EP2475468B1 - Zweistufiges verfahren zur korrosionsschützenden behandlung von metalloberflächen - Google Patents

Zweistufiges verfahren zur korrosionsschützenden behandlung von metalloberflächen Download PDF

Info

Publication number
EP2475468B1
EP2475468B1 EP10741949.1A EP10741949A EP2475468B1 EP 2475468 B1 EP2475468 B1 EP 2475468B1 EP 10741949 A EP10741949 A EP 10741949A EP 2475468 B1 EP2475468 B1 EP 2475468B1
Authority
EP
European Patent Office
Prior art keywords
metal surface
ppm
organic coating
organic
aqueous phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10741949.1A
Other languages
English (en)
French (fr)
Other versions
EP2475468A1 (de
Inventor
Christian Rosenkranz
Andreas Arnold
Klaus Lepa
Konstantinos Markou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP2475468A1 publication Critical patent/EP2475468A1/de
Application granted granted Critical
Publication of EP2475468B1 publication Critical patent/EP2475468B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • B05D3/107Post-treatment of applied coatings

Definitions

  • the present invention relates to an at least two-stage process for the corrosion-protective treatment of metal surfaces, wherein in a first step (i) on the metal surface, an organic coating of an aqueous phase (A) is applied and in a subsequent step (ii) on the metal surface applied organic coating with an acidic aqueous composition (B) is brought into contact containing at least one or more water-soluble compounds containing at least one atom selected from the elements Zr, Ti, Si, Hf, V and / or Ce and one or more water-soluble compounds comprising copper ions.
  • the present invention comprises a metallic component, which is at least partially made of steel, iron, zinc and / or aluminum and their alloys and has been treated in the process according to the invention, as well as the use thereof in the automotive industry and in the construction sector and for the production of household appliances and electronic enclosures.
  • the automotive industry primarily uses dip-coating, in which the corrosion-protected pretreated green bodies are introduced in a continuous process into a dip tank containing a dispersed coating system, wherein the deposition of the paint either by applying an external voltage (electrocoating) orsabscheidend by mere contact with the Metal surfaces (autophoretic dip coating) takes place. Subsequently, the body shell undergoes a heat treatment, so that a filming and crosslinking of the deposited on the metal surface paint system takes place, which ensures a high corrosion protection and allows the subsequent application of additional coatings.
  • dip-coating in which the corrosion-protected pretreated green bodies are introduced in a continuous process into a dip tank containing a dispersed coating system, wherein the deposition of the paint either by applying an external voltage (electrocoating) orsabscheidend by mere contact with the Metal surfaces (autophoretic dip coating) takes place. Subsequently, the body shell undergoes a heat treatment, so that a filming
  • Autophoretic baths thus serve the organic coating of metallic surfaces, mostly iron surfaces, as a corrosion-protecting primer coating of metallic components or as an adhesive interlayer in the production of metal-elastomer compounds, for example for vibration damping components in the automotive industry.
  • the autophoretic coating is therefore a dip coating, which in the Contrary to the electrocoating occurs without external power, ie without the application of an external voltage source.
  • the self-precipitating compositions are usually aqueous dispersions of organic resins or polymers, which coagulate on contact with the metallic surface due to the Beizabtrages of metal cations in a thin liquid layer directly to the surface of the component and thus cause the layer structure.
  • an aqueous reaction rinse following the organic primary coating with the dip coating is proposed in the prior art.
  • Such a reaction rinse corresponds loudly DE 10 2007 059969 a passivating after-treatment of the uncrosslinked coating and causes an inorganic conversion of free metal surface to so-called micro-defects, for example with the aid of phosphate-containing solutions, which may also contain alkali and / or alkaline earth metal cations and transition metal cations and their fluorocomplexes.
  • the US 6410092 a chromium-free reaction rinse based on water-soluble alkaline earth metal salts, preferably calcium nitrate, while in the WO 02/42008 water-soluble salts of metals of groups IIa and IIb, preferably zinc salts are used, with additional soluble phosphates and so-called accelerators which act oxidatively, should be included in the reaction rinse.
  • WO 96/10461 discloses a reaction sink based on fluoro complexes.
  • the object of the present invention is to develop a method for the first deposition of hardenable organic binder systems on metal surfaces and from aqueous phase, which further improves the corrosion resistance of the cured with the cured organic binder system metal surface.
  • the object is achieved by means of a multi-stage process for the corrosion-protective treatment of metal surfaces, according to claim 1.
  • the metal surface which is provided with an organic coating in a first step (i), may represent a free metal surface which is freed of organic impurities in a cleaning and / or pickling step preceding the process according to the invention.
  • a free metal surface is characterized by the fact that it is substantially free of organic impurities, for example anticorrosive oils, and on its surface no or only an ultrathin oxide cover layer is present, which consists mainly of metallic elements of the metal substrate and has only a few nanometers layer thickness.
  • metal surfaces according to the invention are also those surfaces which, prior to the method step (i) according to the invention, have undergone a conversion treatment in the course of which an inorganic cover layer has been formed.
  • Such inorganic conversion layers may consist of both metallic elements of the metal substrate and of foreign metals.
  • Typical conversion coatings are formed when free metal surfaces come into contact with acidic aqueous solutions containing water-soluble compounds of the elements Zr, Ti, Si, Hf, V, Ce, Mo, Zn, Mn, Fe and, if appropriate, additionally sparingly soluble salts forming anions such as phosphates and / or complexing Anions such as fluoride ions.
  • amorphous or crystalline inorganic cover layers are formed on the metal surface, whereby metal surfaces are still according to the invention and can be used for the method according to the invention if the surface-related layer weight of the inorganic cover layers is not more than 3 g / m 2 .
  • An organic coating which is brought onto the metal surface in the first process step (i) is according to the invention if it contains a curable organic binder system.
  • the process step (i) according to the invention comprises only the application of this organic coating, but not the curing of the same by means of additional technical measures for crosslinking the binder system.
  • additional Technical measures include, for example, the heat treatment (thermal curing) or the actinic radiation (radiation curing) of an organic coating applied in step (i), which contains the curable binder system.
  • process step (i) optionally comprises heat treating the aqueous surface treated with (A) metal surface to evaporate a portion of the water remaining in the wet film on the treated metal surface, but wherein the heat treatment was conducted below the curing temperature of the organic binder system.
  • the organic coating applied from the aqueous phase (A) therefore also contains a part of water.
  • the organic coating can contain leveling agents, surfactants, corrosion inhibitors, salts, pigments and other active substances and auxiliaries known to the person skilled in the lacquer art.
  • the solids content of the organic coating is at least 20% by weight.
  • the organic coating is that part of a wet film of the aqueous phase (A) applied in step (i) comprising a curable organic binder system which, following a rinsing step immediately following step (i), is applied as a firmly adhering film under flowing water to the metal surface curable organic binder system remains.
  • the deposition of the organic coating in step (i) of the process according to the invention takes place from an aqueous phase (A).
  • the nature of the deposition is not bound to specific technical measures and can be carried out by electrodeposition of the metal surface or by electroless processes such as autodeposition and the known in the art mechanical application method (roller coating method, spray method).
  • the process according to the invention exhibits the most significant improvement for the corrosion resistance of the metal surfaces treated in the process according to the invention, especially in the case of electroless deposition of the organic coating in process step (i) from an aqueous phase (A). Accordingly, such inventive methods are preferred in which the application of the organic coating in the first step (i) without external current, in particular autophores, by contacting the metallic surface with an aqueous phase (A) containing the organic binder.
  • the aqueous phase (A) in step (i) of the process according to the invention preferably contains at least 1% by weight of the organic binder system.
  • Thermally curable organic binder systems are those binder systems which have curing temperatures above 20 ° C and below the stated temperatures of 300 ° C, preferably below 200 ° C.
  • the curing temperature is the highest temperature that marks the maximum of an exothermic process in a dynamic differential calorimetric analysis (DSC) of a solid mixture of the organic binder system used in a temperature range of 20 ° C to 400 ° C at a heating rate of 10 K / min.
  • DSC dynamic differential calorimetric analysis
  • the calorimetric analysis of the test volume of the solid mixture and registered by DSC exothermic heat quantity is carried out according to DIN 53 765, taking into account the DIN EN ISO 11357-1.
  • a solid mixture of the organic binder system used is accessible by vacuum freeze-drying of an aqueous dispersion of the binder system.
  • the aqueous dispersion of the binder system can be dried at room temperature in the sample crucible for the DSC measurement and the initial weight of solid mixture in the sample crucible can be determined by differential weighing.
  • the aqueous dispersion the aqueous phase (A) is particularly suitable.
  • Thermally crosslinkable or curable organic binder systems according to component a) of the aqueous phase (A), which are applied to the metal surface by autophoretic deposition in step (i) of a preferred process according to the invention, consist of organic oligomeric or polymeric compounds having at least two functional groups and thus are able to react in condensation or addition reactions to form covalent bonds with one another, thereby building up a network of covalently linked oligomeric or polymeric compounds.
  • Thermally crosslinkable or curable binder systems can either consist of a self-crosslinking oligomeric or polymeric compound having two different or the same functional groups capable of reacting with each other or of at least two different oligomeric or polymeric compounds which crosslink with one another due to their functionalization.
  • the water-dispersed organic binder system according to component a), which is applied to the metal surface without external current in step (i) of a preferred method according to the invention contains at least one thermally self-crosslinking organic polymer and / or a mixture of at least one crosslinkable organic polymer or a resin and an organic hardener which can react with the crosslinkable functionalities of the organic polymer or the resin in an addition or condensation reaction.
  • the organic hardener may likewise be an organic polymer or a resin.
  • the organic binder system dispersed in the aqueous phase (A) in step (i) of the process according to the invention to have a film-forming temperature of not more than 80 ° C., more preferably not more than 40 ° C. If the film-forming temperature of the binder is above the preferred 80 ° C., an inhomogeneous organic coating of the metal surface during the reaction rinse with an acidic aqueous composition (B) in step (ii) of the process according to the invention may also be the result, which is also present in the curing process Procedure follows, is not curable.
  • Such an inhomogeneous coating of the metal surface with the organic binder system has an adverse effect on the corrosion resistance and the visual appearance of the coated metal surface.
  • step (i) Since the film formation of the organic binder system deposited on the metal surface in step (i) is already advantageous during the reaction rinse in step (ii), those inventive methods are preferred in which the acidic aqueous composition (B) in step (ii) at a temperature of at least 30 ° C, more preferably at least 40 ° C, but preferably not more than 80 ° C is brought into contact with the organic coating having metal surface.
  • the dispersed organic binder system used in step (i) of the invention's preferred method for electroless deposition preferably consists of at least one copolymer and / or polymer mixture of acrylates having at least one oligomeric and / or polymeric compound selected from epoxy resins, phenolic resins and / or polyurethane resins.
