EP0149720A2 - Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen unter Verwendung von Titan- und/oder Mangan- und/oder Cobalt- und/oder Nickel- und/oder Kupfer-Kationen enthaltenden Lösungen - Google Patents

Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen unter Verwendung von Titan- und/oder Mangan- und/oder Cobalt- und/oder Nickel- und/oder Kupfer-Kationen enthaltenden Lösungen Download PDF

Info

Publication number
EP0149720A2
EP0149720A2 EP84111060A EP84111060A EP0149720A2 EP 0149720 A2 EP0149720 A2 EP 0149720A2 EP 84111060 A EP84111060 A EP 84111060A EP 84111060 A EP84111060 A EP 84111060A EP 0149720 A2 EP0149720 A2 EP 0149720A2
Authority
EP
European Patent Office
Prior art keywords
cations
phosphated
aqueous solutions
treated
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84111060A
Other languages
English (en)
French (fr)
Other versions
EP0149720B1 (de
EP0149720A3 (en
Inventor
Reinhard Opitz
Kurt Hosemann
Heinz Portz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gerhard Collardin GmbH
Original Assignee
Gerhard Collardin GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerhard Collardin GmbH filed Critical Gerhard Collardin GmbH
Publication of EP0149720A2 publication Critical patent/EP0149720A2/de
Publication of EP0149720A3 publication Critical patent/EP0149720A3/de
Application granted granted Critical
Publication of EP0149720B1 publication Critical patent/EP0149720B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment

Definitions

  • the invention relates to a method for the post-passivation of phosphated metal surfaces.
  • non-layer-forming phosphating i.e. distinguish the use of alkali and / or ammonium orthophosphate solutions for the production of iron phosphate layers in which the iron ion comes from the metallic surface to be coated, and the so-called "layer-forming phosphating" in which on metal surfaces using zinc or zinc / calcium / calcium phosphate - Solutions zinc phosphate layers or zinc calcium phosphate layers are formed.
  • Such phosphate layers not only improve the corrosion protection of the metal surfaces, but also increase the adhesion to the surface applying paints. In certain cases, they can also help to improve the properties of metal sheets during cold forming and when using deep-drawing processes.
  • the phosphate layer on the metal surfaces is not completely closed. Rather, there remain more or less large "pores" which have to be closed in the course of a so-called “post-passivation” in order not to leave a point of attack for corrosive influences on the metal surfaces.
  • the present invention now relates to a process for the post-passivation of phosphated metal surfaces, which is characterized in that these surfaces are treated with acidic to neutral, aqueous solutions in the temperature range from 20 to 120 ° C. which contain one or more divalent cations from the group manganese, Contain cobalt, nickel and copper and / or titanium (IV) ions.
  • salts containing titanium (IV) and / or manganese (II) and / or cobalt (II) and / or nickel (II) and / or copper (II) can be used, which are well within the temperature range of the process Dissolve water.
  • Salts of weak organic acids are particularly suitable for this. Examples are methanates (formates), ethanates (acetates), propanates (propionates), butanates (butyrates) or 2,4-pentanedionates (acetylacetonates).
  • Solutions which contain only manganese cations or only cobalt cations or only nickel cations or only copper cations or only titanium cations can be used for the method according to the present invention. Solutions are preferably used which contain both nickel (II) and copper (II) cations or both manganese (II) and cobalt (II) cations or both cobalt (II) and nickel (II) also contain titanium (IV) cations or other combinations of the cations mentioned.
  • Aqueous solutions which are used in the process according to the invention for the post-passivation of phosphated metal surfaces contain the titanium and / or manganese and / or cobalt and / or nickel and / or copper ions mentioned in amounts of 0.01 to 10 g each. 1-1 application solution.
  • the total content of the cations used may be 10 g. Do not exceed 1 -1 application solution.
  • the pH of the application solutions is in the acidic to neutral range, i.e. in the range of 3.0 to 7.0.
  • the solutions are preferably adjusted, for example using ethanoic acid (acetic acid) or phosphoric acid on the one hand or sodium hydroxide solution on the other hand, in such a way that they have a pH between 4.0 and 5.0.
  • the solutions containing titanium and / or manganese and / or cobalt and / or nickel and / or copper ions used according to the method of the invention can be used in the temperature range from approximately 20 to approximately 120 ° C., but are preferably used in the temperature range from 30 to 50 ° C worked. Treatment times of approximately 1 minute are sufficient to achieve excellent post-passivation of the phosphated metal surfaces even at these temperatures.
