EP0149720B1 - Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen unter Verwendung von Titan- und/oder Mangan- und/oder Cobalt- und/oder Nickel- und/oder Kupfer-Kationen enthaltenden Lösungen - Google Patents

Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen unter Verwendung von Titan- und/oder Mangan- und/oder Cobalt- und/oder Nickel- und/oder Kupfer-Kationen enthaltenden Lösungen Download PDF

Info

Publication number
EP0149720B1
EP0149720B1 EP84111060A EP84111060A EP0149720B1 EP 0149720 B1 EP0149720 B1 EP 0149720B1 EP 84111060 A EP84111060 A EP 84111060A EP 84111060 A EP84111060 A EP 84111060A EP 0149720 B1 EP0149720 B1 EP 0149720B1
Authority
EP
European Patent Office
Prior art keywords
solutions
ethanate
cations
metal surfaces
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84111060A
Other languages
English (en)
French (fr)
Other versions
EP0149720A3 (en
EP0149720A2 (de
Inventor
Reinhard Opitz
Kurt Hosemann
Heinz Portz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gerhard Collardin GmbH
Original Assignee
Gerhard Collardin GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerhard Collardin GmbH filed Critical Gerhard Collardin GmbH
Publication of EP0149720A2 publication Critical patent/EP0149720A2/de
Publication of EP0149720A3 publication Critical patent/EP0149720A3/de
Application granted granted Critical
Publication of EP0149720B1 publication Critical patent/EP0149720B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment

Definitions

  • the invention relates to a method for the 'post-passivation of phosphated metal surfaces.
  • Such phosphate layers not only improve the corrosion protection of the metal surfaces, but also increase the adhesion for paints to be applied to the surface. In certain cases, they can also help to improve the properties of metal sheets during cold forming and when using deep-drawing processes.
  • the phosphate layer on the metal surfaces is not completely closed. Rather, there are more or less large “pores” that have to be closed in the course of a so-called “post-passivation” in order not to leave a point of attack for corrosive influences on the metal surfaces.
  • concentration of fluoride ions in these solutions is 0.01 to 25 g / l.
  • solutions disclosed in the abovementioned application contain anions which have a highly corrosive effect on system parts (for example Cl - , So 4 2- ) and / or are known to disrupt the passivation process (for example F - ).
  • Manganese (II) ethanate and cobalt (II) ethanate the content of Mn (II) cations and Co (II) cations in the solutions in each case being 0.05 to 1 g / l.
  • Nickel (II) ethanate and copper (II) ethanate the content of Ni (II) cations in the solutions 0.1 to 1 g / I and the content of Cu (II) cations in the same 0.03 is up to 1 g / l.
  • the pH of the application solutions is in the acidic to neutral range, i.e. in the range of 3.0 to 7.0.
  • the solutions are preferably adjusted, for example using ethanoic acid (acetic acid) or phosphoric acid on the one hand or sodium hydroxide solution on the other hand, in such a way that they have a pH between 4.0 and 5.0.
  • the solutions containing titanium and / or manganese and / or cobalt and / or nickel and / or copper salts used according to the inventive method can be used in the temperature range from 20 to 120 ° C., but are preferably used in the temperature range from 30 to 50 ° C worked. Treatment times of approximately 1 minute are sufficient to achieve excellent post-passivation of the phosphated metal surfaces even at these temperatures.
  • the process according to the invention is carried out in such a way that cleaned phosphated metal surfaces are first rinsed with water and then, according to the present process, with an acidic, titanium (IV) - and / or manganese (II) - and / or cobalt (II) - and / or solution containing nickel (II) and / or copper (II) salts in the temperature range of preferably 30 to 50 ° C., which can be obtained by adding solid or liquid concentrates containing the corresponding salts in a suitable amount dissolves in water in a manner known per se.
  • the treatment time is usually 1 minute.
  • the post-passivated metal surfaces are rinsed with deionized water and then dried with compressed air.
  • the metal surfaces post-passivated in accordance with the method according to the invention are outstandingly suitable for subsequent coating with paints, lacquers, varnishes and the like.
  • the post-passivated metal surfaces in this way offer an outstandingly suitable reason for cathodic electrocoat materials.
  • the phosphated and post-passivated metal surfaces are also suitable for other post-treatment processes.
  • Steel parts were sprayed with an alkaline cleaning solution for 2 min at 50 ° C. and then rinsed with water. They were then phosphated with a zinc phosphate solution for 2 minutes in a spray at 50 ° C. and then rinsed with water.
  • the steel parts were then post-passivated with the post-passivation solution containing 0.3 g of copper (II) ethanate hydrate per liter at 35 ° C. for 1 min in spraying. It was then rinsed with deionized water and dried with compressed air.
  • the post-passivation solution containing 0.3 g of copper (II) ethanate hydrate per liter at 35 ° C. for 1 min in spraying. It was then rinsed with deionized water and dried with compressed air.
  • the dried parts were coated with a cathodic electrocoating material and dried at 185 ° C. for 20 minutes.
  • the dry film thickness of the paint was 18 ⁇ m.
  • the parts were provided with individual cuts and subjected to the salt spray test (DIN 50 021) for 480 h.
  • the evaluation according to DIN 53 167 showed an infiltration of 0.4 to 0.6 mm.
  • Ni (CH 3 COO) 2 .4H 2 0 was made into a 0.7 g to prepare a post-passivation solution.
  • 1- 1 containing solution dissolved in water, corresponding to 0.17 g Ni per liter of solution.
  • Steel parts were immersed for 10 minutes at 80 ° C with an alkaline cleaning solution and then rinsed with water. The parts were then dipped in a zinc phosphate solution at 50 ° C. for 3 minutes and rinsed again.
  • the solution containing 0.7 g of nickel (II) ethanate tetrahydrate per liter at 35 ° C. was used for the post-passivation, the treatment time being 1 min in immersion.
  • the post-passivated parts were rinsed with deionized water and dried with compressed air.
  • an electro-dip coating was applied cathodically, which was dried by heating to 185 ° C. for 20 minutes.
  • the dry film thickness of the lacquer was 18 ⁇ m.
  • the painted parts were then provided with individual cuts and subjected to the salt spray test (DIN 50 021) for 480 hours.
  • the evaluation according to DIN 53 167 showed an infiltration of 0.4 to 0.6 mm.
  • Ni (CH 3 COO) 2 .4H 2 0 and C U (CH 3 -COO) 2 .H 2 0 were dissolved in water to give a solution containing 0.5 g ⁇ I -1 nickel (II) ethanate tetrahydrate and 0.1 g - I -1 copper (II) ethanate hydrate contained. This corresponds to a content of 0.12 g Ni and 0.03 g Cu per liter of solution.
  • the parts were treated with the solution containing nickel and copper ions prepared as described above for 1 min at 40 ° C. in an immersion, then rinsed with deionized water and dried with compressed air.
  • the parts passivated in this way were then coated with a cathodic electrocoating material and dried for 20 minutes by heating to 185.degree.
  • the dry film thickness of the lacquer was 18 pm.
  • the parts were provided with individual cuts and subjected to the salt spray test (DIN 50 021) for 480 h.
  • the evaluation according to DIN 53 167 showed an infiltration of 0.2 to 0.4 mm.
  • Example 1 To prepare the rinse solutions, the cations listed in Table 1 were dissolved individually in water (Examples 4 to 9) or in combination (Examples 10 to 14) to give solutions containing 0.1 gl -1 of total cation (s).
  • the salts used were the ethanates (acetates) or (in the case of Ti (IV) the 2,4-pentanedionate (titanylacetylacetonate).
  • the steel parts were then post-passivated with the post-passivation solutions containing the cations in the amount listed in Table I, rinsed with demineralized water and dried with compressed air.
  • the dried parts were coated with a cathodic electrocoating material and dried at 185 ° C. for 20 minutes.
  • the dry film thickness of the paint was 18 ⁇ m.
  • the parts were provided with individual cuts and subjected to the alternating climate test according to VW standard P 12 10 30 days.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur' Nachpassivierung von phosphatierten Metalloberflächen.
