EP0384975B1 - Galvanisches Primärelement - Google Patents

Galvanisches Primärelement Download PDF

Info

Publication number
EP0384975B1
EP0384975B1 EP89123268A EP89123268A EP0384975B1 EP 0384975 B1 EP0384975 B1 EP 0384975B1 EP 89123268 A EP89123268 A EP 89123268A EP 89123268 A EP89123268 A EP 89123268A EP 0384975 B1 EP0384975 B1 EP 0384975B1
Authority
EP
European Patent Office
Prior art keywords
zinc
anode
alloy
metals
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89123268A
Other languages
English (en)
French (fr)
Other versions
EP0384975A1 (de
Inventor
Horst-Udo Dipl.-Ing. Jose (Fh)
Gerd Dipl.-Chem. Jung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VARTA Batterie AG
Original Assignee
VARTA Batterie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VARTA Batterie AG filed Critical VARTA Batterie AG
Publication of EP0384975A1 publication Critical patent/EP0384975A1/de
Application granted granted Critical
Publication of EP0384975B1 publication Critical patent/EP0384975B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a galvanic primary element of an acid type with a zinc anode, which contains metal additives which suppress zinc corrosion and improve the mechanical form strength, a depolarizing cathode and a gel electrolyte.
  • the application of the invention extends essentially to acidic zinc / brown stone cells (Leclanché) and zinc / oxygen elements.
  • the zinc electrode is usually designed as a beaker or hollow cylinder, which absorbs all other active cell components (manganese dioxide / carbon black mixture pressed around a carbon rod as a cathode, electrolyte paste with a separator as a carrier), less often than flat sheet metal in a layered cell structure.
  • the anode sheet is alloyed with different amounts of lead and cadmium depending on its production method, whereby the lead content can be up to 0.6%.
  • the alloyed lead increases the ductility during the rolling and extrusion process and also shows a slightly inhibiting effect on zinc corrosion.
  • the addition of cadmium improves the mechanical strength of the zinc molded parts during the battery manufacturing process.
  • the zinc metal in the battery dissolves when the current is drawn with increasing service life.
  • DE-B 1086309 describes a solution electrode made of fine zinc with the addition of indium metal
  • DE-A 3229703 describes the use of indium and gallium as the metals alloyed with the zinc.
  • JP-A 60-170751 mentions the addition of Pb and Li to zinc
  • JP-A 60-32249 Touhou Aen. K.K. recommends a zinc alloy with at least 0.01% Ag and other metals.
  • DE-A 3605718 discloses a primary element of the type initially formulated, which contains a zinc anode made of fine zinc with an alloy addition of up to 0.6% Pb.
  • JP-A 58-3204 provides a total of 14 elements, including lead, as alloy additives, without, however, specifying certain elements or combinations thereof with others as preferred, let alone useful concentrations.
  • the object of the invention is to perfect the above-mentioned primary element with the aid of non-toxic additives, in particular to the zinc electrode, in such a way that it buys a conventional acidic primary element, its good electrical function and electrode quality with toxic agents must be equal.
  • the inhibiting effect of mercury can also be achieved if the metals indium and bismuth are added to the zinc individually or in combination, or their salts are added to the electrolyte solution, and if, on the other hand, the cadmium to which the Zinc electrode owes its mechanical stability, still exchanges for magnesium and / or lithium.
  • the doping metals can therefore be both deposits on the zinc surface and, preferably, alloy components.
  • the general embodiment of the negative electrode of the primary element according to the invention thus consists of fine zinc with additions of at least one of the metals In and Bi and at least one metal Mg and Li.
  • the zinc sheet additionally contains Pb, the amount of which is within the range specified by Huber for some cup alloys.
  • the anode zinc should contain 0.01 to 0.6% Pb, preferably 0.02 to 0.1% Pb.
  • the separation between anode and cathode was carried out using a conventional paper separator coated with gel.
  • Figure 1 shows the resistance of cylindrical anode parts made of zinc alloys according to the invention with mechanical deformation.
  • FIGS 2, 3 and 4 show capacitance values of primary elements with zinc anodes according to the invention under different discharge conditions.
  • the designations A to D and F, G stand for the zinc alloys defined above.
  • the numbers 0 to 80 plotted on the ordinate of the diagram represent the degree of deformation D in%.
  • the designations A to G refer to test cells that only differ in the alloy compositions of their zinc anodes.
  • the removed capacities K in Ah are shown depending on the discharge process, namely in FIG. 2 with a continuous 5.1 ohm discharge up to a final voltage of 1.0 volt, in Figure 3 with a discharge according to LIFT (Light Industrial Flashlight test, ie 4 minutes per hour, 8 hours per day) over 2.2 ohms up to a final voltage of 1.0 volt and in Figure 4 with an intermittent discharge of 4 h per day over 20 ohms up to a final voltage of 0.9 volts.
  • LIFT Light Industrial Flashlight test
  • the electrical tests show that the low-pollutant primary elements A to E according to the invention are at least equal in terms of their capacities to the comparison cells F and G with conventional zinc anodes. It is therefore possible to avoid not only mercury, but also the highly toxic cadmium as an alloy metal in addition to known Hg-free zinc alloys, since according to the invention the anti-corrosion role of the mercury of indium and / or bismuth and the element-specific properties of cadmium and lead, which are more responsible for the mechanical behavior of the zinc during the processing process, can be represented by magnesium and / or lithium. A remaining small amount of lead in the fine zinc apart from the substitute metals mentioned can be advantageous.
  • the invention thus provides an "environmentally friendly" anode zinc which is comparable to the previous quality standard with regard to electrical power and storage stability, but is full of toxins due to the lack of toxic contents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Primary Cells (AREA)