  • the process according to the invention is carried out in such a way that cleaned phosphated metal surfaces are first rinsed with water and then, according to the present process, with an acidic, titanium (IV) - and / or manganese (II) - and / or cobalt (II) - and / or solution containing nickel (II) and / or copper (II) cations in the temperature range of preferably 30 to 50 ° C., which can be obtained by adding solid or liquid concentrates containing the corresponding cations in a suitable amount dissolves in water in a manner known per se.
  • an acidic, titanium (IV) - and / or manganese (II) - and / or cobalt (II) - and / or solution containing nickel (II) and / or copper (II) cations in the temperature range of preferably 30 to 50 ° C.
  • spray processes, dipping processes or other processes of application for the post-passivation known to the person skilled in the art are such eg splash dipping or flooding.
  • the treatment time is usually 1 minute.
  • the post-passivated metal surfaces are rinsed with deionized water and then dried with compressed air.
  • the metal surfaces post-passivated in accordance with the method according to the invention are outstandingly suitable for subsequent coating with paints, varnishes, varnishes and the like.
  • the post-passivated metal surfaces in this way offer an outstandingly suitable reason for cathodic electrocoating materials.
  • the phosphated and post-passivated metal surfaces are also suitable for other post-treatment processes.
  • Cu (CH 3 COO) 2 was used to prepare a post passivation solution. H20 in water to a 0.3 g. 1 -1 containing solution dissolved, corresponding to 0.1 g of Cu per liter of solution.
  • Steel parts were sprayed with an alkaline cleaning solution for 2 min at 50 ° C. and then rinsed with water. They were then phosphatized with a zinc phosphate solution for 2 minutes by spraying at 50 ° C. and then rinsed with water.
  • the steel parts were then coated with 0.3 g of copper (II) ethanate hydrate per liter Passivation solution at 35 ° C post-passivated for 1 min. It was then rinsed with deionized water and dried with compressed air.
  • the dried parts were coated with a cathodic electrocoating material and dried at 185 ° C. for 20 minutes.
  • the dry film thickness of the paint was 18 ⁇ m.
  • the parts were provided with individual cuts and subjected to the salt spray test (DIN 50 021) for 480 h.
  • the evaluation according to DIN 53 167 showed an infiltration of 0.4 to 0.6 mm.
  • Ni (CH 3 COO) 2 was used to prepare a post-passivation solution. 4H20 g to a 0,. 7 Solution containing 1 -1 dissolved in water, corresponding to 0.17 g Ni per liter of solution. Steel parts were immersed for 10 minutes at 80 ° C with an alkaline cleaning solution and then rinsed with water. The parts were then phosphatized for 3 minutes with a zinc phosphate solution at 50 ° C. and rinsed again.
  • the solution containing 0.7 g of nickel (II) ethanol tetrahydrate per liter at 35 ° C. was used for the post-passivation, the treatment time being 1 min in immersion.
  • the post-passivated parts were rinsed with deionized water and dried with compressed air.
  • the painted parts were then provided with individual cuts and subjected to the salt spray test (DIN 50 021) for 480 hours.
  • the evaluation according to DIN 53 167 showed an infiltration of 0.4 to 0.6 mm.
  • Ni (CH 3 COO) 2 was used to prepare a post-passivation solution. 4H20 and Cu (CH 3 COO) 2 . H 2 0 dissolved in water to a solution containing 0.5 g. l -1 nickel (II) ethanate tetrahydrate and 0.1 g. 1 1 copper (II) ethanate hydrate contained. This corresponds to a content of 0.12 g Ni and 0.03 g Cu per liter of solution.
  • the parts were treated with the solution containing nickel and copper ions prepared as described above for 1 min at 40 ° C. in an immersion, then rinsed with deionized water and dried with compressed air.
  • the parts passivated in this way were then coated with a cathodic electrocoating material and dried for 20 minutes by heating to 185.degree.
  • the dry film thickness of the lacquer was 18 gm.
  • the parts were provided with individual cuts and subjected to the salt spray test (DIN 50 021) for 480 h.
  • the Evaluation according to DIN 53 167 showed an infiltration of 0.2 to 0.4 mm.
  • the steel parts were then post-passivated with the post-passivation solutions containing the cations in the amount given in Table 1, rinsed with demineralized water and dried with compressed air.
  • the dried pieces were coated with a cathodic electro-immersion l ack coated and dried 20 min at 185 ° C.
  • the dry film thickness of the paint was 18 ⁇ m.
  • the parts were provided with individual sections and the alternating climate test in accordance with VW standard P 12 10 30 days sub zo g s.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen, das dadurch gekennzeichnet ist, daß man phosphatierte Oberflächen aus Eisen, Stahl, verzinktem Stahl oder Aluminium mit Wasser spült, mit Ti(IV)- und/oder Mn(II)-und/oder Co(II)- und/oder Ni(II)- und/oder Cu(II)-Kationen enthaltenden wässrigen Lösungen im Temperaturbereich von bis 120°C behandelt und anschließend mit Wasser spült und gegebenenfalls trocknet.