  • Der Schutz metallischer Oberflächen, insbesondere der Schutz von Eisen- und Stahloberflächen durch phosphathaltige Überzüge ist seit langer Zeit bekannt. Dabei werden die sog. «nichtschichtbildende Phosphatierung", d.h. die Verwendung von Alkali- und/oder Ammoniumorthophosphatlösungen zur Erzeugung von Eisenphosphatschichten, in denen das Eisenion aus der zu überziehenden metallischen Oberfläche stammt, und die sog. «schichtbildende Phosphatierung» unterschieden, bei der auf Metalloberflächen unter Verwendung von Zinkphosphatschichten bzw. Zink-Calciumphosphat-Schichten gebildet werden.
  • Derartige Phosphatschichten verbessern nicht nur den Korrosionsschutz der Metalloberflächen, sondern erhöhen auch die Haftung für auf die Oberfläche zu applizierende Lacke. Zudem können sie in bestimmten Fällen dazu beitragen, die Eigenschaften von Metallblechen bei der Kaltumformung und bei der Anwendung von Tiefziehverfahren zu verbessern.
  • In Abhängigkeit von der Zusammensetzung der für die Phosphatierung verwendeten Lösung, dem für das Phosphatierverfahren verwendeten Beschleuniger, dem Verfahren der Aufbringung der Phosphatierlösung auf die Metalloberflächen und/ oder auch weiteren Verfahrensparametern ist die Phosphatschicht auf den Metalloberflächen nicht vollständig geschlossen. Es verbleiben vielmehr mehr oder weniger grosse «Poren», die im Zuge einer sog. «Nachpassivierung» geschlossen werden müssen, um korrodierenden Einflüssen auf die Metalloberflächen keinen Angriffspunkt zu lassen.
  • Es ist seit langer Zeit bekannt, für diese Zwecke Chromsalze enthaltende Lösungen zu verwenden. Insbesondere wird die Korrosionsbeständigkeit der durch Phosphatierung erzeugten Überzüge durch eine Nachbehandlung der Oberflächen mit Lösungen, die Chrom(VI) enthalten, erheblich verbessert.
  • Ein wesentlicher Nachteil der Verwendung von Chromsalze enthaltenden Lösungen besteht darin, dass derartige Lösungen hochtoxisch sind. Ausserdem wird verstärkt eine unerwünschte Blasenbildung bei der nachfolgenden Applikation von Lacken oder anderen Überzugsmaterialien beobachtet.
  • Deswegen wurden zahlreiche weitere Möglichkeiten zur Nachpassivierung phosphatierter Metalloberflächen vorgeschlagen, wie zum Beispiel die Verwendung von Zirkoniumsalzen (NL-A-71 16 498), Cersalzen (DE-A 23 34 342), polymeren Aluminiumsalzen (DE-A-23 25 974) oder auch Oligo- oder Polyphosphorsäureestern des Inosits in Verbindung mit einem wasserlöslichen Alkali-oder Erdalkalimetallsalz dieser Ester (DE-A-24 03 022).
  • Gegenstand der DE-A-2428065 (=FR-A-22 32 615) ist gleichfalls ein Verfahren zum Nachpassivieren von Phosphatüberzügen, auf Metalloberflächen, wobei wässrige saure Lösungen Verwendung finden, die einen oder mehrere der folgenden Bestandteile enthalten: Calciumfluorid, Zinkfluorid, Aluminiumfluorid, Titanfluorid, Zirkoniumfluorid, Chromfluorid, Chromzirkoniumfluorid, Nickelfluorid, Ammoniumfluorid, Fluorwasserstoffsäure oder Fluorborsäure. Die Konzentration an Fluoridionen in diesen Lösungen beträgt 0,01 bis 25 g/I.
  • In Chemical Abstracts, Band 99 (1983), Seite 242, Referat 99: 199 009 g, wird ein Nachpassivierungs-Mittel für phosphatierte Metalloberflächen beschrieben, welches aus einer wässrigen Lösung besteht, die unter anderem Salze von Nickel, Cobalt oder Mangan enthält. Aus der entsprechenden JP-A-58 130 282 ist ersichtlich, dass es sich bei den Anionen dieser Salze um Chlorid beziehungsweise Sulfat handelt.
  • Die FR-A-23 39 683 (= DE-A-27 01 321) beschreibt ein Verfahren zur Nachbehandlung von Phosphatierungsschichten mit wässrigen Lösungen, welche Titanionen und ausserdem eine oder mehrere Komponenten aus der Gruppe Phosphorsäure, Phytinsäure, Tannin und Wasserstoffperoxid enthalten. Als Anionen für die Titankationen kommer hierbei Fluorid, Oxalat oder Sulfat in Frage. Zu den Sulfat-Anionen wird hier gesagt, dass sie den Korrosionswiderstand ungünstig beeinflussen; daher sei es besser, das Sulfat aus solchen Lösungen zu entfernen.
  • In Chemical Abstracts, Band 97 (1982), Seite 307, Referat 97: 220 959 n (entsprechend SU-A-914 652), wird ein Verfahren zur Verbesserung der Abriebbeständigkeit sowie der elektrischen Leitfähigkeit von Gussteilen, die mit porösen Phosphatschichten bedeckt sind, beschrieben. Hierzu werden die Phosphatschichten mit wässrigen Lösungen von Salzen des Silbers, Kupfers, Bleis oder Wismuts nachbehandelt. Geeignete Anionen für diese Salze sind Formiate und/oder Oxalate. Anschliessend werden die so behandelten Schichten erhitzt, wobei die anzuwendenden Temperaturen so hoch liegen, dass sich die Salze zersetzen.
  • Abgesehen davon, dass Fluoride in für die Nachpassivierung geeigneten Lösungen nur in Ausnahmefällen verwendet werden, da F--Ionen, wie auch Sulfat-lonen, nach allgemeiner Auffassung eher korrosionsfördernd wirken, könnten sich derartige Verfahren in der Anwendung nicht durchsetzen. Vielmehr konnten die steigenden Anforderungen an Korrosionsschutz bisher nur durch versiegelnde Nachspülung mit chromathaltigen wässrigen Lösungen erfüllt werden (vgl. W. Rausch, Die Phosphatierung von Metallen, E. Leuze Verlag, Saulgau (1974)).
  • Ein weiteres Verfahren zur Behandlung metallischer phosphatierter Oberflächen wird durch die EP-A-0 085 626 offenbart. Nach dem Schritt des Phosphatierens und vor einer Applikation von Überzugsmaterialien werden gemäss der genannten Anmeldung metallische Oberflächen mit Titan(III)-Kationen enthaltenden wässrigen Lösungen behandelt, die einen sauren pH-Wert aufweisen. Das für die Nachpassivierungslösung benötigte Titan(III)-Kation muss dabei in einem vorgelagerten Reaktionsschritt aus Titan(IV) durch Reduktion hergestellt werden, was eine dem eigentlichen Nachpassivierungsschritt vorgelagerte Reduktionsreaktion mit entsprechend aufwendigen Produktionsanlagen erfordert. Ausserdem enthalten die in der genannten Anmeldung offenbarten Lösungen Anionen, die stark korrosiv auf Anlagenteilen wirken (z.B. Cl-, So4 2-) und/oder bekanntermassen den Passiviervorgang stören (z. B. F-).
  • Der Ersatz chromhaltiger Lösungen, die fast ausschliesslich für die Nachpassivierung phosphatierter Metalloberflächen verwendet werden, durch nicht-toxische, keine Blasenbildung hervorrufende Lösungen ist aus den oben genannten Gründen dringend erwünscht. Die Entwicklung eines allgemein und im industriellen Massstab anwendbaren Verfahrens für die effiziente Nachpassivierung phosphatierter Metalloberflächen ist jedoch eine bisher ungelöste Aufgabe.
  • Gegenstand der vorliegenden Erfindung ist nun ein Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen aus Eisen, Stahl, verzinktem Stahl oder Aluminium mittels saurer bis neutraler wässriger Lösungen von Salzen mehrwertiger Metallionen, wobei man die phosphatierten Metalloberflächen zunächst mit Wasser spült, sodann mit wässrigen Lösungen behandelt, die einen pH-Wert im Bereich von 3 bis 7 sowie eine Temperatur im Bereich von 20 bis 120°C aufweisen und eines oder mehrere der nachfolgend angeführten Salze enthalten:
    • a) (2.4-Pentandionato)-titan (IV)-oxid (Titanylacetylacetonat),
    • b) Mangan (II)-ethanat (-acetat),
    • c) Cobalt (II)-ethanat (-acetat),
    • d) Nickel (II)-ethanat (-acetat),
    • e) Kupfer (II)-ethanat (-acetat),