Description

  • Die Erfindung betrifft ein galvanisches Primärelement sauren Typs mit einer Zinkanode, die Metallzusätze enthält, welche die Zinkkorrosion unterdrücken und die mechanische Formfestigkeit verbessern, einer depolarisierenden Kathode und einem Gelelektrolyten.
  • Die Anwendung der Erfindung erstreckt sich im wesentlichen auf saure Zink/Braunsteinzellen (Leclanché) und Zink/Sauerstoffelemente.
  • In solchen Zellen ist die Zinkelektrode gewöhnlich als Becher oder Hohlzylinder ausgebildet, welcher alle übrigen aktiven Zellbestandteile (um einen Kohlestabableiter gepreßtes Braunstein/ Rußgemisch als Kathode, Elektrolytpaste mit Separator als Träger) in sich aufnimmt, seltener als flaches Blech in einer geschichteten Zellenstruktur.
  • Nach R. Huber, "Trockenbatterien", Seite 29 (VARTA Fachbuchreihe, Band 2, 1972) ist das Anodenblech in Abhängigkeit von seiner Herstellungsweise mit unterschiedlichen Mengen an Blei und Cadmium legiert, wobei der Bleigehalt bis zu 0,6% betragen kann. Das zulegierte Blei erhöht die Duktilität beim Walz und Fließpreßvorgang und zeigt zusätzlich eine leicht inhibierende Wirkung auf die Zinkkorrosion. Der Zusatz von Cadmium verbessert die mechanische Festigkeit der Zinkformteile während des Batterieherstellprozesses.
  • Als typische Lösungselektrode wird das Zinkmetall in der Batterie bei der Stromentnahme mit zunehmender Gebrauchsdauer aufgelöst.
  • Neben dieser "nutzbringenden" Auflösung findet aber, und zwar bereits bei längerer Lagerdauer und verstärkt durch erhöhte Temperatur, eine geringfügige Selbstauflösung des Zinks statt. Diese hat ihre Ursachen darin, daß zwar der Austausch des Säurewasserstoffs gegen Zink kinetisch gehemmt ist, die Wasserstoffabscheidung jedoch bei einem zu niedrigen Potential erfolgt, als daß der Auflösung Einhalt geboten werden kann. Die allmähliche Ansammlung von Wasserstoff im Zellinnern führt zu einem Druckanstieg, der im ungüstigen Fall Deformationen oder sogar Elektrolytaustritt zur Folge hat.
  • Werden Wasserstoffentwicklung und Auflösen der Zinkanode im unbelasteten Zustand nicht unterdrückt, tritt darüber hinaus eine unerwünschte Kapazitätsabschwächung ein.
  • Das bisher bewährte Mittel, um die Zinkkorrosion und Wasserstoffentwicklung durch Anheben der Wasserstoffabscheidungsspannung zu unterdrücken, ist der Zusatz von Quecksilber zum Zink. Damit aber erhöht sich die Zahl der im Zink enthaltenen Elemente, die als toxisch und umweltbelastend einzustufen sind, zusammen mit dem schon genannten Blei und Cadmium auf drei.
  • Es hat daher nicht an Vorschlägen gefehlt, die auf eine Substitution wenigstens der besonders giftigen Metalle Hg und Cd abzielten. So beschreibt die DE-B 1086309 eine Lösungselektrode aus Feinzink mit Zusatz von Indiummetall oder die DE-A 3229703 die Verwendung von Indium und Gallium als dem Zink zulegierte Metalle.
  • In der JP-A 60-170751 (Toshiba Denchi K.K.) wird der Zusatz von Pb und Li zum Zink genannt, während die JP-A 60-32249 Touhou Aen. K.K.) eine Zinklegierung mit mindestens 0,01% Ag und weiteren Metallen empfiehlt.
  • Die DE-A 3605718 offenbart ein Primärelement der eingangs formulierten Gattung, welches eine Zinkanode aus Feinzink mit einem Legierungszusatz von bis zu 0,6% Pb enthält.
