EP0492649B1 - Verfahren zur Veränderung der Eigenschaften eines textilen Substrates - Google Patents

Verfahren zur Veränderung der Eigenschaften eines textilen Substrates Download PDF

Info

Publication number
EP0492649B1
EP0492649B1 EP91122294A EP91122294A EP0492649B1 EP 0492649 B1 EP0492649 B1 EP 0492649B1 EP 91122294 A EP91122294 A EP 91122294A EP 91122294 A EP91122294 A EP 91122294A EP 0492649 B1 EP0492649 B1 EP 0492649B1
Authority
EP
European Patent Office
Prior art keywords
treatment
textile substrate
pressure
temperature plasma
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91122294A
Other languages
English (en)
French (fr)
Other versions
EP0492649A3 (en
EP0492649A2 (de
Inventor
Kurt Truckenmüller
Karl Greifeneder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amann and Soehne GmbH and Co KG
Original Assignee
Amann and Soehne GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4100785A external-priority patent/DE4100785C2/de
Priority claimed from DE4100786A external-priority patent/DE4100786C2/de
Priority claimed from DE19914100787 external-priority patent/DE4100787C2/de
Application filed by Amann and Soehne GmbH and Co KG filed Critical Amann and Soehne GmbH and Co KG
Publication of EP0492649A2 publication Critical patent/EP0492649A2/de
Publication of EP0492649A3 publication Critical patent/EP0492649A3/de
Application granted granted Critical
Publication of EP0492649B1 publication Critical patent/EP0492649B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/008Treatment with radioactive elements or with neutrons, alpha, beta or gamma rays
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/001Treatment with visible light, infrared or ultraviolet, X-rays
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/20Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin
    • D06M14/24Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of natural origin of animal origin, e.g. wool or silk