    wobei der Gehalt an Metall-Kationen in den Lösungen jeweils 0,01 bis 10 g/I beträgt und auch bei Vorliegen mehrerer der genannten Kationen den Wert von 10 g/I nicht übersteigt und wobei man anschliessend mit Wasser spült und gegebenenfalls trocknet.
  • Für das erfindungsgemässe Verfahren werden bevorzugt Lösungen eingesetzt, die eines oder mehrere der vorstehend unter a bis e angeführten Salze enthalten, wobei der Gehalt an Ti (IV)-, Mn (11)-, Co (II)- oder Ni (II)-Kationen in den Lösungen 0,1 bis 1 g/I und der Gehalt an Cu (II)-Kationen in denselben 0,03 bis 1 g/I beträgt.
  • Im Sinne des erfindungsgemässen Verfahrens sind ferner die folgenden Ausführungsformen bevorzugt:
  • A) Die Lösungen enthalten:
  • Mangan (II)-ethanat und Cobalt (II)-ethanat, wobei der Gehalt an Mn(II)-Kationen und an Co(II)-Kationen in den Lösungen jeweils 0,05 bis 1 g/I beträgt.
  • B) Die Lösungen enthalten:
  • Nickel(II)-ethanat und Kupfer(II)-ethanat, wobei der Gehalt an Ni(II)-Kationen in den Lösungen 0,1 bis 1 g/I und der Gehalt an Cu(II)-Kationen in denselben 0,03 bis 1 g/I beträgt.
  • C) Die Lösungen enthalten:
  • (2.4-Pentandionato)-titan (IV)-oxid und Cobalt (II)-ethanat und Nickel(II)-ethanat, wobei der Gehalt an Ti(IV)-, Co(II)- und Ni(II)-Kationen in den Lösungen jeweils 0,01 bis 1 g/I beträgt.
  • Der pH-Wert der Anwendungslösungen liegt im sauren bis neutralen Bereich, d.h. im Bereich von 3,0 bis 7,0. Vorzugsweise werden die Lösungen, beispielswe.ise unter Verwendung von Ethansäure (Essigsäure) oder Phosphorsäure einerseits oder Natronlauge andererseits so eingestellt, dass sie einen pH-Wert zwischen 4,0 und 5,0 aufweisen.
  • Die gemäss dem erfindungsgemässen Verfahren angewendeten Titan- und/oder Mangan- und/ oder Cobalt- und/oder Nickel- und/oder KupferSalze enthaltenden Lösungen sind im Temperaturbereich von 20 bis 120°C verwendbar, jedoch wird bevorzugt im Temperaturbereich von 30 bis 50 °C gearbeitet. Behandlungszeiten von ungefähr 1 Minute sind ausreichend, um selbst bei diesen Temperaturen eine hervorragende Nachpassivierung der phosphatierten Metalloberflächen zu erreichen.
  • In der Praxis wird das erfindungsgemässe Verfahren so durchgeführt, dass gereinigte phosphatierte Metalloberflächen zuerst mit Wasser gespült und anschliessend gemäss dem vorliegenden Verfahren mit einer sauren, Titan(IV)- und/ oder Mangan(II)- und/oder Cobalt(II)- und/oder Nickel(II)- und/oder Kupfer(II)-Salze enthaltenden Lösung im Temperaturbereich von bevorzugt 30 bis 50°C behandelt werden, die dadurch erhalten werden können, dass man die entsprechenden Salze in geeigneter Menge enthaltende feste oder flüssige Konzentrate in an sich bekannter Weise in Wasser löst. Für die Behandlung der Metalloberflächen sind Spritzverfahren, Tauchverfahren oder andere, dem Fachmann bekannte Verfahren der Auftragung für die Nachpassivierung, wie z. B. Spritztauchen oder Fluten, geeignet. Die Behandlungszeit beträgt im Regelfall 1 Minute. Die derart nachpassivierten Metalloberflächen werden mit vollentsalztem Wasser gespült und anschliessend mit Druckluft getrocknet.
  • Die entsprechend dem erfindungsgemässen Verfahren nachpassivierten Metalloberflächen sind für eine anschliessende Beschichtung mit Anstrichen, Lacken, Firnissen und dergleichen hervorragend geeignet. Insbesondere bieten die derart nachpassivierten Metalloberflächen einen hervorragend geeigneten Grund für kathodische Elektrotauchlacke. Die phosphatierten und gemäss der Erfindung nachpassivierten Metalloberflächen sind jedoch auch für andere Nachbehandlungsverfahren geeignet.
  • Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.
  • Beispiel 1
  • Zur Herstellung einer Nachpassivierungslösung wurde Cu(CH3COO)2 · H2O in Wasser zu einer 0,3 g - I-1 enthaltenden Lösung gelöst, entsprechend 0,1 g Cu pro Liter Lösung.
  • Stahlteile wurden mit einer alkalischen Reinigungslösung 2 min im Spritzen bei 50°C gereinigt und dann mit Wasser gespült. Anschliessend wurden sie mit einer Zinkphosphatlösung 2 min im Spritzen bei 50°C phosphatiert und danach mit Wasser gespült.
