EP0356855B1 - Chromfreies Verfahren zur Vorbehandlung von Oberflächen aus Aluminium oder Aluminiumlegierungen vor einer Beschichtung mit organischen Materialien - Google Patents

Chromfreies Verfahren zur Vorbehandlung von Oberflächen aus Aluminium oder Aluminiumlegierungen vor einer Beschichtung mit organischen Materialien Download PDF

Info

Publication number
EP0356855B1
EP0356855B1 EP89115352A EP89115352A EP0356855B1 EP 0356855 B1 EP0356855 B1 EP 0356855B1 EP 89115352 A EP89115352 A EP 89115352A EP 89115352 A EP89115352 A EP 89115352A EP 0356855 B1 EP0356855 B1 EP 0356855B1
Authority
EP
European Patent Office
Prior art keywords
aluminium
atoms
unit
concentration
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89115352A
Other languages
English (en)
French (fr)
Other versions
EP0356855A2 (de
EP0356855A3 (en
Inventor
Cornelia Finnenthal
Wolf-Achim Dr. Roland
Roland Dr. Morlock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gerhard Collardin GmbH
Original Assignee
Gerhard Collardin GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerhard Collardin GmbH filed Critical Gerhard Collardin GmbH
Priority to AT89115352T priority Critical patent/ATE83508T1/de
Publication of EP0356855A2 publication Critical patent/EP0356855A2/de
Publication of EP0356855A3 publication Critical patent/EP0356855A3/de
Application granted granted Critical
Publication of EP0356855B1 publication Critical patent/EP0356855B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment

Definitions

  • the invention relates to a process for the pretreatment of surfaces made of aluminum or aluminum alloys, in which first the cleaned, pickled and decapitated surfaces are brought into contact with an aqueous solution and / or dispersion of aluminum-zirconium complexes, the surfaces being subjected to a subsequent treatment with aqueous solutions, emulsions and / or dispersions of one or more inorganic and / or organic film formers before coating with organic materials.
  • DE-A-32 00 245 relates to a method for treating surfaces made of aluminum or aluminum alloys, which is also carried out in two steps.
  • a chemical coating is formed on the aluminum surface to be treated, solutions based on chromic acid, chromate, dichromate, chromic acid-phosphoric acid, phosphoric acid, phosphates, titanates, titanium tannic acid or zirconium fluoride being used.
  • the chemical covering produced is treated with solutions based on silica, silicates and / or colloidal silica.
  • the surfaces of aluminum bodies treated in this way, in particular aluminum parts in evaporators of air conditioning systems, have improved hydrophilic properties.
  • wash primers reaction primers
  • Page 669 also reports on the generation of adhesive layers on aluminum surfaces. Here it is said that the surfaces are treated with solutions based on sodium carbonate and sodium chromate and then with bichromate or water glass solutions. The layers produced in this way are also intended to serve as anchoring layers for subsequent film runs or coatings.
  • the actual top coat is composed of different layers - prime coat, second coat and finish coat -, the prime coats being based on polyvinyl butyral, acrylates, polyurethanes, vinyl epoxy compounds or phenolic resins and containing corrosion-protecting pigments such as zinc chromate or titanium dioxide can.
  • the conversion layers significantly improve the adhesion and the corrosion-inhibiting effect of subsequent coatings with organic materials, such as paints, powder layers or foils. Therefore, the conversion layers are used in particular on aluminum, its alloys and on zinc as corrosion-resistant coatings without a subsequent coating.
  • Another one A well-known area of application of chromates and chromic acid is the rinsing of zinc phosphate and iron phosphate conversion layers on steel and galvanized steel.
  • this aftertreatment brings about a significant improvement in the adhesion of subsequent coatings with organic materials and an increase in the corrosion resistance of the coated metallic surfaces.
  • chromium (VI) compounds Due to the toxic properties of chromium (VI) compounds, the wastewater generated in the control and disposal of the baths must be subjected to a special, complex treatment.
  • organometallic compounds Due to recent developments, however, is a class of substances for use in aqueous solutions for pretreating metals before coating with organic materials become interesting, which are organometallic compounds.
  • organometallic compounds In the past, the use of organometallic compounds in aqueous solution was prohibited because practically all known representatives of this class of substances hydrolyzed to a greater or lesser extent in aqueous solution.
  • US-A-4 650 526 describes a method for treating phosphated metal surfaces before coating them with organic materials.
  • organometallic compounds in rinse solutions to improve the adhesion of subsequent organic coatings is described.
  • These are aluminum-zircon complexes, which are sold by Cavedon Chemical Co. under the name "CAVCOMOD”.
  • CAVCOMOD Cavedon Chemical Co.
  • the preparation of the aluminum-zirconium complexes is described in US Patents 4,539,048 and 4,539,049.
  • the starting point of the present invention was the aluminum-zirconium complexes described in US Pat. No. 4,650,526. It was shown that treatment of aluminum with the aluminum-zirconium complexes alone did not give acceptable adhesion and corrosion protection values compared to a "classic" pretreatment based on chromium (VI) compounds.
  • Another object of the present invention was to improve the method for pretreating surfaces made of aluminum or aluminum alloys before coating with organic materials. Another object of the present invention was to achieve acceptable adhesion and corrosion protection values for such surfaces before coating with organic materials.
  • the above-mentioned objects are achieved by the combined use of the above-mentioned aluminum-zirconium complexes with an organic and / or inorganic film former. Conversion layers with very good adhesion and improved corrosion protection properties for subsequent organic coatings can be produced on surfaces made of aluminum and its alloys.
  • the above-mentioned aluminum-zirconium complexes are used in a concentration of 0.05 to 50 g / l as an aqueous solution and / or dispersion.
  • the contact time is 1 sec to 5 min at a bath temperature of 10 to 60 ° C.
  • the organic film formers can be brought into contact with the surfaces by spraying, dipping, flooding, rolling and / or rolling up.
  • the contact time of the aqueous solutions, emulsions and / or dispersions containing the organic film formers in one embodiment is 1 sec to 5 min at a bath temperature in the range from 10 to 60 ° C.
  • the inorganic film formers are brought into contact with the metal surfaces to be coated in the form of aqueous solutions or dispersions in the course of 1 sec to 5 min at a temperature of 10 to 60 ° C.
  • the inorganic film formers can be brought into contact by spraying, dipping, Flooding, rolling and / or rolling with the surface happen.
  • free and / or complex fluorides are added to the solutions containing aluminum-zirconium complexes in a concentration of 0.01 to 1 g / l.
  • zircoaluminate solution The active contents of the commercially available solutions (hereinafter zircoaluminate solution) are between 20 - 24%.
  • Aluminum sheets (Al 99.5) format 100 x 200 x 0.7 mm were treated as follows: 1) Dipping in a conventional alkaline cleaner (RIDOLINE C 1515, containing sodium hydroxide, phosphates, complexing agents and nonionic surfactants). Concentration: 3% (wt.) In fresh water Time: 3 min. Temp .: 60 ° C 2) Dip rinse in fresh water Time: 1 min Temp .: RT (room temperature) 3) Remove the oxide skin by dipping in a chromium-free agent (DEOXIDIZER 395 H, containing complex fluorides in acid solution).
  • the sheets were then subjected to adhesion and corrosion protection tests.
  • a continuous cut is made on the metal sheets, down to the metal surface, on which the through Corrosion caused by infiltration is determined in mm.
  • the sheets were dried as in reference example I according to 8).
  • the sheets were painted as in Reference Example I and subjected to the same adhesion and corrosion tests. The values are shown in Table 3.
  • the concentration of the polyacrylic acid used was 1 g / l.
  • the concentration of silicon dioxide in the immersion sink was 1.5 g / l.
  • the basic monomers are butyl acrylate and methyl methacrylate, the dispersion in the delivery form has a solids content of 50%, the pH is 2.2 ⁇ 0.5, the average particle diameter is 0.15 ⁇ m.
  • Aerosil 200 As in Reference Example IV and Examples IV, but Degussa was used as Aerosil 200 silicon dioxide. Aerosil 200 has the following characteristics: Average size of the particles: 12 nm, surface according to BET 200 m2 / g, pH value in 4% aqueous dispersion: 3.6-4.3. Concentration: 3 g / l Time: 0.5 min Temp .: RT
  • the adhesion of the organic coating is improved both compared to the untreated metal sheets and compared to the standard process.
  • the corrosion protection values are significantly closer to the values achieved with the standard process than the values of the untreated sheets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Chemically Coating (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Vorbehandlung von Oberflächen aus Aluminium oder Aluminiumlegierungen, bei dem man zunächst die gereinigten, gebeizten und dekapierten Oberflächen mit einer wäßrigen Lösung und/oder Dispersion von Aluminium-Zirkon-Komplexen in Kontakt bringt, wobei man die Oberflächen einer nachfolgenden Behandlung mit wäßrigen Lösungen, Emulsionen und/oder Dispersionen eines oder mehrerer anorganischer und/oder organischer Filmbildner vor der Beschichtung mit organischen Materialien unterwirft.
  • Die DE-A-32 00 245 betrifft ein Verfahren zur Behandlung von Oberflächen aus Aluminium oder Aluminiumlegierungen, welches gleichfalls in zwei Schritten durchgeführt wird. Im ersten Schritt wird auf der zu behandelnden Aluminiumoberfläche ein chemischer Belag ausgebildet, wobei man Lösungen auf Basis von Chromsäure, Chromat, Dichromat, Chromsäure-Phosphorsäure, Phosphorsäure, Phosphaten, Titanaten, Titansäure-Gerbsäure oder Zirkonfluorid einsetzt. Im zweiten Schritt wird der erzeugte chemische Belag mit Lösungen auf Basis von Kieselsäure, Silikaten und/oder kolloidaler Kieselerde behandelt. Die so behandelten Oberflächen von Aluminiumkörpern, insbesondere von Aluminiumteilen in Verdampfern von Klimaanlagen, weisen verbesserte hydrophile Eigenschaften auf.
  • In F. Tödt, "Korrosion und Korrosionsschutz", Walter de Gruyter & Co, 2. Auflage (1961), werden verschiedene Verfahren zum Schutz von Aluminiumoberflächen beschrieben. Hier werden auf den Seiten 422 und 670 sogenannte "washprimers" (Reaktions-Primer) erwähnt, die als Grundierung zur Erhöhung der Haftfestigkeit von Anstrichen auf derartige Oberflächen aufgebracht werden. Diese Washprimer enthalten Zinkchromat oder -tetraoxychromat und Polyvinylbutural in isopropyl- oder butylalkoholischer Phosphorsäure. Auf Seite 669 wird gleichfalls über die Erzeugung von Haftschichten auf Aluminiumoberflächen berichtet. Hier heißt es, daß man die Oberflächen mit Lösungen auf Basis von Natriumcarbonat und Natriumchromat sowie anschließend mit Bichromat- oder Wasserglaslösungen behandelt. Auch die so erzeugten Schichten sollen als Verankerungsschichten für nachfolgende Filmauflagen oder Anstriche dienen.