Definitions

  • the present invention relates to a method for changing the properties of a textile substrate with the features of the preamble of patent claim 1.
  • a textile substrate for example a fiber, a sewing thread, a flat structure, a composite material or the like. If the textile substrate is a synthetic polymer, the desired change can already be brought about in the manufacture of the polymer by chemical modification of the building blocks forming the polymer. The fibers produced in this way are then referred to as modified fibers.
  • Physical or chemical treatments in the course of finishing textile substrates can also change their properties. For example, chlorination of wool substrates can reduce the tendency to felt and the shrinking behavior of woolen fabrics. In the case of cotton articles, the final properties, such as the ironing or Washing behavior, can be improved by applying suitable equipment to the cotton articles. In the case of synthetic yarns or synthetic fabrics, the shrinking properties of these substrates can be changed considerably by thermal treatments.
  • DE 25 38 092 A1 describes a method for changing the properties of a textile substrate, a sensitizer based on a carbonyl-containing compound being applied to the substrate to be treated in the known method. This is followed by UV irradiation, the sensitizer applied beforehand causing the effect of UV irradiation to be increased in such a way that the irradiation time is at most a few minutes.
  • a method for treating a textile material in an ionizing gas atmosphere can be found in FR 15 10 883 A1 in order to improve the adhesion of the textile material to rubber.
  • the textile material is treated in a single-layer arrangement.
  • a method with the features of the preamble of claim 1 is known from DE 20 25 454 A1.
  • This known method which however always requires keratin-containing fiber substrates, provides for an upstream reduction and a subsequent oxidation of the fiber substrate, the oxidizing solution used for this containing an initiator which obviously only releases free radicals in the presence of mercaptan.
  • the present invention has for its object to provide a method of the type specified, with which the properties of textile substrates can be changed in a particularly simple manner in a variety of ways.
  • the method according to the invention for changing the properties of a textile substrate provides that an initiator is applied to the textile substrate, which decomposes into radicals and / or ions through a physical treatment.
  • an initiator is applied to the textile substrate, which decomposes into radicals and / or ions through a physical treatment.
  • a heap or a winding body is first produced from the textile substrate, a gaseous initiator or a solution, dispersion or emulsion of the initiator flows through the heap or the winding body and the treatment is carried out simultaneously and / or subsequently , wherein the radicals and / or ions formed in this way react with the textile substrate itself, a substance applied thereon and / or with a gas surrounding the textile substrate.
  • the inventive method described above has a number of advantages.
  • the method according to the invention enables a chemical and / or physical change of the textile substrate treated according to the method according to the invention in a particularly simple manner.
  • This is related to the fact that in the simplest case only the initiator is applied to the textile substrate made up as a winding body or pile and afterwards the physical treatment which is used to generate radicals and / or ions from the initiator has to be carried out in order to do so cause the textile substrate to react with itself or with at least one gas surrounding the textile substrate.
  • This reaction then has the result that, for example, crosslinking reactions of the fiber polymers forming the textile substrate take place at the points at which the initiator is applied to the textile substrate.
  • the method according to the invention has the effect that this substance due to the formation of radicals and / or Ions themselves oligomerize or polymerize and / or that this substance is chemically and / or physically bound to the fiber polymer.
  • a suitable embodiment of the method according to the invention provides that the method according to the invention is carried out in the presence of a gas.
  • the selection of the gas in the process according to the invention depends on which effects are to be achieved by the process according to the invention. Is it For example, if the process according to the invention is intended to crosslink the fiber polymers, for example the filaments of a yarn, which form the textile substrate, the physical treatment by which the free radicals and / or ions form, preferably in, is carried out an inert gas or an inert gas mixture, for example from an inert gas and / or nitrogen. The use of the inert gas then generally prevents reactive groups from forming on the fiber polymer.
  • reactive gases are preferably used for this, such as in particular O 2 , N 2 O, O 3 , CO 2 , NH 3 , SO 2 , SiCl 4 , CCl 4 , CF 3 Cl, CF 4 , SF 6 , CO and / or H 2 .
  • these gases which are used as individual gases or gas mixtures, either react directly with the formation of the corresponding functional groups with the radicals or ions generated in the physical treatment by the decomposition of the initiator, or the gas chemically bonded to the fiber polymer can then by a suitable aftertreatment, for example with water, acids or alkalis, can be converted into the corresponding reactive (functional) groups.
  • the number of crosslinking points or of the reactive groups generated by the method according to the invention can be varied by the amount of initiator applied.
  • the amount of functional (reactive) groups by varying the concentration of the aforementioned reactive gases during the physical treatment. In the simplest case, this is achieved by diluting the aforementioned reactive gases with a suitable inert gas, for example a noble gas, a noble gas mixture and / or nitrogen.
  • a suitable inert gas for example a noble gas, a noble gas mixture and / or nitrogen.
  • the above-described formation of the functional groups of the fiber polymers forming the textile substrate then has the effect that, depending on the nature of the respective functional group, a material treated in this way, in particular a polyester material, can be dyed or printed particularly easily with cationic or anionic dyes or reactive dyes.
  • a material treated in this way in particular a polyester material
  • functional groups of this type which made it difficult and difficult to dye aramid fibers or polyalkylene fibers, in particular polypropylene fibers, could be easily and easily dyed with ionic dyes or reactive dyes after appropriate treatment.
  • Equipment that has corresponding corresponding functional groups could be chemically (covalently or ionically bonded) bound to the functional groups of the fiber polymer previously produced by using the method according to the invention.
  • Another embodiment variant of the method according to the invention for producing a finish on the textile substrate provides that the physical treatment for destroying the initiator is carried out in the presence of a substance.
  • a substance is preferably selected which is free-radically and / or ionically oligomerizable or free-radically and / or ionically polymerizable.
  • the selection of the oligomerizable or polymerizable substances used in each case depends on the changes in properties desired in each case.
  • a first embodiment of the process according to the invention thus provides that a substance is used which comprises oligomerizable or polymerizable hydrocarbons or hydrocarbon derivatives.
  • these include, for example, alkylenes, in particular ethylene, propylene, isobutylene, butadiene, isoprine, methylstyrene, xylylene and halogen derivatives of the abovementioned compounds, in particular vinyl chloride, vinylidene chloride, tetrafluorethylene, trifluorethylene, vinyl fluoride, vinylidene fluoride, pentafluorostyrene, 2,2,3,3-tetrafluoropropyl methacrylate , and / or mixtures of the aforementioned compounds and in particular mixtures of tetrafluoroethylene / perfluoropropylene, tetrafluoroethylene / perfluoroalkyl vinyl ether, tetrafluoroethylene / ethylene, trifluorochloroethylene /
  • those substances can also be selected in the process according to the invention which comprise oligomerizable or polymerizable acrylic acid, acrylic acid derivatives and / or salts of these compounds.
  • methacrylates, ethyl acrylates, n-butyl acrylates, isobutyl acrylates, tert-butyl acrylates, hexyl acrylates, 2-ethylhexyl acrylates and lauryl acrylates are to be mentioned here.
  • these acrylates can be mixed with suitable compounds, such as, for example, methyl methacrylates, ethylene methacrylates, n-butyl methacrylates, acrylonitrile, styrene, 1,3-butadiene, vinyl acetate, vinyl propoinate, vinyl chloride, vinylidene chloride, vinyl fluoride and / or vinylidene fluoride.
  • suitable compounds such as, for example, methyl methacrylates, ethylene methacrylates, n-butyl methacrylates, acrylonitrile, styrene, 1,3-butadiene, vinyl acetate, vinyl propoinate, vinyl chloride, vinylidene chloride, vinyl fluoride and / or vinylidene fluoride.
  • acrylic acid derivatives are acrylic acid, methacrylic acid, acrylamide, acrylonitrile, methacrylamide and / or salts of the aforementioned two acids.
  • carboxyl-containing monomers such as in particular maleic acid and / or itaconic acid
  • monomers containing hydroxyl groups such as, in particular, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl acrylate, propylene glycol methacrylate and / or butanediol monoacrylate
  • N-hydroxymethyl group-containing monomers such as, in particular, N-hydroxymethylacrylamide and / or N-hydroxymethylmethacrylamide
  • sulfonic acid-containing monomers in particular 2-acrylamino-2-methylpropanesulfonic acid.
  • Corresponding ethers in particular ethyl diglycol acrylate; Amines, especially tert-butylaminomethacrylate, dimethylaminoethyl acrylate, diethylaminoethyl methacrylate and / or diethylaminoethyl acrylate; Epoxies, especially glycidyl methacrylate; and / or monomers containing halogen hydroxyl groups, in particular 3-chloro-2-hydroxypropyl acrylate.
  • products which include styrene and / or styrene derivatives are also suitable.
  • the mixtures of styrene and / or methylstyrene with acrylonitrile and / or of styrene and / or methylstyrene with butadiene should be mentioned in particular.
  • the application quantity of the aforementioned substances varies depending on the desired changes in the properties.
  • the application amount of the aforementioned substances is usually between about 0.01% by weight and about 20% by weight, in particular between 0.5% by weight and 10% by weight (mass of the oligomerizable or polymerizable substance: mass of the textile substrate).
  • the layer thickness in addition to the selection of the selected substance, has a decisive influence on the resistance of the sewing thread to mechanical stress during processing.
  • the The amount applied varies so that the finished sewing thread has a liquid or solid, almost completely or completely continuous substance layer on its surface, the thickness of which varies between approximately 100 nm and 0.1 nm, in particular between 20 nm and 2 nm.
  • the term initiator also includes mixtures which contain several initiators.
  • Preferred initiators which are used alone or in a mixture in the process according to the invention are Initiators based on a persulfate, preferably potassium persulfate or ammonium persulfate; Initiators based on a peroxide, in particular dibenzoyl peroxide, cumene hydroperoxide, cyclohexanone peroxide, di-tert-butyl peroxide, cyclohexylsulfonylacetyl peroxide; Initiators based on an azo compound, in particular azodiisobutyronitrile, and / or 4,4'-azo-bis- (4-cyanopentanoic acid chloride). Initiators based on benzpinacol, diisopropyl percarbonate and / or butyl peroctoate can also be used.
  • redox systems are used here as initiators.
  • these redox systems deliver a particularly high yield of the radicals or ions generated thereby.
  • potassium persulfate and / or ammonium persulfate / sodium hyposulfite Hydrogen peroxide / iron (II) sulfate
  • Cumene hydroperoxide / polyamine and / or benzoyl peroxide / N-dimethylaniline used.
  • a further embodiment of the method according to the invention provides that the textile substrate is swollen before and / or when the initiator is applied by adding a swelling agent.