  • Die JP-A 58-3204 schließlich stellt insgesamt 14 Elemente, darunter Blei, als Legierungszusätze zur Wahl, ohne daß jedoch bestimmte Elemente oder Kombinationen derselben mit anderen als bevorzugt genennt, geschweige sinnvolle Konzentrationen angegeben werden.
  • Angesichts einer hier nur unvollständig erfaßten Vielzahl bekannter Legierungszusammensetzungen von Zinkelektroden liegt der Erfindung die Aufgabe zugrunde, das oben genannte Primärelement unter Zuhilfenahme nichttoxischer Zusätze insbesondere zur Zinkelektrode so zu vervollkommen, daß es einem herkömmlichen sauren Primärelement, dessen gute elektrische Funktion und Elektrodenqualität mit toxischen Mitteln erkauft werden muß, ebenbürtig ist.
  • Die Aufgabe wird erfindungsgemäß mit einem Primärelement gelöst, wie es im Patentanspruch 1 angegeben ist.
  • Danach hat sich gezeigt, daß einesteils der inhibierende Effekt des Quecksilbers auch erzielt werden kann, wenn man an dessen Stelle einzeln oder in Kombination die Metalle Indium und Wismut dem Zink zugefügt oder deren Salze der Elektrolytlösung zugibt, und wenn man anderenteils das Cadmium, dem die Zinkelektrode ihre mechanische Stabilität verdankt, noch gegen Magnesium und/oder Lithium austauscht. Bei den Dotierungsmetallen kann es sich daher sowohl um Abscheidungen auf der Zinkoberfläche als auch, und zwar bevorzugt, um Legierungsbestandteile handeln. Die negative Elektrode des erfindungsgemäßen Primärelements besteht also in ihrer allgemeinen Ausführung aus Feinzink mit Zusätzen von mindestens einem der Metalle In und Bi sowie mindestens einem Metalle Mg und Li.
  • Als vorteilhaft hat sich allerdings erwiesen, wenn das Zinkblech noch zusätzlich Pb enthält, dessen Menge im Rahmen der von Huber angegebenen Bereichszahlen für einige Becherlegierungen liegt. Erfindungsgemäß soll das Anodenzink 0,01 bis 0,6% Pb, vorzugsweise 0,02 bis 0,1% Pb enthalten.
  • Unabhängig von der fakultativen Pb-Zugabe sollen die im Zink enthaltenen übrigen Metallgehalte erfindungsgemäß jeweils in den folgenden Grenzen liegen:
       0,003 bis 0,03% In;
       0,001 bis 0,01% Bi;
       0,0001 bis 0,002 Mg;
       0,001 bis 0,01% Li
    Zum Nachweis der Wirksamkeit der erfindungsgemäßen Legierungszusätze wurden Versuchszellen (A,B,C,D,E) hergestellt und mit herkömmlichen bzw. fertigungsüblichen Vergleichszellen (F,G) verschiedenen Tests unterworfen. Bei den Versuchszellen lagen entsprechend den erfindungsgemäß gegebenen Kombinationsmöglichkeiten folgende Anodenlegierungen vor:
    • A) Zn + 0,01% In + 0,0005% Mg
    • B) Zn + 0,005% In + 0,001% Bi + 0,0003% Mg
    • C) Zn + 0,025% Pb + 0,01% In + 0,0003% Mg
    • D) Zn + 0,1% Pb + 0,01% In + 0,005% Li
    • E) Zn + 0,005% Bi + 0,1% Pb + 0,003% Li
    Die Vergleichzellen besaßen ein Anodenzink aus
    • F) Zn + 0,25% Pb + 0,06% Cd
    • G) Zn + 0,6% Pb
    Die Kathodenmaterialien, bestehend aus Elektrolytbraunstein, Acetylenruß, Zinkoxid und Zinkchloridlösung, waren in allen Zellen die gleichen.
  • Die Separation zwischen Anode und Kathode erfolgte durch einen herkömmlichen, mit Gel beschichteten Papierseparator.
  • Das günstige Ergebnis der Versuche kommt in vier Figurendarstellungen zu Ausdruck.
  • Figur 1 zeigt die Widerstandsfähigkeit zylindrischer Anodenteile aus erfindungsgemäßen Zinklegierungen bei mechanischer Deformation.