  • water-dispersible epoxy resins have a particularly good barrier effect against corrosive media and are Therefore, preferred component of the dispersed binder system in a preferred method according to the invention, in which in step (i) the organic coating without external power, that is applied via a self-deposition process.
  • the organic coating without external power that is applied via a self-deposition process.
  • the epoxy resin crosslinking hardener preferably at least partially based on phenolic resins, can be used to accelerate the curing process and to increase the degree of crosslinking.
  • Further curing agents curing the epoxy resin are those based on isocyanate resins whose isocyanate groups may also be blocked.
  • Preferred blocked isocyanate resins are moderately reactive isocyanates, for example aliphatic isocyanates and sterically hindered and / or acid-stable blocked isocyanates.
  • epoxide resins which are not completely crosslinked, oligomeric or polymeric compounds having free, for example terminally bonded, epoxide groups can be used whose preferred molecular weight is not less than 500 ⁇ and not greater than 5000 ⁇ .
  • Examples of such epoxy resins are those based on bisphenol A and bisphenol F, as well as epoxy-phenol novalacets. For reasons of economy and commercial availability, preference is given in the context of the present invention to bisphenol A-based epoxy resins which correspond to the following general structural formula (III):
  • Structural component A corresponds to the following general formula (IV): with n as integer number from 1 to 50.
  • Preferred epoxies have an epoxy equivalent weight (EEW) of not less than 100 g / eq but not more than 5000 g / eq.
  • the EEW represents the average molecular weight per mole of epoxy functionality in the epoxy resin in grams per mole equivalent (g / eq).
  • For specific epoxy resins have particularly preferred ranges for the epoxy equivalent weight: Brominated epoxy resins 300-1000 g / eq, in particular 350-600 Polyalkylene glycol epoxy resins 100-700 g / eq, in particular 250-400 Liquid epoxy resins 150-250 g / eq Solid / pasty epoxy resins 400-5000 g / eq, in particular 600-1000
  • phenolic resins incompletely crosslinked, oligomeric or polymeric polycondensation products of formaldehydes with phenols which are preferably at least partially etherified hydroxyl groups may be present in the aqueous phase (A) in step (i) of the preferred novel process for electroless deposition of the organic coating and their preferred average molecular weight is not less than 500 ⁇ and not more than 10,000 ⁇ .
  • the hydroxyl groups are preferably methoxylated, ethoxylated, propoxylated, butoxylated or ethenyloxylated.
  • phenolic resin types both resoles and novolaks can be used.
  • aqueous phase (A) which on contact with metal surfaces cause an autodeposition of an organic coating in the sense of this invention, are leveling agents, such as glycol ethers and alcohol esters, for better filming of the deposited organic coating on the metallic surface, micronized inorganic fillers such as sulfates, oxides and phosphates with average particle sizes below 5 microns, preferably below 1 micron, to increase the scratch resistance and corrosion resistance of the organic coating in the cured state, and pigments for coloring, for example AQUABLACK ® 255A Fa. Solutions Inc.
  • leveling agents such as glycol ethers and alcohol esters
  • micronized inorganic fillers such as sulfates, oxides and phosphates with average particle sizes below 5 microns, preferably below 1 micron, to increase the scratch resistance and corrosion resistance of the organic coating in the cured state
  • pigments for coloring for example AQUABLACK ® 255A Fa. Solutions Inc.
  • the reaction rinse to be carried out in step (ii) of the process of the invention by contacting the metal surface having the organic coating is preferably carried out at a pH of the acidic aqueous composition (B) of not less than 2 and not greater than 5.
  • Lower pH Values can chemically alter the organic coating and initiate decomposition reactions depending on the organic binder system used.
  • increased acid corrosion of the metallic substrate and the formation of nascent hydrogen can permanently damage the interface of metal with the organic coating.
  • Compositions having pH's above 5 are also less preferred because compositions (B) tend to form sparingly soluble precipitates due to hydrolysis reactions of the water-soluble compounds of component a).
  • fluoride ions may additionally be present in the acidic aqueous composition (B).
  • the proportion of fluoride ions in the composition (B) does not exceed values for which the measured free fluoride content is greater than 400 ppm, however, for enhanced pickling effect on the substrate and effective complexation of the metal cations is at least 1 ppm of free fluoride in the composition (B).
  • the source of fluoride ions are, for example, hydrogen fluoride, alkali fluorides, ammonium fluoride and / or ammonium bifluoride.
  • Preferred water-soluble compounds of component a) in step (ii) of the process according to the invention are compounds which dissociate in aqueous solution into anions of fluorocomplexes of the elements zirconium, titanium and / or silicon, particularly preferably fluorocomplexes of the elements zirconium and / or titanium.
  • Such preferred compounds are, for example, H 2 ZrF 6 , K 2 ZrF 6 , Na 2 ZrF 6 and (NH 4 ) 2 ZrF 6 and the analogous titanium or silicon compounds.
  • fluorine-containing compounds according to component a) are at the same time a source of free fluoride.
  • Fluorine-free compounds of the elements titanium and / or zirconium can also be used according to the invention as water-soluble compounds according to component A), for example (NH 4 ) 2 Zr (OH) 2 (CO 3 ) 2 or TiO (SO 4 ).
  • Preferred water-soluble compounds of component b) in step (ii) of the process according to the invention are all water-soluble copper salts which do not contain any chloride ions. Particularly preferred are copper sulfate, copper nitrate and copper acetate.
  • the acidic compositions used in step (ii) of the process according to the invention may additionally contain what are known as depolarizers which, because of their mild oxidation action, prevent the formation of nascent hydrogen on the free metal surface during the reaction.
  • depolarizers which are known in the technical field of phosphating metal surfaces, is therefore also preferred according to the invention.
  • Typical representatives of depolarizers are chlorate ions, nitrite ions, hydroxylamine, hydrogen peroxide in free or bound form, nitrate ions, m-nitrobenzenesulfonate ion, m-nitrobenzoate ion, p-nitrophenol, N-methylmorpholine-N-oxide, nitroguanidine.
  • a composition (B) in the reaction rinse, ie in step (ii) of the process according to the invention contains not more than 1 ppm of soluble phosphates and chromates calculated as the sum of PO 4 and CrO 4 , particularly preferably no soluble phosphates and chromates.
  • the present invention is also distinguished by the fact that the presence of soluble phosphates and chromates in step (ii) of the method can be dispensed with and yet an excellent corrosion resistance of the metal substrates treated according to the invention results.
  • step (i) The contacting of the aqueous phase (A) in step (i) and the acidic aqueous composition in step (ii) with the metallic substrate or the metallic component takes place in the process according to the invention preferably in the dipping or spraying process, wherein the dipping method the more homogeneous wetting of the surface is particularly preferable.
  • preferred processes according to the invention are those in which a rinsing step is carried out between the first step (i) and the subsequent step (ii) for removing components of the aqueous phase (A) from the treated metal surface.
  • a rinsing step is carried out between the first step (i) and the subsequent step (ii) for removing components of the aqueous phase (A) from the treated metal surface.
  • the contact times with the respective aqueous compositions are not critical to the process according to the invention, but should preferably be selected in step i) such that the coating weight of the uncured but firmly adhering organic coating applied in step (i) of the process according to the invention is immediately before Reaction rinse with the acidic aqueous composition (B) in step (ii) is preferably at least 10 g / m 2 , more preferably at least 20 g / m 2 , but preferably not more than 80 g / m 2 .
  • the layer weight of the uncured but firmly adhering organic coating is determined after rinsing the metal substrate coated in step i) of the process according to the invention under flowing deionized water, wherein the rinsing is carried out until the rinse water draining from the metal substrate is apparently clear.
  • the contact times for the reaction rinse with the acidic aqueous composition (B) to be carried out in step (ii) of the process according to the invention are preferably 50-100% of the contact time with the aqueous phase (A) in step (i).
  • the organic coating applied to the metal surface in step (i) and post-treated in step (ii) is preferably cured at elevated temperature with or without an intermediate rinse step to remove components of the acidic aqueous composition (B) from the treated metal surface to form the polymeric coating to crosslink as completely and sustainably as possible and thus to increase the corrosion resistance.
  • the process of curing the organic coating is preferably carried out at temperatures above the curing temperature of the binder system dispersed in the aqueous phase (A) and below 300 ° C.
  • the present invention also encompasses the metallic component produced in the method according to the invention, wherein the component is preferably made at least partially from steel, iron, zinc and / or aluminum and their alloys.
  • Such an inventive component is used in the automotive industry and in the construction sector and for the production of household appliances and electronic housings.
  • step ii) of the process according to the invention which improves the corrosion resistance of the coated metal substrate, will be explained below by way of example for specific organic binder systems which are applied to the steel surfaces by the autodepositing method.
  • the CRS sheets were degreased with a strong alkaline cleaner (3 wt .-% ACL ® 1773, 0.3 wt .-% ACL ® 1773T, Fa. Henkel) for 7 minutes and then cleaned with city and deionized water ,
  • the sheets are then immersed for 2 minutes in the respective self-depositing bath for application of the organic coating (step i), then rinsed for one minute under running demineralised water and in step (ii) for one minute in a reaction rinse (ARR ® E2, Fa. Henkel KGaA) and rinsed again with deionised water.
  • the coated panels were filmed and cured in a subsequent step in a convection oven.
  • the layer thickness was both process of this invention and in the comparative experiments after curing approximately 20 .mu.m and was purified by PosiTector ® (Fa. DeFelsco Corp.). Subsequently, the corrosion resistance of the thus coated and treated steel sheets was quantified on the basis of the infiltration in the NSS test according to DIN 50021. The results for this are listed in Table 1.
  • the organic coatings applied to the steel surface in the autophoretic process from aqueous self-depositing dispersions of the particular binder system in step (i) are all based on a polymer mixture of epoxy resin (EEW: 500-575 g / eq, Mn: 1200 g / mol DER ® 664 UE, Dow Chemicals) and polyacrylates, wherein in addition an amount of a curing agent is contained such that the weight ratio of epoxy resin to hardener is 70:30 each.
  • the organic solids content of the aqueous dispersions is about 4 wt .-% and the proportion of the epoxy resin in the solids content at about 45 wt .-%.
  • aqueous phase 0.14% by weight of iron (III) fluoride, 0.05% by weight of hydrogen fluoride and 2.1% by weight of hydrogen peroxide are contained in the aqueous phase for the autodeposition of the binder system.
  • the component of the organic binder system in the aqueous phase (A) (Ashland-Südchemie-core-4,4 'isopropylidenediphenol, GP-Phenolic Resin ® BKS 7550, Fa.),
  • an isocyanate resin is either a phenolic resin ( Vestagon ® B1530, Fa. Evonik) (used see Table 1).
  • Table 1 shows the corrosive infiltration after 504 hours NSS test for the respective applied and cured organic coating on steel sheet applied in the previously described method. It turns out that even small amounts of copper ions in the acidic aqueous composition (B) in the process according to the invention bring about a significant improvement in the underflow values, as becomes clear from the comparison of Examples V1-B1, V2-B6 and V3-B10. Especially at high Zr contents in the acidic aqueous composition, the addition of copper ions is advantageous for the corrosion resistance of the steel surfaces provided with the cured organic coating.
  • Examples Hardener in the binder system of the aqueous phase (A) Acid composition (B), pH 4 Neutral Salt Spray Test * infiltration / mm Zr 1 / ppm Cu 2 / ppm V1 Isocyanate resin 400 - 5.0 V2 phenolic resin 400 - 4.5 V3 phenolic resin 1200 - 6.0 B1 Isocyanate resin 400 5 3.5 B2 Isocyanate resin 400 10 3.0 B3 Isocyanate resin 400 20 3.5 B4 Isocyanate resin 400 50 4.0 V B5 Isocyanate resin 400 120 5.5 B6 phenolic resin 400 3 3.0 B7 phenolic resin 400 5 3.0 B8 phenolic resin 400 10 3.0 B9 phenolic resin 400 20 4.0 B10 phenolic resin 1200 3 4.0 B11 phenolic resin 1200 5 4.0 B12 phenolic resin 1200 10 4.0 B13 phenolic resin 1200 20 4.0 * according to DIN 50021 1 as H 2 ZrF 6 2 as Cu (NO 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

  • Die vorliegende Erfindung betrifft ein zumindest zweistufiges Verfahren zur korrosionsschützenden Behandlung von Metalloberflächen, bei dem in einem ersten Schritt (i) auf der Metalloberfläche eine organische Beschichtung aus einer wässrigen Phase (A) aufgebracht wird und in einem nachfolgenden Schritt (ii) die auf der Metalloberfläche aufgebrachte organische Beschichtung mit einer sauren wässrigen Zusammensetzung (B) in Kontakt gebracht wird, die zumindest ein oder mehrere wasserlösliche Verbindungen enthaltend zumindest ein Atom ausgewählt aus den Elementen Zr, Ti, Si, Hf, V und/oder Ce sowie eine oder mehrere wasserlösliche Verbindungen, die Kupfer-Ionen freisetzen, aufweist. Des Weiteren umfasst die vorliegende Erfindung ein metallisches Bauteil, das zumindest teilweise aus Stahl, Eisen, Zink und/oder Aluminium sowie deren Legierungen gefertigt ist und im erfindungsgemäßen Verfahren behandelt wurde, sowie die Verwendung desselben im Automobilbau und im Baubereich sowie für die Herstellung von Haushaltsgeräten und elektronischen Gehäusen.
  • In der Automobilindustrie ist in der Karosseriefertigung die korrosionsschützende Aufbringung von Lacksystemen aus wässrigen Bindemitteldispersionen Stand der Technik. Die Automobilindustrie bedient sich hierbei vornehmlich der Tauchlackierung, bei der die korrosionsschützend vorbehandelten Rohkarossen in einem kontinuierlichen Prozess in ein Tauchbecken enthaltend ein dispergiertes Lacksystem eingebracht werden, wobei die Abscheidung des Lackes entweder durch Anlegen einer äußeren Spannung (Elektrotauchlackierung) oder selbstabscheidend durch bloßen Kontakt mit den Metalloberflächen (Autophoretische Tauchlackierung) erfolgt. Anschließend erfährt die Rohkarosse eine Wärmebehandlung, so dass eine Verfilmung und Vernetzung des auf der Metalloberfläche abgeschiedenen Lacksystems erfolgt, die einen hohen Korrosionsschutz gewährleistet und die nachträgliche Auftragung weiterer Beschichtungen erlaubt.
  • Autophoretische Bäder dienen also der organischen Beschichtung von metallischen Oberflächen, zumeist Eisenoberflächen, als korrosionsschützende Primerbeschichtung von metallischen Bauteilen oder als adhäsive Zwischenschicht in der Herstellung von Metall-Elastomer-Verbindungen, beispielsweise für schwingungsdämpfende Bauteile in der Automobilindustrie. Die autophoretische Beschichtung ist also eine Tauchlackierung, die im Gegensatz zur Elektrotauchlackierung außenstromlos erfolgt, d.h. ohne die Anlegung einer äußeren Spannungsquelle. Die selbstabscheidenden Zusammensetzungen sind zumeist wässrige Dispersionen von organischen Harzen oder Polymeren, die bei Kontakt mit der metallischen Oberfläche aufgrund des Beizabtrages von Metall-Kationen in einer dünnen Flüssigkeitsschicht unmittelbar an der Oberfläche des Bauteils koagulieren und so den Schichtaufbau bedingen.
  • Mittlerweile hat der Einsatz von Autophorese-Bädern zur Tauchlackabscheidung in der automobilen Fertigung und speziell in der Stückfertigung von metallischen Halbzeugen, beispielsweise bei der organischen Erstbeschichtung von Reifenfelgen, an Bedeutung gewonnen. Speziell in der Tauchlackierung mittels autophoretisch wirkender bzw, sogenannter selbstabscheidender Zusammensetzungen ist jedoch eine Nachbehandlung zur Ausheilung von Defekten in der organischen Beschichtung vor einer den Lack vernetzenden Wärmebehandlung notwendig.
  • Zur Verbesserung der Korrosionsbeständigkeit der auf der Metalloberfläche in autophoretischen Verfahren aufgebrachten organischen Beschichtungen wird im Stand der Technik eine der organischen Erstbeschichtung mit dem Tauchlack nachfolgende wässrige Reaktionsspüle vorgeschlagen.
    Eine solche Reaktionsspüle entspricht laut DE 10 2007 059969 einer passivierenden Nachbehandlung der unvernetzten Beschichtung und bewirkt eine anorganische Konversion von freier Metalloberfläche an so genannten Mikro-Defekten, beispielsweise mit Hilfe Phosphathaltiger Lösungen, die zudem Alkali- und/oder Erdalkalimetall-Kationen und auch Übergangsmetallkationen sowie deren Fluorokomplexe enthalten kann.
  • Dementsprechend offenbart die US 6410092 eine chromfreie Reaktionsspüle auf Basis von wasserlöslichen Erdalkalimetallsalzen, vorzugsweise Kalziumnitrat, während in der WO 02/42008 wasserlösliche Salze von Metalle der Gruppen IIa und IIb, vorzugsweise Zinksalze Verwendung finden, wobei zusätzlich lösliche Phosphate und sogenannte Beschleuniger, die oxidativ wirken, in der Reaktionsspüle enthalten sein sollen. WO 96/10461 offenbart eine Reaktionsspüle auf der Basis von Fluorokomplexen.
  • Ausgehend von diesem Stand der Technik besteht die Aufgabe der vorliegenden Erfindung darin, ein Verfahren für die Erstabscheidung von härtbaren organischen Bindemittelsystemem auf Metalloberflächen und aus wässriger Phase zu entwickeln, dass die Korrosionsbeständigkeit der mit dem ausgehärteten organischen Bindemittelsystem geschützten Metalloberfläche weiter verbessert.
  • Die Aufgabe wird gelöst mittels eines mehrstufigen Verfahrens zur korrosionsschützenden Behandlung von Metalloberflächen, gemäß Anspruch 1.
  • Die Metalloberfläche, die in einem ersten Schritt (i) mit einer organischen Beschichtung versehen wird, kann dabei eine freie Metalloberfläche darstellen, die in einem dem erfindungsgemäßen Verfahren vorgelagerten Reinigungs- und/oder Beizschritt von organischen Verunreinigungen befreit wird. Eine solche freie Metalloberfläche zeichnet sich dadurch aus, dass sie weitgehend frei von organischen Verunreinigungen, beispielsweise Korrosionsschutzölen, ist und an ihrer Oberfläche keine oder nur eine ultradünne oxidische Deckschicht vorliegt, die hauptsächlich aus metallischen Elementen des Metallsubstrates besteht und nur wenige Nanometer Schichtdicke aufweist.
    Erfindungsgemäße Metalloberflächen sind aber ebenso solche Oberflächen, die vor dem erfindungsgemäßen Verfahrensschritt (i) eine Konversionsbehandlung erfahren haben, in deren Verlauf eine anorganische Deckschicht ausgebildet wurde. Derartige anorganische Konversionsschichten können sowohl aus metallischen Elementen des Metallsubstrates als auch aus Fremdmetallen bestehen. Typische Konversionsbeschichtungen entstehen bei Kontakt freier Metalloberflächen mit sauren wässrigen Lösungen, die wasserlösliche Verbindungen der Elemente Zr, Ti, Si, Hf, V, Ce, Mo, Zn, Mn, Fe enthalten und gegebenenfalls zusätzlich schwerlösliche Salze bildende Anionen wie Phosphate und/oder komplexierende Anionen wie Fluorid-Ionen. Bei der Konversionsbehandlung entstehen auf der Metalloberfläche amorphe oder kristalline anorganische Deckschichten, wobei Metalloberflächen dann noch erfindungsgemäß sind und für das erfindungsgemäße Verfahren verwendet werden können, wenn das flächenbezogene Schichtgewicht der anorganischen Deckschichten nicht mehr als 3 g/m2 beträgt.
  • Eine organische Beschichtung, die im ersten Verfahrensschritt (i) auf die Metalloberfläche gebracht wird, ist erfindungsgemäß, wenn sie ein härtbares organisches Bindemittelsystem enthält. Der erfindungsgemäße Verfahrenschritt (i) umfasst nur die Aufbringung dieser organischen Beschichtung, jedoch nicht die Aushärtung derselben mittels zusätzlicher technischer Maßnahmen zur Vernetzung des Bindemittelsystems. Solche zusätzlichen technischen Maßnahmen sind beispielsweise die Wärmebehandlung (Thermisches Aushärten) oder die aktinische Bestrahlung (Strahlungshärtung) einer im Schritt (i) aufgebrachten organischen Beschichtung, die das härtbare Bindemittelsystem enthält. Jedoch umfasst der Verfahrensschritt (i) gegebenenfalls eine Wärmebehandlung der mit der wässrigen Phase (A) behandelten Metalloberfläche zur Verdampfung eines Teils des Wassers, der im Nassfilm auf der behandelten Metalloberfläche verbleibt, wobei die Wärmebehandlung jedoch unterhalb der Aushärtetemperatur des organischen Bindemittelsystems vorgenommen wurde. Die organische Beschichtung, die aus der wässrigen Phase (A) aufgebracht wurde, enthält daher auch einen Teil Wasser. Des Weiteren kann die organische Beschichtung Verlaufsmittel, Tenside, Korrosionsinhibitoren, Salze, Pigmente und andere dem Fachmann in der Lacktechnik bekannte Wirk- und Hilfsstoffe enthalten. Der Feststoffanteil der organischen Beschichtung beträgt jedoch zumindest 20 Gew. %. Als organische Beschichtung wird derjenige Teil eines im Schritt (i) applizierten Nassfilms der wässrigen Phase (A) enthaltend ein härtbares organisches Bindemittelsystem verstanden, der nach einem dem Schritt (i) unmittelbar nachfolgenden Spülschritt unter fließendem Wasser auf der Metalloberfläche als fest anhaftender Film enthaltend das härtbare organische Bindemittelsystem verbleibt.
  • Die Abscheidung der organischen Beschichtung im Schritt (i) des erfindungsgemäßen Verfahrens erfolgt aus einer wässrigen Phase (A). Die Art der Abscheidung ist aber nicht an bestimmte technische Maßnahmen gebunden und kann durch Elektrotauchlackierung der Metalloberfläche oder durch außenstromlose Verfahren wie die autophoretische Abscheidung und die im Stand der Technik bekannten mechanischen Auftragungsverfahren (Walzenauftragsverfahren, Sprühverfahren) erfolgen.
    Das erfindungsgemäße Verfahren zeigt jedoch insbesondere bei außenstromloser Abscheidung der organischen Beschichtung im Verfahrensschritt (i) aus einer wässrigen Phase (A) die signifikanteste Verbesserung für die Korrosionsbeständigkeit der im erfindungsgemäßen Verfahren behandelten Metalloberflächen. Dementsprechend sind solche erfindungsgemäßen Verfahren bevorzugt, in denen die Aufbringung der organischen Beschichtung im ersten Schritt (i) außenstromlos, insbesondere autophoretisch, durch In-Kontakt-bringen der metallischen Oberfläche mit einer wässrigen Phase (A) enthaltend das organische Bindemittel erfolgt.
  • Erfolgt im ersten Schritt (i) des erfindungsgemäßen Verfahrens die autophoretische Abscheidung der organischen Beschichtung auf der Metalloberfläche, so weist die wässrige Phase (A) vorzugsweise einen pH-Wert von kleiner als 4 auf und enthält vorzugsweise
    1. a) mindestens ein dispergiertes organisches Bindemittelsystem, das thermisch härtbar ist, vorzugsweise bei Temperaturen unterhalb von 300 °C, vorzugsweise unterhalb von 200 °C,
    2. b) Eisen(III)-Ionen und
    3. c) Fluorid-Ionen in einem solchen Mengenanteil, dass das molare Verhältnis von Fluorid Ionen zu Eisen(III)-Ionen aus wasserlöslichen Verbindungen mindestens 2 : 1 beträgt.
  • Für eine solche autophoretische Abscheidung enthält die wässrige Phase (A) im Schritt (i) des erfindungsgemäßen Verfahrens vorzugsweise zumindest 1 Gew.-% des organischen Bindemittelsystems.
  • Thermisch härtbare organische Bindemittelsysteme sind solche Bindemittelsysteme, die Aushärtetemperaturen oberhalb von 20 °C und unterhalb den angegebenen Temperaturen von 300 °C, vorzugsweise unterhalb von 200 °C besitzen.
  • Die Aushärtetemperatur ist dabei diejenige höchste Temperatur, die in einer dynamischen differenzkalorimetrischen Analyse (DSC) einer Feststoffmischung des verwendeten organischen Bindemittelsystems in einem Temperaturintervall von 20 °C bis 400 °C bei einer Aufheizrate von 10 K/min das Maximum eines exothermen Vorgangs markiert. Die kalorimetrische Analyse der vom Probevolumen der Feststoffmischung abgegebenen und mittels DSC registrierten exothermen Wärmemenge erfolgt gemäß der DIN 53 765 unter Berücksichtigung der DIN EN ISO 11357-1. Eine Feststoffmischung des verwendeten organischen Bindemittelsystems ist dabei durch Vakuumgefriertrocknung einer wässrigen Dispersion des Bindemittelsystems zugänglich. Alternativ kann die wässrige Dispersion des Bindemittelsystems bei Raumtemperatur im Probentiegel für die DSC-Messung eingetrocknet und die Einwaage an Feststoffmischung im Probentiegel durch Differenzwägung festgestellt werden. Als wässrige Dispersion eignet sich insbesondere die wässrige Phase (A).
  • Thermisch vernetzbare bzw. härtbare organische Bindemittelsysteme gemäß Komponente a) der wässrigen Phase (A), die im Schritt (i) eines erfindungsgemäß bevorzugten Verfahrens aussenstromlos durch autophoretische Abscheidung auf die Metalloberfläche aufgebracht werden, bestehen aus organischen oligomeren oder polymeren Verbindungen mit mindestens zwei funktionalen Gruppen und sind demnach in der Lage, in Kondensations- oder Additionsreaktionen unter Ausbildung kovalenter Bindungen miteinander zu reagieren und dabei ein Netzwerk von kovalent verknüpften oligomeren oder polymeren Verbindungen aufzubauen. Thermisch vernetzbare bzw. härtbare Bindemittelsysteme können entweder aus einer selbstvernetzenden oligomeren oder polymeren Verbindung mit zwei unterschiedlichen oder gleichen zur Reaktion untereinander befähigten funktionalen Gruppen bestehen oder aus zumindest zwei unterschiedlichen oligomeren oder polymeren Verbindungen, die aufgrund ihrer Funktionalisierung untereinander vernetzen.
  • Das in Wasser dispergierte organische Bindemittelsystem gemäß Komponente a), das im Schritt (i) eines erfindungsgemäß bevorzugten Verfahrens außenstromlos auf die Metalloberfläche aufgebracht wird, enthält mindestens ein thermisch selbstvernetzendes organisches Polymer und/oder eine Mischung aus mindestens einem vernetzbaren organischen Polymer bzw. einem Harz und einem organischen Härter, der mit den vernetzbaren Funktionalitäten des organischen Polymers bzw. des Harzes in einer Additions- oder Kondensationsreaktion reagieren kann. Der organische Härter kann dabei ebenfalls ein organisches Polymer bzw. ein Harz sein.
  • Für eine hinreichende Verfilmung des härtbaren Bindemittelsystems auf der Metalloberfläche ist es weiterhin bevorzugt, dass das im Schritt (i) des erfindungsgemäßen Verfahrens in der wässrigen Phase (A) dispergierte organische Bindemittelsystem eine Filmbildungstemperatur von nicht mehr als 80 °C, besonders bevorzugt von nicht mehr als 40 °C aufweist. Liegt die Filmbildungstemperatur des Bindemittels oberhalb der bevorzugten 80 °C kann eine inhomogene organische Beschichtung der Metalloberfläche während der Reaktionsspüle mit einer sauren wässrigen Zusammensetzung (B) im Schritt (ii) des erfindungsgemäßen Verfahrens die Folge sein, die auch im Aushärteprozess, der üblicherweise dem erfindungsgemäßen Verfahren nachfolgt, nicht heilbar ist. Eine solche inhomogene Beschichtung der Metalloberfläche mit dem organischen Bindemittelsystem wirkt sich nachteilig auf die Korrosionsbeständigkeit und den optischen Eindruck der beschichteten Metalloberfläche aus.
  • Da die Verfilmung des im Schritt (i) auf der Metalloberfläche abgeschiedenen organischen Bindemittelsystems bereits während der Reaktionsspüle im Schritt (ii) vorteilhaft ist, sind solche erfindungsgemäße Verfahren bevorzugt, in denen die saure wässrige Zusammensetzung (B) im Schritt (ii) bei einer Temperatur von zumindest 30 °C, besonders bevorzugt zumindest 40 °C, aber vorzugsweise nicht mehr als 80 °C mit der die organische Beschichtung aufweisenden Metalloberfläche in Kontakt gebracht wird.
  • Das in Schritt (i) des erfindungsgemäß bevorzugten Verfahrens zur außenstromlosen Abscheidung eingesetzte dispergierte organische Bindemittelsystem besteht vorzugsweise aus zumindest einem Copolymerisat und/oder Polymergemisch von Acrylaten mit mindestens einer oligomeren und/oder polymeren Verbindung ausgewählt aus Epoxidharzen, Phenolharzen und/oder Polyurethanharzen.
  • Wasserdispergierbare Epoxid-Harze bewirken als vernetzte Beschichtung auf einer Metalloberfläche eine besonders gute Barrierewirkung gegenüber korrosiven Medien und sind daher bevorzugter Bestandteil des dispergierten Bindemittelsystems in einem erfindungsgemäß bevorzugten Verfahren, bei dem im Schritt (i) die organische Beschichtung außenstromlos, d.h. über einen Selbstabscheidungsprozess, aufgebracht wird. Gegebenenfalls können zusätzlich zum Epoxid-Harz vernetzende Härter, vorzugsweise zumindest teilweise auf Basis von PhenolHarzen, eingesetzt werden, um den Aushärteprozess zu beschleunigen und den Vernetzungsgrad zu erhöhen. Weitere das Epoxid-Harz vernetzende Härter sind solche auf der Basis von Isocyanat-Harzen, deren Isocyanat-Gruppen auch blockiert vorliegen können. Als bevorzugte blockierte Isocyanat-Harze sind mäßig reaktive Isocyanate bevorzugt, beispielsweise aliphatische Isocyanate und sterisch gehinderte und/oder säurestabil blockierte Isocyanate.
    Ebenso können als Epoxid-Harz nicht vollständig vernetzte, oligomere oder polymere Verbindungen mit freien, beispielsweise endständig gebundenen, Epoxid-Gruppen verwendet werden, deren bevorzugtes Molekülgewicht nicht kleiner als 500 u und nicht größer als 5000 u ist. Beispiele für derartige Epoxid-Harze sind solche auf Basis von Bisphenol A und Bisphenol F, sowie Epoxy-Phenol-Novalake.
    Aus Gründen der Wirtschaftlichkeit und der kommerziellen Verfügbarkeit werden im Rahmen der vorliegenden Erfindung bevorzugt auf Bisphenol A basierte Epoxid-Harze eingesetzt, die der folgenden allgemeinen Strukturformel (III) entsprechen:
    Figure imgb0001
  • Der Strukturbaustein A entspricht dabei folgender allgemeinen Formel (IV):
    Figure imgb0002
    mit n als ganzzahliger Zahl von 1 bis 50.
  • Bevorzugte Epoxide besitzen ein Epoxy-Äquivalentgewicht (EEW) von nicht weniger als 100 g/eq, aber nicht mehr als 5000 g/eq. Das EEW gibt dabei das mittlere Molgewicht pro Mol Epoxid-Funktionalität im Epoxid-Harz in Gramm pro Moläquivalent (g/eq) wieder. Für spezifische Epoxid-Harze existieren dabei besonders bevorzugte Bereiche für das Epoxy-Äquivalentgewicht:
    Bromierte Epoxidharze 300 - 1000 g/eq, insbesondere 350 - 600
    Polyalkylenglykol Epoxidharze 100 - 700 g/eq, insbesondere 250 - 400
    Flüssige Epoxidharze 150 - 250 g/eq
    Feste/pastöse Epoxidharze 400 - 5000 g/eq, , insbesondere 600 - 1000
  • Als Phenol-Harze können in der wässrigen Phase (A) im Schritt (i) des bevorzugten erfindungsgemäßen Verfahren zur außenstromlosen Abscheidung der organischen Beschichtung nicht vollständig vernetzte, oligomere oder polymere Polykondensationsprodukte von Formaldehyden mit Phenolen dispergiert vorliegen, die vorzugsweise zumindest teilweise veretherte Hydroxyl-Gruppen aufweisen und deren bevorzugte mittlere Molekülmasse nicht kleiner als 500 u und nicht größer als 10000 u ist. Die Hydroxyl-Gruppen liegen dabei vorzugsweise methoxyliert, ethoxyliert, propoxyliert, butoxyliert oder ethenyloxyliert vor. Als Phenol-Harz-Typen können sowohl Resole als auch Novolake verwendet werden.
  • Weitere fakultative Bestandteile der wässrigen Phase (A), die bei Kontakt mit Metalloberflächen eine autophoretische Abscheidung einer organischen Beschichtung im Sinne dieser Erfindung bewirken, sind Verlaufsmittel, wie Glykolether und Alkoholester, zur besseren Verfilmung der abgeschiedenen organischen Beschichtung auf der metallischen Oberfläche, mikronisierte anorganische Füllstoffe wie Sulfate, Oxide und Phosphate mit mittleren Partikelgrößen unterhalb von 5 µm, vorzugsweise unterhalb von 1 µm, zur Erhöhung der Kratzfestigkeit und Korrosionsbeständigkeit des organischen Beschichtung im ausgehärteten Zustand, sowie Pigmente zur Farbgebung, beispielsweise AQUABLACK® 255A der Fa. Solutions Inc.
  • Bezüglich der Zusammensetzung (B) der Reaktionsspüle im Schritt (ii) des erfindungsgemäßen Verfahrens werden, dass saure wässrige Zusammensetzungen (B) enthaltend
    1. a) zumindest insgesamt 100 ppm, aber nicht mehr als 2000 ppm wasserlösliche Verbindungen enthaltend zumindest ein Atom ausgewählt aus den Elementen Zr, Ti, Si, Hf, V und/oder Ce berechnet als Anteil des jeweiligen Elements, insbesondere nicht mehr als 800 ppm wasserlösliche Verbindungen enthaltend zumindest ein Atom ausgewählt aus den Elementen Zr, Ti und/oder Si, besonders bevorzugt Zr und/oder Ti berechnet als Anteil des jeweiligen Elements und
    2. b) zumindest 1 ppm, aber nicht mehr als 100 ppm, insbesondere nicht mehr als 50 ppm wasserlösliche Verbindungen, die Kupfer-Ionen freisetzen, berechnet als Anteil Kupfer verwendet.
  • Liegt der Anteil an wasserlöslichen Verbindungen gemäß Komponente a) deutlich unterhalb des Wertes, so findet ist die Ausheilung von Defekten in der aus der wässrigen Phase abgeschiedenen organischen Beschichtung nicht ausreichend und ein zusätzlicher positiver Effekt durch die Anwesenheit der Kupfer-Ionen freisetzenden Verbindungen gemäß Komponente b) bleibt aus.
    Umgekehrt wurde festgestellt, dass bei deutlichem Unterschreiten der Menge an Kupfer-Ionen freisetzenden Verbindungen gemäß Komponente b) Reaktionsspülen erhalten werden, in deren Folge keine Verbesserung der Korrosionsbeständigkeit der mit dem ausgehärteten organischen Bindemittelsystem versehenen Metalloberfläche zu im Stand der Technik bekannten Reaktionsspülen zusammengesetzt ausschließlich aus Verbindungen gemäß Komponente a) feststellbar ist. Die Hinzugabe geringer Mengen an Kupfer-Ionen freisetzenden Verbindungen zu einer Reaktionsspüle (B) enthaltend Komponente a) bewirkt jedoch bereits eine deutliche Erhöhung der Korrosionsbeständigkeit einer Metalloberfläche, die entsprechend dem Verfahrensschritt (i) behandelt wurde. Mengen an Kupfer-Ionen freisetzenden Verbindungen oberhalb von 50 ppm bezogen auf Kupfer tragen nicht weiter zu einer Erhöhung der Korrosionsbeständigkeit bei und sind daher unwirtschaftlich, während höhere Zugaben oberhalb von 100 ppm wiederum eine leichte Verschlechterung der Korrosionsbeständigkeit bedingen.
  • Die im Schritt (ii) des erfindungsgemäßen Verfahrens vorzunehmende Reaktionsspüle durch In-Kontakt-bringen der die organische Beschichtung aufweisenden Metalloberfläche erfolgt vorzugsweise bei einem pH-Wert der sauren wässrigen Zusammensetzung (B) von nicht kleiner als 2 und nicht größer als 5. Niedrigere pH-Werte können je nach verwendetem organischen Bindemittelsystem die organische Beschichtung chemisch verändern und Zersetzungsreaktionen einleiten. Zusätzlich kann eine erhöhte Säurekorrosion des metallischen Substrates und die Bildung von naszierendem Wasserstoff die Grenzfläche von Metall zur organischen Beschichtung nachhaltig schädigen. Zusammensetzungen mit pH-Werten oberhalb von 5 sind ebenfalls weniger bevorzugt, da die Zusammensetzungen (B) aufgrund von Hydrolysereaktionen der wasserlöslichen Verbindungen gemäß Komponenten a) zur Ausbildung schwerlöslicher Niederschläge neigen.
  • Für eine verbesserte Komplexierung der Metall-Kationen, die im erfindungsgemäßen Verfahren im Schritt (ii) aufgrund des Beizprozesses aus dem die härtbare organische Beschichtung tragenden Metallsubstrat herausgelöst werden, können zusätzlich Fluorid-Ionen in der sauren wässrigen Zusammensetzung (B) enthalten sein. Vorzugsweise übersteigt der Anteil an FluoridIonen in der Zusammensetzung (B) jedoch keine Werte, für die der gemessene freie Fluorid-Anteil größer als 400 ppm ist, allerdings sollte für eine verstärkte Beizwirkung auf das Substrat und eine effektive Komplexierung der Metall-Kationen zumindest 1 ppm freies Fluorid in der Zusammensetzung (B) vorliegen. Als Quelle für Fluorid-Ionen dienen beispielsweise Fluorwasserstoff, Alkalifluoride, Ammoniumfluorid und/oder Ammoniumbifluorid.
  • Bevorzugte wasserlösliche Verbindungen der Komponente a) im Schritt (ii) des erfindungsgemäßen Verfahrens sind Verbindungen, die in wässriger Lösung in Anionen von Fluorokomplexen der Elemente Zirkon, Titan und/oder Silizium dissozieren, besonders bevorzugt Fluorokomplexe der Elemente Zirkon und/oder Titan. Solche bevorzugten Verbindungen sind beispielsweise H2ZrF6, K2ZrF6, Na2ZrF6 und (NH4)2ZrF6 und die analogen Titan- bzw. Silizium-Verbindungen. Derartige Fluor-haltige Verbindungen gemäß der Komponente a) sind gleichzeitig eine Quelle für freies Fluorid. Auch fluorfreie Verbindungen der Elemente Titan und/oder Zirkon können als wasserlösliche Verbindungen gemäß der Komponente A) erfindungsgemäß eingesetzt werden, beispielsweise (NH4)2Zr(OH)2(CO3)2 oder TiO(SO4).
  • Bevorzugte wasserlösliche Verbindungen der Komponente b) im Schritt (ii) des erfindungsgemäßen Verfahrens sind sämtliche wasserlöslichen Kupfersalze, die keine Chlorid-Ionen enthalten. Insbesondere bevorzugt sind Kupfersulfat, Kupfernitrat und Kupferacetat.
  • Die im Schritt (ii) des erfindungsgemäßen Verfahrens eingesetzten sauren Zusammensetzungen können zusätzlich sogenannte Depolarisatoren enthalten, die aufgrund ihrer milden Oxidationswirkung die Entstehung von naszierendem Wasserstoff an freier Metalloberfläche während der Reaktionsspüle unterbinden. Der Zusatz derartiger Depolarisatoren, die auf dem technischen Gebiet der Phosphatierung von Metalloberflächen bekannt sind, ist daher erfindungsgemäß ebenfalls bevorzugt. Typische Vertreter von Depolarisatoren sind Chlorat-Ionen, Nitrit-Ionen, Hydroxylamin, Wasserstoffperoxid in freier oder gebundener Form, Nitrat-Ionen, m-Nitrobenzolsulfonationen, m-Nitrobenzoationen, p-Nitrophenol, N-Methylmorpholin-N-oxid, Nitroguanidin.
  • Aus ökologischen Gründen und zur Vermeidung von anorganischen schwermetallhaltigen Schlämmen, die aufwendig aufgearbeitet und entsorgt werden müssen, wird in der sauren wässrigen Zusammensetzung (B) der Reaktionsspüle im Schritt (ii) weitgehend auf den Einsatz von wasserlöslichen Phosphaten und Chromaten verzichtet. Vorzugsweise enthält eine Zusammensetzung (B) in der Reaktionsspüle, also im Schritt (ii) des erfindungsgemäßen Verfahrens, nicht mehr als 1 ppm an löslichen Phosphaten und Chromaten berechnet als Summe von PO4 und CrO4, insbesondere bevorzugt keine löslichen Phosphate und Chromate. Die vorliegende Erfindung zeichnet sich zudem dadurch aus, dass auf die Anwesenheit von löslichen Phosphaten und Chromaten im Schritt (ii) des Verfahrens verzichtet werden kann und dennoch eine hervorragende Korrosionsbeständigkeit der erfindungsgemäß behandelten Metallsubstrate resultiert.
  • Das In-Kontakt-Bringen der wässrigen Phase (A) im Schritt (i) und der sauren wässrigen Zusammensetzung im Schritt (ii) mit dem metallischen Substrat oder dem metallischen Bauteil erfolgt im erfindungsgemäßen Verfahren bevorzugt im Tauch- oder Sprühverfahren, wobei das Tauchverfahren wegen der homogeneren Benetzung der Oberfläche besonders zu bevorzugen ist.
  • Zur Vermeidung des Eintrags von Bestandteilen der wässrigen Phase (A) aus dem Schritt (i) in die saure wässrige Zusammensetzung (B) sind solche erfindungsgemäßen Verfahren bevorzugt, in denen zwischen dem ersten Schritt (i) und dem nachfolgenden Schritt (ii) ein Spülschritt zur Entfernung von Komponenten der wässrigen Phase (A) von der behandelten Metalloberfläche erfolgt. Durch diese Maßnahme wird zudem die Effektivität der Reaktionsspüle mit der sauren wässrigen Zusammensetzung (B) erhöht, da nicht oder nur unzureichend auf der Metalloberfläche anhaftende Polymerpartikel entfernt werden, so dass die saure wässrige Zusammensetzung unmittelbar auf fest anhaftende organische Beschichtung einwirken kann.
  • Die Kontaktzeiten mit den jeweiligen wässrigen Zusammensetzungen sind nicht kritisch für das erfindungsgemäße Verfahren, sollten aber im Schritt i) vorzugsweise so ausgewählt sein, dass das Schichtgewicht der im Schritt (i) des erfindungsgemäßen Verfahrens aufgebrachten nicht ausgehärteten, aber fest anhaftenden organischen Beschichtung unmittelbar vor der Reaktionsspüle mit der sauren wässrigen Zusammensetzung (B) im Schritt (ii) vorzugsweise zumindest 10 g/m2, besonders bevorzugt zumindest 20 g/m2, aber vorzugsweise nicht mehr als 80 g/m2 beträgt. Geringere Schichtgewichte führen erfahrungsgemäß zu nicht homogenen Beschichtungen, die der Metalloberfläche eine geringere Korrosionsbeständigkeit verleihen, während höhere Schichtgewichte die Korrosionsbeständigkeit des beschichteten Metallsubstrates nicht wesentlich verbessern. Das Schichtgewicht der nicht ausgehärteten, aber fest anhaftenden organischen Beschichtung wird nach Spülung des im Schritt i) des erfindungsgemäßen Verfahrens beschichteten Metallsubstrates unter fließendem entionisierten Wasser bestimmt, wobei die Spülung solange durchgeführt wird bis das vom Metallsubstrat abfließende Spülwasser augenscheinlich ungetrübt ist.
  • Die Kontaktzeiten für die im Schritt (ii) des erfindungsgemäßen Verfahrens vorzunehmende Reaktionsspüle mit der sauren wässrigen Zusammensetzung (B) betragen vorzugsweise 50-100% der Kontaktzeit mit der wässrigen Phase (A) im Schritt (i).
  • Die im Schritt (i) auf die Metalloberfläche aufgebrachte und im Schritt (ii) nachbehandelte organische Beschichtung wird vorzugsweise mit oder ohne dazwischenliegendem Spülschritt zur Entfernung von Komponenten der sauren wässrigen Zusammensetzung (B) von der behandelten Metalloberfläche bei erhöhter Temperatur ausgehärtet, um die polymere Beschichtung möglichst vollständig und nachhaltig zu vernetzen und so die Korrosionsbeständigkeit zu erhöhen. Der Prozess des Aushärtens der organischen Beschichtung wird bevorzugt bei Temperaturen oberhalb der Aushärtetemperatur des in der wässrigen Phase (A) dispergierten Bindemittelsystems und unterhalb von 300 °C durchgeführt.
  • Die vorliegende Erfindung umfasst auch das im erfindungsgemäßen Verfahren hergestellte metallische Bauteil, wobei das Bauteil vorzugsweise zumindest teilweise aus Stahl, Eisen, Zink und/oder Aluminium sowie deren Legierungen gefertigt ist.
  • Ein solches erfindungsgemäßes Bauteil findet Anwendung im Automobilbau und im Baubereich sowie für die Herstellung von Haushaltsgeräten und elektronischen Gehäusen.
  • Ausführungsbeispiele:
  • Die die Korrosionsbeständigkeit des beschichteten Metallsubstrates verbessernde Wirkung der im Schritt ii) des erfindungsgemäßen Verfahrens vorgenommenen Reaktionsspüle wird im folgenden exemplarisch für spezifische organische Bindemittelsysteme, die im autophoretischen Verfahren auf die Stahloberflächen aufgebracht werden, dargelegt.
  • Zunächst wurden die CRS-Bleche mit einem stark alkalischen Reiniger (3 Gew.-% ACL® 1773, 0,3 Gew.-% ACL® 1773T, Fa. Henkel) für 7 Minuten entfettet und anschließend mit Stadt- und VE-Wasser gereinigt.
    Die Bleche werden sodann für 2 Minuten in das jeweilige selbstabscheidende Bad zur Aufbringung der organischen Beschichtung eingetaucht (Schritt i), anschließend für eine Minute unter fließendem VE-Wasser gespült und im Schritt (ii) für eine Minute in einer Reaktionsspüle (ARR® E2, Fa. Henkel KGaA) nachbehandelt und wiederum mit VE-Wasser gespült.
    Die so beschichteten Bleche wurden in einem nachfolgenden Schritt im Umluftofen verfilmt und gehärtet. Die Schichtdicke betrug sowohl bei erfindungsgemäßen Verfahren als auch in den Vergleichsexperimenten nach dem Aushärten ca. 20µm und wurde mittels PosiTector® (Fa. DeFelsco Corp.) bestimmt.
    Anschließend erfolgte die Quantifizierung der Korrosionsbeständigkeit der derart beschichteten und behandelten Stahlbleche anhand der Unterwanderung im NSS-Test nach DIN 50021. Die Ergebnisse hierzu sind in der Tabelle 1 gelistet.
  • Die im Schritt (i) im autophoretischen Verfahren aus wässrigen selbstabscheidenden Dispersionen des jeweiligen Bindemittelsystems auf die Stahloberfläche aufgebrachten organischen Beschichtungen basieren sämtlich auf einer Polymermischung von Epoxid-Harz (EEW: 500-575 g/eq, Mn: 1200 g/mol DER® 664 UE, Fa. DOW Chemicals) und Polyacrylaten, wobei zusätzlich ein solche Menge eines Härter enthalten ist, dass das Gewichtsverhältnis von Epoxid-Harz zu Härter jeweils 70 : 30 beträgt. Der organische Feststoffanteil der wässrigen Dispersionen liegt bei ca. 4 Gew.-% und der Anteil des Epoxid-Harzes am Feststoffanteil bei ca. 45 Gew.-%. Zusätzlich sind für die autophoretische Abscheidung des Bindemittelsystems in der wässrigen Phase 0,14 Gew.-% Eisen(III)-Fluorid, 0,05 Gew.-% Fluorwasserstoff und 2,1 Gew.-% Wasserstoffperoxid enthalten.
    Als Härter, die Bestandteil des organischen Bindemittelsystems in der wässrigen Phase (A) sind, kommt entweder ein Phenolharz (4,4' Isopropylidendiphenol, GP-Phenolic Resin ® BKS 7550, Fa. Ashland-Südchemie-Kernfest) oder ein Isocyanat-Harz (Vestagon ® B1530, Fa. Evonik) zum Einsatz (siehe Tabelle 1).
  • Der Tabelle 1 kann die korrosive Unterwanderung nach 504 Stunden NSS-Test für die jeweilige im zuvor geschilderten Verfahren aufgebrachte und ausgehärtete organische Beschichtung auf Stahlblech entnommen werden.
    Es zeigt sich, dass bereits geringe Mengen an Kupfer-Ionen in der sauren wässrigen Zusammensetzung (B) im erfindungsgemäßen Verfahren eine signifikante Verbesserung der Unterwanderungswerte bewirken, wie aus dem Vergleich der Beispiele V1-B1, V2-B6 und V3-B10 deutlich wird. Insbesondere bei hohen Zr-Gehalten in der sauren wässrigen Zusammensetzung ist der Zusatz von Kupfer-Ionen vorteilhaft für die Korrosionsbeständigkeit der mit der ausgehärteten organischen Beschichtung versehenen Stahloberflächen. Steigende Gehalte von Kupfer-Ionen führen allmählich wieder zu einer Verschlechterung der Korrosionsbeständigkeit (Beispiele B1 bis VB5), wobei oberhalb von 100 ppm für das Bindemittelsystem mit dem Isocyanat-Harz als Härter bereits eine Verschlechterung in den Unterwanderungswerten im Vergleich zu einer Reaktionsspüle, die lediglich H2ZrF6 und keine Kupfer-Ionen enthält, feststellbar ist (Beispiele V1 und VB5).
    Tab.1 Korrosive Unterwanderung auf Stahlblechen, die autophoretisch mit einem Bindemittelsystem beschichtet, in einer Reaktionsspüle mit einer sauren wässrigen Zusammensetzung nachbehandelt und anschließend thermisch ausgehärtet wurden.
    Beispiele Härter im Bindemittelsystem der wässrigen Phase (A) Saure Zusammensetzung (B), pH 4 Neutral Salt Spray Test * Unterwanderung / mm
    Zr 1/ppm Cu 2/ ppm
    V1 Isocyanat-Harz 400 - 5,0
    V2 Phenolharz 400 - 4,5
    V3 Phenolharz 1200 - 6,0
    B1 Isocyanat-Harz 400 5 3,5
    B2 Isocyanat-Harz 400 10 3,0
    B3 Isocyanat-Harz 400 20 3,5
    B4 Isocyanat-Harz 400 50 4,0
    V B5 Isocyanat-Harz 400 120 5,5
    B6 Phenolharz 400 3 3,0
    B7 Phenolharz 400 5 3,0
    B8 Phenolharz 400 10 3,0
    B9 Phenolharz 400 20 4,0
    B10 Phenolharz 1200 3 4,0
    B11 Phenolharz 1200 5 4,0
    B12 Phenolharz 1200 10 4,0
    B13 Phenolharz 1200 20 4,0
    * nach DIN 50021
    1 als H2ZrF6
    2 als Cu(NO3)2
    Isocyanatharz: diese organische Beschichtung wurde nach der Behandlung mit der Zusammensetzung (B) bei 185 °C für 40 Minuten ausgehärtet Phenolharz: diese organische Beschichtung wurde nach der Behandlung mit der Zusammensetzung (B) bei 150 °C für 25 Minuten ausgehärtet

Claims (12)

  1. Verfahren zur korrosionsschützenden Behandlung von Metalloberflächen, bei dem in einem ersten Schritt (i) auf der Metalloberfläche eine organische Beschichtung aus einer wässrigen Phase (A) aufgebracht wird, dadurch gekennzeichnet, dass die die organische Beschichtung aufweisende Metalloberfläche in einem nachfolgenden Schritt (ii) mit einer sauren wässrigen Zusammensetzung (B) in Kontakt gebracht wird, die
    a) zumindest insgesamt 100 ppm, aber nicht mehr als 2000 ppm wasserlösliche Verbindungen enthaltend zumindest ein Atom ausgewählt aus den Elementen Zr, Ti, Si, Hf, V und/oder Ce berechnet als Anteil des jeweiligen Elements, und
    b) zumindest 1 ppm, aber nicht mehr als 100 ppm wasserlösliche Verbindungen, die Kupfer-Ionen freisetzen, berechnet als Anteil Kupfer aufweist.
  2. Verfahren gemäß vorherigem Anspruch, dadurch gekennzeichnet, dass die Aufbringung der organischen Beschichtung im ersten Schritt (i) außenstromlos erfolgt.
  3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, dass im ersten Schritt (i) die wässrige Phase (A) einen pH-Wert von kleiner als 4 aufweist und
    a) mindestens ein dispergiertes organisches Bindemittelsystem, das thermisch härtbar ist, vorzugsweise bei Temperaturen unterhalb von 300 °C, vorzugsweise unterhalb von 200 °C,
    b) Eisen(III)-Ionen und
    c) Fluorid-Ionen in einem solchen Mengenanteil enthält, dass das molare Verhältnis von Fluorid Ionen zu Eisen(III)-Ionen aus wasserlöslichen Verbindungen mindestens 2 : 1 beträgt.
  4. Verfahren gemäß einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass im ersten Schritt (i) das in der wässrigen Phase (A) dispergierte organische Bindemittelsystem eine Filmbildungstemperatur von nicht mehr als 80 °C, vorzugsweise nicht mehr als 40 °C aufweist.
  5. Verfahren gemäß einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die saure wässrige Zusammensetzung (B) im nachfolgenden Schritt (ii) bei einer Temperatur von zumindest 30 °C, vorzugsweise zumindest 40 °C, aber nicht mehr als 80 °C mit der die organische Beschichtung aufweisenden Metalloberfläche in Kontakt gebracht wird.
  6. Verfahren gemäß einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass im nachfolgenden Schritt (ii) die saure wässrige Zusammensetzung (B) nicht mehr als 800 ppm wasserlösliche Verbindungen enthaltend zumindest ein Atom ausgewählt aus den Elementen Zr, Ti und/oder Si berechnet als Anteil des jeweiligen Elements aufweist.
  7. Verfahren gemäß einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass im nachfolgenden Schritt (ii) der pH-Wert der sauren wässrigen Zusammensetzung (B) nicht kleiner als 2 und nicht größer als 5 ist.
  8. Verfahren gemäß einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass zwischen dem ersten Schritt (i) und dem nachfolgenden Schritt (ii) ein Spülschritt zur Entfernung von Komponenten der wässrigen Phase (A) von der behandelten Metalloberfläche erfolgt.
  9. Verfahren gemäß einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die organische Beschichtung der Metalloberfläche nach dem Verfahrensschritt (ii) mit oder ohne dazwischenliegendem Spülschritt zur Entfernung von Komponenten der sauren wässrigen Zusammensetzung (B) von der behandelten Metalloberfläche bei erhöhter Temperatur ausgehärtet wird.
  10. Metallisches Bauteil, dadurch gekennzeichnet, dass es nach einem oder mehreren der vorherigen Ansprüche behandelt wurde.
  11. Metallisches Bauteil gemäß Anspruch 10, dadurch gekennzeichnet, dass das Bauteil zumindest teilweise aus Stahl, Eisen, Zink und/oder Aluminium gefertigt ist.
  12. Verwendung eines Bauteils gemäß einem oder beiden der vorherigen Ansprüche für den Automobilbau und Baubereich sowie für die Herstellung von Haushaltsgeräten und elektronischen Gehäusen.
EP10741949.1A 2009-09-10 2010-08-10 Zweistufiges verfahren zur korrosionsschützenden behandlung von metalloberflächen Not-in-force EP2475468B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009029334A DE102009029334A1 (de) 2009-09-10 2009-09-10 Zweistufiges Verfahren zur korrosionsschützenden Behandlung von Metalloberflächen
PCT/EP2010/061592 WO2011029680A1 (de) 2009-09-10 2010-08-10 Zweistufiges verfahren zur korrosionsschützenden behandlung von metalloberflächen

Publications (2)

Publication Number Publication Date
EP2475468A1 EP2475468A1 (de) 2012-07-18
EP2475468B1 true EP2475468B1 (de) 2016-01-13

Family

ID=42831085

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10741949.1A Not-in-force EP2475468B1 (de) 2009-09-10 2010-08-10 Zweistufiges verfahren zur korrosionsschützenden behandlung von metalloberflächen

Country Status (10)

Country Link
US (1) US9403188B2 (de)
EP (1) EP2475468B1 (de)
JP (1) JP2013504687A (de)
CN (1) CN102574157B (de)
BR (1) BR112012005202A2 (de)
CA (1) CA2774106A1 (de)
DE (1) DE102009029334A1 (de)
ES (1) ES2564653T3 (de)
MX (1) MX344297B (de)
WO (1) WO2011029680A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013309270B2 (en) 2012-08-29 2016-03-17 Ppg Industries Ohio, Inc. Zirconium pretreatment compositions containing molybdenum, associated methods for treating metal substrates, and related coated metal substrates
CN104685099A (zh) 2012-08-29 2015-06-03 Ppg工业俄亥俄公司 含锂的锆预处理组合物,处理金属基材的相关方法,和相关的经涂覆的金属基材
WO2015043680A1 (de) 2013-09-30 2015-04-02 Basf Coatings Gmbh Verfahren zur autophoretischen beschichtung von metallischen substraten unter nachbehandlung der beschichtung mit einer wässrigen sol-gel-zusammensetzung
CN104152910A (zh) * 2014-07-17 2014-11-19 广东致卓精密金属科技有限公司 印制板孔金属化用处理液
DE102015206812A1 (de) * 2015-04-15 2016-10-20 Henkel Ag & Co. Kgaa Polymerhaltige Vorspüle vor einer Konversionsbehandlung
DE102015209910A1 (de) * 2015-05-29 2016-12-01 Henkel Ag & Co. Kgaa Vorspüle enthaltend ein quartäres Amin zur Konditionierung vor einer Konversionsbehandlung
DE102015209909A1 (de) * 2015-05-29 2016-12-01 Henkel Ag & Co. Kgaa Konditionierung vor einer Konversionsbehandlung von Metalloberflächen
US10435806B2 (en) 2015-10-12 2019-10-08 Prc-Desoto International, Inc. Methods for electrolytically depositing pretreatment compositions
BR112018013275A2 (pt) * 2015-12-31 2018-12-11 Henkel Ag & Co Kgaa revestimentos de autodeposição de baixo cozimento
RU2729485C1 (ru) 2016-08-24 2020-08-07 Ппг Индастриз Огайо, Инк. Железосодержащая композиция очистителя
EP3512981B1 (de) 2016-09-15 2023-01-25 Chemetall GmbH Verbessertes verfahren zur korrosionsschützenden vorbehandlung einer metallischen oberfläche, welche stahl, verzinkten stahl, aluminium, eine aluminiumlegierung, magnesium und/oder eine zink-magnesium-legierung enthält
EP3392373A1 (de) 2017-04-20 2018-10-24 Henkel AG & Co. KGaA Zusammensetzungen enthaltend primäre aromatische amine zur korrosionsschützenden vorbehandlung metallischer bauteile
US11078386B2 (en) * 2018-10-05 2021-08-03 Hamilton Sundstrand Corporation Additive for quality determination of adhesive bond primers
DE102023200702A1 (de) * 2023-01-30 2024-08-01 Henkel Ag & Co. Kgaa Nachhaltige Reaktionsspüle in einem Verfahren zur Bereitstellung organisch beschichteter Metalloberflächen

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3442985A1 (de) * 1984-11-26 1986-05-28 Henkel KGaA, 4000 Düsseldorf Verfahren zur verbesserung des korrosionsschutzes von autophoretisch abgeschiedenen harzueberzuegen auf metalloberflaechen
DE3500443A1 (de) * 1985-01-09 1986-09-11 Gerhard Collardin GmbH, 5000 Köln Verfahren zur verbesserung des korrosionsschutzes autophoretisch abgeschiedener harzschichten auf metalloberflaechen
US5372853A (en) * 1993-08-05 1994-12-13 Henkel Corporation Treatment to improve corrosion resistance of autodeposited coatings of metallic surfaces
US5667845A (en) * 1993-08-05 1997-09-16 Henkel Corporation Treatment to improve corrosion resistance of autodeposited coatings on metallic surfaces
BR9509053A (pt) * 1994-09-30 1997-09-30 Henkel Corp Processo para prover um substrato metálico com um revestimento protetor contendo um agente aglutinante orgánico
US5958511A (en) * 1997-04-18 1999-09-28 Henkel Corporation Process for touching up pretreated metal surfaces
US6410092B1 (en) 1999-05-21 2002-06-25 Henkel Corporation Autodeposition post-bath rinse process
US6825214B2 (en) * 2000-08-14 2004-11-30 Teva Pharmaceutical Industries, Ltd. Substantially pure cilostazol and processes for making same
US6654912B1 (en) * 2000-10-04 2003-11-25 Network Appliance, Inc. Recovery of file system data in file servers mirrored file system volumes
TW570842B (en) * 2000-11-22 2004-01-11 Nihon Parkerizing Protective reaction rinse for autodeposition coatings
TWI268965B (en) * 2001-06-15 2006-12-21 Nihon Parkerizing Treating solution for surface treatment of metal and surface treatment method
US7388044B2 (en) * 2002-07-15 2008-06-17 Henkel Kommanditgesellschaft Auf Aktien Coatings with enhanced water-barrier and anti-corrosive properties
AU2003249165A1 (en) * 2002-07-15 2004-02-02 Henkel Kommanditgesellschaft Auf Aktien Corrosion resistant films based on ethylenically unsaturated monomer modified epoxy emulsions
EP1433877B1 (de) * 2002-12-24 2008-10-22 Chemetall GmbH Verfahren zur Vorbehandlung vor der Beschichtung
JP4526807B2 (ja) * 2002-12-24 2010-08-18 日本ペイント株式会社 塗装前処理方法
JP2005023422A (ja) * 2003-06-09 2005-01-27 Nippon Paint Co Ltd 金属表面処理方法及び表面処理金属
WO2006118218A1 (ja) * 2005-04-28 2006-11-09 Honda Motor Co., Ltd. 化成処理方法及び化成処理部材
DE102005059314B4 (de) * 2005-12-09 2018-11-22 Henkel Ag & Co. Kgaa Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen
DE102006052919A1 (de) * 2006-11-08 2008-05-15 Henkel Kgaa Zr-/Ti-haltige Phosphatierlösung zur Passivierung von Metallverbundoberflächen
US8673091B2 (en) * 2007-08-03 2014-03-18 Ppg Industries Ohio, Inc Pretreatment compositions and methods for coating a metal substrate
DE102007059969A1 (de) 2007-12-11 2009-06-18 Henkel Ag & Co. Kgaa Stabile wässrige Epoxid-Harz Dispersion enthaltend Phenolharze zur autophoretischen Beschichtung von Metallen
DE102008038653A1 (de) * 2008-08-12 2010-03-25 Henkel Ag & Co. Kgaa Sukzessive korrosionsschützende Vorbehandlung von Metalloberflächen in einem Mehrstufenprozess
DE102009028025A1 (de) * 2009-07-27 2011-02-03 Henkel Ag & Co. Kgaa Mehrstufiges Verfahren zur Behandlung von Metalloberflächen vor einer Tauchlackierung

Also Published As

Publication number Publication date
CA2774106A1 (en) 2011-03-17
WO2011029680A1 (de) 2011-03-17
ES2564653T3 (es) 2016-03-28
US20120282404A1 (en) 2012-11-08
MX2012003024A (es) 2012-04-19
DE102009029334A1 (de) 2011-03-24
BR112012005202A2 (pt) 2016-03-08
MX344297B (es) 2016-12-09
EP2475468A1 (de) 2012-07-18
JP2013504687A (ja) 2013-02-07
US9403188B2 (en) 2016-08-02
CN102574157B (zh) 2015-07-01
CN102574157A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
EP2475468B1 (de) Zweistufiges verfahren zur korrosionsschützenden behandlung von metalloberflächen
EP2145031B1 (de) Metallisierende vorbehandlung von zinkoberflächen
EP2507408B1 (de) Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen
EP2367638B1 (de) Verfahren zur beschichtung von oberflächen mit partikeln und verwendung der nach diesem verfahren hergestellten beschichtungen
EP3350357B1 (de) Vorbehandlung von aluminiumoberflächen mit zirkon- und molybdänhaltigen zusammensetzungen
EP3022330B1 (de) Verfahren zum beschichten von metallischen oberflächen von substraten und nach diesem verfahren beschichteten gegenstände
EP0356855B1 (de) Chromfreies Verfahren zur Vorbehandlung von Oberflächen aus Aluminium oder Aluminiumlegierungen vor einer Beschichtung mit organischen Materialien
EP2459770B1 (de) Mehrstufiges verfahren zur behandlung von metalloberflächen vor einer tauchlackierung
WO2015004256A1 (de) Verfahren zum beschichten von metallischen oberflächen von substraten und nach diesem verfahren beschichteten gegenstände
DE102007001653A1 (de) Leitfähige, organische Beschichtungen mit geringer Schichtdicke und guter Umformbarkeit
EP2097467A1 (de) Leitfähige, organische beschichtungen mit optimiertem polymersystem
WO1996010057A1 (de) Verfahren zur herstellung einer korrosionsschützenden, gut haftenden lackierung und die dabei erhaltenen werkstücke
EP3142800A1 (de) Verfahren zum beschichten von metallischen oberflächen von substraten und nach diesem verfahren beschichteten gegenstände
EP2215285B1 (de) Zirconiumphosphatierung von metallischen bauteilen, insbesondere eisen
WO1995033083A1 (de) Verfahren zur beschichtung phosphatierter metallsubstrate
EP1570109B1 (de) Verfahren zur beschichtung von metallsubstraten mit einem radikalisch polymerisierbaren berzugsmittel und beschichtete subst rate
EP3512981A1 (de) Verbessertes verfahren zur korrosionsschützenden vorbehandlung einer metallischen oberfläche, welche stahl, verzinkten stahl, aluminium, eine aluminiumlegierung, magnesium und/oder eine zink-magnesium-legierung enthält
EP2743376B1 (de) Wässriges Mittel und Beschichtungsverfahren zur korrosionsschützenden Behandlung metallischer Substrate
WO2024160509A1 (de) Nachhaltige reaktionsspüle in einem verfahren zur bereitstellung organisch beschichteter metalloberflächen
WO2023174611A1 (de) Passivierungsschicht für metallhaltige substrate
WO2003052005A1 (de) Mittel zur erzeugung einer haftgrundierung auf metalloberflächen sowie behandlungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B05D 5/00 20060101ALI20150630BHEP

Ipc: B05D 7/14 20060101AFI20150630BHEP

INTG Intention to grant announced

Effective date: 20150724

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LEPA, KLAUS

Inventor name: MARKOU, KONSTANTINOS

Inventor name: ARNOLD, ANDREAS

Inventor name: ROSENKRANZ, CHRISTIAN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 770157

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010010941

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2564653

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160328

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160414

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160513

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160513

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010010941

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

26N No opposition filed

Effective date: 20161014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160810

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160810

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 770157

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170828

Year of fee payment: 8

Ref country code: ES

Payment date: 20170928

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180810

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 10

Ref country code: FR

Payment date: 20190822

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190821

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010010941

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200810