  • a swelling agent such material-specific and the person skilled in the art for the particular substrate in particular Swelling agents known from the dyeing processes, such as, for example, alkali for cellulose-containing substrates or aromatic hydrocarbons for substrates containing polyester or polyamide, have the effect that the initiator is not only adsorbed or absorbed on the surface of the substrate, but also in particular in the amorphous regions of the substrate can diffuse in, so that the corresponding radical and / or ion formation also takes place inside the fiber.
  • the initiator can be applied to the textile substrate by flowing or flowing through the textile substrate in the form of a pile or winding body with the gaseous initiator for a predetermined time. It is advisable here for the gaseous initiator to flow through the textile substrate for a predetermined time, in particular between two minutes and thirty minutes.
  • a corresponding solution, dispersion or emulsion preferably in water or in a solvent, in particular in a low-boiling solvent, manufactured. Subsequently, this solution, dispersion or emulsion flows through the winding body or the pile value, the above-mentioned predetermined time being preferred.
  • the physical treatment required in the process according to the invention for destroying the initiator can be thermal treatment, irradiation with light, in particular with UV light, ⁇ , ⁇ , or ⁇ irradiation or treatment in an electrical field.
  • a particularly suitable embodiment of the method according to the invention provides that the physical treatment is a low-temperature plasma treatment.
  • the conditions of the low-temperature plasma treatment e.g. the pressure, the power, the frequency, the residence time, the power density and the gas or substance used, depending on the initiator selected, the material of the textile substrate to be treated and the desired changes in properties.
  • the low-temperature plasma treatment is usually carried out under a vacuum between 5 Pa and 500 Pa. Particularly good results with regard to the yield are obtained if the low-temperature plasma treatment is carried out under a vacuum between 20 Pa and 300 Pa, preferably between 70 Pa and 200 Pa.
  • Another embodiment of the method described above provides that in the low-temperature plasma treatment, a vacuum between 5 Pa and 120 Pa, preferably between about 20 Pa and 120 Pa, during a first treatment period and a vacuum between during a subsequent second treatment period 80 Pa and 250 Pa, preferably between 100 Pa and 200 Pa.
  • a reactive gas or an inert gas flows through the winding body or the pile particularly well and uniformly, which consequently particularly ensures the uniformity of the generation of the radicals or ions.
  • the winding body or the pile is particularly well flowed through, so that Irregularities across the thickness of the winding body or the pile are completely excluded.
  • the transition from the first treatment period to the second treatment period and from the second treatment period to the first treatment period can be designed in such a way that the vacuum is suddenly set in each treatment period.
  • a particularly gentle treatment of the winding body or the pile enables an embodiment of the method according to the invention, in which the vacuum in the first treatment period is continuously transferred to the vacuum in the second treatment period and the vacuum in the second treatment period is continuously transferred to the vacuum in the first treatment period, so that the pressure is increased or decreased sinusoidally throughout the treatment.
  • the residence time in the low-temperature plasma treatment varies between 10 seconds and 160 seconds, preferably between 20 seconds and 60 seconds, in each treatment period.
  • the frequency in the low-temperature plasma treatment is usually between 1 MHz and 20 MHz, the low-temperature plasma treatment preferably being carried out at a frequency of 13.56 MHz.
  • the low-temperature plasma treatment which leads to the destruction of the initiator and thus to the formation of the radicals and / or ions, can also be carried out at a frequency of 27.12, 40.68 and / or 81.36 MHz , but it is also possible to change the frequencies in the aforementioned range during the low-temperature plasma treatment or to set them to different values within the scope of the aforementioned values.
  • the power used in low temperature plasma treatment varies between 200 watts and 600 watts.
  • the power density in the low-temperature plasma treatment varies between 2 W / dm 3 and 25 W / dm 3 , the volume information relating to the volume of the autoclave used in each case.
  • work is preferably carried out at a power density between 8 W / dm 3 and 14 W / dm 3 , in particular at 12.5 W / dm 3 .
  • a corona treatment is selected as the physical treatment which leads to the destruction of the initiator and to the formation of the radicals and / or ions.
  • This corona treatment is preferably carried out at a pressure which is at normal pressure and / or slightly above and / or slightly below normal pressure.
  • the corona treatment is carried out at a pressure between 86.659 x 10 3 Pa and 133.32 x 10 3 Pa, preferably at a pressure between 93.325 x 10 3 Pa and 113.324 x 10 3 Pa.
  • the pressure in the corona treatment is between 86.659 x 10 3 Pa and 99.99 x 10 3 Pa during a first treatment period and between 99 during a second treatment period , 99 x 10 3 Pa and 133.32 x 10 3 Pa.
  • the pressure change flows through the winding body or the pile particularly well and uniformly. Consequently, this results in a uniform distribution of the systems reacted, so that the property changes brought about by the process according to the invention are also particularly uniform.
  • the first treatment period immediately follows the second treatment period, it being advisable to repeat this treatment cycle, consisting of the first and second treatment periods, several times alternately.
  • the pressure change between the first and second treatment periods can also be carried out abruptly in the case of the corona treatment.
  • the winding body or the pile accumulates in an undesirable manner during the abrupt pressure change, so that especially in the case of relatively soft winding bodies or soft packed piles, i.e. those packages or heaps in which the Shore hardness is low, a continuous pressure increase is carried out during the transition from the first treatment period to the second treatment period and a continuous pressure reduction is carried out during the transition from the second treatment period to the first treatment period.
  • This pressure change is then preferably carried out sinusoidally, with treatment times between 10 seconds and 160 seconds, in particular between 20 seconds and 60 seconds, being selected for the first and second periods.
  • the autoclave used for the corona treatment is preferably evacuated to a pressure between 1,000 Pa and 10,000 Pa so that the respective gas and possibly the liquid enriched with substance that flows through the winding body or the pile are then supplied can be set so as to set the pressure in the autoclave between 86.659 x 10 3 Pa and 133.32 x 10 3 Pa.
  • the total treatment time for the low-temperature plasma treatment or corona treatment is between about two minutes and about thirty minutes, preferably between about five minutes and about twenty minutes, depending on the desired changes in properties, the power densities set, the initiators selected and the particular textile substrate.
  • the method according to the invention achieves particularly good results if the textile substrate is opened up as a pile or as a winding body and excluding a low-temperature plasma treatment, since it is not necessary to wrap the textile substrate to be treated within the vacuum chamber required for the low-temperature plasma treatment, so that the otherwise necessary technical equipment can be omitted.
  • this embodiment of the method according to the invention it was surprisingly found that the changes achieved were very uniform both over the length of the textile substrate treated in each case and also over its thickness or over the circumference.
  • radicals or ions are formed by the physical treatment only at the points at which the initiator is adsorbed or absorbed by the textile substrate, so that the actual yarn polymer at the points to which no initiator is adsorbed or absorbed remains largely unchanged.
  • the textile substrate is opened as a winding body and subjected to a low-temperature plasma treatment or corona treatment, it is advisable to select a perforated cylindrical winding body, in particular a perforated metal sleeve.
  • a further embodiment of the method according to the invention which is used in particular to introduce functional (reactive) groups in the yarn polymer, provides that the textile substrate is subjected to a low-temperature plasma treatment or corona treatment after the initiator has been applied.
  • an inert gas also flows through this pile.
  • This inert gas has the effect that corresponding radicals or ions are formed in the area in which initiator is adsorbed or absorbed on the textile substrate.
  • This can be followed by a corresponding reaction with such compounds as, for example, oxygen, ammonia, carbon dioxide or sulfur dioxide, which can then be converted into the corresponding functional groups by a simple chemical reaction, for example by treatment with water, acids or alkalis are.
  • These functional groups are then additionally formed on the fiber polymer and can be used to bind dyes or other substances, such as conventional equipment.
  • noble gases and / or nitrogen are preferred as inert gas or inert gas mixtures.
  • any desired starting material such as, for example, polyamide, polyester, polypropylene, Nomex, glass, polyacrylonitrile, carbon and / or ceramic fibers, in each case alone or in a mixture with other synthesis, can be used as the textile substrate - and / or natural fibers.
  • the method according to the invention can also be successfully applied to natural fibers such as wool, cotton, jute or the like.
  • the method according to the invention is used for sewing threads. It was found here that sewing threads which had been treated by the process according to the invention and in particular were equipped with the substances mentioned above have a significantly better sewing behavior, which was expressed in a correspondingly reduced frequency of thread breakage and in a higher number of buttonholes.
  • the process according to the invention was also able to considerably improve the dyeability of sewing threads which are difficult to dye, for example those threads which have aramid fibers, Nomex fibers and / or polyalkylene fibers, in particular polypropylene fibers , especially since such sewing threads could then be dyed with basic dyes, acid dyes and / or reactive dyes depending on the functional groups introduced by the process according to the invention.
  • the sewing threads mentioned above have the usual sewing thread constructions, i.e. it was therefore core yarns, multifilament yarns or filament / fiber yarns, which were possibly twisted.
  • these sewing threads can have the known construction of a intermingled yarn or a spun yarn, the titer of the aforementioned sewing threads being of the order of magnitude between 50 dtex x 2 (total titer 100 dtex) and 1,200 dtex x 3 (total titer 3,600 dtex).
  • a polyester fabric with a width of 10 cm and a basis weight of 140 g / m 2 was wound on a perforated sleeve with a winding height of 3 cm.
  • the winding body was then inserted into a conventional laboratory dyeing system and there with a alcoholic solution (ethanol) of 50 g of benzoyl peroxide at 20 ° C for ten minutes.
  • ethanol alcoholic solution
  • the winding body was removed and placed in a vacuum chamber, where it was subjected to a low-temperature plasma treatment.
  • the conditions during the low-temperature plasma treatment were as follows:
  • the dyeing thus created was assessed colorimetrically, samples being taken from the lower winding layer, the middle winding layer and the upper winding layer (outer winding layer). Here it could be determined that there were neither color depth nor color differences, both visually and colorimetrically.
  • a Nm 25 x aramid fiber sewing thread was wound on a 1 kg bobbin and treated in a laboratory dyeing machine with a 5% strength hydrogen peroxide solution (30% hydrogen peroxide) at 25 ° C. for ten minutes.
  • the coil treated in this way was then mechanically dewatered and then gently dried.
  • the coil was then placed in an autoclave and subjected to a low-temperature plasma treatment under the following conditions:
  • the thread spool was then removed from the autoclave and transferred to the laboratory dyeing plant. There, water was first passed through the material for 2 minutes at room temperature. Thereafter, conventional dyeing was carried out using an acid dye (2% of a commercially available acid dye).