  • Auch in "Metals Handbook 9th Edition", Vol 5: "Surface Cleaning, Finishing, and Coating", American Society for Metals (1982), wird eine Übersicht über Verfahren zur Vorbehandlung von Metalloberflächen, unter anderem Aluminiumoberflächen, vor dem nachfolgenden Aufbringen organischer Überzüge oder Anstriche gegeben. Hier werden auf Seite 477 als "Prepaint Treatments" neben Phosphatierungsschichten auch Washprimer erwähnt, die Polyvinylbutyral, ein Chromatpigment und Phosphorsäure enthalten. Weitere Ausführungen zur Erzeugung derartiger Haftgrundschichten auf Aluminiumoberflächen finden sich auf den Seiten 598 bis 599; Phosphatierungsschichten werden hier den Zinkchromat-Primern als Haftgrundierung gleichgestellt. Auf den Seiten 647 und 648 werden organische Beschichtungen für Magnesiumoberflächen beschrieben. Auch hier wird gesagt, daß es vor dem Aufbringen von Anstrichmitteln einer grundierenden Behandlung bedarf, wobei hier gleichfalls vorzugsweise chromathaltige Vorbehandlungsmittel erwähnt werden. Ferner wird hier ausgeführt, daß sich der eigentliche Deckanstrich aus verschiedenen Schichten zusammensetzt - Prime Coat, Second Coat und Finish Coat - , wobei die Prime Coats auf Polyvinylbutyral, Acrylaten, Polyurethanen, Vinylepoxy-Verbindungen oder Phenolharzen basieren und korrosionsschützende Pigmente wie Zinkchromat oder Titandioxid enthalten können.
  • Die Verwendung von Chromaten oder Chromsäure in wäßrigen Lösungen zur Erzeugung von Konversionsschichten auf Oberflächen aus Aluminium, Aluminiumlegierungen, Zink, Cadmium, Magnesium, Stahl und/oder verzinktem und legierungsverzinktem Stahl ist seit langem Stand der Technik.
  • Die Konversionsschichten verbessern wesentlich die Haftung und die korrosionshemmende Wirkung nachfolgender Beschichtungen mit organischen Materialien, wie beispielsweise Lackierungen, Pulverschichten oder Folien. Daher werden die Konversionsschichten insbesondere auf Aluminium, seinen Legierungen und auf Zink auch als korrosionshemmende Überzüge ohne eine nachfolgende Beschichtung eingesetzt. Ein weiteres bekanntes Einsatzgebiet von Chromaten und Chromsäure ist die Nachspülung von Zinkphosphat- und Eisenphosphatkonversionsschichten auf Stahl und verzinktem Stahl. Auch hier bewirkt diese Nachbehandlung eine deutliche Verbesserung der Haftung nachfolgender Beschichtungen mit organischen Materialien und eine Erhöhung der Korrosionsbeständigkeit der beschichteten metallischen Oberflächen.
  • Bei der Vorbehandlung von Aluminium vor einer Beschichtung mit organischen Materialien wird üblicherweise der folgende Verfahrensablauf angewendet:
    • 1. Reinigen in relativ milden, alkalischen, wäßrigen Lösungen,
    • 2. Spülen in Frischwasser,
    • 3. Beizen in starkalkalischen Lösungen,
    • 4. Spülen in Frischwasser,
    • 5. Dekapieren in sauren Lösungen,
    • 6. Spülen in Frischwasser,
    • 7. Chromatieren mit Chromat- und/oder Chromsäure-haltigen Lösungen,
    • 8. Spülen in Frischwasser,
    • 9. Spülen in vollentsalztem Wasser und
    • 10. Trocknen der Konversionsschichten.
  • Aufgrund der toxischen Eigenschaften von Chrom-(VI)-Verbindungen müssen die bei der Kontrolle und Entsorgung der Bäder anfallenden Abwässer einer speziellen aufwendigen Behandlung unterzogen werden.
  • Dies gilt ebenso für die Abwässer aus den obengenannten Spülbädern, die mit Chrom-(VI)-Verbindungen belastet sind. Die besonders kritischen toxischen Eigenschaften von Chromaten und Chromoxiden in Form atembarer Stäube und Aerosole bedingen bei der Herstellung und Verwendung der Vorbehandlungschemikalien strikte Vorsichtsmaßnahmen zum Schutz der in der Produktion Beschäftigten. Die bei der Produktion anfallenden Abwässer müssen daher zum Schutz der Umwelt ebenso speziell aufwendig behandelt werden.
  • Aus den obengenannten Gründen hat es in der Vergangenheit nicht an Versuchen gefehlt, die Chrom-(VI)-Verbindungen bei der Vorbehandlung von Metallen vor einer Beschichtung mit organischen Materialien durch andere, weniger oder nicht toxische Verbindungen zu ersetzen.
  • Für die Vorbehandlung von Aluminium sind beispielsweise Verfahren auf der Basis Chrom-(III)-Verbindungen oder auf der Basis von Verbindungen des Zirkons und/oder Titans bekannt und bereits teilweise im praktischen technischen Einsatz. In der Literatur wurde auch über die korrosionshemmende Wirkung von Molybdaten und Wolframaten berichtet. Auf dieser Basis existieren jedoch keine in der Praxis eingesetzten Verfahren.
  • Die obengenannten Verfahren auf der Basis von Chrom-(III)-Verbindungen sowie auf der Basis von Zirkon- und Titan-Verbindungen haben sich entweder nur auf Spezialgebieten durchsetzen können, oder sie sind, was die erreichte Qualität oder die universelle Einsatzmöglichkeit betrifft, nicht mit den Verfahren auf der Basis von Chrom-(VI)-Verbindungen vergleichbar. Gleiches gilt für das Einsatzgebiet von Nachspülungen für Zink- und Eisenphosphatkonversionsschichten.
  • Aufgrund neuerer Entwicklungen ist jedoch eine Stoffklasse für die Verwendung in wäßrigen Lösungen zur Vorbehandlung von Metallen vor einer Beschichtung mit organischen Materialien interessant geworden, wobei es sich um metallorganische Verbindungen handelt. In der Vergangenheit verbot sich der Einsatz metallorganischer Verbindungen in wäßriger Lösung, da praktisch alle bekannten Vertreter dieser Stoffklasse in wäßriger Lösung mehr oder weniger stark hydrolisierten.
  • In US-A- 4 650 526 ist ein Verfahren zur Behandlung von phosphatierten Metalloberflächen vor einer Beschichtung mit organischen Materialien beschrieben. Insbesondere wird die Verwendung bestimmter metallorganischer Verbindungen in Nachspüllösungen zur Verbesserung der Haftung nachfolgender organischer Beschichtungen beschrieben. Es handelt sich hierbei um Aluminium-Zirkon-Komplexe, die von der Fa. Cavedon Chemical Co. unter der Bezeichnung "CAVCOMOD" vertrieben werden. Die Herstellung der Aluminium-Zirkon-Komplexe wird in den US-Patenten 4,539,048 und 4,539,049 beschrieben.
  • Ausgangspunkt der vorliegenden Erfindung waren die in der US-A- 4,650,526 beschriebenen Aluminium-Zirkon-Komplexe. Es zeigte sich, daß eine Behandlung von Aluminium mit den Aluminium-Zirkon-Komplexen allein keine akzeptablen Haftungs- und Korrosionsschutzwerte im Vergleich zu einer auf Chrom-(VI)-Verbindungen basierten "klassischen" Vorbehandlung erzielen ließ.
  • Demgemäß bestand eine Aufgabe der vorliegenden Erfindung darin, das Verfahren zur Vorbehandlung von Oberflächen aus Aluminium oder Aluminiumlegierungen vor der Beschichtung mit organischen Materialien zu verbessern. Eine weitere Aufgabe der vorliegenden Erfindung bestand darin, akzeptable Haftungs- und Korrosionsschutzwerte derartiger Oberflächen vor der Beschichtung mit organischen Materialien zu erreichen.
  • Erfindungsgemäß werden die vorgenannten Aufgaben gelöst durch die kombinierte Anwendung der obengenannten Aluminium-Zirkon-Komplexe mit einem organischen und/oder anorganischen Filmbildner. Auf Oberflächen aus Aluminium und dessen Legierungen lassen sich Konversionsschichten mit sehr guten Haftungs- und verbesserten Korrosionsschutz-Eigenschaften für nachfolgende organische Beschichtungen herstellen.
  • Die Erfindung betrifft somit ein Verfahren zur Vorbehandlung von Oberflächen aus Aluminium oder Aluminiumlegierungen mit einer wäßrigen Lösung und/oder Dispersion von Aluminium-Zirkon-Komplexen, die als Reaktionsprodukt einer chelatisierten Aluminiumeinheit, eines organofunktionellen Liganden und eines Zirkonylhalogenids erhältlich sind, wobei der organofunktionelle Ligand chemisch an die chelatisierte Aluminiumeinheit und die Zirkoneinheit gebunden ist, vor einer an sich bekannten Beschichtung der Oberflächen mit organischen Materialien, welches dadurch gekennzeichnet ist , daß man
    • a) die gereinigten, gebeizten und dekapierten Oberflächen mit Wasser spült und - ohne weitere Zwischenschritte - mit einer wäßrigen Lösung und/oder Dispersion der Aluminium-Zirkon-Komplexe in Kontakt bringt,
    • b) die so behandelten Oberflächen erneut mit Wasser spült und einer nachfolgenden Behandlung mit wäßrigen Lösungen, Emulsionen und/oder Dispersionen eines oder mehrerer anorganischer und/oder organischer Filmbildner unterwirft, wobei
      • als anorganische Filmbildner Siliciumdioxid, Titandioxid und/oder Aluminiumoxid in einer Konzentration von 0,05 bis 5 g/l und
      • als organische Filmbildner Polyacrylsäure, Polyacrylate, Polyester, Polyurethane und/oder Polyepoxidverbindungen in einer Konzentration von 0,01 bis 2 g/l, jeweils bezogen auf die wäßrigen Lösungen, Emulsionen und/oder Dispersionen, eingesetzt werden,
    • c) und anschließend die Beschichtung mit organischen Materialien durchführt.
  • Hierbei wurde gefunden, daß eine Behandlung von Aluminium allein mit den obengenannten Aluminium-Zirkon-Komplexen, wie in US-A- 4,650,526 beschrieben, ohne einen zusätzlichen organischen und/oder anorganischen Filmbildner allenfalls Verbesserungen der Haftung und des Korrosionsschutzwertes einer nachfolgenden organischen Beschichtung bewirkt, wenn man mit unbehandeltem, nur gereinigtem Substrat vergleicht. Akzeptable Haftungs- und Korrosionsschutzwerte im Vergleich zu einer auf Chrom-(VI)-Verbindungen basierten Vorbehandlung lassen sich jedoch nur mit der erwähnten Kombination aus Aluminium-Zirkon-Komplexen und organischen und/oder anorganischen Filmbildnern erzielen.
  • Die obengenannten Aluminium-Zirkon-Komplexe, wie in US-A- 4,650,526 beschrieben, können durch Spritzen, Tauchen, Fluten, Aufwalzen und/oder Aufrollen mit den Oberflächen in Kontakt gebracht werden.
  • Die Aluminium-Zirkon-Komplexe sind als Reaktionsprodukt einer chelatisierten Aluminiumeinheit, eines organofunktionellen Liganden und eines Zirkonylhalogenids erhältlich, wobei
    • (1) die Aluminiumeinheit durch die allgemeine Formel (I)