Description

  • Die Erfindung betrifft ein Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen.
  • Der Schutz metallischer Oberflächen, insbesondere der Schutz von Eisen- und Stahloberflächen durch phosphathaltige Überzüge ist seit langer Zeit bekannt. Dabei werden die sog. "nicht-schichtbildende Phosphatierung", d.h. die Verwendung von Alkali- und/oder Ammoniumorthophosphatlösungen zur Erzeugung von Eisenphosphatschichten, in denen das Eisenion aus der zu überziehenden metallischen Oberfläche stammt, und die sog. "schichtbildende Phosphatierung" unterschieden, bei der auf Metalloberflächen unter Verwendung von Zink-oder Zink-/Calciumphosphat-Lösungen Zinkphosphatschichten bzw. Zink-Calciumphosphat-Schichten gebildet werden.
  • Derartige Phosphatschichten verbessern nicht nur den Korrosionsschutz der Metalloberflächen, sondern erhöhen auch die Haftung für auf die Oberfläche zu applizierende Lacke. Zudem können sie in bestimmten Fällen dazu beitragen, die Eigenschaften von Metallblechen bei der Kaltumformung und bei der Anwendung von Tiefziehverfahren zu verbessern.
  • In Abhängigkeit von der Zusammensetzung der für die Phosphatierung verwendeten Lösung, dem für das Phosphatierverfahren verwendeten Beschleuniger, dem Verfahren der Aufbringung der Phosphatierlösung auf die Metalloberflächen und/oder auch weiteren Verfahrensparametern ist die Phosphatschicht auf den Metalloberflächen nicht vollständig geschlossen. Es verbleiben vielmehr mehr oder weniger große "Poren", die im Zuge einer sog. "Nachpassivierung" geschlossen werden müssen, um korrodierenden Einflüssen auf die Metalloberflächen keinen Angriffspunkt zu lassen.
  • Es ist seit langer Zeit bekannt, für diese Zwecke Chromsalze enthaltende Lösungen zu verwenden. Insbesondere wird die Korrosionsbeständigkeit der durch Phosphatierung erzeugten Überzüge durch eine Nachbehandlung der Oberflächen mit Lösungen, die Chrom(VI) enthalten, erheblich verbessert.
  • Ein wesentlicher Nachteil der Verwendung von Chromsalze enthaltenden Lösungen besteht darin, daß derartige Lösungen hochtoxisch sind. Außerdem wird ver-stärkt eine unerwünschte Blasenbildung bei der nachfolgenden Applikation von Lacken oder anderen Uberzugsmaterialien beobachtet.
  • Deswegen wurden zahlreiche weitere Möglichkeiten zur Nachpassivierung phosphatierter Metalloberflächen vorgeschlagen, wie z.B. die Verwendung von Zirkoniumsalzen (NL-PS 71 16 498), Cersalzen (DE-OS 23 34 342), polymeren Aluminiumsalzen (DE-OS 23 25 974), Oligo-oder Polyphosphorsäureestern des Inosits in Verbindung mit einem wasserlöslichen Alkali- oder Erdalkalimetallsalz dieser Ester (DE-OS 24 03 022) oder auch Fluoriden verschiedener Metalle (DE-O5 24 22 D65).
  • Abgesehen davon, daß Fluoride in für die Nachpassivierung geeigneten Lösungen nur in Ausnahmefällen verwendet werden, da F ―Ionen, wie auch Sulfat-Ionen, nach allgemeiner Auffassung eher korrosionsfördernd wirken, konnten sich derartige Verfahren in der Anwendung nicht durchsetzen. Vielmehr konnten die steigenden Anforderungen an Korrosionsschutz bisher nur durch versiegelnde Nachspülung mit chromathaltigen wässrigen Lösungen erfüllt werden (vgl. W. Rausch, Die Phosphatierung von Metallen, E. Leuze Verlag, Saulgau (1974)).
  • Ein weiteres Verfahren zur Behandlung metallischer phosphatierter Oberflächen wird durch die EP-A-0 085 626 offenbart. Nach dem Schritt des Phosphatierens und vor einer Applikation von überzugsmaterialien werden gemäß der genannten Anmeldung metallische Oberflächen mit Titan(III)-Kationen enthaltenden wässrigen Lösungen behandelt, die einen sauren pH-Wert aufweisen. Das für die Nachpassivierungslösung benötigte Titan(III)-Kation muß dabei in einem vorgelagerten Reaktionsschritt aus Titan(IV) durch Reduktion hergestellt werden, was eine dem eigentlichen Nachpassivierungsschritt vorgelagerte Reduktionsreaktion mit entsprechend aufwendigen Produktionsanlagen erfordert. Außerdem enthalten die in der genannten Anmeldung offenbarten Lösungen Anionen, die stark korrosiv auf Anlagenteile wirken (z.B. Cl , So4 2 ) und/oder bekanntermaßen den Passiviervorgang stören (z.B. F- ).
  • Der Ersatz chromhaltiger Lösungen, die fast ausschließlich für die Nachpassivierung phosphatierter Metalloberflächen verwendet werden, durch nicht-toxische, keine Blasenbildung hervorrufende Lösungen ist aus den oben genannten Gründen dringend erwünscht. Die Entwicklung eines allgemein und im industriellen Maßstab anwendbaren Verfahrens für die effiziente Nachpassivierung phosphatierter Metalloberflächen ist jedoch eine bisher ungelöste Aufgabe.
