の分解方法および装置
US5026464A (en) * 1988-08-31 1991-06-25 Agency Of Industrial Science And Technology Method and apparatus for decomposing halogenated organic compound
JPH084707B2 (ja) * 1988-11-10 1996-01-24 工業技術院長 有機ハロゲン化合物の分解方法
JPH03242158A (ja) * 1990-02-20 1991-10-29 Mitsubishi Heavy Ind Ltd フルオロカーボンの分解処理方法
JP2617144B2 (ja) * 1990-04-13 1997-06-04 新日本製鐵株式会社 ハロゲン化有機化合物のプラズマ分解処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9113532A1 *

Also Published As

Publication number Publication date
EP0517735B1 (fr) 1995-12-27
US5498826A (en) 1996-03-12
WO1991013532A1 (fr) 1991-09-05
JPH0821474B2 (ja) 1996-03-04
ATE132316T1 (de) 1996-01-15
DE59107163D1 (de) 1996-02-08
RU2067790C1 (ru) 1996-10-10
JPH05506536A (ja) 1993-09-22
FI923813A0 (fi) 1992-08-25
ES2084155T3 (es) 1996-05-01
DD299613A7 (de) 1992-04-30
GR3019093T3 (en) 1996-05-31
DK0517735T3 (da) 1996-03-18
FI923813A (fi) 1992-08-25

Similar Documents

Publication Publication Date Title
DE3144192C2 (de) Verfahren zum Bedampfen einer Oberfläche mit Hartstoffen und Anwendung des Verfahrens
DE3702984C2 (fr)
DE3046412A1 (de) Verfahren zur hochtemperaturbehandlung von kohlenwasserstoffhaltigen materialien
DE3615670A1 (de) Verfahren und vorrichtung zur behandlung von gasen mittels entladung
EP0306612A1 (fr) Procédé de déposition de couches sur des substrats
DE3614384A1 (de) Verfahren zur beschichtung von substraten in einer vakuumkammer
DE3522888A1 (de) Vorrichtung zum erzeugen eines plasmastrahls
DE3150591A1 (de) Verfahren zur herstellung von metallueberzuegen durch zerstaeubungsionenbeschichtung
DE3007205A1 (de) Verfahren und vorrichtung zur steuerung der zufuehrung von schutzgas bei der bearbeitung von metallischen werkstuecken mit leistungs-lasern
EP0517735B1 (fr) Procede de fonctionnement stable d'un plasmatron a vapeur d'eau comme gaz de plasma
CH661616A5 (de) Verfahren zur vorbehandlung der kontakte und elektroden elektrischer vakuumgeraete.
DE3001614C2 (de) Verfahren zum elektrolytischen Zersetzen von Chlorwasserstoffsäure in einer Elektrolysiervorrichtung
EP0142083A2 (fr) Procédé et dispositif pour l'obtention de revêtements métalliques
EP0987348A1 (fr) Oxydation partielle électrocatalytique d'hydrocarbures
DE1924201A1 (de) Verfahren zum Betrieb eines Plasmabrenners und zur Durchfuehrung des Verfahrens geeigneter Brenner
DE3102773A1 (de) Plasmagenerator
DE2820183C3 (de) Verfahren und Vorrichtung zum Überziehen der Oberfläche eines elektrisch leitenden Werkstücks
DE3303677C2 (de) Plasmakanone
DE102010036332B4 (de) Verfahren zum Beschichten von Elektroden für die Elektrolyse mittels eines Lichtbogens
DD299614A7 (de) Verfahren zum stabilen betrieb von wasserdampfplasmatrons
AT524127A4 (de) Vorrichtung und Verfahren zur Herstellung von hypochloriger Säure durch Elektrolyse
CH667605A5 (de) Spanendes werkzeug und verfahren zu dessen herstellung.
DE3217990C2 (fr)
DE3208086C2 (de) Verwendung einer Plasmakanone
DE102006062375B4 (de) Anordnung und Verfahren zur Entfernung von Verunreinigungen oder Modifizierung von Oberflächen von Substraten mittels elektrischer Bogenentladung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19940719

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 132316

Country of ref document: AT

Date of ref document: 19960115

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960201

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960202

Year of fee payment: 6

REF Corresponds to:

Ref document number: 59107163

Country of ref document: DE

Date of ref document: 19960208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19960228

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960217

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3019093

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2084155

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19970228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970820

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970821

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19970825

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970826

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970827

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970828

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970829

Year of fee payment: 7

Ref country code: DE

Payment date: 19970829

Year of fee payment: 7

Ref country code: AT

Payment date: 19970829

Year of fee payment: 7

BERE Be: lapsed

Owner name: MASCHINEN- UND ANLAGENBAU GRIMMA G.M.B.H.

Effective date: 19970228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970831

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3019093

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980226

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980227

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 91904221.8

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050226