  • Figuren 2, 3 und 4 zeigen Kapazitätswerte von Primärelementen mit erfindungsgemäßen Zinkanoden unter verschiedenen Entladebedingungen.
  • Im einzelnen veranschaulicht das Balkendiagramm gemäß Figur 1 die Durchmesserverringerung, die ein Anoden-Ringzylinder Für ein Primärelement mit der IEC-Bezeichnung R 20 (h = 61,5 mm, ⌀ = 34,2 mm) unter der mechanischen Energieeinwirkung 0,5 Joule (weiße Balken) bzw. 1,0 Joule (gestrichelte Balken) erleidet. Die Bezeichnungen A bis D und F, G stehen für die weiter vorn definierten Zinklegierungen. Die auf der Ordinate des Diagramms aufgetragenen Zahlen 0 bis 80 geben den Deformationsgrad D in % wieder.
  • Aus den Balkenlängen ist ersichtlich, daß die erfindungsgemäßen schadstoffarmen Legierungen A bis D in ihrer mechanischen Festigkeit den konventionellen Legierungen F und G nur ganz unerheblich nachstehen.
  • In den Balkendiagrammen 2 bis 4 beziehen sich die Bezeichnungen A bis G auf Versuchszellen, die lediglich durch die angegebenen Legierungszusammensetzungen ihrer Zinkanoden unterschieden sind.
  • Dargestellt sind die entnommenen Kapazitäten K in Ah in Abhängigkeit vom Entladeverfahren, nämlich
    in Figur 2 bei kontinuierlicher 5,1 Ohm-Entladung bis zu einer Endspannung von 1,0 Volt,
    in Figur 3 bei einer Entladung nach LIFT (Light Industrial Flashlight-Test, d.h. 4 Minuten pro Stunde, 8 Stunden pro Tag) über 2,2 Ohm bis zu einer Endspannung von 1,0 Volt und
    in Figur 4 bei einer intermittierenden Entladung von 4 h pro Tag über 20 Ohm bis zu einer Endspannung von 0,9 Volt.
  • Dabei gelten alle weißen Balken für frisch hergestellte Zellen und alle schraffierten Balken für Zellen, die vor dem Entladeversuch 3 Monate bei 45°C gelagert waren.
  • Im ganzen zeigen die elektrischen Tests, daß die erfindungsgemäßen schadstoffarmen Primärelemente A bis E den Vergleichszellen F und G mit fertigungsüblichen Zinkanoden hinsichtlich ihrer Kapazitäten zumindest ebenbürtig sind. Es ist demzufolge möglich, nicht nur Quecksilber, sondern über bereits bekannte Hg-freie Zinklegierungen hinausgehend auch das stark toxische Cadmium als Legierungsmetall zu vermeiden, da erfindungsgemäß die korrosionsschützende Rolle des Quecksilbers von Indium und/oder Wismut und die elementspezifischen Eigenschaften von Cadmium sowie Blei, die mehr für das mechanische Verhalten des Zinks beim Verarbeitungsprozeß verantwortlich sind, von Magnesium und/oder Lithium vertreten werden können. Ein verbleibender geringer Rest an Blei im Feinzink außer den genannten Ersatzmetallen kann dabei vorteilhaft sein.
  • Die hier wiedergegebenen Versuchsbefunde konnten im Prinzip mit weiteren Zellen, die anstelle des ZnCl₂-Elektrolyten einen NH₄Cl-Elektrolyten enthielten und deren Kathode anstelle von Elektrolytbraunstein aus Naturbraunstein bestand, bestätigt werden, so daß das im Hinblick auf die Zinklegierungen Gesagte allgemein für alle sauren Primärelemente, ob Zinkchlorid- oder Salmiakzelle, gilt.
  • Durch die Erfindung wird somit ein dem bisherigen Qualitätsstandard hinsichtlich elektrischer Leistung und Lagerfähigkeit vergleichbares, aber durch Fehlen giftiger Inhaltsvolle "umweltfreundliches" Anodenzink zur Verfügung gestellt.

Claims (3)

  1. Galvanisches Primärelement sauren Typs mit einer Zinkanode, die Metallzusätze enthält, welche die Zinkkorrosion unterdrücken und die mechanische Formfestigkeit verbessern, einer depolarisierenden Kathode und einem Gelelektrolyten, dadurch gekennzeichnet, daß die Anode aus Feinzink besteht, dem anstelle von Quecksilber mindestens eines der Metalle Indium und Wismut sowie anstelle von Cadmium mindestens eines der Metalle Magnesium und Lithium zugefügt ist, wobei die jeweils zugesetzten Mengen
       an Indium 0,003 bis 0,03%
       an Wismut 0,001 bis 0,01%
       an Magnesium 0,0001 bis 0,002% und
       an Lithium 0,001 bis 0,01%
    betragen.
  2. Primärelement nach Anspruch 1, dadurch gekennzeichnet, daß dem Feinzink zusätzlich Blei zulegiert ist.
  3. Primärelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die dem Feinzink zusätzlich zulegierte Meng e an Blei 0,01 bis 0,6%, vorzugsweise 0,02 bis 0,1% beträgt.
EP89123268A 1989-01-30 1989-12-15 Galvanisches Primärelement Expired - Lifetime EP0384975B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3902650A DE3902650A1 (de) 1989-01-30 1989-01-30 Galvanisches primaerelement
DE3902650 1989-01-30

Publications (2)

Publication Number Publication Date
EP0384975A1 EP0384975A1 (de) 1990-09-05
EP0384975B1 true EP0384975B1 (de) 1993-08-25

Family

ID=6373053

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89123268A Expired - Lifetime EP0384975B1 (de) 1989-01-30 1989-12-15 Galvanisches Primärelement

Country Status (7)

Country Link
US (1) US4994333A (de)
EP (1) EP0384975B1 (de)
BR (1) BR9000357A (de)
CA (1) CA1303124C (de)
DE (2) DE3902650A1 (de)
ES (1) ES2044040T3 (de)
MX (1) MX171810B (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122375A (en) * 1990-07-16 1992-06-16 Cominco Ltd. Zinc electrode for alkaline batteries
JP3215448B2 (ja) * 1991-03-12 2001-10-09 三洋電機株式会社 亜鉛アルカリ電池
JP3215447B2 (ja) * 1991-03-12 2001-10-09 三洋電機株式会社 亜鉛アルカリ電池
JPH0738306B2 (ja) * 1991-04-22 1995-04-26 松下電器産業株式会社 亜鉛アルカリ電池
JP3265673B2 (ja) * 1993-01-29 2002-03-11 松下電器産業株式会社 マンガン乾電池
BE1007443A3 (nl) * 1993-02-25 1995-07-04 Union Miniere Sa Zinkpoeder voor alkalische batterijen.
US5595836A (en) * 1994-06-14 1997-01-21 Matsushita Electric Industrial Co., Ltd. Manganese dry battery
US5721068A (en) * 1995-07-14 1998-02-24 Rayovac Corporation Electrochemical cell, gelled anode, and coated current collector therefor
AT404259B (de) * 1995-10-18 1998-10-27 Monika Dipl Ing Boh Elektrolytisches verfahren zur herstellung von zink
JPH1040904A (ja) * 1996-07-19 1998-02-13 Matsushita Electric Ind Co Ltd マンガン乾電池
WO1998028805A1 (en) 1996-12-23 1998-07-02 Aer Energy Resources, Inc. Mercury-free zinc anode for electrochemical cell and method for making same
US6472103B1 (en) 1997-08-01 2002-10-29 The Gillette Company Zinc-based electrode particle form
US6521378B2 (en) * 1997-08-01 2003-02-18 Duracell Inc. Electrode having multi-modal distribution of zinc-based particles
JP3532797B2 (ja) * 1999-05-21 2004-05-31 三井金属鉱業株式会社 亜鉛合金粉及びそれを用いたアルカリ電池
US6652676B1 (en) 1999-10-18 2003-11-25 Big River Zinc Corporation Zinc alloy containing a bismuth-indium intermetallic compound for use in alkaline batteries
US7229715B2 (en) * 2003-06-17 2007-06-12 The Gillette Company Anode for battery
CN100452489C (zh) * 2004-11-05 2009-01-14 松栢电池厂有限公司 干电池负极体及其制造方法和使用该负极体的锌锰干电池
CN100452494C (zh) * 2004-11-16 2009-01-14 松栢电池厂有限公司 用于锌锰干电池的锌粒及其制造方法
CN100452495C (zh) * 2004-11-16 2009-01-14 松栢电池厂有限公司 锌锰干电池锌片及其制造方法
US8168321B2 (en) * 2008-02-29 2012-05-01 The Gillette Company Alkaline battery having a protective layer
US9472789B2 (en) 2014-04-08 2016-10-18 International Business Machines Corporation Thin, flexible microsystem with integrated energy source
US9508566B2 (en) 2014-08-15 2016-11-29 International Business Machines Corporation Wafer level overmold for three dimensional surfaces
US10105082B2 (en) 2014-08-15 2018-10-23 International Business Machines Corporation Metal-oxide-semiconductor capacitor based sensor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1086309B (de) * 1954-12-04 1960-08-04 Martin Hans Verfahren zur Herstellung eines galvanischen Primaer- oder Sekundaerelementes
GB837523A (en) * 1957-07-26 1960-06-15 Mitsubishi Metal Mining Co Ltd Corrosion preventive galvanic anode zinc alloy
CA642289A (en) * 1957-10-09 1962-06-05 Union Carbide Corporation Dry cell
LU67240A1 (de) * 1973-03-19 1974-10-09
IE54142B1 (en) * 1982-04-19 1989-06-21 Mitsui Mining & Smelting Co Anode active material and alkaline cells containing same, and method for the production thereof
AU557244B2 (en) * 1984-02-20 1986-12-11 Matsushita Electric Industrial Co., Ltd. Zinc alkali cell
BR8503252A (pt) * 1984-07-09 1986-03-25 Duracell Int Pilha eletroquimica,processo para producao de pilha eletroquimica aquosa,e composicao de materia para uso na producao de anodo de pilha eletroquimica aquosa com fervura reduzida
US4585716A (en) * 1984-07-09 1986-04-29 Duracell Inc. Cell corrosion reduction
JPS6149373A (ja) * 1984-08-15 1986-03-11 Dowa Mining Co Ltd アルカリ乾電池用負極活物質
IE57432B1 (en) * 1985-02-12 1992-09-09 Duracell Int Cell corrosion reduction
JPS61193362A (ja) * 1985-02-21 1986-08-27 Mitsui Mining & Smelting Co Ltd 亜鉛アルカリ電池
JPH0665032B2 (ja) * 1985-08-14 1994-08-22 三井金属鉱業株式会社 亜鉛アルカリ電池
JPH0622119B2 (ja) * 1985-10-16 1994-03-23 松下電器産業株式会社 亜鉛アルカリ電池
JPS62105372A (ja) * 1985-11-01 1987-05-15 Arukari Kandenchi Gijutsu Kenkyu Kumiai アルカリ電池用粒状亜鉛合金の製造方法