  • Die Stahlteile wurden anschliessend mit der 0,3 g Kupfer(II)ethanat-Hydrat pro Liter enthaltenden Nachpassivierungslösung bei 35°C 1 min im Spritzen nachpassiviert. Es wurde dann mit vollentsalztem Wasser gespült und mit Druckluft getrocknet.
  • Die getrockneten Teile wurden mit einem kathodischen Elektrotauchlack beschichtet und 20 min bei 185°C getrocknet. Die Trockenfilmdicke des Anstriches betrug 18 µm.
  • Die Teile wurden mit Einzelschnitten versehen und dem Salzsprühtest (DIN 50 021) für 480 h unterworfen. Die Auswertung nach DIN 53 167 ergab eine Unterwanderung von 0,4 bis 0,6 mm.
  • Beispiel 2
  • Zur Herstellung einer Nachpassivierungslösung wurde Ni(CH3COO)2 · 4H20 zu einer 0,7 g . 1-1 enthaltenden Lösung in Wasser gelöst, entsprechend 0,17 g Ni pro Liter Lösung. Stahlteile wurden im Tauchverfahren 10 min bei 80°C mit einer alkalischen Reinigungslösung gereinigt und dann mit Wasser gespült. Die Teile wurden anschliessend 3 min im Tauchverfahren mit einer Zinkphosphatlösung bei 50°C phosphatiert und wiederum gespült.
  • Zur Nachpassivierung wurde die 0,7 g Nickel-(II)ethanat Tetrahydrat pro Liter enthaltende Lösung bei 35°C eingesetzt, die Behandlungszeit betrug dabei 1 min im Tauchen. Die nachpassivierten Teile wurden mit vollentsalztem Wasser gespült und mit Druckluft getrocknet.
  • Anschliessend wurde kathodisch ein Elektrotauchlack aufgetragen, der 20 min durch Erwärmen auf 185 °C getrocknet wurde. Die Trockenfilmdicke des Lackes betrug 18 µm.
  • Die lackierten Teile wurden dann mit Einzelschnitten versehen und dem Salzsprühtest (DIN 50 021 ) für 480 Stunden unterworfen. Die Auswertung nach DIN 53 167 ergab eine Unterwanderung von 0,4 bis 0,6 mm.
  • Beispiel 3
  • Zur Herstellung einer Nachpassivierungslösung wurden Ni(CH3COO)2 · 4H20 und CU(CH3-COO)2 · H20 in Wasser zu einer Lösung gelöst, die 0,5 g · I-1 Nickel(II)ethanat-Tetrahydrat und 0,1 g - I-1 Kupfer(II)ethanat-Hydrat enthielt. Dies entspricht einem Gehalt von 0,12 g Ni und 0,03 g Cu pro Liter Lösung.
  • Stahlteile wurden im Tauchverfahren 10 min bei 80°C mit einer alkalischen Reinigungslösung gereinigt und dann mit Wasser gespült. Die Teile wurden daraufhin 3 min im Tauchverfahren mit einer Zinkphosphatlösung bei 50°C phosphatiert und wiederum gespült.
  • Zur Nachpassivierung wurden die Teile mit der wie oben beschrieben hergestellten Nickel- und Kupfer-Ionen enthaltenden Lösung 1 min bei 40°C im Tauchen behandelt, anschliessend mit vollentsalztem Wasser gespült und mit Druckluft getrocknet.
  • Die derart nachpassivierten Teile wurden dann mit einem kathodischen Elektrotauchlack beschichtet und 20 min durch Erwärmen auf 185°C getrocknet. Die Trockenfilmdicke des Lackes betrug 18 pm.
  • Die Teile wurden mit Einzelschnitten versehen und dem Salzsprühtest (DIN 50 021) für 480 h unterworfen. Die Auswertung nach DIN 53 167 ergab eine Unterwanderung von 0,2 bis 0,4 mm.
  • Beispiele 4-14
  • Zur Herstellung der Nachspüllösungen wurden die in Tabelle 1 aufgeführten Kationen in Wasser einzeln (Beispiele 4 bis 9) oder in Kombination (Beispiele 10 bis 14) zu jeweils 0,1 gl-1 Gesamt- kation(en) enthaltenden Lösungen gelöst. Dabei wurden als Salze die Ethanate (Acetate) bzw. (im Falle von Ti(IV) das 2.4-Pentandionat (Titanylacetylacetonat) eingesetzt.
  • Stahlteile wurden gemäss Tabelle 2 mit alkalischen Reinigungslösungen im Spritzen oder Tauchen gereinigt und dann mit Wasser gespült. Anschliessend wurden sie mit einer Zinkphosphatlösung im Spritzen oder Tauchen phosphatiert und danach mit Wasser gespült.
  • Die Stahlteile wurden anschliessend mit den die Kationen in der in Tabelle I genannten Menge enthaltenden Nachpassivierungslösungen nachpassiviert, mit vollentsalztem Wasser gespült und mit Druckluft getrocknet.
  • Die getrockneten Teile wurden mit einem kathodischen Elektrotauchlack beschichtet und 20 min bei 185°C getrocknet. Die Trockenfilmdicke des Anstriches betrug 18 µm.
  • Die Teile wurden mit Einzelschnitten versehen und dem Wechselklimatest nach VW-Norm P 12 10 30 Tage unterzogen.
  • Die Auswertung nach DIN 53167 ergab die in der Tabelle 1 angegebenen Werte.
    Figure imgb0001
    Figure imgb0002
    Figure imgb0003

Claims (8)

1. Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen aus Eisen, Stahl, verzinktem Stahl oder Aluminium mittels saurer bis neutraler wässriger Lösungen von Salzen mehrwertiger Metallionen, wobei man die phosphatierten Metalloberflächen zunächst mit Wasser spült, sodann mit wässrigen Lösungen behandelt, die einen pH-Wert im Bereich von 3 bis 7 sowie eine Temperatur im Bereich von 20 bis 120°C aufweisen und eines oder mehrere der nachfolgend angeführten Salze enthalten:
a) (2.4-Pentandionato)-titan (IV)-oxid (Titanylacetylacetonat),
b) Mangan (II)-ethanat (-acetat),
c) Cobalt (II)-ethanat (-acetat),
d) Nickel (II)-ethanat (-acetat),
e) Kupfer (II)-ethanat (-acetat),

wobei der Gehalt an Metall-Kationen in den Lösungen jeweils 0,01 bis 10 g/l beträgt und auch bei Vorliegen mehrerer der genannten Kationen den Wert von 10 g/l nicht übersteigt, und wobei man anschliessend mit Wasser spült und gegebenenfalls trocknet.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die Lösungen eines oder mehrere der unter a bis e angeführten Salze enthalten, wobei der Gehalt an Ti (IV)-, Mn (II)-, Co (II)- oder Ni (II)-Kationen in den Lösungen 0,1 bis 1 g/l und der Gehalt an Cu (II)-Kationen in denselben 0,03 bis 1 g/l beträgt.
3. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die Lösungen
b) Mangan (II)-ethanat und
c) Cobalt (II)-ethanat
enthalten, wobei der Gehalt an Mn (II)-Kationen und an Co (II)-Kationen in den Lösungen jeweils 0,05 bis 1 g/I beträgt.
4. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die Lösungen
d) Nickel (II)-ethanat und
e) Kupfer (II)-ethanat

enthalten, wobei der Gehalt an Ni (II)-Kationen in den Lösungen 0,1 bis 1 g/I und der Gehalt an Cu (II)-Kationen in denselben 0,03 bis 1 g/I beträgt.
5. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die Lösungen
a) (2.4-Pentandionato)-titan (IV)-oxid und
c) Cobalt (II)-ethanat und
d) Nickel (II)-ethanat
enthalten, wobei der Gehalt an Ti (IV)-, Co (II)- und Ni (II)-Kationen in den Lösungen jeweils 0,01 bis 1 g/I beträgt.
6. Verfahren nach Anspruch 1 bis 5 dadurch gekennzeichnet, dass die Lösungen einen pH-Wert im Bereich von 4 bis 5 aufweisen.
7. Verfahren nach Anspruch 1 bis 6 dadurch gekennzeichnet, dass die Lösungen eine Temperatur im Bereich von 30 bis 50°C aufweisen.
8. Verfahren nach Anspruch 1 bis 7 dadurch gekennzeichnet, dass man die phosphatierten Metalloberflächen mit den Lösungen im Spritz-oder Tauchverfahren behandelt und anschliessend mit vollentsalztem oder salzarmem Wasser spült und trocknet.
EP84111060A 1984-01-07 1984-09-17 Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen unter Verwendung von Titan- und/oder Mangan- und/oder Cobalt- und/oder Nickel- und/oder Kupfer-Kationen enthaltenden Lösungen Expired EP0149720B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843400339 DE3400339A1 (de) 1984-01-07 1984-01-07 Verfahren zur nachpassivierung von phosphatierten metalloberflaechen unter verwendung von nickel- und/oder kupfer-kationen enthaltenden loesungen
DE3400339 1984-01-07

Publications (3)

Publication Number Publication Date
EP0149720A2 EP0149720A2 (de) 1985-07-31
EP0149720A3 EP0149720A3 (en) 1985-08-14
EP0149720B1 true EP0149720B1 (de) 1988-10-26

Family

ID=6224446

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84111060A Expired EP0149720B1 (de) 1984-01-07 1984-09-17 Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen unter Verwendung von Titan- und/oder Mangan- und/oder Cobalt- und/oder Nickel- und/oder Kupfer-Kationen enthaltenden Lösungen

Country Status (6)

Country Link
US (1) US4600447A (de)
EP (1) EP0149720B1 (de)
JP (1) JPS60159175A (de)
DE (2) DE3400339A1 (de)
ES (1) ES8703167A1 (de)
ZA (1) ZA85105B (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673445A (en) * 1986-05-12 1987-06-16 The Lea Manufacturing Company Corrosion resistant coating
DE4031817A1 (de) * 1990-10-08 1992-04-09 Henkel Kgaa Verfahren zur passivierenden nachbehandlung von phosphatierten metalloberflaechen
US5226976A (en) * 1991-04-15 1993-07-13 Henkel Corporation Metal treatment
DE4138218C2 (de) * 1991-11-21 1994-08-04 Doerken Ewald Ag Verwendung von Nachtauchmitteln für die Nachbehandlung von chromatierten oder passivierten Verzinkungsschichten
FR2685352A1 (fr) * 1991-12-24 1993-06-25 Pont A Mousson Revetement multicouche, avec son procede d'obtention et son application.
JPH0790614A (ja) * 1993-09-22 1995-04-04 Elna Co Ltd アルミニウムまたはアルミニウム合金類およびこれらの化成処理方法
JPH07278891A (ja) * 1994-04-12 1995-10-24 Nippon Parkerizing Co Ltd 金属材料の塗装前処理方法
MX9605901A (es) * 1994-05-27 1997-12-31 Herberts & Co Gmbh Procedimiento para revestir substratos metalicos fosfatados.
DE19511573A1 (de) * 1995-03-29 1996-10-02 Henkel Kgaa Verfahren zur Phosphatierung mit metallhaltiger Nachspülung
DE19606018A1 (de) * 1996-02-19 1997-08-21 Henkel Kgaa Zinkphosphatierung mit geringen Gehalten an Nickel- und/oder Cobalt
US6485580B1 (en) * 1998-05-20 2002-11-26 Henkel Corporation Composition and process for treating surfaces or light metals and their alloys
WO1999060186A1 (en) * 1998-05-20 1999-11-25 Henkel Corporation Composition and process for treating surfaces of light metals and their alloys
DE19834796A1 (de) 1998-08-01 2000-02-03 Henkel Kgaa Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
EP1198618B1 (de) 1999-05-28 2003-11-26 Henkel Kommanditgesellschaft auf Aktien Nachpassivierung einer phosphatierten metalloberfläche
DE19956383A1 (de) * 1999-11-24 2001-05-31 Henkel Kgaa Verfahren zur Phospatierung mit metallhaltiger Nachspülung
DE10115244A1 (de) * 2001-03-28 2002-10-02 Henkel Kgaa Nachpassivierung einer phosphatierten Metalloberfläche im Bandverfahren
MD3008G2 (ro) * 2005-06-27 2006-10-31 Государственный Университет Молд0 Procedeu de repatinare a pieselor vechi din bronz şi alamă restaurate
CN102605361B (zh) * 2011-01-24 2016-11-23 北京中科三环高技术股份有限公司 一种烧结钕铁硼磁性材料的表面处理方法
DE102013107505A1 (de) * 2013-07-16 2015-01-22 Thyssenkrupp Rasselstein Gmbh Verfahren zum Auftragen einer wässrigen Behandlungslösung auf die Oberfläche eines bewegten Stahlbands

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130282A (ja) * 1982-01-29 1983-08-03 Nippon Steel Corp 塗装用金属の前処理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695942A (en) * 1970-12-02 1972-10-03 Amchem Prod Zirconium rinse for phosphate coated metal surfaces
JPS4964530A (de) * 1972-07-10 1974-06-22
US3852123A (en) * 1972-11-20 1974-12-03 Pennwalt Corp Sealing rinses for phosphate coatings on metal
JPS535622B2 (de) * 1973-02-12 1978-03-01
US3895970A (en) * 1973-06-11 1975-07-22 Pennwalt Corp Sealing rinse for phosphate coatings of metal
JPS5145604B2 (de) * 1973-12-21 1976-12-04
JPS5292836A (en) * 1976-01-30 1977-08-04 Nippon Packaging Kk Zinc or its alloys subjected to chemical conversion
SU914652A1 (ru) * 1980-04-07 1982-03-23 Inst Mekhaniki Metallopolimern Способ дополнительной обработки пористых фосфатных покрытий1
FR2520758A1 (fr) * 1982-01-29 1983-08-05 Produits Ind Cie Fse Composition et procede pour le traitement de surfaces metalliques phosphatees
JPS6018752B2 (ja) * 1982-05-14 1985-05-11 新日本製鐵株式会社 化成処理前処理法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130282A (ja) * 1982-01-29 1983-08-03 Nippon Steel Corp 塗装用金属の前処理方法

Also Published As

Publication number Publication date
ES8703167A1 (es) 1987-02-01
JPS60159175A (ja) 1985-08-20
DE3400339A1 (de) 1985-08-29
US4600447A (en) 1986-07-15
DE3474839D1 (en) 1988-12-01
ZA85105B (en) 1985-08-28
EP0149720A3 (en) 1985-08-14
EP0149720A2 (de) 1985-07-31
ES539387A0 (es) 1987-02-01

Similar Documents

Publication Publication Date Title
EP0149720B1 (de) Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen unter Verwendung von Titan- und/oder Mangan- und/oder Cobalt- und/oder Nickel- und/oder Kupfer-Kationen enthaltenden Lösungen
DE69737195T2 (de) Lösung und Verfahren zur Herstellung von Schutzschichten auf Metallen
EP0187917B1 (de) Verfahren zur Verbesserung des Korrosionsschutzes autophoretisch abgeschiedener Harzschichten auf Metalloberflächen
EP0312176B1 (de) Verfahren zum Aufbringen von Konversionsüberzügen
EP0056881B1 (de) Verfahren zur Phosphatierung von Metallen
WO2011067094A1 (de) Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen
DE19834796A1 (de) Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
EP0578670B1 (de) Verfahren zum phosphatieren von metalloberflächen
DE2017327B2 (de) Verfahren zur beschichtung von metalloberflaechen
DE4214954C2 (de) Verfahren zur Herstellung von verbesserten Chromatkonversionsschichten auf Zinkoberflächen und Anwendung des Verfahrens
EP0931179B1 (de) Verfahren zur phosphatierung von stahlband
EP0366941B1 (de) Verfahren zur elektrophoretischen Tauchlackierung von chromatierbaren Metalloberflächen
DE3245411A1 (de) Verfahren zur phosphatierung elektrolytisch verzinkter metallwaren
EP1290242B1 (de) Verfahren zum behandeln bzw. vorbehandeln von bauteilen mit aluminium-oberflächen
DE2206180A1 (de) Permanganathaltiges Endspulmittel fur Metallüberzüge
DE1228118B (de) Verfahren zur kathodischen Oberflaechen-behandlung von Eisen- und Stahlgegenstaenden
DE3630246A1 (de) Verfahren zur erzeugung von phosphatueberzuegen sowie dessen anwendung
EP1019564A1 (de) Verfahren zur phosphatierung von stahlband
DE19808755A1 (de) Schichtgewichtsteuerung bei Bandphosphatierung
WO2001040546A1 (de) Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung
EP0127204B1 (de) Verfahren zum Phosphatieren von Verbundmetallen
EP0171043B1 (de) Verfahren zur Passivierung von Blei- und bleihaltigen Oberflächen
EP0096753B1 (de) Verfahren zur stromlosen Erzeugung von korrosionsschützenden Schichten auf Aluminiumbauteilen
DE3507372A1 (de) Verfahren zur vorbereitung von zinkoberflaechen fuer die lackierung
DE2426392C3 (de) Verfahren zur Erzeugung eines Umwandlungsüberzuges auf einer Aluminiumoberfläche mit sechswertiges Chrom enthaltenden Lösungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL SE

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19851220

17Q First examination report despatched

Effective date: 19861211

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

REF Corresponds to:

Ref document number: 3474839

Country of ref document: DE

Date of ref document: 19881201

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890823

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890911

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890929

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890930

Year of fee payment: 6

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900930

BERE Be: lapsed

Owner name: GERHARD COLLARDIN G.M.B.H.

Effective date: 19900930

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST