EP0472957B1 - Verfahren zur Verbesserung der Korrosionsbeständigkeit nitrocarburierter Bauteile aus Eisenwerkstoffen - Google Patents

Verfahren zur Verbesserung der Korrosionsbeständigkeit nitrocarburierter Bauteile aus Eisenwerkstoffen Download PDF

Info

Publication number
EP0472957B1
EP0472957B1 EP91113185A EP91113185A EP0472957B1 EP 0472957 B1 EP0472957 B1 EP 0472957B1 EP 91113185 A EP91113185 A EP 91113185A EP 91113185 A EP91113185 A EP 91113185A EP 0472957 B1 EP0472957 B1 EP 0472957B1
Authority
EP
European Patent Office
Prior art keywords
components
corrosion resistance
synthetic resin
und
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91113185A
Other languages
English (en)
French (fr)
Other versions
EP0472957A1 (de
Inventor
Ulrich Dr. Christ
Georg Ing. Wahl
Helmut Dr. Kunst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of EP0472957A1 publication Critical patent/EP0472957A1/de
Application granted granted Critical
Publication of EP0472957B1 publication Critical patent/EP0472957B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the invention relates to a method for improving the corrosion resistance of nitrocarburized components made of ferrous materials, which are subjected to one or more oxidation treatment in an oxidizing salt bath or with steam at 500 to 580 ° C and optionally mechanical processing after coating with a thin layer of one organic material.
  • the corrosion resistance of components made of ferrous materials that have been nitrocarburized and quenched from the nitrocarburizing temperature in water or in oil is significantly improved compared to the untreated condition. It is irrelevant whether the nitrocarburizing treatment was carried out in a salt bath, in gas or in plasma.
  • a further increase in corrosion resistance can be achieved if an oxidation treatment is carried out after nitrocarburizing. This can be done by steam treatment in the temperature range 500 to 580 ° C.
  • the oxidation after nitrocarburizing can also be carried out in an oxidizing salt bath, as described for example in DE-PS 29 34 113.
  • nitrocarburization is carried out in a salt bath, the oxidation process will follow immediately, i.e. Transfer the components directly from the nitrocarburizing to the oxidation salt bath without intermediate cooling. If, on the other hand, nitrocarburization is carried out in the gas or in the plasma, it must generally first be cooled to room temperature and the oxidation subsequently effected by hanging it in the salt bath. Although this procedure also results in a significant increase in corrosion resistance, it is less than in salt bath nitrocarburization with direct oxidation in the salt bath without intermediate cooling.
  • a further increase in corrosion resistance is possible if the surface treatment is followed by mechanical surface treatment (e.g. polishing, lapping, surface grinding) and repeated oxidation.
  • the corrosion resistance values achieved with this method of operation are comparable to or better than those of high-quality galvanic layers.
  • EP-PS 0 077 627 A method is known from EP-PS 0 077 627 for providing nitrocarburized components made of ferrous materials with an oxide layer and then quenching them. The components can then be coated with a thin wax coating. In practice, however, this wax film does not bring any appreciable increase in corrosion resistance.
  • the present invention relates to a method for improving the corrosion resistance of nitrocarburized components made of ferrous materials which, after the nitrocarburization, are subjected to one or more oxidation treatments in an oxidizing salt bath or with steam at 500 to 580 ° C. and optionally subjected to mechanical processing, by coating with a thin layer of an organic material, the pretreated components being immersed in a 1-40% solution of a curable synthetic resin in water and / or organic solvents and then heat-treated at 80 to 200 ° C. for 2 to 30 minutes, the concentration of the solution must be chosen so that a synthetic resin layer of 0.2 to 5 microns thick.
  • a solution is preferably used which contains 5 to 25% by weight of a thermosetting synthetic resin.
  • a thermosetting synthetic resin In addition to epoxy resins, melamine resins, polyester resins and polyurethane resins, alkyd resins, acrylate resins and phenolic resins have proven to be the most suitable for this purpose.
  • the temperature and time of the heat treatment depends on the type of synthetic resin used.
  • the synthetic resins can be used in pure or modified form.
  • the concentration of the solution must be chosen so that a synthetic resin layer with a thickness of 0.2 to 5 microns is formed.
  • the post-treatment of the pretreated components according to the invention surprisingly increases their corrosion resistance considerably. Values are achieved that go far beyond the mere protective effect of such a thin, thin synthetic resin layer.
  • the corrosion resistance in the salt spray test according to DIN 50021 is increased several times. Even after 3000 hours, several samples in the salt spray test show no corrosion attack (see table). The fatigue strength and wear resistance of the component are retained, the color is not changed.
  • the surface treatment also reduces the surface roughness. This is generally desirable, but it can also be undesirable in individual cases (changed sliding properties, oil adhesion).
  • suitable additives for the immersion bath for the aftertreatment the roughness depth can be changed within wide limits. For example, highly disperse silica can be used as an additive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Verbesserung der Korrosionsbeständigkeit nitrocarburierter Bauteile aus Eisenwerkstoffen, die nach der Nitrocarburierung einer oder mehrerer Oxidationsbehandlung in einem oxidierenden Salzbad oder mit Wasserdampf bei 500 bis 580° C und gegebenenfalls einer mechanischen Bearbeitung unterworfen sind, durch Überziehen mit einer dünnen Schicht eines organischen Materials.
  • Die Korrosionsbeständigkeit von Bauteilen aus Eisenwerkstoffen, die nitrocarburiert und von der Nitrocarburiertemperatur in Wasser oder in Öl abgeschreckt wurden, ist gegenüber dem unbehandelten Zustand erheblich verbessert. Dabei ist es unerheblich, ob die Nitrocarburierbehandlung im Salzbad, im Gas oder im Plasma durchgeführt worden ist.
  • Eine weitere Steigerung der Korrosionsbeständigkeit kann erzielt werden, wenn im Anschluß an das Nitrocarburieren eine Oxidationsbehandlung erfolgt. Das kann geschehen durch eine Wasserdampfbehandlung im Temperaturbereich 500 bis 580° C. Die Oxidation im Anschluß an das Nitrocarburieren kann außerdem in einem oxidierenden Salzbad durchgeführt werden, wie dies beispielsweise in der DE-PS 29 34 113 beschrieben ist.
  • Wird die Nitrocarburierung im Salzbad durchgeführt, so wird man den Oxidationsvorgang sofort anschließen, d.h. die Bauteile ohne Zwischenabkühlung direkt vom Nitrocarburier- in das Oxidationssalzbad umhängen. Wird dagegen im Gas oder im Plasma nitrocarburiert, muß im allgemeinen zunächst auf Raumtemperatur abgekühlt und die Oxidation anschließend durch Einhängen in das Salzbad bewirkt werden. Zwar resultiert auch bei dieser Verfahrensweise eine erhebliche Steigerung der Korrosionsbeständigkeit, sie ist aber geringer als bei Salzbadnitrocarburierung mit direkter Oxidation im Salzbad ohne Zwischenkühlung.
  • Eine weitere Steigerung der Korrosionsbeständigkeit ist möglich, wenn im Anschluß an die Oxidationsbehandlung eine mechanische Oberflächenbearbeitung (z.B. Polieren, Läppen, Gleitschleifen) und eine nochmalige Oxidation erfolgt. Die mit dieser Arbeitsweise erzielten Werte der Korrosionsbeständigkeit (z.B. im Salzsprühtest) sind vergleichbar mit denen qualitativ erstklassiger galvanischer Schichten oder besser als diese.
  • Aus der EP-PS 0 077 627 ist ein Verfahren bekannt, nitrocarburierte Bauteile aus Eisenwerkstoffen mit einer Oxidschicht zu versehen und sie dann abzuschrecken. Anschließend können die Bauteile mit einem dünnen Wachsüberzug ausgestattet werden. Dieser Wachsfilm bringt in der Praxis allerdings keinen nennenswerten Zuwachs an Korrosionsbeständigkeit.
  • Aus der EP-A-0 053 521 sind Maschinenelemente bekannt, die auf einer nicht nachbehandelten Carbonitridschicht eine Schutzschicht aus Kunststoffen oder Harzen tragen, die in der porösen Carbonitridschicht verankert ist. Diese Schutzschicht dient zur Verbesserung der Korrosionsbeständigkeit und zur Verringerung der Reibung. Über die Dicke dieser Schutzschicht und über deren thermischen Behandlung werden keine Angaben gemacht.
  • Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Verbesserung der Korrosionsbeständigkeit nitrocarburierter Bauteile aus Eisenwerkstoffen, die nach der Nitrocarburierung einer oder mehrerer Oxidationsbehandlung in einem oxidierenden Salzbad oder mit Wasserdampf bei 500 bis 580° C und gegebenenfalls einer mechanischen Bearbeitung unterworfen sind, durch Überziehen mit einer dünnen Schicht eines organischen Materials, wobei die vorbehandelten Bauteile in eine 1-40%-ige Lösung eines aushärtbaren Kunstharzes in Wasser und/oder organischen Lösungsmitteln eingetaucht und anschließend 2 bis 30 Minuten bei 80 bis 200° C wärmebehandelt werden, wobei die Konzentration der Lösung so gewählt werden muß, daß eine Kunstharzschicht von 0,2 bis 5 µm Dicke entsteht.
  • Vorzugsweise verwendet man eine Lösung, die 5 bis 25 Gew.% eines wärmeaushärtbaren Kunstharzes enthält. Neben Epoxidharzen, Melaminharzen, Polyesterharzen und Polyurethanharzen haben sich für diesen Anwendungszweck Alkydharze, Acrylatharze und Phenolharze als am geeignetsten erwiesen. Die Temperatur und die Zeit der Wärmebehandlung ist von der Art des verwendeten Kunstharzes abhängig. Die Kunstharze können dabei in reiner oder modifizierter Form angewendet werden. Die Konzentration der Lösung muß so gewählt werden, daß eine Kunstharzschicht mit einer Dicke von 0,2 bis 5 µm entsteht.
  • Durch die erfindungsgemäße Nachbehandlung der vorbehandelten Bauteile wird deren Korrosionsbeständigkeit überraschenderweise ganz erheblich gesteigert. Es werden Werte erreicht, die weit über die reine Schutzwirkung einer so dünnen dünnen Kunstharzschicht hinausgehen. So wird die Korrosionsbeständigkeit im Salzsprühtest nach DIN 50021 um das mehrfache gesteigert. Selbst nach 3000 Stunden zeigen mehrere Proben im Salzsprühtest keinen Korrosionsangriff (siehe Tabelle). Die Dauerfestigkeit und der Verschleißwiderstand des Bauteils bleiben dabei erhalten, die Farbe wird nicht verändert. Durch die Nachbehandlung wird auch die Oberflächenrauhigkeit vermindert. Das ist im allgemeinen erwünscht, kann aber in Einzelfällen auch unerwünscht sein (veränderte Gleiteigenschaften, Ölhaftung). Durch Verwendung geeigneter Zusätze zum Tauchbad für die Nachbehandlung kann die Rauhtiefe innerhalb weiter Grenzen verändert werden. Als Zusatzstoff kommt z.B. hochdisperse Kieselsäure infrage.
  • Folgende Beispiele sollen das erfindungsgemäße Verfahren näher erläutern:
    Dabei wurden Proben aus dem Stahl Ck35 mit den Abmessungen 10 mm Durchmesser und einer Länge von 150 mm verwendet. Aus Gründen der statistischen Sicherung wurden pro Test 10 Proben verwendet, die völlig gleichartig behandelt wurden, und zwar jeweils gleichzeitig in einer Charge. Als Korrosionsprüfung diente der Salzsprühtest nach DIN50021, Ausfallkriterium war der erste sichtbare Korrosionspunkt. In der nachstehenden Tabelle ist jeweils der Mittelwert der zehn Proben, die Standardabweichung und der niedrigste und höchste Wert angegeben. Die Prüfung wurde generell nach 3000 Stunden abgebrochen. Proben, die sich nach diesem Zeitpunkt noch korrosionsfrei im Test befanden, wurden bei der Berechnung von Mittelwert und Standardabweichung mit 3000 Stunden angenommen.
    • 1. Die Bauteile wurden ohne Nitrocarburierbehandlung und ohne organischen Überzug dem Salzsprühtest unterzogen.
    • 2. Die nicht vorbehandelten Bauteile wurden 1 Minute in die wässrige Lösung eines Alkydharzes getaucht, 10 Minuten bei 80° getrocknet und 10 Minuten bei 160° C behandelt. Die Alkydharzlösung bestand aus 25 Gewichtsteilen eines epoxidharzmodifizierten Alkydharzes in 280 Gewichtsteilen eines Wasser-Methoxipropoxipropanolgemisches (Verhältnis 20:1).
    • 3. Die nicht vorbehandelten Bauteile wurden 2 Minuten in eine Acrylatharzlösung getaucht, 30 Minuten bei 80° C getrocknet und 10 Minuten bei 100° C behandelt. Die Acrylatharzlösung bestand aus 10 Gewichtsteilen eines Acrylatharzes mit 1,4 % OH-Gruppen in
      200 Gewichtsteilen Xylol-Butylacetat (Verhältnis 8:2).
    • 4. Die nicht vorbehandelten Bauteile wurden 5 Minuten in eine Phenolharzlösung aus 10 Gewichtsteilen eines Phenolharzes und 200 Gewichtsteilen Toluol getaucht, 10 Minuten bei 80° C getrocknet und 30 Minuten bei 180° C behandelt.
    • 5. Die Bauteile wurden 90 Minuten bei 580° C in einem Salzbad (37 % Cyanat, 1,3 % Cyanid, Rest Carbonat und Kationen) nitrocarburiert, nach dem Abkühlen 10 Minuten bei 370° C in einem Salzbad aus Alkalihydroxid mit 10 % Natriumnitrat oxidiert und in Wasser von 20° C abgeschreckt.
    • 6. Die nach Beispiel 5 nitrocarburierten Bauteile wurden nach Beispiel 2 in eine Alkydharzlösung getaucht und nachbehandelt.
    • 7. Die nach Beispiel 5 nitrocarburierten Bauteile wurden nach Beispiel 3 in eine Acrylatharzlösung getaucht und nachbehandelt.
    • 8. Die nach Beispiel 5 nitrocarburierten Bauteile wurden nach Beispiel 4 in eine Phenolharzlösung getaucht und nachbehandelt.
    • 9. Die Bauteile wurden wie in Beispiel 5 nitrocarburiert und oxidiert, anschließend durch Gleitschleifen mechanisch bearbeitet und nochmals 10 Minuten im Salzbad oxidiert und in Wasser von 20° C abgeschreckt.
    • 10.Die nach Beispiel 9 vorbehandelten Bauteile wurden nach Beispiel 2 in eine Alkydharzlösung getaucht und nachbehandelt.
    • 11.Die nach Beispiel 9 vorbehandelten Bauteile wurden in Beispiel 3 in eine Acrylatharzlösung getaucht und nachbehandlet.
    • 12.Die nach Beispiel 9 vorbehandelten Bauteile wurden nach Beispiel 4 in eine Phenolharzlösung getaucht und nachbehandelt.
    • 13.Die Bauteile wurden bei 580° in Gas (120 Minuten in einem Gasgemisch aus je 50 Vol.% Ammoniak und Exogas und 60 Minuten in einem Gasgemisch aus je 50 Vol.% Ammoniak und Endogas) nitrocarburiert. Das Abkühlen erfolgte in Reinststickstoff. Danach wurde 60 Minuten bei 550° C in Wasserdampf oxidiert und langsam abgekühlt.
    • 14.Die nach Beispiel 13 nitrocarburierten und oxidierten Bauteile wurden nach Beispiel 2 in eine Alkydharzlösung getaucht und nachbehandelt.
    • 15.Die nach Beispiel 13 vorbehandelten Bauteile wurden nach Beispiel 3 in eine Acrylatharzlösung getaucht und nachbehandelt.
    • 16.Die nach Beipiel 13 vorbehandelten Bauteile wurden nach Beispiel 4 in eine Phenolharzlösung getaucht und nachbehandelt.
    Tabelle
    Salzsprühdauer in Stunden
    Beispiel Nr. Mittelwert Standardabweichung niedrigster höchster Proben noch im Test (>3000h)
    Wert Wert
    1 4 1 3 6
    2 20 3 16 24
    3 25 5 20 32
    4 17 5 12 24
    5 331 234 144 744
    6 >2002 758 1008 3000 3
    7 >1654 717 912 3000 1
    8 >1912 742 960 3000 2
    9 379 176 288 864 -
    10 >2900 213 2496 3000 8
    11 >2189 368 1992 3000 1
    12 >2652 378 2160 3000 5
    13 185 20 168 216 -
    14 1386 595 888 2616 -
    15 >2033 601 936 3000 3
    16 1660 675 1008 2784
  • Das Zeichen ">" bedeutet, daß der wahre Mittelwert höher liegt.

Claims (3)

  1. Verfahren zur Verbesserung der Korrosionsbeständigkeit nitrocarburierter Bauteile aus Eisenwerkstoffen, die nach der Nitrocarburierung einer oder mehrerer Oxidationsbehandlung in einem oxidierenden Salzbad oder mit Wasserdampf bei 500 bis 580° C und gegebenenfalls einer mechanischen Bearbeitung unterworfen sind, durch Überziehen mit einer dünnen Schicht eines organischen Materials, wobei
    die vorbehandelten Bauteile in eine 1 bis 40-%ige Lösung eines aushärtbaren Kunstharzes in Wasser und/oder organischen Lösungsmitteln eingetaucht und anschließend 2 bis 30 Minuten bei 80 bis 200° C wärmebehandelt werden, wobei die Konzentration der Lösung so gewählt werden muß, daß eine Kunstharzschicht von 0,2 bis 5 µm Dicke entsteht.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die Lösung 5 bis 25 Gew.% eines wärmeaushärtbaren Kunstharzes enthält.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß als Kunstharz Alkydharze, Acrylharze und Phenolharze verwendet werden.
EP91113185A 1990-08-27 1991-08-06 Verfahren zur Verbesserung der Korrosionsbeständigkeit nitrocarburierter Bauteile aus Eisenwerkstoffen Expired - Lifetime EP0472957B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4027011A DE4027011A1 (de) 1990-08-27 1990-08-27 Verfahren zur verbesserung der korrosionsbestaendigkeit nitrocarburierter bauteile aus eisenwerkstoffen
DE4027011 1990-08-27

Publications (2)

Publication Number Publication Date
EP0472957A1 EP0472957A1 (de) 1992-03-04
EP0472957B1 true EP0472957B1 (de) 1995-10-11

Family

ID=6412980

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91113185A Expired - Lifetime EP0472957B1 (de) 1990-08-27 1991-08-06 Verfahren zur Verbesserung der Korrosionsbeständigkeit nitrocarburierter Bauteile aus Eisenwerkstoffen

Country Status (9)

Country Link
US (1) US5288340A (de)
EP (1) EP0472957B1 (de)
JP (1) JPH04244261A (de)
AT (1) ATE129024T1 (de)
BR (1) BR9103660A (de)
CA (1) CA2049829C (de)
DE (2) DE4027011A1 (de)
ES (1) ES2077741T3 (de)
HK (1) HK31297A (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6264317B1 (en) 1999-11-19 2001-07-24 Lexmark International, Inc. Corrosion resistant printhead body for ink jet pen
DE10126937C2 (de) * 2001-06-01 2003-11-27 Federal Mogul Burscheid Gmbh Gleitringdichtung mit einer Oxid-Nitrid-Verbundschicht
DE102006054280B4 (de) * 2006-11-17 2011-01-05 Durferrit Gmbh Verfahren und Vorrichtung zur Erhöhung der Korrosionsbeständigkeit nitrocarburierter oder nitrocarburierter und oxidierter Oberflächen von aus Stahl bestehenden Bauteilen
US7622197B2 (en) * 2006-11-20 2009-11-24 Ferroxy-Aled, Llc Seasoned ferrous cookware
DE102007060085B4 (de) * 2007-12-13 2012-03-15 Durferrit Gmbh Verfahren zur Erzeugung von korrosionsbeständigen Oberflächen nitrierter oder nitrocarburierter Bauteile aus Stahl sowie nitrocarburierte oder nitrierte Bauteile aus Stahl mit oxidierten Oberflächen
FR2925524B1 (fr) * 2007-12-21 2010-01-22 Durferrit Gmbh Procede et dispositif pour augmenter la resistance a la corrosion de surfaces nitrocarburees et oxydees de pieces en acier
DE102013226091A1 (de) 2013-12-16 2015-06-18 Robert Bosch Gmbh Zylindertrommel einer hydrostatischen Axialkolbenmaschine mit einer Verschleißschutzschicht
FR3030578B1 (fr) * 2014-12-23 2017-02-10 Hydromecanique & Frottement Procede de traitement superficiel d'une piece en acier par nitruration ou nitrocarburation, oxydation puis impregnation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876453A (en) * 1971-12-25 1975-04-08 Riken Light Metal Ind Co Method for painting aluminium or aluminium-based alloy material
DE2934113C2 (de) * 1979-08-23 1985-05-09 Degussa Ag, 6000 Frankfurt Verfahren zur Erhöhung der Korrosionsbeständigkeit nitrierter Bauteile aus Eisenwerkstoffen
GB2090771B (en) * 1980-12-03 1985-06-05 Lucas Industries Ltd Improvements in metal components
DE3123763C1 (de) * 1981-06-16 1982-12-09 Th. Goldschmidt Ag, 4300 Essen Verfahren zum Aufbringen einer Grundierschicht auf Metalloberflächen
US4496401A (en) * 1981-10-15 1985-01-29 Lucas Industries Corrosion resistant steel components and method of manufacture thereof
GB8310102D0 (en) * 1983-04-14 1983-05-18 Lucas Ind Plc Corrosion resistant steel components
US4756774A (en) * 1984-09-04 1988-07-12 Fox Steel Treating Co. Shallow case hardening and corrosion inhibition process
US4748055A (en) * 1986-01-13 1988-05-31 Ashland Oil, Inc. Method for forming a self-healing corrosion preventative film
US5037491A (en) * 1986-02-28 1991-08-06 Fox Patrick L Shallow case hardening and corrosion inhibition process
US4950365A (en) * 1988-12-22 1990-08-21 Vac-Tec Systems, Inc. Corrosion free hard coated metal substrates
US5104742A (en) * 1989-05-10 1992-04-14 Ashland Oil, Inc. Water based coating for roughened metal surfaces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Technology of Paints, Varnishes and Lacquers; Seiten 46, 71, 124, 125 *

Also Published As

Publication number Publication date
DE59106662D1 (de) 1995-11-16
CA2049829A1 (en) 1992-02-28
HK31297A (en) 1997-03-21
EP0472957A1 (de) 1992-03-04
ES2077741T3 (es) 1995-12-01
US5288340A (en) 1994-02-22
BR9103660A (pt) 1992-05-19
CA2049829C (en) 2001-01-16
JPH04244261A (ja) 1992-09-01
ATE129024T1 (de) 1995-10-15
DE4027011C2 (de) 1992-10-29
DE4027011A1 (de) 1992-03-05

Similar Documents

Publication Publication Date Title
DE60110470T2 (de) Korrosionsschutzüberzüge für aluminium und aluminiumlegierungen
DE2325138C3 (de) Verfahren zur Bildung von Schutzüberzügen auf Metallsubstraten
DE3004927A1 (de) Verfahren zur phosphatierung von metallen
EP0472957B1 (de) Verfahren zur Verbesserung der Korrosionsbeständigkeit nitrocarburierter Bauteile aus Eisenwerkstoffen
DE19706482B4 (de) Verfahren zur Oberflächenbehandlung eines Körpers aus Metall und nach dem Verfahren hergestellter Verbundstoff
DE3234558A1 (de) Waessrig-saure zinkphosphat-ueberzugsloesungen, solche loesungen verwendende tieftemperatur-verfahren zur bildung chemischer umwandlungsueberzuege auf eisen- und/oder zinkoberflaechen und darin verwendbare ueberzugskonzentrate und titanhaltige metallaktivierende loesungen
DE2232067A1 (de) Phosphatierungsloesungen
DE1533431A1 (de) Plattierungsbad zum UEberziehen von Gegenstaenden aus Eisen und Stahl
DE891171C (de) Verfahren zur Aufbringung von UEberzuegen auf Chrom und Legierungen des Chroms
DE809007C (de) Verfahren zur Behandlung von Oberflaechen von Kupfer und Kupferlegierungen
DE2443885C3 (de) Verfahren zur Oberflächenbehandlung von Eisenlegierungen durch galvanische Abscheidung einer Kupfer-Zinn-Legierung und anschließende thermische Diffusionsbehandlung
DE3429279C2 (de)
DE1771924A1 (de) Verfahren zum Aufbringen eines Phosphatueberzuges auf Stahl
DD151330A1 (de) Verfahren zur herstellung von diffusionsschichten in metallen
DE1034450B (de) Verfahren zum Vorbereiten von Metalloberflaechen fuer das Aufbringen von Emails
DE3222140C2 (de) Anwendung des Tauch-Verzinkungsverfahrens auf die Herstellung korrosionsgeschützter Aluminiumbauteile und korrosionsgeschütztes Aluminiumbauteil
DE2301639A1 (de) Loesung fuer die stromlose abscheidung von kupfer-zinn-schichten auf metalloberflaechen
EP0043506A2 (de) Verfahren zur Herstellung von Vanadincarbidschichten auf Eisen
DE2263038C3 (de) Verfahren zum Beschichten von Aluminiumoder Alminiumlegierungsmaterial
EP0410033A1 (de) Verfahren zur Herstellung von Werkstücken aus ferritischem Stahl
DE2134412B2 (de) Chromatbehandeltes Metallblech und Verfahren zu dessen Herstellung
DE894945C (de) Verfahren und Loesung zur Aufbringung von UEberzuegen auf Metallen
DE706347C (de) Verfahren zur Behandlung ungefaerbter UEberzuege aus sogenanntem Weissmessing
DE2102190C3 (de) Verfahren zur Herstellung von einer Reibungsbeanspruchung ausgesetzten Metallteilen
DE2020792C3 (de) Verfahren zur Herstellung eines nickelhaltigen Überzugs auf einem Stahlblech

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910806

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19920813

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 129024

Country of ref document: AT

Date of ref document: 19951015

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59106662

Country of ref document: DE

Date of ref document: 19951116

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2077741

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960111

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960723

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980301

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DEGUSSA-HUELS AKTIENGESELLSCHAFT TRANSFER- HOUGHTO

Ref country code: CH

Ref legal event code: PFA

Free format text: DEGUSSA AKTIENGESELLSCHAFT TRANSFER- DEGUSSA-HUELS AKTIENGESELLSCHAFT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010713

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010716

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010802

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20010803

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020807

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020806

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100901

Year of fee payment: 20

Ref country code: AT

Payment date: 20100812

Year of fee payment: 20

Ref country code: DE

Payment date: 20100823

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59106662

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59106662

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110807