              Al₂(OR₁O)aAbBc   (I)



      wiedergegeben ist, wobei
      A oder B für OH oder Fluor, Chlor, Brom und/oder Jod steht a, b und c ganze Zahlen sind und 2a + b + c gleich 6
      Figure imgb0001
      Figure imgb0002
      ist und (OR₁O) steht für
      • (a) eine α, β- oder α, γ-Glykolgruppe und R₁ für einen Alkylrest mit 1 bis 6 C-Atomen oder
      • (b) einen α-Hydroxycarbonsäurerest der allgemeinen Formel (II)




              -OCH(R₃)COO-   (II)



      worin
      R₃
      für Wasserstoff oder einen Alkylrest mit 1 bis 4 C-Atomen steht,
    • (2) der organofunktionelle Ligand für einen Alkyl- oder Alkenylrest, eine Alkyl- oder Aralkylcarbonsäure mit jeweils 2 bis 36 C-Atomen,
      eine aminofunktionelle Carbonsäure mit 2 bis 18 C-Atomen, eine dibasische Carbonsäure mit 2 bis 18 C-Atomen,
      ein Säureanhydrid einer dibasischen Säure mit 2 - 18 C-Atomen, eine mercaptofunktionelle Carbonsäure mit 2 - 18 C-Atomen, oder eine epoxyfunktionelle Carbonsäure mit 2 bis 18 C-Atomen steht und
    • (3) die Zirkonlyhalogenideinheit durch die allgemeine Formel (III)




            ZrAdBe   (III)



    wiedergegeben ist, wobei
    A und B wie oben definiert sind und
    d und e jeweils für numerische Zahlen stehen, wobei die Summe von d + e gleich 4 ist und das Stoffmengenverhältnis der chelatisierten Aluminiumeinheit zur Zirkonylhalogenideinheit 1,5 zu 10 beträgt und das Stoffmengenverhältnis von organofunktionellem Ligand zu dem gesamten Metallgehalt 0,05 bis 3 beträgt.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden die obengenannten Aluminium-Zirkon-Komplexe in einer Konzentration von 0,05 bis 50 g/l als wäßrige Lösung und/oder Dispersion eingesetzt.
  • Hierbei beträgt gemäß einer weiteren Ausführungsform der vorliegenden Erfindung die Kontaktzeit 1 sec bis 5 min bei einer Temperatur des Bades von 10 bis 60 °C.
  • Die organischen Filmbildner können durch Spritzen, Tauchen, Fluten, Aufwalzen und/oder Aufrollen mit den Oberflächen in Kontakt gebracht werden. Die Kontaktzeit der wäßrigen Lösungen, Emulsionen und/oder Dispersionen enthaltend die organischen Filmbildner beträgt erfindungsgemäß in einer Ausführungsform 1 sec bis 5 min bei einer Temperatur des Bades im Bereich von 10 bis 60 °C.
  • In gleicher Weise wie die organischen Filmbildner werden auch die anorganischen Filmbildner im Verlauf von 1 sec bis 5 min bei einer Temperatur von 10 bis 60 °C in Form von wäßrigen Lösungen oder Dispersionen mit den zu beschichtenden Metalloberflächen in Kontakt gebracht. Das Inkontaktbringen der anorganischen Filmbildner kann durch Spritzen, Tauchen, Fluten, Aufwalzen und/oder Aufrollen mit der Oberfläche geschehen.
  • In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung werden den Aluminium-Zirkon-Komplexe enthaltenden Lösungen freie und/oder komplexe Fluoride in einer Konzentration von 0,01 bis 1 g/l zugesetzt.
  • Die allgemeine Formel (IV) der Aluminium-Zirkon-Komplexe kann so dargestellt werden:
    Figure imgb0003
  • R =
    org. Rest
    X =
    reaktive Gruppe
    (Funktionalität)
    Die genaue Produktbezeichnung der im Handel erhältlichen Lösungen der Aluminium-Zirkon-Komplexe richtet sich nach Funktionalität und verwendetem Lösungsmittel in der Lieferform, wie der Tabelle 1 zu entnehmen ist.
    Figure imgb0004
  • Die Aktivgehalte der im Handel erhältlichen Lösungen (nachfolgend Zirkoaluminatlösung) liegen zwischen 20 - 24 %.
  • Die genaue Erläuterung der Produktbezeichnungen ist der US-A- 4,650,526 zu entnehmen, auf die hier ausdrücklich Bezug genommen wird.
  • Beispiele: Bezugsbeispiel I
  • Aluminiumbleche (Al 99,5) Format 100 x 200 x 0,7 mm wurden wie folgt behandelt:
    1) Tauchen in einem üblichen alkalischen Reiniger (RIDOLINE C 1515, enthaltend Natriumhydroxid, Phosphate, Komplexbildner und nichtionische Tenside).
    Konzentration: 3 % (Gew.) in Frischwasser
    Zeit: 3 min.
    Temp.: 60 °C

    2) Tauch-Spülen in Frischwasser
    Zeit: 1 min
    Temp.: RT (Raumtemperatur)

    3) Entfernen der Oxidhaut durch Tauchen in einem chromfreien Mittel (DEOXIDIZER 395 H, enthaltend komplexe Fluoride in saurer Lösung).
    Konzentration: 2 % (Vol.) in Frischwasser
    Zeit: 1 min
    Temp.: 40 °C

    4) Tauch-Spülen in Frischwasser
    Zeit: 1 min
    Temp.: RT

    5) Tauchen in eine Aluminium-Zirkon-Komplexe enthaltende Lösung (CAVCOMOD A)
    Konzentration: a) 0,1 % (Vol.) der Lieferform
    b) 1 % (Vol.) der Lieferform
    Zeit: 3 min
    Temp.: RT

    6) Tauch-Spülen wie 2) und 4)
    7) Tauch-Spülen in vollentsalztem Wasser
    8) Trocknen mit Warmluft
    Zeit: 3 min
    Lufttemp.: 70 °C
  • Beispiel I 1
  • Behandlungsstufen 1) - 4) und 6) - 8) wie Bezugsbeispiel I 5) Tauchen in eine "Zirkoaluminatlösung", CAVCOMOD APG
    Konzentration: a) 0,1 % (Vol.) der Lieferform in vollentsalztem Wasser
    b) 1,0 % (Vol.) der Lieferform in vollentsalztem Wasser
    Zeit: 3 min
    Temp.: RT
  • Beispiel I 2
  • Behandlungsstufen 1) - 4) und 6) - 8) wie Bezugsbeispiel I 5) Tauchen in eine "Zirkoaluminatlösung", CAVCOMOD C
    Konzentration: a) 0,1 % (Vol.) der Lieferform in vollentsalztem Wasser
    b) 1,0 % (Vol.) der Lieferform in vollentsalztem Wasser
    Zeit: 3 min
    Temp.: RT
  • Beispiel I 3
  • Behandlungsstufen 1) - 4) und 6) - 8) wie Bezugsbeispiel I 5) Tauchen in eine "Zirkoaluminatlösung", CAVCOMOD CPM
    Konzentration: a) 0,1 % (Vol.) der Lieferform in vollentsalztem Wasser
    b) 1,0 % (Vol.) der Lieferform in vollentsalztem Wasser
    Zeit: 3 min
    Temp.: RT
  • Beispiel I 4
  • Behandlungsstufen 1) - 4) und 6) - 8) wie Bezugsbeispiel I 5) Tauchen in eine "Zirkoaluminatlösung", CAVCOMOD C-1
    Konzentration: a) 0,1 % (Vol.) der Lieferform in vollentsalztem Wasser
    b) 1,0 % (Vol.) der Lieferform in vollentsalztem Wasser
    Zeit: 3 min
    Temp.: RT
  • Beispiel I 5
  • Behandlungsstufen 1) - 4) und 6) - 8) wie Bezugsbeispiel I 5) Tauchen in eien "Zirkoaluminatlösung", CAVCOMOD F
    Konzentration: a) 0,1 % (Vol.) der Lieferform in vollentsalztem Wasser
    b) 1,0 % (Vol.) der Lieferform in vollentsalztem Wasser
  • Beispiel I 6
  • Behandlungsstufen 1) - 4) und 6) - 8) wie Bezugsbeispiel I 5) Tauchen in eine "Zirkoaluminatlösung", CAVCOMOD M
    Konzentration: a) 0,1 % (Vol.) der Lieferform in vollentsalztem Wasser
    b) 1,0 % (Vol.) der Lieferform in vollentsalztem Wasser
  • Beispiel I 7 Behandlungsstufen 1) - 4) und 6) - 8) wie Bezugsbeispiel I 5) Tauchen in eine "Zirkoaluminatlösung", CAVCOMOD M 1
  • Konzentration: a) 0,1 % (Vol.) der Lieferform in vollentsalztem Wasser
    b) 1,0 % (Vol.) der Lieferform in vollentsalztem Wasser
    Zeit: 3 min
    Temp.: RT
  • Die Bleche nach dem Bezugsbeispiel I und den Beispielen I 1 bis I 7 wurden anschließend mit einem Polyestereinbrennlack (GG 92 L ex BASF Lacke und Farben AG) beschichtet. Es handelt sich dabei um einen handelsüblichen Lack, der nach Bindemittel- und Pigmentzusammensetzung für den Einsatz auf vorbehandeltem Aluminium an Objekten, die der Witterung ausgesetzt sind, konzipiert ist. Eine Grundierung ist nicht notwendig. Der Lack wurde bei 250 °C Lufttemperatur, Zeit: 2 min, 15 sec eingebrannt. Trockenschichtdicke: 25 - 30 µm.
  • Die Bleche wurden dann Haftungs- und Korrosionsschutzprüfungen unterzogen.
  • Haftungsprüfungen: Gitterschnitt nach DIN 53151 und T-Bend nach ECCA-Methode T 7 (ECCA = European Coil-Coating Association)
    Alle Bleche wurden um 180° auf T 0,5 gebogen und die Lackhaftung auf der Biegeschulter (Durchmesser 1 Blechdicke) durch Aufpressen und Abziehen eines Klebebandes beurteilt. Die Menge der am Klebeband haftenden Lackteilchen wird mit 0 bis 5 bewertet.
  • 0 =
    bestes Ergebnis, keinerlei Lackteilchen am Klebeband
    3 =
    mittleres Ergebnis, überwiegende Lackmenge am Klebeband
    5 =
    schlechtestes Ergebnis, gesamte Lackmenge am Klebeband
    Korrosionsschutzprüfung: Neutraler Salzsprühtest nach DIN 50021.
  • Auf den Blechen wird ein bis auf den Metalluntergrund durchgehender Schnitt angebracht, an dem nach dem Test die durch Korrosion verursachte Unterwanderung in mm bestimmt wird.
  • Die Haftungs- und Korrosionswerte der Bleche nach dem Bezugsbeispiel I und nach den Beispielen I 1 - I 7 sind in Tabelle 2 dargestellt.
    Figure imgb0005
  • Beispiel II
  • Wie Beispiele I 1 - I 7, jedoch folgte nach 7) ein Tauchen in einer wäßrigen (vollentsalztes Wasser) Lösung einer Polyacrylsäure. Verwendet wurde Primal A 1 von Rohm und Haas. Die Lieferform ist eine 25-%ige Lösung mit einem pH-Wert von etwa 2, das Molekulargewicht der Polyacrylsäure liegt bei ca. 60000.
    Konzentration: 0,5 g/l
    Zeit: 0,5 min
    Temp.: RT
  • Ohne eine weitere Spülung wurden die Bleche wie in Bezugsbeispiel I nach 8) getrocknet. Die Bleche wurden wie in Bezugsbeispiel I lackiert und den gleichen Haftungs- und Korrosionsprüfungen unterworfen. Die Werte sind in Tabelle 3 dargestellt.
    Figure imgb0006
  • Beispiel III
  • Wie im Bezugsbeispiel II und Beispielen II; die Konzentration der verwendeten Polyacrylsäure betrug jedoch 1 g/l.
  • Die gefundenen Haftungs- und Korrosionsschutzwerte sind in Tabelle 4 dargestellt.
    Figure imgb0007
  • Beispiel IV
  • Wie im Bezugsbeispiel I und den Beispielen I 1 - I 7, jedoch folgt nach 7) ein Tauchen in einer wäßrigen Siliciumdioxiddispersion. Verwendet wurde Syton X 30 von Monsanto/Brentag. Die Lieferform der Dispersion hat einen Festkörpergehalt von 30 %. Der pH-Wert liegt bei 9,9. Die spezifische Oberfläche der Siliciumdioxidteilchen liegt bei ca. 250 m²/g.
  • Die Konzentration des Siliciumdioxids in der Tauchspüle betrug 3 g/l.
  • Zeit:
    0,5 min
    Temp.:
    RT
  • Ohne eine weitere Spülung wurden die Bleche wie im Bezugsbeispiel I getrocknet, lackiert und geprüft.
  • Die gefundenen Haftungs- und Korrosionsschutzwerte sind in Tabelle 5 dargestellt.
    Figure imgb0008
  • Beispiel V
  • Wie in dem Bezugsbeispiel IV und den Beispielen IV, jedoch betrug die Konzentration des Siliciumdioxids in der Tauchspüle 1,5 g/l.
  • Die gefundenen Haftungs- und Korrosionsschutzwerte sind in Tabelle 6 dargestellt.
    Figure imgb0009
  • Beispiel VI
  • Wie in Bezugsbeispiel II und den Beispielen II 1- II 7, jedoch erfolgte nach 7 ein Tauchen in einem Bad, das sowohl die Polyacrylsäurelösung (Primal A-1) als auch die Siliciumdioxid-Dispersion (Syton X 30) enthält.
    Konzentration: Polyacrylsäure, 0,5 g/l
    Konzentration: SiO₂ 3,0 g/l
    Zeit: 0,5 min
    Temp.: RT
  • Die gefundenen Haftungs- und Korrosionsschutzwerte sind in Tabelle 7 dargestellt.
    Figure imgb0010
  • Beispiel VII
  • Wie im Bezugsbeispiel VI und den Beispielen VI, jedoch enthielten die einzelnen CAVCOMOD-Lösungen je 0,5 g/l Flußsäure und die Tauchzeit betrug nur 8 sec.
  • Die gefundenen Haftungs- und Korrosionsschutzwerte sind in Tabelle 8 dargestellt.
    Figure imgb0011
  • Beispiel VIII
  • Wie in Bezugsbeispiel II und den Beispielen II, jedoch erfolgte nach 7 ein Tauchen in einer wäßrigen Dispersion eines Polyacrylates. Es handelte sich um Plextol DV 588 der Röhm GmbH.
  • Die Basismonomere sind Butylacrylat und Methylmethacrylat, die Dispersion in Lieferform hat einen Festkörpergehalt von 50 %, der pH-Wert liegt bei 2,2 ± 0,5, der mittlere Teilchendurchmesser bei 0,15 µm.
    Konzentration: 0,5 g/l
    Zeit: 0,5 min
    Temp.: RT
  • Die gefundenen Haftungs- und Korrosionsschutzwerte sind in Tabelle 9 dargestellt.
    Figure imgb0012
  • Beispiel IX
  • Wie im Bezugsbeispiel IV und den Beispielen IV, jedoch wurde als Siliciumdioxid Aerosil 200 der Degussa verwendet. Aerosil 200 hat folgende Kenndaten: Mittlere Größe der Teilchen: 12 nm, Oberfläche nach BET 200 m²/g, pH-Wert in 4-%iger wäßriger Dispersion: 3,6-4,3.
    Konzentration: 3 g/l
    Zeit: 0,5 min
    Temp.: RT
  • Die gefundenen Haftungs- und Korrosionsschutzwerte sind in Tabelle 10 dargestellt.
    Figure imgb0013
  • Die Tabellen zeigen deutlich den positiven Effekt der nach dem erfindungsgemäßen Verfahren durchgeführten Vorbehandlung. Die Haftung der organischen Beschichtung ist sowohl gegenüber den unbehandelten Blechen als auch gegenüber dem Standardverfahren verbessert. Die Korrosionsschutzwerte liegen den Werten, die mit dem Standardverfahren erzielt werden, deutlich näher als den Werten der unbehandelten Bleche.

Claims (8)

  1. Verfahren zur Vorbehandlung von Oberflächen aus Aluminium oder Aluminiumlegierungen mit einer wäßrigen Lösung und/oder Dispersion von Aluminium-Zirkon-Komplexen, die als Reaktionsprodukt einer chelatisierten Aluminiumeinheit, eines organofunktionellen Liganden und eines Zirkonylhalogenids erhältlich sind, wobei der organofunktionelle Ligand chemisch an die chelatisierte Aluminiumeinheit und die Zirkoneinheit gebunden ist, vor einer an sich bekannten Beschichtung der Oberflächen mit organischen Materialien,
    dadurch gekennzeichnet, daß man
    a) die gereinigten, gebeizten und dekapierten Oberflächen mit Wasser spült und - ohne weitere Zwischenschritte - mit einer wäßrigen Lösung und/oder Dispersion der Aluminium-Zirkon-Komplexe in Kontakt bringt,
    b) die so behandelten Oberflächen erneut mit Wasser spült und einer nachfolgenden Behandlung mit wäßrigen Lösungen, Emulsionen und/oder Dispersionen eines oder mehrerer anorganischer und/oder organischer Filmbildner unterwirft, wobei
    - als anorganische Filmbildner Siliciumdioxid, Titandioxid und/oder Aluminiumoxid in einer Konzentration von 0,05 bis 5 g/l und
    - als organische Filmbildner Polyacrylsäure, Polyacrylate, Polyester, Polyurethane und/oder Polyepoxidverbindungen in einer Konzentration von 0,01 bis 2 g/l,
    jeweils bezogen auf die wäßrigen Lösungen, Emulsionen und/oder Dispersionen, eingesetzt werden,
    c) und anschließend die Beschichtung mit organischen Materialien durchführt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Aluminium-Zirkon-Komplexe durch Spritzen, Tauchen, Fluten, Aufwalzen und/oder Aufrollen mit den Oberflächen in Kontakt bringt.
  3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß
    (1) die Aluminiumeinheit durch die allgemeine Formel (I)



            Al₂(OR₁O)aAbBc   (I)



    wiedergegeben ist, wobei
    A oder B für OH oder Fluor, Chlor, Brom und/oder Jod steht a, b und c ganze Zahlen sind und 2a + b + c gleich 6
    Figure imgb0014
    Figure imgb0015
    ist und (OR₁O) steht für
    (a) eine α, β- oder α, γ-Glykolgruppe und R₁ für einen Alkylrest mit 1 bis 6 C-Atomen oder
    (b) einen α-Hydroxycarbonsäurerest der allgemeinen Formel (II)



            -OCH(R₃)COO-   (II)



    worin
    R₃   für Wasserstoff oder einen Alkylrest mit 1 bis 4 C-Atomen steht,
    (2) der organofunktionelle Ligand für
    einen Alkyl- oder Alkenylrest, eine Alkyl- oder Aralkylcarbonsäure mit jeweils 2 bis 36 C-Atomen,
    eine aminofunktionelle Carbonsäure mit 2 bis 18 C-Atomen,
    eine dibasische Carbonsäure mit 2 bis 18 C-Atomen,
    ein Säureanhydrid einer dibasischen Säure mit 2 - 18 C-Atomen, eine mercaptofunktionelle Carbonsäure mit 2 - 18 C-Atomen oder eine epoxyfunktionelle Carbonsäure mit 2 bis 18 C-Atomen steht und
    (3) die Zirkonlyhalogenideinheit durch die allgemeine Formel (III)



            ZrAdBe   (III)



    wiedergegeben ist, wobei
    A und B wie oben definiert sind und
    d und e jeweils für numerische Zahlen stehen, wobei die Summe von d + e gleich 4 ist und das Stoffmengenverhältnis der chelatisierten Aluminiumeinheit zur Zirkonylhalogenideinheit 1,5 zu 10 beträgt und das Stoffmengenverhältnis von organofunktionellem Ligand zu dem gesamten Metallgehalt 0,05 bis 3 beträgt.
  4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Konzentration der Aluminium-Zirkon-Komplexe 0,05 bis 50 g/l beträgt.
  5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Kontaktzeit der Aluminium-Zirkon-Komplexe mit den Oberflächen 1 sec bis 5 min bei 10 bis 60 °C Badtemperatur beträgt.
  6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man den Aluminium-Zirkon-Komplexe enthaltenden Lösungen freie und/oder komplexe Fluoride in einer Konzentration von 0,01 bis 1 g/l zusetzt.
  7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß die Kontaktzeit der anorganischen und/oder organischen Filmbildner 1 sec bis 5 min bei einer Temperatur von 10 bis 60 °C beträgt.
  8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß man die anorganischen und/oder organischen Filmbildner durch Spritzen, Tauchen, Fluten, Aufwalzen und/ oder Aufrollen mit den Oberflächen in Kontakt bringt.
EP89115352A 1988-08-27 1989-08-19 Chromfreies Verfahren zur Vorbehandlung von Oberflächen aus Aluminium oder Aluminiumlegierungen vor einer Beschichtung mit organischen Materialien Expired - Lifetime EP0356855B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89115352T ATE83508T1 (de) 1988-08-27 1989-08-19 Chromfreies verfahren zur vorbehandlung von oberflaechen aus aluminium oder aluminiumlegierungen vor einer beschichtung mit organischen materialien.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3829154A DE3829154A1 (de) 1988-08-27 1988-08-27 Chromfreies verfahren zur vorbehandlung von metallischen oberflaechen vor einer beschichtung mit organischen materialien
DE3829154 1988-08-27

Publications (3)

Publication Number Publication Date
EP0356855A2 EP0356855A2 (de) 1990-03-07
EP0356855A3 EP0356855A3 (en) 1990-11-14
EP0356855B1 true EP0356855B1 (de) 1992-12-16

Family

ID=6361748

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89115352A Expired - Lifetime EP0356855B1 (de) 1988-08-27 1989-08-19 Chromfreies Verfahren zur Vorbehandlung von Oberflächen aus Aluminium oder Aluminiumlegierungen vor einer Beschichtung mit organischen Materialien

Country Status (12)

Country Link
US (1) US5026440A (de)
EP (1) EP0356855B1 (de)
JP (1) JPH02118081A (de)
AT (1) ATE83508T1 (de)
AU (1) AU609327B2 (de)
BR (1) BR8904315A (de)
CA (1) CA1332801C (de)
DE (2) DE3829154A1 (de)
ES (1) ES2053886T3 (de)
MX (1) MX170838B (de)
TR (1) TR24778A (de)
ZA (1) ZA896526B (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4017187A1 (de) * 1990-05-29 1991-12-05 Metallgesellschaft Ag Verfahren zur nachspuelung von konversionsschichten
WO1992008822A1 (en) * 1990-11-10 1992-05-29 Oakite Limited Coating composition and process
GB9120441D0 (en) * 1991-09-25 1991-11-06 Laporte Industries Ltd Aqueous composition and uses thereof
GB9120442D0 (en) * 1991-09-25 1991-11-06 Laporte Industries Ltd Coating composition and process
DE4138218C2 (de) * 1991-11-21 1994-08-04 Doerken Ewald Ag Verwendung von Nachtauchmitteln für die Nachbehandlung von chromatierten oder passivierten Verzinkungsschichten
US5294265A (en) * 1992-04-02 1994-03-15 Ppg Industries, Inc. Non-chrome passivation for metal substrates
ATE200505T1 (de) * 1992-11-30 2001-04-15 Bulk Chemicals Inc Verfahren und zusammensetzungen zur behandlung von metalloberflächen
US5314546A (en) * 1993-01-04 1994-05-24 Betz Laboratories, Inc. Process for enhanced drainage of residual aqueous rinse on the external surface of plastic parts
US5804652A (en) * 1993-08-27 1998-09-08 Bulk Chemicals, Inc. Method and composition for treating metal surfaces
US6059867A (en) * 1995-10-10 2000-05-09 Prc-Desoto International, Inc. Non-chromate corrosion inhibitors for aluminum alloys
CN1079119C (zh) * 1995-10-10 2002-02-13 Prc-迪索托国际公司 用于铝合金的非铬酸盐缓蚀剂
US5693371A (en) * 1996-10-16 1997-12-02 Betzdearborn Inc. Method for forming chromium-free conversion coating
US6027579A (en) * 1997-07-07 2000-02-22 Coral Chemical Company Non-chrome rinse for phosphate coated ferrous metals
WO1999060187A1 (en) * 1998-05-15 1999-11-25 Dacral S.A. Metal surface treatment agents, methods of treating metal surfaces and pre-coated steel sheets
DE19921842A1 (de) * 1999-05-11 2000-11-16 Metallgesellschaft Ag Vorbehandlung von Aluminiumoberflächen durch chromfreie Lösungen
US6746719B2 (en) * 2000-10-13 2004-06-08 Atofina Chemicals, Inc. Process of priming a metal surface for attaching resin systems thereto utilizing aqueous emulsion of a polyfunctional epoxide compound as the primer
US6761932B2 (en) * 2002-08-23 2004-07-13 Basf Corporation Method to improve adhesion of primers to substrates
US6887308B2 (en) * 2003-01-21 2005-05-03 Johnsondiversey, Inc. Metal coating coupling composition
US7815751B2 (en) * 2005-09-28 2010-10-19 Coral Chemical Company Zirconium-vanadium conversion coating compositions for ferrous metals and a method for providing conversion coatings
JP5638191B2 (ja) * 2008-11-05 2014-12-10 日本パーカライジング株式会社 化成処理金属板およびその製造方法
FR2952557B1 (fr) * 2009-11-17 2011-12-23 Peugeot Citroen Automobiles Sa Procede de traitement de surface et de peinture de pieces metalliques, notamment des arbres de transmission de vehicules automobiles
EP3507394A4 (de) 2016-09-01 2020-04-22 Saint-Gobain Performance Plastics Corporation Umwandlungsbeschichtung und verfahren zur herstellung
JP7330952B2 (ja) * 2017-09-14 2023-08-22 ケメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング アルミニウム材料、特にアルミニウムホイールを前処理する方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850732A (en) * 1970-12-02 1974-11-26 Amchem Prod Zirconium rinse for phosphate coated metal surfaces
US3912548A (en) * 1973-07-13 1975-10-14 Amchem Prod Method for treating metal surfaces with compositions comprising zirconium and a polymer
DE2704260A1 (de) * 1977-02-02 1978-08-03 Metallgesellschaft Ag Verfahren zur oberflaechenbehandlung von aluminium oder aluminiumlegierungen
DE3200245C2 (de) * 1982-01-07 1986-06-05 Showa Aluminum Corp., Sakai, Osaka Verdampfer, insbesondere von Klimaanlagen, und Verfahren zu seiner Beschichtung
US4539049A (en) * 1983-02-09 1985-09-03 Jos. Cavedon Co., Inc. Aluminum zirconium metallo-organic complex useful as coupling and hydrophobic agents
US4539048A (en) * 1983-02-09 1985-09-03 Jos. Cavedon Company Inc. Aluminum zirconium metallo-organic complexes useful as coupling agents
US4496404A (en) * 1984-05-18 1985-01-29 Parker Chemical Company Composition and process for treatment of ferrous substrates
AU4751885A (en) * 1984-10-09 1986-04-17 Parker Chemical Company Treating extruded aluminium metal surfaces
US4650526A (en) * 1986-03-18 1987-03-17 Man-Gill Chemical Company Post treatment of phosphated metal surfaces by aluminum zirconium metallo-organic complexes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Korrosion und Korrosionsschutz, F.Tödt (2.Auflage, Berlin 1961), Seiten 421/2, 452,454/5, 668-670. *
Metals Handbook, Band 5 (9.Auflage , ASM 1982), "Surface Cleaning, Finishing and Coating", Seiten 477, 598/9, 647/8. *
Römpps Chemie-Lexikon, Band 3 (1973), Seite 1769 *

Also Published As

Publication number Publication date
CA1332801C (en) 1994-11-01
EP0356855A2 (de) 1990-03-07
BR8904315A (pt) 1990-04-17
DE3829154A1 (de) 1990-03-01
AU4080289A (en) 1990-03-01
JPH02118081A (ja) 1990-05-02
ZA896526B (en) 1990-04-25
US5026440A (en) 1991-06-25
ES2053886T3 (es) 1994-08-01
ATE83508T1 (de) 1993-01-15
TR24778A (tr) 1992-03-09
MX170838B (es) 1993-09-20
AU609327B2 (en) 1991-04-26
DE58903014D1 (de) 1993-01-28
EP0356855A3 (en) 1990-11-14

Similar Documents

Publication Publication Date Title
EP0356855B1 (de) Chromfreies Verfahren zur Vorbehandlung von Oberflächen aus Aluminium oder Aluminiumlegierungen vor einer Beschichtung mit organischen Materialien
DE60110470T2 (de) Korrosionsschutzüberzüge für aluminium und aluminiumlegierungen
DE69405530T2 (de) Verfahren und Zusammensetzung zur Metallbehandlung
DE69403339T2 (de) Zusammensetzung und verfahren zur behandlung von phosphatierten metalloberflächen
DE69732102T2 (de) Oberflächenbehandelter metallischer korrosionsbeständiger Werkstoff und Mittel zur Oberflächenbehandlung
DE69129527T2 (de) Stahlblech mit verbesserter Korrosionbeständigkeit mit Silan-behandelter Silicatbeschichtung
DE69737195T2 (de) Lösung und Verfahren zur Herstellung von Schutzschichten auf Metallen
EP0700452B1 (de) Chromfreie konversionsbehandlung von aluminium
DE69703105T2 (de) Zusammensetzung und verfahren zur behandlung von phosphatierten metalloberflächen
DE60213124T2 (de) Nachbehandlung für metallbeschichtete substrate
EP2475468B1 (de) Zweistufiges verfahren zur korrosionsschützenden behandlung von metalloberflächen
EP0153973A1 (de) Verfahren zum Behandeln von Metalloberflächen
DE2711431C2 (de) Verfahren zur Oberflächenbehandlung von Metallen
DE69429627T2 (de) Metallbehandlung mit saurer, seltene erden ionen enthaltenden reinigungslösungen
EP2507408A1 (de) Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen
DE3234558C2 (de)
EP1254279A2 (de) Korrosionsschutzmittel und korrosionsschutzverfahren für metalloberflächen
EP0187917A1 (de) Verfahren zur Verbesserung des Korrosionsschutzes autophoretisch abgeschiedener Harzschichten auf Metalloberflächen
DE3689442T2 (de) Saure, wässrige Phosphatüberzugslösungen für ein Verfahren zum Phosphatbeschichten metallischer Oberfläche.
EP0149720B1 (de) Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen unter Verwendung von Titan- und/oder Mangan- und/oder Cobalt- und/oder Nickel- und/oder Kupfer-Kationen enthaltenden Lösungen
EP0177086A1 (de) Verfahren zur Behandlung von Metalloberflächen
EP0359296B1 (de) Phosphatierverfahren
EP0410497B1 (de) Verfahren zur passivierenden Nachspülung von Phosphatschichten
DE2406411A1 (de) Verfahren zur erhoehung der korrosionsbestaendigkeit von metallen
WO1996034995A1 (de) Chrom- und fluoridfreie behandlung von metalloberflächen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

17P Request for examination filed

Effective date: 19901025

17Q First examination report despatched

Effective date: 19910405

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19921216

REF Corresponds to:

Ref document number: 83508

Country of ref document: AT

Date of ref document: 19930115

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 58903014

Country of ref document: DE

Date of ref document: 19930128

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930723

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930805

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19930812

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2053886

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19940820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940831

Ref country code: CH

Effective date: 19940831

EAL Se: european patent in force in sweden

Ref document number: 89115352.0

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960711

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960809

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960812

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960815

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960828

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19961009

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

BERE Be: lapsed

Owner name: GERHARD COLLARDIN G.M.B.H.

Effective date: 19970831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501

EUG Se: european patent has lapsed

Ref document number: 89115352.0

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050819