  • Gegenstand der vorliegenden Erfindung ist nun ein Verfahren zur Nachpassivierung phosphatierter Metalloberflächen, das dadurch gekennzeichnet ist, daß man diese Oberflächen mit sauren bis neutralen, wässrigen Lösungen im TemperAturbereich von 20 bis 120°C behandelt, die ein oder mehrere zweiwertige Kationen aus der Gruppe Mangan, Cobalt, Nickel und Kupfer und/oder Titan(IV)-Ionen enthalten.
  • Entsprechend dem vorliegenden Verfahren können Titan(IV) und/oder Mangan(II) und/oder Cobalt(II) und/oder Nickel(II) und/oder Kupfer(II) enthaltende Salze eingesetzt werden, die sich im Temperaturbereich des Verfahrens gut in Wasser lösen. Hierfür kommen insbesondere Salze schwacher organischer Säuren in Frage. Beispiele sind Methanate (Formiate), Ethanate (Acetate), Propanate (Propionate), Butanate (Butyrate) oder 2.4-Pentandionate (Acetylacetonate). Insbesondere werden (2.4-Pentandionato)-titan(IV)oxid (Titanylacetylacetonat) und/oder Mangan(II)ethanat und/oder Cobalt(II)ethanat und/oder Nickel(II)ethanat und/oder Kupfer(II)ethanat eingesetzt.
  • Für das Verfahren gemäß der vorliegenden Erfindung können Lösungen eingesetzt werden, die nur Mangan-Kationen oder nur Cobalt-Kationen oder nur Nickel-Kationen oder nur Kupfer-Kationen oder nur Titan-Kationen enthalten. Bevorzugt werden Lösungen eingesetzt, die sowohl Nickel (II)- als auch Kupfer (II)-Kationen oder sowohl Mangan (II) - als auch Cobalt(II)-Kationen oder sowohl Cobalt(II)- als auch Nickel(II)- als auch Titan(IV)-Kationen oder auch andere Kombinationen der genannten Kationen enthalten.
  • Wässrige Lösungen, die in dem erfindungsgemäßen Verfahren zur Nachpassivierung phosphatierter Metalloberflächen eingesetzt werden, enthalten die genannten Titan- und/oder Mangan- und/oder Cobalt- und/oder Nickel- und/oder Kupferionen in Mengen von jeweils 0,01 bis 10 g . 1-1 Anwendungslösung. Insbesondere werden Lösungen mit einem Titangehalt im Bereich von 0,1 bis 1 g . 1-1 Anwendungslösung und/oder einem Mangangehalt im Bereich von 0,1 bis 1 g . 1-1 Anwendungslösung und/oder einem Cobaltgehalt im Bereich von 0,1 bis 1 g . 1-1 Anwendungslösung und/oder mit einem Nickelgehalt im Bereich von 0,1 bis 1 g . 1-1 Anwendungslösung und/oder einem Kupfergehalt von 0,03 bis 1 g . 1-1 Anwendungslösung eingesetzt. Der Gesamtgehalt der verwendeten Kationen darf jedoch den Wert von 10 g . 1-1 Anwendungslösung nicht überschreiten.
  • Der pH-Wert der Anwendungslösungen liegt im sauren bis neutralen Bereich, d.h. im Bereich von 3,0 bis 7,0. Vorzugsweise werden die Lösungen, beispielsweise unter Verwendung von Ethansäure (Essigsäure) oder Phosphorsäure einerseits oder Natronlauge andererseits so eingestellt, daß sie einen pH-Wert zwischen 4,0 und 5,0 aufweisen.
  • Die gemäß dem erfindungsgemäßen Verfahren angewendeten Titan- und/oder Mangan- und/oder Cobalt- und/oder Nickel- und/oder Kupfer-Ionen enthaltenden Lösungen sind im Temperaturbereich von ungefähr 20 bis ungefähr 120°C verwendbar, jedoch wird bevorzugt im Temperaturbereich von 30 bis 50°C gearbeitet. Behandlungszeiten von ungefähr 1 Minute sind ausreichend, um selbst bei diesen Temperaturen eine hervorragende Nachpassivierung der phosphatierten Metalloberflächen zu erreichen.
  • In der Praxis wird das erfindungsgemäße Verfahren so durchgeführt, daß gereinigte phosphatierte Metalloberflächen zuerst mit Wasser gespült und anschließend gemäß dem vorliegenden Verfahren mit einer sauren, Titan(IV)- und/oder Mangan (II) - und/oder Cobalt (II) - und/oder Nickel(II)- und/oder Kupfer(II)-Kationen enthaltenden Lösung im Temperaturbereich von bevorzugt 30 bis 50°C behandelt werden, die dadurch erhalten werden können, daß man die entsprechenden Kationen in geeigneter Menge enthaltende feste oder flüssige Konzentrate in an sich bekannter Weise in Wasser löst. Für die Behandlung der Metalloberflächen sind Spritzverfahren, Tauchverfahren oder andere, dem Fachmann bekannte Verfahren der Auftragung für die Nachpassivierung, wie z.B. Spritztauchen oder Fluten, geeignet. Die Behandlungszeit beträgt im Regelfall 1 Minute. Die derart nachpassivierten Metalloberflächen werden mit vollentsalztem Wasser gespült und anschließend mit Druckluft getrocknet.
  • Die entsprechend dem erfindungsgemäßen Verfahren nachpassivierten Metalloberflächen sind für eine anschließende Beschichtung mit .Anstrichen, Lacken, Firnissen und dergleizhen hervorragend geeignet. Insbesondere bieten die derart nachpassivierten Metalloberflächen einen hervorragend geeigneten Grund für kathodische Elektrotauchlacke. Die phosphatierten und gemäß der Erfindung nachpassivierten Metalloberflächen sind jedoch auch für andere Nachbehandlungsverfahren geeignet.
  • Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.
  • Beispiel 1
  • Zur Herstellung einer Nachpassivierungslösung wurde Cu (CH3COO)2 . H20 in Wasser zu einer 0,3 g . 1-1 enthaltenden Lösung gelöst, entsprechend 0,1 g Cu pro Liter Lösung.
  • Stahlteile wurden mit einer alkalischen Reinigungslösung 2 min im Spritzen bei 50°C gereinigt und dann mit Wasser gespült. Anschließend wurden sie mit einer Zinkphosphatlösung 2 min im Spritzen bei 50°C phosphatiert und danach mit Wasser gespült.
  • Die Stahlteile wurden anschließend mit der 0,3 g Kupfer(II)ethanat-Hydrat pro Liter enthaltenden Nachpassivierungslösung bei 35°C 1 min im Spritzen nachpassiviert. Es wurde dann mit vollentsalztem Wasser gespült und mit Druckluft getrocknet.
  • Die getrockneten Teile wurden mit einem kathodischen Elektrotauchlack beschichtet und 20 min bei 185°C getrocknet. Die Trockenfilmdicke des Anstriches betrug 18 µm.
  • Die Teile wurden mit Einzelsclnitten versehen und dem Salzsprühtest (DIN 50 021) für 480 h unterworfen. Die Auswertung nach DIN 53 167 ergab eine Unterwanderung von 0,4 bis 0,6 mm.
  • Beispiel 2
  • Zur Herstellung einer Nachpassivierungslösung wurde Ni (CH3COO) 2 . 4H20 zu einer 0,7 g . 1 -1 enthaltenden Lösung in Wasser gelöst, entsprechend 0,17 g Ni pro Liter Lösung. Stahlteile wurden im Tauchverfahren 10 min bei 80°C mit einer alkalischen Reinigungslösung gereinigt und dann mit Wasser gespült. Die Teile wurden anschließend 3 min im Tauchverfahren mit einer Zinkphosphatlösung bei 50°C phosphatiert und wiederum gespült.
  • Zur Nachpassivierung wurde die 0,7 g Nickel(II)etha- nat Tetrahydrat pro Liter enthaltende Lösung bei 35°C eingesetzt, die Behandlungszeit betrug dabei 1 min im Tauchen. Die nachpassivierten Teile wurden mit vollentsalztem Wasser gespült und mit Druckluft getrocknet.
  • Anschließend wurde kathodisch ein Elektrotauchlack aufgetragen, der 20 min durch Erwärmen auf 185°C getrocknet wurde. Die Trockenfilmdicke des Lackes betrug 18µm.
  • Die lackierten Teile wurden dann mit Einzelschnitten versehen und dem Salzsprühtest (DIN 50 021) für 480 Stunden unterworfen. Die Auswertung nach DIN 53 167 ergab eine Unterwanderung von 0,4 bis 0,6 mm.
  • Beispiel 3
  • Zur Herstellung einer Nachpassivierungslösung wurden Ni(CH3COO)2. 4H20 und Cu(CH3COO)2 . H20 in Wasser zu einer Lösung gelöst, die 0,5 g . l-1 Nickel(II)ethanat-Tetrahydrat und 0,1 g . 1 1 Kupfer(II)ethanat-Hydrat enthielt. Dies entspricht einem Gehalt von 0,12 g Ni und 0,03 g Cu pro Liter Lösung.
  • Stahlteile wurden im Tauchverfahren 10 min bei 80°C mit einer alkalischen Reinigungslösung gereinigt und dann mit Wasser gespült. Die Teile wurden daraufhin 3 min im Tauchverfahren mit einer Zinkphosphatlösung bei 50°C phosphatiert und wiederum gespült.
  • Zur Nachpassivierung wurden die Teile mit der wie oben beschrieben hergestellten Nickel- und Kupfer-Ionen enthaltenden Lösung 1 min bei 40°C im Tauchen behandelt, anschließend mit vollentsalztem Wasser gespült und mit Druckluft getrocknet.
  • Die derart nachpassivierten Teile wurden dann mit einem kathodischen Elektrotauchlack beschichtet und 20 min durch Erwärmen auf 185°C getrocknet. Die Trokkenfilmdicke des Lackes betrug 18gm.
  • Die Teile wurden mit Einzelschnitten versehen und dem Salzsprühtest (DIN 50 021) für 480 h unterworfen. Die Auswertung nach DIN 53 167 ergab eine Unterwanderung von 0,2 bis 0,4 mm.
  • Beispiele 4 - 14
  • Zur Herstellung der Nachspüllösungen wurden die in Tabelle 1 aufgeführten Kationen in Wasser einzeln (Beispiele 4 bis 9) oder in Kombination (Beispiele 10 bis 14) zu jeweils 0,1 gl-1 Gesamtkation (en) enthaltenden Lösungen gelöst- Dabei wurden als Salze die Ethanate (Acetate) bzw. (im Falle von Ti(IV)} das 2.4-Pentandionat (Titanylacetylacetonat) eingesetzt.
  • Stahlteile wurden gemäß Tabelle 2 mit alkalischen Reinigungslösungen im Spritzen oder Tauchen gereinigt und dann mit Wasser gespült. Anschließend wurden sie mit einer Zinkphosphatlösung im Spritzen oder Tauchen phosphatiert und danach mit Wasser gespült.
  • Die Stahlteile wurden anschließend mit den die Kationen in der in Tabelle 1 genannten Menge enthaltenden Nachpassivierungslösungen nachpassiviert, mit vollentsalztem Wasser gespült und mit Druckluft getrocknet.
  • Die getrockneten Teile wurden mit einem kathodischen Elektro-tauchlack beschichtet und 20 min bei 185°C getrocknet. Die Trockenfilmdicke des Anstriches betrug 18 µm.
  • Die Teile wurden mit Einzelschnitten versehen und dem Wechselklimatest nach VW-Norm P 12 10 30 Tage unter- zogen.
  • Die Auswertung nach DIN 53167 ergab die in der Tabelle 1 angegebenen Werte.
    Figure imgb0001
    Figure imgb0002

Claims (13)

1. Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen, dadurch gekennzeichnet, daß man phosphatierte Oberflächen aus Eisen, Stahl, verzinktem Stahl oder Aluminium
a) mit Wasser spült,
b) mit sauren bis neutralen, 0, 01 bis 10 g. l-1 Ti(IV)- und/oder 0,01 bis 10 g . l-1 Mn(II)-und/oder 0,01 bis 10 g . l-1 Co(II)- und/oder 0,01 bis 10 g . l-1Ni (II)- und/oder 0,01 bis 10 g . l-1 Cu(II)-Kationen enthaltenden wässrigen Lösungen im Temperaturbereich von 20 bis 120°C behandelt, wobei die Verwendung mehrerer Kationen die Gesamtkonzentration der verwendeten Kationen auf einen Wert von höchstens 10 g . l-1 eingestellt wird, und anschließend
c) mit Wasser spült und gegebenenfalls trocknet.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man phosphatierte Oberflächen mit 0,1 bis 1 g . l-1 Ti(IV)-Kationen enthaltenden wässrigen Lösungen behandelt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man phosphatierte Oberflächen mit 0,1 bis 1 g . l-1 Mn(II)-Kationen enthaltenden wässrigen Lösungen behandelt.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man phosphatierte Oberflächen mit 0,1 bis 1 g . l-1 Co(II)-Kationen enthaltenden wässrigen Lösungen behandelt.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man phosphatierte Oberflächen mit 0,1 bis 1 g . 1-1 Ni(II)-Kationen enthaltenden wässrigen Lösungen behandelt.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man phosphatierte Oberflächen mit 0,03 bis 1 g . 1-1 Cu(II)-Kationen enthaltenden wässrigen Lösungen behandelt-
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man phosphatierte Oberflächen mit 0,05 bis 1 g . l-1 Mn (II)-Kationen und 0,05 bis 1 g . l-1 Co(II)-Kationen enthaltenden wässrigen Lösungen behandelt.
8. Verfahren nach Anspruch I, dadurch gekennzeichnet, daß man phosphatierte Oberflächen mit 0,1 bis 1 g . l-1 Ni(II)-Kationen und 0,03 bis 1 g . l-1 Cu(II)-Kationen enthaltenden wäßrigen Lösungen behandelt.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man phosphatierte Oberflächen mit 0,01 bis 1 g . l-1 Ti(IV)-Kationen und 0,01 bis 1 g . l-1 Co (II)-Kationen und 0,01 bis 1 g . l-1 Ni(II)-Kationen enthaltenden wässrigen Lösungen behandelt.
10. Verfahren nach Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß man (2.4-Pentandionato)-titan(IV)-oxid (Titanylacetylacetonat) und/oder Mangan(II)-und/oder Cobalt(II)- und/oder Nickel(II)- und/oder Kupfer(II)-ethanat(-acetat) einsetzt.
11. Verfahren nach Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß man phosphatierte Metalloberflächen mit Lösungen von Titan(IV)- und/oder Mangan (II)- und/oder Co(II)- und/oder Nickel(II)- und/oder Kupfer(II)-Ionen behandelt, die einen pH-Wert von 3 bis 7, bevorzugt von 4 bis 5, aufweisen.
12. Verfahren nach Ansprüchen 1 bis 11, dadurch gekennzeichnet, daß man die wässrigen Lösungen von Titan (IV)- nnd/oder Mangan(II)- und/oder Cobalt(II)-und/oder Nickel(II)- und/oder Kupfer(II)-Ionen in einem Temperaturbereich von 30 bis 50°C einsetzt.
13. Verfahren nach Ansprüchen 1 bis 12, dadurch gekennzeichnet, daß man phosphatierte Oberflächen
a) mit Wasser spült
b) mit Ti(IV)- und/oder Mn(II)- und/oder Co(II)-und/oder Ni(II)- und/oder Cu(II)-Ionen enthaltenden Lösungen bei 30 bis 50°C im Spritz- oder Tauchverfahren behandelt und anschliessend
c) mit vollentsalztem oder salzarmem Wasser spült und trocknet.
EP84111060A 1984-01-07 1984-09-17 Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen unter Verwendung von Titan- und/oder Mangan- und/oder Cobalt- und/oder Nickel- und/oder Kupfer-Kationen enthaltenden Lösungen Expired EP0149720B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3400339 1984-01-07
DE19843400339 DE3400339A1 (de) 1984-01-07 1984-01-07 Verfahren zur nachpassivierung von phosphatierten metalloberflaechen unter verwendung von nickel- und/oder kupfer-kationen enthaltenden loesungen

Publications (3)

Publication Number Publication Date
EP0149720A2 true EP0149720A2 (de) 1985-07-31
EP0149720A3 EP0149720A3 (en) 1985-08-14
EP0149720B1 EP0149720B1 (de) 1988-10-26

Family

ID=6224446

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84111060A Expired EP0149720B1 (de) 1984-01-07 1984-09-17 Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen unter Verwendung von Titan- und/oder Mangan- und/oder Cobalt- und/oder Nickel- und/oder Kupfer-Kationen enthaltenden Lösungen

Country Status (6)

Country Link
US (1) US4600447A (de)
EP (1) EP0149720B1 (de)
JP (1) JPS60159175A (de)
DE (2) DE3400339A1 (de)
ES (1) ES8703167A1 (de)
ZA (1) ZA85105B (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0245597A1 (de) * 1986-05-12 1987-11-19 Lea Manufacturing Company Korrosionsbeständige Beschichtung
WO1992018661A1 (en) * 1991-04-15 1992-10-29 Henkel Corporation Metal treatment
US5391240A (en) * 1990-10-08 1995-02-21 Henkel Kommanditgesellschaft Auf Aktien Process for the passivating post-treatment of phosphatized metal surfaces
WO1995033083A1 (de) * 1994-05-27 1995-12-07 Herberts Gesellschaft mit beschränkter Haftung Verfahren zur beschichtung phosphatierter metallsubstrate
WO1996030559A1 (de) * 1995-03-29 1996-10-03 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur phosphatierung mit metallhaltiger nachspülung
EP0757726A1 (de) * 1994-04-12 1997-02-12 Henkel Corporation Verfahren zur vorbehandlung von metallsubstraten vor dem lackieren
WO1997030189A1 (de) * 1996-02-19 1997-08-21 Henkel Kommanditgesellschaft Auf Aktien Zinkphosphatierung mit geringen gehalten an nickel und/oder cobalt
WO2000073536A1 (de) * 1999-05-28 2000-12-07 Henkel Kommanditgesellschaft Auf Aktien Nachpassivierung einer phosphatierten metalloberfläche
MD3008G2 (ro) * 2005-06-27 2006-10-31 Государственный Университет Молд0 Procedeu de repatinare a pieselor vechi din bronz şi alamă restaurate