  • Example 1 The fastness properties mentioned in Example 1 were also determined from the sewing threads treated according to Example 2. Here, these fastnesses were also satisfactory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Pinball Game Machines (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Änderung der Eigenschaften eines textilen Substrates mit den Merkmalen des Oberbegriffs des Patentanspruchs 1.
  • Um die Eigenschaften eines textilen Substrates, beispielsweise einer Faser, eines Nähgarnes, eines Flächengebildes, eines Verbundwerkstoffes o. dgl., zu verändern, bestehen mehrere Möglichkeiten. Handelt es sich bei dem textilen Substrat um ein synthetisches Polymeres, so kann schon bei der Herstellung des Polymeren die gewünschte Veränderung durch eine chemische Modifizierung der das Polymere bildenden Bausteine herbeigeführt werden. Die so hergestellten Fasern werden dann als modifzierte Fasern bezeichnet.
  • Durch physikalische oder chemische Behandlungen im Rahmen der Veredelung von textilen Substraten können ebenfalls deren Eigenschaften verändert werden. So lassen sich beispielsweise durch eine Chlorierung von Wollsubstraten die Filzneigung und das Schrumpfverhalten der Wollflächengebilde verringern. Bei Baumwollartikeln können die Endeigenschaften, wie beispielsweise das Bügel- oder Waschverhalten, dadurch verbessert werden, daß man auf die Baumwollartikel eine geeignete Ausrüstung appliziert. Bei synthetischen Garnen oder synthetischen Flächengebilden können durch thermische Behandlungen die Schrumpfeigenschaften dieser Substrate erheblich verändert werden.
  • Die DE 25 38 092 A1 beschreibt ein Verfahren zur Veränderung der Eigenschaften eines textilen Substrates, wobei bei dem bekannten Verfahren auf das jeweils zu behandelnde Substrat ein Sensibilisator auf der Basis einer carbonylhaltigen Verbindung aufgetragen wird. Anschließend erfolgt eine UV-Bestrahlung, wobei der zuvor aufgetragene Sensibilisator bewirkt, daß die Wirkung der UV-Bestrahlung derart erhöht wird, daß die Bestrahlungszeit im Höchstfall wenige Minuten beträgt.
  • Aus der FR 15 10 883 A1 ist ein Verfahren zur Behandlung eines textilen Materials in einer ionisierenden Gasatmosphäre zu entnehmen, um hierdurch die Haftung des textilen Materials zu Gummi zu verbessern. Wie unschwer der einzigen Figur der FR 15 10 883 A1 zu entnehmen ist, erfolgt die Behandlung des textilen Materials in einer einlagigen Anordnung desselben.
  • Ein Verfahren mit den Merkmalen des Oberbegriffs des Patentanspruchs 1 ist aus der DE 20 25 454 A1 bekannt. Dieses bekannte Verfahren, das jedoch stets keratinhaltige Fasersubstrate erfordert, sieht eine vorgeschaltete Reduktion sowie eine nachgeschaltete Oxidation des Fasersubstrates vor, wobei in der hierfür verwendeten oxidierenden Lösung ein Initiator enthalten ist, der freie Radikale offensichtlich nur in Gegenwart von Merkaptan freisetzt.
  • Die zuvor beschriebenen bekannten Verfahren weisen jedoch den Nachteil auf, daß sie einerseits nur sehr aufwendig durchzuführen sind und andererseits nur eine graduelle Veränderung der Eigenschaften der so behandelten textilen Substrate bewirken.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der angegebenen Art zur Verfügung zu stellen, mit dem die Eigenschaften von textilen Substraten in einfacher Weise besonders vielfältig verändert werden können.
  • Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den kennzeichnenden Merkmalen des Patentanspruchs 1 gelöst.
  • Das erfindungsgemäße Verfahren zur Veränderung der Eigenschaften eines textilen Substrates sieht vor, daß man auf das textile Substrat einen Initiator, der durch eine physikalische Behandlung in Radikale und/oder Ionen zerfällt, aufbringt. Hierbei stellt man bei dem erfindungsgemäßen Verfahren zunächst aus dem textilen Substrat ein Haufwerk oder einen Wickelkörper her, durchströmt das Haufwerk bzw. den Wickelkörper mit einem gasförmigen Initiator oder einer Lösung, Dispersion oder Emulsion des Initiators und führt gleichzeitig und/oder anschließend die physikalische Behandlung durch, wobei die hierbei entstehenden Radikale und/oder Ionen mit dem textilen Substrat selbst, einer hierauf aufgetragenen Substanz und/oder mit einem das textile Substrat umgebenden Gas zur Reaktion bringt.
  • Das zuvor beschriebene erfindungsgemäße Verfahren weist eine Reihe von Vorteilen auf. So ist zunächst festzuhalten, daß das erfindungsgemäße Verfahren in besonders einfacher Weise eine chemische und/oder physikalische Veränderung des nach dem erfindungsgemäßen Verfahren behandelten textilen Substrates ermöglicht. Dies hängt damit zusammen, daß im einfachsten Fall lediglich der Initiator auf das als Wickelkörper oder Haufwerk aufgemachte textile Substrat aufgetragen wird und hiernach die physikalische Behandlung, die zur Erzeugung von Radikalen und/oder Ionen aus dem Initiator dient, durchgeführt werden muß, um so zu bewirken, daß das textile Substrat mit sich selbst oder mit mindestens einem, das textile Substrat umgebenden Gas zu reagieren. Diese Reaktion führt dann dazu, daß an den Stellen, an denen der Initiator auf das textile Substrat aufgetragen ist, beispielsweise Vernetzungsreaktionen der das textile Substrat bildenden Faserpolymere untereinander ablaufen. Hierdurch entstehen dann chemisch vernetzte Faserpolymere, die naturgemäß in ihren Eigenschaften, beispielsweise in ihrer Festigkeit, ihrer Hydrophilie, ihrer Hydrophobie oder ihrer Benetzbarkeit mit Wasser, völlig unterschiedlich sind von den entsprechenden Eigenschaften der Ausgangspolymeren. Ist dann bei einem derartigen Verfahren noch ein Gas, beispielsweise ein reaktionsfähiges Gas, anwesend, so bilden sich an den Stellen, an denen der Initiator aufgrund der physikalischen Behandlung zerfällt, reaktive Gruppen am und/oder im Faserpolymeren aus, die dann für weiterführende Reaktionen, beispielsweise der chemischen Anbindung einer Ausrüstung oder eines Farbstoffes, verwendet werden können.
  • Wird bei dem erfindungsgemäßen Verfahren die physikalische Behandlung des textilen Substrates derart durchgeführt, daß zuvor auf das textile Substrat eine Substanz, beispielsweise eine oligomerisierbare oder polymerisierbare Substanz, aufgetragen wird, so bewirkt das erfindungsgemäße Verfahren, daß diese Substanz aufgrund der Ausbildung der Radikale und/oder Ionen selbst oligomerisiert bzw. polymerisiert und/oder daß diese Substanz an das Faserpolymere chemisch und/oder physikalisch angebunden wird.
  • Eine geeignete Ausführungsform des erfindungsgemäßen Verfahrens sieht vor, daß das erfindungsgemäße Verfahren in Gegenwart eines Gases durchgeführt wird. Hierbei richtet sich die Auswahl des Gases bei dem erfindungsgemäßen Verfahren danach, welche Effekte durch das erfindungsgemäße Verfahren erreicht werden sollen. Ist es beispielsweise erwünscht, daß das erfindungsgemäße Verfahren ein Vernetzen der Faserpolymere, beispielsweise der Filamente eines Garnes, die das textile Substrat bilden, bewirken soll, so führt man die physikalische Behandlung, durch die sich aus dem Initiator die Radikale und/oder Ionen ausbilden, vorzugsweise in einem Inertgas oder einem Inertgasgemisch, beispielsweise aus einem Edelgas und/oder Stickstoff, durch. Durch Anwendung des Inertgases wird dann in der Regel verhindert, daß sich am Faserpolymeren reaktive Gruppen ausbilden. Sollen hingegen durch das erfindungsgemäße Verfahren reaktive Gruppen in den Bereichen des Faserpolymeren, in denen der Initiator zuvor aufgetragen wurde, erzeugt werden, so werden hierfür vorzugsweise reaktionsfähige Gase eingesetzt, wie insbesondere O2, N2O, O3, CO2, NH3, SO2, SiCl4, CCl4, CF3Cl, CF4, SF6, CO und/oder H2. Hierbei reagieren diese Gase, die als Einzelgase oder Gasgemische eingesetzt werden, entweder direkt unter Ausbildung der entsprechenden funktionellen Gruppen mit den bei der physikalischen Behandlung durch den Zerfall des Initiators erzeugten Radikalen bzw. Ionen, oder das entsprechend an das Faserpolymere chemisch gebundene Gas kann dann durch eine geeignete Nachbehandlung, so z.B. mit Wasser, Säuren oder Laugen, in die entsprechenden reaktiven (funktionellen) Gruppen umgewandelt werden.
  • Die Anzahl der Vernetzungspunkte bzw. der durch das erfindungsgemäße Verfahren erzeugten reaktiven Gruppen kann durch die Menge des aufgetragenen Initiators variiert werden.
  • Desweiteren besteht zusätzlich bei den Ausführungsformen des erfindungsgemäßen Verfahrens, die zu reaktiven Gruppen am Faserpolymeren führen, die Möglichkeit, die Menge der funktionellen (reaktiven) Gruppen zu steuern, daß man die Konzentration der zuvor genannten reaktionsfähigen Gase bei der physikalischen Behandlung variiert. Im einfachsten Fall wird dies dadurch erreicht, daß man die zuvor genannten reaktionsfähigen Gase mit einem geeigneten Inertgas, beispielsweise einem Edelgas, einem Edelgasgemisch und/oder Stickstoff, verdünnt.
  • Die zuvor beschriebene Ausbildung der funktionellen Gruppen der das textile Substrat bildenden Faserpolymeren bewirkt dann, daß abhängig von der Art der jeweiligen funktionellen Gruppe ein derartig behandeltes Material, insbesondere ein Polyestermaterial, besonders einfach mit kationischen oder anionischen Farbstoffen oder Reaktivfarbstoffen anfärbbar bzw. bedruckbar ist. So konnte beispielsweise festgestellt werden, daß durch Einführung derartiger funktioneller Gruppen, die recht schwer und aufwendig anfärbbaren Aramidfasern oder Polyalkylenfasern, insbesondere Polypropylenfasern, nach einer entsprechenden Behandlung einfach und problemlos mit ionischen Farbstoffen oder Reaktivfarbstoffen anfärbbar waren. Weiterhin konnte festgestellt werden, daß Ausrüstungen, die über entsprechende korrespondierende funktionelle Gruppen verfügen, chemisch (kovalent oder ionische Bindung) an die zuvor durch Anwendung des erfindungsgemäßen Verfahrens hergestellten funktionellen Gruppen des Faserpolymers angebunden werden konnten. Dies führt dann dazu, daß derartige Ausrüstungen dauerhaft und beständig an dem jeweiligen textilen Substrat fixiert sind, so daß auch beim späteren Gebrauch diese Ausrüstungen dauerhaft dem textilen Substrat die gewünschten Eigenschaftsänderungen verleihen. Bei Nähgarnen konnte festgestellt werden, daß ein derartig ausgerüstetes Nähgarn, bei dem die Ausrüstung chemisch an das Faserpolymere gebunden war, im Vergleich zu einem Nähgarn, bei dem die gleiche Ausrüstung chemisch nicht am Faserpolymeren angebunden war, ein wesentlich besseres Nähverhalten besitzen.
  • Eine andere Ausführungsvariante des erfindungsgemäßen Verfahrens zur Erzeugung einer Ausrüstung auf dem textilen Substrat sieht vor, daß die physikalische Behandlung zur Zerstörung des Initiators in Gegenwart einer Substanz durchgeführt wird. Dies wiederum führt dazu, daß entweder die Substanz über die bei dem erfindungsgemäßen Verfahren entstehenden Radikale und/oder Ionen an das Faserpolymere angebunden wird, die Substanz mit sich selbst oligomerisiert oder polymerisiert, ohne daß hierbei eine Anbindung ans Faserpolymere auftritt, oder daß die Substanz sowohl an das Faserpolymere angebunden wird als auch mit sich selbst oligomerisiert bzw. polymerisiert. Vorzugsweise wird bei dem erfindungsgemäßen Verfahren eine Substanz ausgewählt, die radikalisch und/oder ionisch oligomerisierbar bzw. radikalisch und/oder ionisch polymerisierbar ist.
  • Die Auswahl der jeweils verwendeten oligomerisierbaren bzw. polymerisierbaren Substanzen richtet sich bei dem erfindungsgemäßen Verfahren nach den jeweils gewünschten Eigenschaftsveränderungen.
  • So sieht eine erste Ausführungsform des erfindungsgemäßen Verfahrens vor, daß hier eine Substanz eingesetzt wird, die oligomerisierbare bzw. polymerisierbare Kohlenwasserstoffe bzw. Kohlenwasserstoffderivate umfaßt. Hierunter fallen beispielsweise Alkylene, insbesondere Ethylen, Propylen, Isobutylen, Butadien, Isoprine, Methylstyrole, Xylylene sowie Halogenderivate der zuvor genannten Verbindungen, insbesondere Vinylchlorid, Vinylidenchlorid, Tetrafluorethylene, Trifluorethylene, Vinylfluorid, Vinylidenfluorid, Pentafluorstyrol, 2,2,3,3-Tetrafluorpropylmethacrylat, und/oder Mischungen der zuvor genannten Verbindungen sowie insbesondere Mischungen aus Tetrafluorethylen/Perfluorpropylen, Tetrafluorethylen/Perfluoralkylvinylether, Tetrafluorethylen/Ethylen, Trifluorchlorethylen/Ethylen und Hexafluorisobutylen/Vinylidenfluorid.
  • Zusätzlich oder anstelle der zuvor genannten Substanzen können bei dem erfindungsgemäßen Verfahren abhängig von den jeweils gewünschten Veränderungen der Eigenschaften auch solche Substanzen ausgewählt werden, die oligomerisierbare oder polymerisierbare Acrylsäure, Acrylsäurederviate und/oder Salze dieser Verbindungen umfassen. Hier sind insbesondere Methacyrlate, Ethylacrylate, n-Butylacrylat, Iso-Butylacrylate, tert.-Butylacrylate, Hexylacrylate, 2-Ethylhexylacrylate und Laurylacrylate zu nennen. Ferner können diese Acrylate mit geeigneten Verbindungen, wie beispielsweise Methylmethacrylate, Ethylenmethacrylate, n-Butylmethacrylate, Acrylnitril, Styrol, 1,3-Butadien, Vinylacetat, Vinylpropoinat, Vinylchlorid, Vinylidenchlorid, Vinylfluorid und/oder Vinylidenfluorid vermischt werden. Weiter kommen als Acrylsäurederivate die Acrylsäure, Methacrylsäure, Acrylamid, Acrylnitril, Methacrylamid und/oder Salze der zuvor genannten beiden Säuren in Frage.
  • Ist bei dem erfindungsgemäßen Verfahren zusätzlich eine dreidimensionale Vernetzung der auf das textile Substrat aufgetragenen Substanz erwünscht, so werden den zuvor genannten oligomerisierbaren bzw. polymerisierbaren Substanzen solche Produkte zugesetzt, die zusätzlich noch freie funktionelle Gruppen aufweisen. Insbesondere eignen sich hierfür carboxylgruppenhaltige Momomere, wie insbesondere Maleinsäure und/oder Itaconsäure; hydroxylgruppenhaltige Monomere, wie insbesondere 2-Hydroxyethylacrylat, 2-Hydroxyethylmethacrylat, Hydroxypropylacrylat, Propylenglykolmethacrylat und/oder Butandiolmonoacrylat; N-Hydroxymethyl-gruppenhaltige Monomere, wie insbesondere N-Hydroxymethylacrylamid und/oder N-Hydroxymethylmethacrylamid; und/oder sulfosäurehaltige Monomere, insbesondere 2-Acrylamino-2-Methylpropansulfonsäure. Als weitere, die Vernetzung ermöglichende Produkte sind entsprechende Ether, insbesondere Ethyldiglykolacrylat; Amine, insbesondere tert.-Butylaminomethacrylat, Dimethylaminoethylacrylat, Diethylaminoethylmethacrylat und/oder Diethylaminoethylacrylat; Epoxide, insbesondere Glycidylmethacrylat; und/oder Halogen-Hydroxylgruppenhaltige Monomere, insbesondere 3-Chlor-2-Hydroxypropylacrylat, zu nennen. Selbstverständlich besteht jedoch auch die Möglichkeit, die zuvor genannten, funktionelle Gruppen aufweisende Produkte allein einzusetzen.
  • Weiterhin kommen bei dem erfindungsgemäßen Verfahren zusätzlich zu den zuvor genannten Substanzen oder an Stelle der zuvor genannnten Substanzen solche Produkte in Frage, die Styrol und/oder Styrolderivate umfassen. Hier sind speziell neben dem bereits erwähnten Styrol bzw. Methylstyrol insbesondere die Mischungen von Styrol und/oder Methylstyrol mit Acrylnitril und/oder von Styrol und/oder Methylstyrol mit Butadien zu nennen.
  • Ebenso können bei dem erfindungsgemäßen Verfahren auch solche Substanzen ausgewählt werden, die siliciumorganische Verbindungen aufweisen. Hierbei handelt es sich dann vorzugsweise um Silicone, die am Siliciumatom entsprechend eine oder mehrere organische Reste aufweisen, die radikalisch und/oder ionisch oplygomerisierbar bzw. polymerisierbar sind. Hierfür kommen insbesondere solche organischen Reste in Frage, die endständige C-C-Doppelbindungen aufweisen.
  • Die Auftragsmenge der zuvor genannnten Substanzen variiert abhängig von den gewünschten Veränderungen der Eigenschaften. Üblicherweise liegt bei dem erfindungsgemäßen Verfahren die Auftragsmenge der zuvor genannten Subtanzen zwischen etwa 0,01 Gew.% bis etwa 20 Gew.%, insbesondere zwischen 0,5 Gew.% bis 10 Gew.% (Masse der oligomerisierbar bzw. polymerisierbaren Substanz : Masse des textilen Substrates).
  • Ist durch das erfindungsgemäße Verfahren eine Veränderung der Eigenschaften eines Nähgarnes beabsichtigt, das eine verbesserte Abriebfestigkeit gegenüber einer mechanischen Beanspruchung besitzen soll, so hat die Schichtdicke neben der Auswahl der ausgewählten Substanz einen entscheidenden Einfluß auf die Beständigkeit des Nähgarnes gegenüber der mechanischen Beanspruchung bei der Verarbeitung. Insbesondere wird dann dabei die Auftragsmenge derart variiert, daß das fertig ausgerüstete Nähgarn auf seiner Oberfläche eine flüssige oder feste, nahezu vollständig oder vollständig durchgehende Substanzschicht aufweist, deren Dicke zwischen etwa 100 nm und 0,1 nm, insbesondere zwischen 20 nm und 2 nm, variiert.
  • Bezüglich der Auswahl des bei dem erfindungsgemäßen Verfahren eingesetzen Initiators ist allgemein festzuhalten, daß hier grundsätzlich nur solche Initiatoren ausgewählt werden, die unter den jeweils ausgewählten Bedingungen der physikalischen Behandlung auch tatsächlich in Radiakale und/oder Ionen zerfallen. Weiterhin ist als wichtiges Auswahlkriterium für den Initiator anzusehen, daß der durch die physikalische Behandlung herbeigeführte Zerfall des Initiators unter solchen Bedingungen abläuft, bei denen die das textile Substrat bildenden Faserpolymere unverändert bleiben, so daß die gewünschte Eigenschaftsveränderungen nicht durch die physikalische Behandlung als solche sondern ausschließlich durch den Zerfall des Initiators und der sich hieran anschließenden Folgereaktionen herbeigeführt werden. Unter den Begriff Initiator fallen im Rahmen dieser Anmeldung auch Gemische, die mehrere Initiatoren enthalten.
  • Bevorzugte Initiatoren, die bei dem erfindungsgemäßen Verfahren allein oder in Mischung eingesetzt werden, sind Initiatoren auf der Basis eines Persulfates, vorzugsweise Kaliumpersulfat oder Ammoniumpersulfat; Initiatoren auf der Basis eines Peroxids, insbesondere Dibenzoylperoxid, Cumolhydroperoxid, Cyclohexanonperoxid, Di-tert-Butylperoxid, Cyclohexylsulfonylacetylperoxid; Initiatoren auf der Basis einer Azoverbindung, insbesondere Azodiisobuttersäuredinitril, und/oder 4,4'-Azo-bis-(4-Cyanpentansäurechlorid). Ebenso können solche Initiatoren eingesetzt werden, die auf der Basis von Benzpinakol, Diisopropylpercarbonat und/oder Butylperoctoat aufgebaut sind.
  • Besonders geeignet ist es bei dem erfindungsgemäßen Verfahren, wenn hier als Initiator Redoxsysteme eingesetzt werden. Diese Redoxsysteme liefern bei der physikalischen Behandlung eine besonders hohe Ausbeute der hierdurch erzeugten Radikale bzw. Ionen. Insbesondere werden als Redoxsysteme Kaliumpersulfat und/oder Ammoniumpersulfat/ Natriumhyposulfit; Wasserstoffperoxid/Eisen-II-Sulfat; Cumolhydroperoxid/Polyamin und/oder Benzoylperoxid/N-Dimethylanilin eingesetzt.
  • Eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, daß man das textile Substrat vor und/oder bei dem Auftragen des Initiators durch Zugabe eines Quellmittels quillt. Derartige materialspezifische und dem Fachmann für das jeweilige Substrat insbesondere aus den Färbeverfahren bekannte Quellmittel, wie beispielsweise für cellulosehaltige Substrate Lauge oder für polyester- oder polyamidhaltige Substrate aromatische Kohlenwasserstoffe, bewirken, daß der Initiator nicht nur an der Oberfläche des Substrates ad- bzw. absorbiert wird, sondern auch insbesondere in die amorphen Bereiche des Substrates eindiffundieren kann, so daß die entsprechende Radikal- und/oder Ionen-Bildung auch im Faserinneren abläuft.
  • Um die zuvor beschriebene Ad- bzw. Absorption des Initiators an dem jeweiligen textilen Substrat vorzunehmen, bestehen zwei Möglichkeiten. Bei solchen Initiatoren, die ohne Zerstörung in den Gaszustand überführbar sind, kann die Aufbringung des Initiators auf das textile Substrat dadurch erfolgen, daß man das als Haufwerk oder Wickelkörper vorliegende textile Substrat mit dem gasförmigen Initiator für eine vorgegebene Zeit anströmt bzw. durchströmt. Hierbei bietet es sich an, das textile Substrat für eine vorgegebene Zeit, insbesondere zwischen zwei Minuten und dreißig Minuten, mit dem gasförmigen Initiator zu durchströmen.
  • Ist hingegen der jeweils ausgewählte Initiator nicht ohne Zersetzung in den gasförmigen Zustand zu überführen, so wird eine entsprechende Lösung, Dispersion oder Emulsion, vorzugsweise in Wasser oder in einem Lösungsmittel, insbesondere in einem niedrig siedenden Lösungsmittel, hergestellt. Anschließend wird der Wickelkörper bzw. das Haufwerte mit dieser Lösung, Dispersion oder Emulsion durchströmt, wobei, die vorstehend genannte vorgegebene Zeit bevorzugt wird.
  • Die bei dem erfindungsgemäßen Verfahren zur Zerstörung des Initiators erforderliche physikalische Behandlung kann abhängig von dem eingesetzten Initiator eine thermische Behandlung, eine Bestrahlung mit Licht, insbesondere mit UV-Licht, eine α, β, oder γ Bestrahlung oder eine Behandlung in einem elektrischen Feld sein.
  • Eine besonders geeignete Ausführungsform des erfindungsgemäßen Verfahrens sieht vor, daß die physikalische Behandlung eine Niedertemperatur-Plasmabehandlung ist. Allgemein richten sich bei dem erfindungsgemäßen Verfahren die Bedingungen bei der Niedertemperatur-Plasmabehandlung, so z.B. der Druck, die Leistung, die Frequenz, die Verweilzeit, die Leistungsdichte und das eingesetzte Gas bzw. die verwendete Substanz, nach dem jeweils ausgewählten Initiator, dem Material des jeweils zu behandelnden textilen Substrates und den gewünschten Eigenschaftsveränderungen.
  • Üblicherweise wird bei dem erfindungsgemäßen Verfahren die Niedertemperatur-Plasmabehandlung bei einem Vakuum zwischen 5 Pa und 500 Pa durchgeführt. Besonders gute Ergebnisse in bezug auf die Ausbeute erzielt man, wenn man die Niedertemperatur-Plasmabehandlung bei einem Vakuum zwischen 20 Pa und 300 Pa, vorzugsweise zwischen 70 Pa und 200 Pa, ausführt.
  • Eine weitere Ausführungsform des zuvor beschriebenen Verfahrens sieht vor, daß man bei der Niedertemperatur-Plasmabehandlung während einer ersten Behandlungsperiode ein Vakuum zwischen 5 Pa und 120 Pa, vorzugsweise zwischen etwa 20 Pa und 120 Pa, und während einer sich hieran anschließenden zweiten Behandlungsperiode ein Vakuum zwischen 80 Pa und 250 Pa, vorzugsweise zwischen 100 Pa und 200 Pa, einstellt. Hierdurch wird insbesondere erreicht, daß der Wickelkörper bzw. das Haufwerk besonders gut und gleichmäßig mit einem reaktionsfähigen Gas oder einem Inertgas durchströmt wird, was folglich die Gleichmäßigkeit der Erzeugung der Radikale bzw. Ionen besonders sicherstellt. Insbesondere in den Fällen, in denen sich eine erste Behandlungsperiode unmittelbar an eine zweite Behandlungsperiode anschließt, und vor allen Dingen dann, wenn man die erste und zweite Behandlungsperiode mehrfach abwechselnd unmittelbar hintereinander wiederholt, wird der Wickelkörper bzw. das Haufwerk besonders gut durchströmt, so daß Ungleichmäßigkeiten über die Dicke des Wickelkörpers bzw. des Haufwerkes gesehen völlig ausgeschlossen sind.
  • Bei der zuvor beschriebenen Verfahrensweise, bei der zwei aufeinanderfolgende Behandlungsperioden bei einem unterschiedlichen Vakuum durchgeführt werden, kann man den Übergang von der ersten Behandlungsperiode zur zweiten Behandlungsperiode und von der zweiten Behandlungsperiode zur ersten Behandlungsperiode derart gestalten, daß man das Vakuum in jeder Behandlungsperiode schlagartig einstellt. Eine besonders schonende Behandlung des Wickelkörpers bzw. des Haufwerkes ermöglicht jedoch eine Ausführungsform des erfindungsgemäßen Verfahrens, bei dem das Vakuum in der ersten Behandlungsperiode kontinuierlich in das Vakuum der zweiten Behandlungsperiode und das Vakuum in der zweiten Behandlungsperiode kontinuierlich in das Vakuum der ersten Behandlungsperiode überführt wird, so daß der Druck während der gesamten Behandlung sinusförmig erhöht bzw. abgesenkt wird.
  • Bezüglich der Verweilzeit bei der Niedertemperatur-Plasmabehandlung ist festzuhalten, daß diese pro Behandlungsperiode jeweils zwischen 10 Sekunden und 160 Sekunden, vorzugsweise zwischen 20 Sekunden und 60 Sekunden, variiert.
  • Um unerwünschte und unkontrollierte Nebeneffekte, hervorgerufen durch Fremdgase, bei der Niedertemperatur-Plasmabehandlung zu verhindern, empfiehlt es sich, zu Beginn der Niedertemperatur-Plasmabehandlung ein Vakuum bei einem Druck einzustellen, der geringer ist als der Druck während der Niedertemperatur-Plasmabehandlung. Anschließend führt man, falls erwünscht, ein entsprechendes Gas (reaktionsfähiges Gas und/oder Inertgas) so lange zu, bis der erwünschte Druck für die Niedertemperatur-Plasmabehandlung erreicht ist.
  • Üblicherweise beträgt die Frequenz bei der Niedertemperatur-Plasmabehandlung zwischen 1 MHz und 20 MHz, wobei vorzugsweise die Niedertemperatur-Plasmabehandlung bei einer Frequenz von 13,56 MHz durchgeführt wird.
  • Darüber hinaus kann man bei dem erfindungsgemäßen Verfahren die Niedertemperatur-Plasmabehandlung, die zur Zerstörung des Initiators und damit zur Ausbildung der Radikale und/oder Ionen führt, auch bei einer Frequenz von 27,12, 40,68 und/oder 81,36 MHz durchführen, wobei es jedoch auch möglich ist, während der Niedertemperatur-Plasmabehandlung die Frequenzen in dem zuvor genannten Bereich zu ändern bzw. auf unterschiedliche Werte im Rahmen der zuvor genannten Werte einzustellen.
  • Die Leistung, die bei der Niedertemperatur-Plasmabehandlung angewendet wird, variiert zwischen 200 Watt und 600 Watt.
  • Die Leistungsdichte variiert bei der Niedertemperatur-Plasmabehandlung zwischen 2 W/dm3 und 25 W/dm3, wobei sich die Volumenangaben auf das Volumen des jeweils verwendeten Autoklaven beziehen. Vorzugsweise wird jedoch bei dem erfindungsgemäßen Verfahren bei einer Leistungsdichte zwischen 8 W/dm3 und 14 W/dm3, insbesondere bei 12,5 W/dm3, gearbeitet.
  • Besonders gute Ergebnisse erzielt man bei dem erfindungsgemäßen Verfahren auch mit einer Niedertemperatur-Plasmabehandlung, die bei einer Frequenz von 2,45 GHz, bei einem Druck zwischen 10-1 Pa und 1.000 Pa, vorzugsweise zwischen 70 Pa und 120 Pa, und bei einer Leistungsdichte zwischen 0,1 W/dm3 und 5 W/dm3, vorzugsweise zwischen 1,5 W/dm3 und 3 W/dm3, durchgeführt wird.
  • Eine andere, ebenfalls bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens sieht vor, daß man als physikalische Behandlung, die zu einer Zerstörung des Initiators und zur Ausbildung der Radikale und/oder Ionen führt, eine Corona-Behandlung auswählt.
  • Vorzugsweise wird diese Corona-Behandlung bei einem Druck durchgeführt, der bei dem Normaldruck und/oder der geringfügig oberhalb und/oder geringfügig unterhalb des Normaldruckes liegt. Somit wird bei dem erfindungsgemäßen Verfahren die Corona-Behandlung bei einem Druck zwischen 86,659 x 103 Pa und 133,32 x 103 Pa, vorzugsweise bei einem Druck zwischen 93,325 x 103 Pa und 113,324 x 103 Pa, durchgeführt.
  • Besonders gute Ergebnisse in bezug auf den Zerfall des Initiators erzielt man dann, wenn man bei der Corona-Behandlung während einer ersten Behandlungsperiode einen Druck zwischen 86,659 x 103 Pa und 99,99 x 103 Pa und während einer zweiten Behandlungsperiode einen Druck zwischen 99,99 x 103 Pa und 133,32 x 103 Pa einstellt. Dies ist offensichtlich darauf zurückzuführen, daß durch den Druckwechsel der Wickelkörper bzw. das Haufwerk besonders gut und gleichmäßig durchströmt wird. Folglich hat man dadurch eine gleichmäßige Verteilung der zur Reaktion gebrachten Systeme, so daß die durch das erfindungsgemäße Verfahren herbeigeführten Eigenschaftsveränderungen ebenfalls besonders gleichmäßig sind. Insbesonders schließt sich bei der zuvor beschriebenen Ausführungsform die erste Behandlungsperiode unmittelbar an die zweite Behandlungsperiode an, wobei es sich empfiehlt, diesen Behandlungszyklus, bestehend aus erster und zweiter Behandlungsperiode, mehrfach abwechselnd zu wiederholen.
  • Wie bereits zuvor bei der Niedertemperatur-Plasmabehandlung beschrieben wurde, kann man den Druckwechsel zwischen der ersten und zweiten Behandlungsperiode auch bei der Corona-Behandlung abrupt durchführen. Hierbei besteht jedoch die Gefahr, daß sich bei dem abrupten Druckwechsel der Wickelkörper bzw. das Haufwerk in unerwünschter Weise verlegt, so daß insbesondere bei realtiv weichen Wickelkörpern bzw. weich gepackten Haufwerken, d.h. solchen Wickelkörpern bzw. Haufwerken, bei denen die Shore-Härte gering ist, beim Übergang von der ersten Behandlungsperiode zur zweiten Behandlungsperiode eine kontinuierliche Druckerhöhung und beim Übergang von der zweiten Behandlungsperiode in die erste Behandlungsperiode eine kontinuierliche Druckabsenkung durchgeführt wird. Diese Druckänderung wird dann vorzugsweise sinusförmig ausgeführt, wobei für die erste und zweite Periode jeweils Behandlungszeiten zwischen 10 Sekunden und 160 Sekunden, insbesondere zwischen 20 Sekunden und 60 Sekunden, ausgewählt werden.
  • Um bei der Corona-Behandlung unerwünschte Fremdeinflüsse, wie beispielsweise von der Luftfeuchtigkeit oder dem textilen Substrat stammender Wasserdampf oder Staubpartikel, die zu einer unkontrollierten, nicht reproduzierbaren Corona-Entladung und somit zu einer unkontrollierten Zerstörung des Initiators führen können, auszuschalten, empfiehlt es sich, vor Beginn der Corona-Behandlung einen Druck einzustellen, der geringer ist als der Druck während der Corona-Behandlung. Anschließend wird eine definierte Menge eines Gases (reaktionsfähiges Gas und/oder Inertgas) zur Einstellung des erforderlichen Behandlungsdruckes zugeführt. Hierbei wird vorzugsweise der für die Corona-Behandlung eingesetzte Autoklave auf einen Druck zwischen 1.000 Pa und 10.000 Pa evakuiert, so daß anschließend das jeweilige Gas und ggf. die mit Substanz angereicherte Flüssigkeit, das bzw. die den Wickelkörper bzw. das Haufwerk durchströmt, zugeführt werden kann, um so den Druck im Autoklaven auf einen Wert zwischen 86,659 x 103 Pa und 133,32 x 103 Pa einzustellen.
  • Die bei der Niedertemperatur-Plasmabehandlung bzw. Corona-Behandlung eingesetzten Gase sind bereits vorstehend ausführlich beschrieben worden.
  • Die Gesamtbehandlungszeit bei der Niedertemperatur-Plasmabehandlung bzw. Corona-Behandlung beträgt abhängig von den gewünschten Eigenschaftsveränderungen, den eingestellten Leistungsdichten, den ausgewählten Initiatoren und dem jeweiligen textilen Substrat zwischen etwa zwei Minuten und etwa dreißig Minuten, vorzugsweise zwischen etwa fünf Minuten und etwa zwanzig Minuten.
  • Wie bereits vorstehend erwähnt ist, erzielt man bei dem erfindungsgemäßen Verfahren dann besonders gute Ergebnisse, wenn man das textile Substrat als Haufwerk oder als Wickelkörper aufmacht und auschließend eine NiedertemperaturPlasmabehandlung durchführt, da es hierfür nicht erforderlich ist, das jeweils zu behandelnde textile Substrat innerhalb der für die Niedertemperatur-Plasmabehandlung erforderlichen Vakuumkammer umzuwickeln, so daß die ansonsten erforderlichen technischen Einrichtungen dabei entfallen können. Überraschend konnte bei dieser Ausführungsform des erfindungsgemäßen Verfahrens festgestellt werden, daß die erzielten Veränderungen sowohl über die Länge des jeweils behandelten textilen Substrates als auch über dessen Dicke bzw. über den Umfang gesehen sehr gleichmäßig waren. Dies wird darauf zurückgeführt, daß bei dem erfindungsgemäßen Verfahren nur an den Stellen, an denen der Initiator vom textilen Substrat ad- bzw. absorbiert ist, durch die physikalische Behandlung Radikale bzw. Ionen gebildet werden, so daß das eigentliche Garnpolymere an den Stellen, an denen kein Initiator ad- bzw. absorbiert ist, weitestgehend unverändert bleibt.
  • Wird das textile Substrat als Wickelkörper aufgemacht und einer Niedertemperatur-Plasmabehandlung bzw. Corona-Behandlung unterworfen, so empfiehlt es sich, hier einen perforierten zylindrischen Wickelkörper insbesondere eine perforierte Metallhülse, auszuwählen.
  • Eine weitere Ausführungsform des erfindungsgemäßen Verfahrens, die inbesondere zur Einführung von funktionellen (reaktionsfähigen) Gruppen im Garnpolymeren dient, sieht vor, daß das textile Substrat als Haufwerk, nachdem zuvor der Initiator aufgebracht wurde, einer Niedertemperatur-Plasmabehandlung bzw. Corona-Behandlung unterworfen wird. Hierbei wird zusätzlich dieses Haufwerk von einem Inertgas durchströmt bzw. angeströmt. Dieses Inertgas bewirkt, daß im Bereich, in dem Initiator am textilen Substrat ad- bzw. absorbiert ist, entsprechende Radikale bzw. Ionen ausgebildet werden. Im Anschluß hieran kann sich dann eine entsprechende Umsetzung mit solchen Verbindungen, wie beispielsweise Sauerstoff, Ammoniak, Kohlendioxid oder Schwefeldioxid, anschließen, die dann durch eine einfache chemische Umsetzung, beispielsweise durch eine Behandlung mit Wasser, Säuren oder Laugen, in die entsprechenden funktionellen Gruppen umwandelbar sind. Diese funktionellen Gruppen werden dann zusätzlich am Faserpolymeren ausgebildet und können zur Anbindung von Farbstoffen oder anderen Substanzen, wie beispielsweise herkömmliche Ausrüstungen, dienen. Als Inertgas bzw. Inertgasgemische kommen hierfür vorzugsweise Edelgase und/oder Stickstoff in Frage.
  • Um die durch das erfindungsgemäße Verfahren erzielten Veränderungen der Eigenschaften besonders gleichmäßig zu gestalten, empfiehlt es sich, insbesondere auch bei sehr dichten Wickelkörpern bzw. Haufwerken, abwechselnd den Wickelkörper bzw. das Haufwerk von innen nach außen und von außen nach innen mit dem Gas (reaktionsfähiges Gas, Inertgas) zu durchströmen.
  • Grundsätzlich lassen sich bei dem erfindungsgemäßen Verfahren als textiles Substrat jedes beliebige Ausgangsmaterial, wie beispielsweise Polyamid-, Polyester-, Polypropylen-, Nomex-, Glas-, Polyacrylnitril-, Kohlenstoff- und/oder keramische Fasern, jeweils allein oder in Mischung mit anderen Synthese- und/oder Naturfasern, einsetzen. Ebenfalls kann das erfindungsgemäße Verfahren auch erfolgreich bei Naturfasern, wie beispielsweise Wolle, Baumwolle, Jute, o. dgl., angewendet werden.
  • Besonders vorteilhaft ist es, wenn das erfindungsgemäße Verfahren bei Nähgarnen verwendet wird. Hier konnte festgestellt werden, daß Nähgarne, die nach dem erfindungsgemäßen Verfahren behandelt und insbesondere mit den zuvor genannten Substanzen ausgerüstet waren, ein wesentlich besseres Nähverhalten, das sich in einer entsprechend verringerten Garnbruchhäufigkeit sowie in einer höheren Knopflochzahl ausdrückte, aufweisen. Auch konnte durch das erfindungsgemäße Verfahren die Anfärbbarkeit von schwer anfärbbaren Nähgarnen, beispielsweise solchen Garnen, die Aramidfasern, Nomexfasern, und/oder Polyalkylenfasern, insbesondere Polypropylenfasern, aufweisen, erheblich verbessert werden, zumal derartige Nähgarne dann abhängig von den jeweils durch das erfindungsgemäße Verfahren eingeführten funktionellen Gruppen mit basischen Farbstoffen, Säurenfarbstoffen und/oder Reaktivfarbstoffen anfärbbar waren.
  • Hierbei weisen die zuvor genannten Nähgarne die üblichen Nähgarnkonstruktionen auf, d.h. es handelte sich somit um Coregarne, Multifilamentgarne oder Filament/Fasergarne, die ggf. verzwirnt waren.
  • Desweiteren können diese Nähgarne die an sich bekannte Konstruktion eines verwirbelten Garnes oder eines umsponnenden Garnes aufweisen, wobei der Titer der zuvor genannten Nähgarne in der Größenordnung zwischen 50 dtex x 2 (Gesamttiter 100 dtex) und 1.200 dtex x 3 (Gesamttiter 3.600 dtex) liegt.
  • Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens sind in den Unteransprüchen angegeben.
  • Das erfindungsgemäße Verfahren wird nachfolgend anhand von zwei Ausführungsbeispielen näher erläutert.
  • Beispiel 1
  • Ein Polyestergewebe mit einer Breite von 10 cm und einem Flächengewicht von 140 g/m2 wurde auf eine perforierte Hülse mit einer Wickelhöhe von 3 cm aufgewickelt. Anschließend wurde der Wickelkörper in eine übliche Laborfärbeanlage eingesetzt und dort mit einer alkoholischen Lösung (Ethanol) von 50 g Benzoylperoxid bei 20 °C während zehn Minuten durchströmt.
  • Nach schonender Trocknung wurde der Wickelkörper entnommen und in eine Vakuumkammer eingebracht, und dort einer Niedertemperatur-Plasmabehandlung unterworfen. Hierbei waren die Bedingungen während der Niedertemperatur-Plasmabehandlung wie folgt:
  • Druck vor der Niedertemperatur-Plasmabehandlung: 5 Pa
    Druck während der Niedertemperatur-Plasmabehandlung: Abbildung 1
    Frequenz: 13,56 MHz
    Leistungsdichte: 8 W/dm3
    Dauer der ersten und zweiten Behandlungsperiode: jeweils 40 Sek.
    Gesamtbehandlungsdauer: 10 Minuten
    Gas: Sauerstoff
  • Anschließend wurde der so behandelte Wickelkörper auf der Laborfärbeanlage mit Wasser durchströmt und danach in üblicher Weise mit einem herkömmlichen Reaktivfarbstoff (Levafix 2%) gefärbt.
  • Die so erstellte Färbung wurde farbmetrisch beurteilt, wobei jeweils Proben aus der unteren Wickellage, der mittleren Wickellage und der oberen Wickellage (äußere Wickellage) entnommen wurden. Hier konnte festgestellt werden, daß sowohl visuell als auch farbmetrisch weder Farbtiefen- noch Farbtonunterschiede vorhanden waren.
  • Ferner wurden die Reibechtheit, die Wasserechtheit (schwere Beanspruchung), die Schweißechtheit und die Waschechtheit gemessen. Keine dieser Echtheiten war zu beanstanden.
  • Beispiel 2
  • Ein Nähgarn Nm 25 x aus Aramidfaser wurde auf einer 1 kg Spule aufgewickelt und in einer Laborfärbeanlage mit einer 5 %igen Wasserstoffperoxidlösung (30 % Wasserstoffperoxid) bei 25 °C während zehn Minuten behandelt.
  • Anschließend wurde die so behandelte Spule mechanisch entwässert und hiernach schonend getrocknet.
  • Danach wurde die Spule in einen Autoklaven eingebracht und dort einer Niedertemperatur-Plasmabehandlung unter den folgenden Bedingungen unterworfen:
  • Druck vor der Niedertemperatur-Plasmabehandlung: 5 Pa
    Druckverlauf während der Niedertemperatur-Plasmabehandlung: Abbildung 1
    Frequenz: 13,5 NHz
    Leistungsdichte: 15 W/dm3
    Dauer der ersten und zweiten Behandlungsperiode: jeweils 40 Sek.
    Gesamtbehandlungsdauer: 25 Minuten
    Gas: Ammoniak
  • Anschließend wurde die Garnspule aus dem Autoklaven entnommen und in die Laborfärbeanlage überführt. Dort erfolgte zunächst eine Durchströmung des Materials während 2 Minuten bei Raumtemperatur mit Wasser. Hiernach wurde eine konventionelle Färbung mit einem Säurefarbstoff (2 % eines handelsüblichen Säurefarbstoffes) durchgeführt.
  • Von der Spule wurden jeweils Proben aus der inneren Lage, der mittleren Lage und der äußeren Lage entnommen und die Färbung zunächst visuell und farbmetrisch beurteilt. Hierbei konnten keine Farbton- bzw. Farbtiefenunterschiede festgestellt werden.
  • Weiterhin wurden bei den zuvor genannten drei Lagen vergleichende Festigkeitsuntersuchungen durchgeführt, wobei keine Unterschiede in den Festigkeiten zwischen den einzelnen Lagen bestanden. Die Festigkeit nach der Niedertemperatur-Plasmabehandlung und der anschließenden Färbung betrug 95 % der Festigkeit des Ausgangsmaterials.
  • Auch die im Beispiel 1 genannten Echtheiten wurden von den nach Beispiel 2 behandelten Nähgarnen bestimmt. Hierbei waren diese Echtheiten ebenfalls zufriedenstellend.

Claims (39)

  1. Verfahren zur Veränderung der Eigenschaften eines textilen Substrates, bei dem man auf das textile Substrat einen Initiator, der durch eine physikalische Behandlung in Radikale und/oder Ionen zerfällt, aufbringt und die physikalische Behandlung durchführt, dadurch gekennzeichnet, daß man aus dem textilen Substrat ein Haufwerk oder einen Wickelkörper herstellt, daß man das Haufwerk bzw. den Wickelkörper mit einem gasförmigen Initiator oder einer Lösung, Dispersion oder Emulsion des Initiators durchströmt und daß man gleichzeitig und/oder anschließend die physikalische Behandlung durchführt und die hierbei entstehenden Radikale und/oder Ionen mit dem textilen Substrat selbst, einer hierauf aufgetragenen Substanz und/oder mit einem das textile Substrat umgebenden Gas zur Reaktion bringt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man das textile Substrat mit mindestens einem das textile Substrat umgebenden reaktionsfähigen Gas, vorzugsweise O2, N2O, O3, CO2, NH3, SO2, SiCl4, CCl4, CF3Cl, CF4, CO, Hexamethyldisiloxan und/oder H2, zur Reaktion bringt oder das textile Substrat mit einem Inertgas, vorzugsweise mindestens einem Edelgas und/oder Stickstoff, und/oder einem Gemisch der zuvor genannten Gase in Kontakt bringt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man als Substanz mindestens eine radikalisch und/oder ionisch oligomerisierbare bzw. radikalisch und/oder ionisch polymerisierbare Substanz auf das textile Substrat aufbringt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß man eine Substanz aufbringt, die oligomerisierbare und/oder polymerisierbare Kohlenwasserstoffe, Kohlenwasserstoff-Copolymerisate, Kohlenwasserstoff-Oligomersisate, Kohlenwasserstoff-Mischoligomerisate, Kohlenwasserstoff-Mischpolymerisate und/oder Derivate hiervon umfaßt.
  5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß man eine solche Substanz auswählt, die oligomerisierbare und/oder polymerisierbare Verbindungen der Acrylsäure, Acrylsäure-Cooligormerisate, Acrylsäure-Copolymerisate, Acrylsäure-Mischoligomerisate, Acrylsäure-Mischpolymerisate und/oder Salze und/oder Derivate hiervon umfaßt.
  6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß man eine Substanz auswählt, die oligomerisierbare und/oder polymerisierbare Verbindungen von Styrol, seinen Derivaten, Styrol-Cooligomerisate, Styrol-Copolymerisate, Styrol-Mischoligomerisate, Styrol-Mischpolymerisate und/oder Salze und/oder Derivate hiervon umfaßt.
  7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß man einen Initiator auf der Basis eines Persulfates, insbesondere Kaliumpersulfat und/oder Ammoniumpersulfat, eines Peroxids, insbesondere Dibenzoylperoxid, Cumolhydroperoxid, Cyclohexanonperoxid, Di-tert-Butylperoxid, Cyclohexylsulfonylacetylperoxid, einer Azoverbindung, insbesondere Azodiisobuttersäuredinitril, und/oder einen Initiator auf der Basis von Benzpinakol, Diisopropylpercarbonat und/oder tert.-Butylperoctoat auswählt.
  8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß man als Initiator ein Redoxsystem, insbesondere Kaliumpersulfat/Natriumhyposulfit, Wasserstoffperoxid/Eisen-II-Sulfat, Cumolhydroperoxid/Polyamin und/oder Benzoylperoxid/N-Dimethylanilin, einsetzt.
  9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß man das texile Substrat vor und/oder während des Auftragens des Initiators durch Aufbringen eines Quellmittels quillt.
  10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß man als physikalische Behandlung eine thermische Behandlung, eine Bestrahlung mit Licht, eine α, β, γ-Bestrahlung und/oder eine Behandlung in einem elektrischem Feld auswählt.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß man eine Niedertemperatur-Plasmabehandlung als physikalische Behandlung durchführt.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß man die Niedertemperatur-Plasmabehandlung bei einem Druck zwischen 5 Pa und 500 Pa durchführt.
  13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß man die Niedertemperatur-Plasmabehandlung bei einem Druck zwischen 20 Pa und 300 Pa, vorzugsweise zwischen 70 Pa und 200 Pa, ausführt.
  14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß man bei der Niedertemperatur-Plasmabehandlung während einer ersten Behandlungperiode einen Druck zwischen etwa 5 Pa und etwa 120 Pa, vorzugsweise zwischen etwa 20 Pa und etwa 120 Pa, und während einer sich hieran anschließenden zweiten Behandlungsperiode einen Druck zwischen etwa 80 Pa und etwa 250 Pa, vorzugsweise etwa 100 Pa und etwa 200 Pa, einstellt.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß man die erste Behandlungsperiode unmittelbar an die zweite Behandlungsperiode anschließt.
  16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß man die erste und zweite Behandlungsperiode mehrfach abwechselnd wiederholt.
  17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, daß man beim Übergang von der ersten Behandlungsperiode in die zweite Behandlungsperiode und beim Übergang von der zweiten Behandlungsperiode in die erste Behandlungsperiode den Druck kontinuierlich erhöht bzw. absenkt.
  18. Verfahren nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, daß man für die erste und zweite Behandlungsperiode jeweils eine Zeit zwischen 10 Sekunden und 160 Sekunden, vorzugsweise zwischen 20 Sekunden und 60 Sekunden, auswählt.
  19. Verfahren nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, daß man zu Beginn der Niedertemperatur-Plasmabehandlung einen Druck einstellt, der geringer ist als der Druck während der Niedertemperatur-Plasmabehandlung, und daß man anschließend ein Gas, insbesondere ein reaktionsfähiges Gas und/oder ein Inertgas, bis zum Erreichen des erforderlichen Behandlungsdruckes zuführt.
  20. Verfahren nach einem der Ansprüche 11 bis 19, dadurch gekennzeichnet, daß man die Niedertemperatur-Plasmabehandlung bei einer Frequenz zwischen 1 MHz und 20 MHz, vorzugsweise bei 13,56 MHz, durchführt.
  21. Verfahren nach einem der Ansprüche 11 bis 19, dadurch gekennzeichnet, daß man die Niedertemperatur-Plasmabehandlung bei einer Frequenz von 27,12, 40,68 und/oder 81,36 MHz durchführt.
  22. Verfahren nach einem der Ansprüche 11 bis 21, dadurch gekennzeichnet, daß man die Niedertemperatur-Plasmabehandlung bei einer Leistung zwischen 200 W und 600 W durchführt.
  23. Verfahren nach einem der Ansprüche 11 bis 22, dadurch gekennzeichnet, daß man die Niedertemperatur-Plasmabehandlung bei einer Leistungsdichte zwischen 2 W/dm3 und 25 W/dm3, vorzugsweise zwischen 8 W/dm3 und 14 W/dm3, durchführt.
  24. Verfahren nach einem der Ansprüche 11 bis 19, dadurch gekennzeichnet, daß man die Niedertemperatur-Plasmabehandlung bei einer Frequenz von 2,45 GHz, bei einem Druck zwischen 10-1 bis 1.000 Pa, vorzugsweise zwischen 70 Pa und 120 Pa, und bei einer Leistungsdichte zwischen 0,1 W/dm3 und 5 W/dm3, vorzugsweise zwischen 1,5 W/dm3 und 3 W/dm3, durchführt.
  25. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß man als physikalische Behandlung eine Corona-Behandlung durchführt.
  26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, daß man die Corona-Behandlung bei einem Druck zwischen 86,659 x 103 Pa und 133,32 x 103 Pa, vorzugsweise bei einem Druck zwischen 33,325 x 103 Pa und 113,324 x 103 Pa, durchführt.
  27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß man bei der Corona-Behandlung während einer ersten Behandlungsperiode einen Druck zwischen 86,659 x 103 Pa und 99,99 x 103 Pa und während einer zweiten Behandlungsperiode einen Druck zwischen 99,99 x 103 Pa und 113,324 x 103 Pa einstellt.
  28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß man die erste Behandlungsperiode unmittelbar an die zweite Behandlungsperiode anschließt.
  29. Verfahren nach Anspruch 27 oder 28, dadurch gekennzeichnet, daß man die erste und die zweite Behandlungsperiode mehrfach abwechselnd wiederholt.
  30. Verfahren nach einem der Ansprüche 27 bis 29, dadurch gekennzeichnet, daß man beim Übergang von der ersten Behandlungsperiode in die zweite Behandlungsperiode und beim Übergang von der zweiten Behandlungsperiode in die erste Behandlungsperiode den Druck kontinuierlich erhöht bzw. absenkt.
  31. Verfahren nach einem der Ansprüche 27 bis 30, dadurch gekennzeichnet, daß man für die erste und zweite Behandlungsperiode jeweils eine Zeit zwischen 10 Sekunden und 160 Sekunden, vorzugsweise zwischen 20 Sekunden und 60 Sekunden, auswählt.
  32. Verfahren nach einem der Ansprüche 27 bis 31, dadurch gekennzeichnet, daß man vor Beginn der Corona-Behandlung einen Druck einstellt, der geringer ist als der Druck während der Corona-Behandlung, und daß man anschließend ein Gas bis zum Erreichen des erforderlichen Behandlungsdruckes zuführt.
  33. Verfahren nach Anspruch 32, dadurch gekennzeichnet, daß man vor der Corona-Behandlung einen Druck zwischen 1.000 Pa und 10.000 Pa einstellt.
  34. Verfahren nach einem der Ansprüche 10 bis 33, dadurch gekennzeichnet, daß man die Niedertemperatur-Plasmabehandlung bzw. Corona-Behandlung zwischen zwei Minuten und dreißig Minuten durchführt.
  35. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß man das textile Substrat auf eine perforierte Hülse, vorzugsweise eine perforierte Metallhülse, aufwickelt.
  36. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß man das Haufwerk bzw. den Wickelkörper abwechselnd von außen nach innen und von innen nach außen mit einem reaktionsfähigen Gas und/oder einem Inertgas durchströmt.
  37. Verfahren nach einem der Ansprüche 10 bis 36, dadurch gekennzeichnet, daß man bei und/oder nach der Niedertemperatur-Plasmabehandlung bzw. Corona-Behandlung den Wickelkörper mit gasförmigem Sauerstoff, Kohlendioxid, Schwefeldioxid und/oder Ammoniak und anschließend mit Wasser durchströmt und das so behandelte Material mit Säurefarbstoffen, basischen Farbstoffen oder Reaktivfarbstoffen färbt bzw. bedruckt.
  38. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß man als textiles Substrat ein Nähgarn auswählt.
  39. Verfahren nach Anspruch 38, dadurch gekennzeichnet, daß man ein Nähgarn aus Aramidfasern und/oder Polyalkylenfasern, insbesondere Polypropylenfasern, kreuzspulartig aufwickelt, anschließend den Initiator gleichmäßig am Nähgarn ad- bzw. absorbiert, die Niedertemperatur-Plasmabehandlung bzw. Corona-Behandlung durchführt und hiernach das Nähgarn mit einem ionischen Farbstoff färbt.
EP91122294A 1990-12-27 1991-12-27 Verfahren zur Veränderung der Eigenschaften eines textilen Substrates Expired - Lifetime EP0492649B1 (de)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
DE4041932 1990-12-27
DE4041932 1990-12-27
DE4041931 1990-12-27
DE4041931 1990-12-27
DE4100785A DE4100785C2 (de) 1990-12-27 1991-01-12 Verfahren zur Ausrüstung eines Nähgarnes
DE4100787 1991-01-12
DE4100786 1991-01-12
DE4100785 1991-01-12
DE4100786A DE4100786C2 (de) 1990-12-27 1991-01-12 Garn mit einer auf der Oberfläche vorgesehenen Ausrüstung
DE19914100787 DE4100787C2 (de) 1991-01-12 1991-01-12 Verfahren zur Niedertemperatur-Plasmabehandlung oder Corona-Behandlung eines textilen Substrates

Publications (3)

Publication Number Publication Date
EP0492649A2 EP0492649A2 (de) 1992-07-01
EP0492649A3 EP0492649A3 (en) 1993-05-19
EP0492649B1 true EP0492649B1 (de) 1996-08-14

Family

ID=27511474

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19910122297 Withdrawn EP0496117A3 (en) 1990-12-27 1991-12-27 Process for the production of a sewing thread with a finishing agent
EP91122294A Expired - Lifetime EP0492649B1 (de) 1990-12-27 1991-12-27 Verfahren zur Veränderung der Eigenschaften eines textilen Substrates

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19910122297 Withdrawn EP0496117A3 (en) 1990-12-27 1991-12-27 Process for the production of a sewing thread with a finishing agent

Country Status (4)

Country Link
EP (2) EP0496117A3 (de)
AT (1) ATE141348T1 (de)
CS (1) CS408191A3 (de)
TR (1) TR27697A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146462A (en) * 1998-05-08 2000-11-14 Astenjohnson, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR27697A (tr) * 1990-12-27 1995-06-19 Karl Greifeneder Bir tekstil substraturun özelliginin degistirilmesi metodu.
DE4223853A1 (de) * 1992-07-20 1994-01-27 Gerd Ebert Nähfaden, Verfahren zur Herstellung von aufreißfesten Kettenstichnähten sowie Kettenstichnaht
DE4230149A1 (de) * 1992-09-09 1994-03-17 Heraeus Noblelight Gmbh Verfahren zur Herstellung von oxydischen Schutzschichten
ATE160187T1 (de) * 1992-09-12 1997-11-15 Amann & Soehne Verfahren sowie vorrichtung zur behandlung eines fadenartigen gebildes
WO1994024358A2 (de) * 1993-04-21 1994-10-27 Tecnit Ag Verfahren zur ummantelung von garnen und fasern in textilen gegenständen
IL110454A (en) * 1993-08-07 1997-07-13 Akzo Nobel Nv Process for plasma treatment of antiballistically effective materials
DE4419396C2 (de) * 1994-05-27 1997-04-24 Werner Amler Nähgarn
DE4447359C5 (de) * 1994-12-21 2009-01-02 ALTERFIL Nähfaden GmbH Bauschiges Nähgarn
US5932299A (en) * 1996-04-23 1999-08-03 Katoot; Mohammad W. Method for modifying the surface of an object
US5972039A (en) * 1997-04-07 1999-10-26 Isolsyer Company, Inc. Increased absorbency and hand-feel fabrics
GB9715508D0 (en) * 1997-07-24 1997-10-01 Scapa Group Plc Industrial fabrics and method of treatment
WO1999024174A1 (en) 1997-11-10 1999-05-20 Katoot Mohammad W Method for modifying the surface of an object
US6436484B1 (en) 1997-12-09 2002-08-20 Coats American, Inc. Processes for coating sewing thread
DE10019816A1 (de) * 2000-04-20 2001-10-31 Asten Ag Eupen Verfahren zur Beschichtung eines Garns sowie dadurch hergestelltes textiles Flächengebilde
US6645255B2 (en) 2001-04-04 2003-11-11 Healthtex Apparel Corp. Polymer-grafted stretchable cotton
CA2442836C (en) * 2001-04-04 2012-01-03 Healthtex Apparel Corp. Improved polymer-grafted cotton fibers and products
ITMI20051577A1 (it) * 2005-08-12 2007-02-13 Mascioni Spa Procedimento di stampa e finissaggio su tessuti contenenti parzialmente o totalmente fibra aradimica in forma di filamento e-o fiocco
EP2264234A1 (de) * 2009-06-16 2010-12-22 Amann & Söhne GmbH & Co. KG Garn, insbesondere Näh- oder Stickgarn
CN112337463B (zh) * 2020-10-22 2023-03-21 常熟理工学院 一种利用无纺布废布制备金载碳布的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496117A2 (de) * 1990-12-27 1992-07-29 Amann & Söhne GmbH & Co. Verfahren zur Herstellung eines mit einer Ausrüstung versehenen Nähgarnes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1265873A (fr) * 1959-05-21 1961-07-07 Heberlein & Co Ag Procédé pour l'amélioration des matières textiles cellulosiques et produits conformes à ceux obtenus
US3477902A (en) * 1965-10-14 1969-11-11 Radiation Res Corp Process for making tires by exposure to an ionized gas and treatment with resorcinol-formaldehyde/latex composition and the product
US3676550A (en) * 1969-05-29 1972-07-11 Colgate Palmolive Co Modification of reduced keratinous substrates with a vinyl monomer
FR2220614A1 (en) * 1973-03-08 1974-10-04 Cottbus Textilkombinat Improving hydrophilic props and dyeability of polymers - esp textiles, by grafting with monomers using irradiation and (hydro)peroxide soln
DE2538092C3 (de) * 1975-08-27 1980-09-25 Textilforschungsanstalt Krefeld E.V., 4150 Krefeld Verfahren zur strahlenchemischen Veredlung von textlien Fasern bzw. den daraus hergestellten Flächengebilden
JPH0647626B2 (ja) * 1986-07-01 1994-06-22 三菱油化株式会社 吸水性複合材料の製造法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496117A2 (de) * 1990-12-27 1992-07-29 Amann & Söhne GmbH & Co. Verfahren zur Herstellung eines mit einer Ausrüstung versehenen Nähgarnes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146462A (en) * 1998-05-08 2000-11-14 Astenjohnson, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same

Also Published As

Publication number Publication date
EP0492649A3 (en) 1993-05-19
EP0496117A3 (en) 1993-05-12
EP0496117A2 (de) 1992-07-29
ATE141348T1 (de) 1996-08-15
TR27697A (tr) 1995-06-19
EP0492649A2 (de) 1992-07-01
CS408191A3 (en) 1992-09-16

Similar Documents

Publication Publication Date Title
EP0492649B1 (de) Verfahren zur Veränderung der Eigenschaften eines textilen Substrates
EP0663968B1 (de) Verfahren zur plasmabehandlung von antiballistisch wirksamen materialien
DE2715486B2 (de) Verfahren zur Herstellung von Aktivkohlefasern
DE1660473A1 (de) Mehrfadenstraenge aus Polyamid und Verfahren zu deren Herstellung
DE2546956A1 (de) Verfahren zur herstellung von geweben mit dauerformbestaendigkeit
DE1610990A1 (de) Verfahren und Vorrichtung zum Aufbringen von Behandlungsfluessigkeiten auf Textilmaterialien
DE1236125C2 (de) Verfahren zur nachbehandlung von faeden, fadenbuendeln, fasern, filmen oder baendern aus acrylnitrilpolymerisaten bzw. -mischpolymerisaten
DE2307744A1 (de) Verfahren zur herstellung von feuerbestaendigen cellulosematerialien
DE1435549A1 (de) Verfahren zur Herstellung von synthetischen linearen Fasern oder Faeden,insbesondereAcrylfasern mit hoher Schrumpfung
DE4100787C2 (de) Verfahren zur Niedertemperatur-Plasmabehandlung oder Corona-Behandlung eines textilen Substrates
DE3336584A1 (de) Verfahren zur herstellung von kohlenstoffasern oder grafitfasern
EP0695622B1 (de) Verfahren und Vorrichtung zur Plasmamodifizierung von flächigen porösen Gegenständen
DE3138893C2 (de)
DE4100785C2 (de) Verfahren zur Ausrüstung eines Nähgarnes
DE1176604B (de) Verfahren zur Verbesserung der Anfaerbbarkeit von Textilfasern
DE1520985A1 (de) Verfahren zur Herstellung von Polyolefinen mit guter Anfaerbbarkeit
DE1495432A1 (de) Verfahren zur Herstellung von farbstoffaufnahmefaehigen Mischpolymerisaten
DE4100786C2 (de) Garn mit einer auf der Oberfläche vorgesehenen Ausrüstung
DE2430502A1 (de) Baumwoll-faserverbindung mit gesteigerter saugfaehigkeit
WO2016131535A1 (de) Verfahren zur verbesserung der haftung zwischen einem verstärkungselement und einem elastomeren matrixmaterial
DE2422500C2 (de) Verfahren zur Veredlung von textilen Flächengebilden
DE2251320B2 (de) Verfahren zur Herstellung schwer entflammbarer Fasermaterialien
WO2000066820A1 (de) Verfahren zur verringerung der fibrillierneigung von aus lösungsmitteln gesponnenen cellulosefasern
EP2742174B1 (de) Verfahren zur herstellung von oberflächenmodifizierten polyolefinfilamentgarnen, die danach erhältlichen polyolefinfilamentgarne sowie deren verwendung
DE2523433A1 (de) Verfahren zur behandlung von ganz oder teilweise aus cellulosefasern bestehenden materialien mit fluessigem ammoniak

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

17P Request for examination filed

Effective date: 19930924

17Q First examination report despatched

Effective date: 19940225

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960814

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960814

REF Corresponds to:

Ref document number: 141348

Country of ref document: AT

Date of ref document: 19960815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960816

REF Corresponds to:

Ref document number: 59108085

Country of ref document: DE

Date of ref document: 19960919

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19961227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961231

Ref country code: LI

Effective date: 19961231

Ref country code: CH

Effective date: 19961231

Ref country code: BE

Effective date: 19961231

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010130

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011227

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020830

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051227