Also Published As

Publication number Publication date
DE58905395D1 (de) 1993-09-30
EP0384975A1 (de) 1990-09-05
US4994333A (en) 1991-02-19
ES2044040T3 (es) 1994-01-01
BR9000357A (pt) 1990-12-04
DE3902650A1 (de) 1990-08-02
MX171810B (es) 1993-11-16
CA1303124C (en) 1992-06-09

Similar Documents

Publication Publication Date Title
EP0384975B1 (de) Galvanisches Primärelement
DE69418492T2 (de) Geschlossene wiederaufladbare zellen die quecksilberfreie zinkanoden enthalten und vefahren zur herstellung
DE69129483T2 (de) Elektrochemische Zellen ohne wesentlichen Quecksilbergehalt
DE69603670T2 (de) Alkalische Zelle mit Additiv enthaltender Kathode
DE2527768C3 (de) AgO-Zinkzelle, deren Entladung bei einem Potentialwert erfolgt
DE69603671T2 (de) Alkalische Zelle mit Additiv enthaltender Kathode
DE2912175C2 (de) Negative Pulver-Gel-Elektrode und ihre Verwendung
CH495061A (de) Wiederaufladbare, elektrochemische Zelle
DE3314048A1 (de) Anodenaktives material, dieses material enthaltende alkalizellen und verfahren zu deren herstellung
DE2502497C3 (de) Galvanisches Element
DE2912240A1 (de) Zinkoxidzusatz fuer elektroden aus zweiwertigem silberoxid
DE1671811C3 (de) Sammlerbatterie mit Bleidioxid enthaltenden positiven Platten und negativen Platten, die Zinkamalgam oder Kadmiumamalgam in poröser Form enthalten
DE975865C (de) Verfahren zur Vorbereitung eines staendig gasdicht zu betreibenden Akkumulators
DE2620950B2 (de) Eisenelektrode für galvanische Elemente
DE10309402A1 (de) Zinklegierungspulver für alkalische Mangandioxidzellen und negative Elektroden für alkalische Mangandioxidzellen sowie alkalische Mangandioxidzellen unter Verwendung derselben
DE2950288C2 (de) Aluminium-Halogen-Zelle
EP0239674B1 (de) Galvanisches Primärelement
DE4004759C2 (de)
EP2720304B1 (de) Elektrochemische Zelle mit Zink-Indium-Elektrode
EP1182718B1 (de) Ni/Metallhydrid-Sekundärelement
DE3727059A1 (de) Elektrochemische zelle
DE1571926B2 (de) Bleiakkumulator
DE69736057T2 (de) Verfahren zur herstellung primärer zink-alkali-batterien und dabei benutztes anodenmix
DE69606387T2 (de) Aufladbare alkalische elektrochemische Zelle
DE2239064A1 (de) Element und verfahren zu seiner herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901105

17Q First examination report despatched

Effective date: 19920127

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB GR IT LI LU NL SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930820

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILA

REF Corresponds to:

Ref document number: 58905395

Country of ref document: DE

Date of ref document: 19930930

ET Fr: translation filed
EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2044040

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3013114

EAL Se: european patent in force in sweden

Ref document number: 89123268.8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021108

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021211

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031216

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050218

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050909

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20050914

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20051027

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20051028

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051031

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20051130

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051229

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070831

BERE Be: lapsed

Owner name: *VARTA BATTERIE A.G.

Effective date: 20061231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20061216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070102

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070704