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4138218C2 (de) * 1991-11-21 1994-08-04 Doerken Ewald Ag Verwendung von Nachtauchmitteln für die Nachbehandlung von chromatierten oder passivierten Verzinkungsschichten
FR2685352A1 (fr) * 1991-12-24 1993-06-25 Pont A Mousson Revetement multicouche, avec son procede d'obtention et son application.
JPH0790614A (ja) * 1993-09-22 1995-04-04 Elna Co Ltd アルミニウムまたはアルミニウム合金類およびこれらの化成処理方法
US6485580B1 (en) * 1998-05-20 2002-11-26 Henkel Corporation Composition and process for treating surfaces or light metals and their alloys
CA2332620A1 (en) * 1998-05-20 1999-11-25 Henkel Corporation Composition and process for treating surfaces of light metals and their alloys
DE19834796A1 (de) 1998-08-01 2000-02-03 Henkel Kgaa Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
DE19956383A1 (de) * 1999-11-24 2001-05-31 Henkel Kgaa Verfahren zur Phospatierung mit metallhaltiger Nachspülung
DE10115244A1 (de) * 2001-03-28 2002-10-02 Henkel Kgaa Nachpassivierung einer phosphatierten Metalloberfläche im Bandverfahren
CN102605361B (zh) * 2011-01-24 2016-11-23 北京中科三环高技术股份有限公司 一种烧结钕铁硼磁性材料的表面处理方法
DE102013107505A1 (de) * 2013-07-16 2015-01-22 Thyssenkrupp Rasselstein Gmbh Verfahren zum Auftragen einer wässrigen Behandlungslösung auf die Oberfläche eines bewegten Stahlbands

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2334342A1 (de) * 1972-07-10 1974-01-31 Stauffer Chemical Co Spuelmittel fuer metalloberflaechen
FR2232615A1 (de) * 1973-06-11 1975-01-03 Pennwalt Corp
FR2255393A1 (de) * 1973-12-21 1975-07-18 Parker Ste Continentale
FR2339683A1 (fr) * 1976-01-30 1977-08-26 Parker Ste Continentale Procede de post-traitement d'une surface de zinc ou d'alliages de zinc prealablement soumise a une conversion chimique
SU914652A1 (ru) * 1980-04-07 1982-03-23 Inst Mekhaniki Metallopolimern Способ дополнительной обработки пористых фосфатных покрытий1
JPS58130282A (ja) * 1982-01-29 1983-08-03 Nippon Steel Corp 塗装用金属の前処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695942A (en) * 1970-12-02 1972-10-03 Amchem Prod Zirconium rinse for phosphate coated metal surfaces
US3852123A (en) * 1972-11-20 1974-12-03 Pennwalt Corp Sealing rinses for phosphate coatings on metal
JPS535622B2 (de) * 1973-02-12 1978-03-01
FR2520758A1 (fr) * 1982-01-29 1983-08-05 Produits Ind Cie Fse Composition et procede pour le traitement de surfaces metalliques phosphatees
JPS6018752B2 (ja) * 1982-05-14 1985-05-11 新日本製鐵株式会社 化成処理前処理法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2334342A1 (de) * 1972-07-10 1974-01-31 Stauffer Chemical Co Spuelmittel fuer metalloberflaechen
FR2232615A1 (de) * 1973-06-11 1975-01-03 Pennwalt Corp
FR2255393A1 (de) * 1973-12-21 1975-07-18 Parker Ste Continentale
FR2339683A1 (fr) * 1976-01-30 1977-08-26 Parker Ste Continentale Procede de post-traitement d'une surface de zinc ou d'alliages de zinc prealablement soumise a une conversion chimique
SU914652A1 (ru) * 1980-04-07 1982-03-23 Inst Mekhaniki Metallopolimern Способ дополнительной обработки пористых фосфатных покрытий1
JPS58130282A (ja) * 1982-01-29 1983-08-03 Nippon Steel Corp 塗装用金属の前処理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Band 97, Nr. 26, 27. Dezember 1982, Seite 307, Nr. 220959n, Columbus, Ohio, US; & SU - A - 914 652 (INSTITUTE OF THE MECHANICS OF METAL-POLYMER SYSTEMS, ACADEMY OF SCIENCES, BELORUSSIAN S.S.R .) 23.03.1982 *
CHEMICAL ABSTRACTS, Band 99, Nr. 24, 12. Dezember 1983, Seite 242, Nr. 199009g, Columbus, Ohio, US; & JP - A - 58 130 282 (NIPPON STEEL CORP.) 03.08.1983 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0245597A1 (de) * 1986-05-12 1987-11-19 Lea Manufacturing Company Korrosionsbeständige Beschichtung
US5391240A (en) * 1990-10-08 1995-02-21 Henkel Kommanditgesellschaft Auf Aktien Process for the passivating post-treatment of phosphatized metal surfaces
WO1992018661A1 (en) * 1991-04-15 1992-10-29 Henkel Corporation Metal treatment
EP0757726A1 (de) * 1994-04-12 1997-02-12 Henkel Corporation Verfahren zur vorbehandlung von metallsubstraten vor dem lackieren
EP0757726A4 (de) * 1994-04-12 1997-04-09 Henkel Corp Verfahren zur vorbehandlung von metallsubstraten vor dem lackieren
WO1995033083A1 (de) * 1994-05-27 1995-12-07 Herberts Gesellschaft mit beschränkter Haftung Verfahren zur beschichtung phosphatierter metallsubstrate
US5773090A (en) * 1994-05-27 1998-06-30 Herberts Gellschaft Mit Beschrankter Haftung Process for coating phosphated metal substrates
WO1996030559A1 (de) * 1995-03-29 1996-10-03 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur phosphatierung mit metallhaltiger nachspülung
US6090224A (en) * 1995-03-29 2000-07-18 Henkel Kommanditgesellschaft Auf Aktien Phosphating process with a copper-containing re-rinsing stage
CN1079845C (zh) * 1995-03-29 2002-02-27 汉克尔股份两合公司 用含金属的后冲洗液进行磷酸盐化的方法
WO1997030189A1 (de) * 1996-02-19 1997-08-21 Henkel Kommanditgesellschaft Auf Aktien Zinkphosphatierung mit geringen gehalten an nickel und/oder cobalt
WO2000073536A1 (de) * 1999-05-28 2000-12-07 Henkel Kommanditgesellschaft Auf Aktien Nachpassivierung einer phosphatierten metalloberfläche
US6645316B1 (en) 1999-05-28 2003-11-11 Henkel Kommanditgesellschaft Auf Aktien Post-passivation of a phosphatized metal surface
MD3008G2 (ro) * 2005-06-27 2006-10-31 Государственный Университет Молд0 Procedeu de repatinare a pieselor vechi din bronz şi alamă restaurate

Also Published As

Publication number Publication date
ES539387A0 (es) 1987-02-01
ZA85105B (en) 1985-08-28
DE3474839D1 (en) 1988-12-01
EP0149720B1 (de) 1988-10-26
ES8703167A1 (es) 1987-02-01
JPS60159175A (ja) 1985-08-20
US4600447A (en) 1986-07-15
DE3400339A1 (de) 1985-08-29
EP0149720A3 (en) 1985-08-14

Similar Documents

Publication Publication Date Title
EP0149720B1 (de) Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen unter Verwendung von Titan- und/oder Mangan- und/oder Cobalt- und/oder Nickel- und/oder Kupfer-Kationen enthaltenden Lösungen
DE69737728T2 (de) Lösung und Verfahren zur Herstellung von Schutzschichten auf Metallen
DE69403339T2 (de) Zusammensetzung und verfahren zur behandlung von phosphatierten metalloberflächen
EP0187917B1 (de) Verfahren zur Verbesserung des Korrosionsschutzes autophoretisch abgeschiedener Harzschichten auf Metalloberflächen
DE2428065C2 (de) Verfahren zum Versiegeln von Zinkphosphatüberzügen auf Stahlsubstraten
DE102005059314A1 (de) Verfahren und Produkt zur Korrosionsschutzbehandlung von Metalloberflächen, insbesondere von Stahloberflächen
WO2011067094A1 (de) Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen
DE19834796A1 (de) Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung
EP0154367B1 (de) Verfahren zur Phosphatierung von Metallen
DE3631667A1 (de) Schichtbildende passivierung bei multimetall-verfahren
EP0492713A1 (de) Verfahren zur Nachspülung von Konversionsschichten
EP0410497B1 (de) Verfahren zur passivierenden Nachspülung von Phosphatschichten
EP0359296A1 (de) Phosphatierverfahren
EP0111246B1 (de) Verfahren zur Phosphatierung elektrolytisch verzinkter Metall-waren
EP0931179B1 (de) Verfahren zur phosphatierung von stahlband
EP0366941B1 (de) Verfahren zur elektrophoretischen Tauchlackierung von chromatierbaren Metalloberflächen
DE4232292A1 (de) Verfahren zum Phosphatieren von verzinkten Stahloberflächen
DE10026850A1 (de) Verfahren zum Behandeln bzw. Vorbehandeln von Bauteilen mit Aluminium-Oberflächen
EP1019564A1 (de) Verfahren zur phosphatierung von stahlband
DE19718891A1 (de) Verfahren und Mittel zur Phosphatierung von Aluminiumoberflächen
DE19538778A1 (de) Schichtgewichtssteuerung bei Hydroxylamin-beschleunigten Phosphatiersystemen
WO2001040546A1 (de) Verfahren zur phosphatierung, nachspülung und kathodischer elektrotauchlackierung
EP0171043B1 (de) Verfahren zur Passivierung von Blei- und bleihaltigen Oberflächen
DE2213781B2 (de) Verfahren zur phosphatierung von stahl
EP0127204B1 (de) Verfahren zum Phosphatieren von Verbundmetallen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL SE

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19851220

17Q First examination report despatched

Effective date: 19861211

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT

REF Corresponds to:

Ref document number: 3474839

Country of ref document: DE

Date of ref document: 19881201

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890823

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890911

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890929

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890930

Year of fee payment: 6

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900930

BERE Be: lapsed

Owner name: GERHARD COLLARDIN G.M.B.H.

Effective date: 19900930

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST