EP0337192B1 - Interrupteur à décharge dans un gaz - Google Patents

Interrupteur à décharge dans un gaz Download PDF

Info

Publication number
EP0337192B1
EP0337192B1 EP89105562A EP89105562A EP0337192B1 EP 0337192 B1 EP0337192 B1 EP 0337192B1 EP 89105562 A EP89105562 A EP 89105562A EP 89105562 A EP89105562 A EP 89105562A EP 0337192 B1 EP0337192 B1 EP 0337192B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
gas discharge
discharge
region
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89105562A
Other languages
German (de)
English (en)
Other versions
EP0337192A1 (fr
Inventor
Robert Dr. Seeböck
David Walter Dr. Branston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0337192A1 publication Critical patent/EP0337192A1/fr
Application granted granted Critical
Publication of EP0337192B1 publication Critical patent/EP0337192B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/40Cold-cathode tubes with one cathode and one anode, e.g. glow tubes, tuning-indicator glow tubes, voltage-stabiliser tubes, voltage-indicator tubes
    • H01J17/44Cold-cathode tubes with one cathode and one anode, e.g. glow tubes, tuning-indicator glow tubes, voltage-stabiliser tubes, voltage-indicator tubes having one or more control electrodes

Definitions

  • the invention relates to a gas discharge switch according to the preamble of claim 1 or 19 for a low-pressure gas discharge between at least two coaxial electrodes which are provided with coaxial bores and form a gas discharge path in a central discharge region and form an insulation region at their edges in which the electrodes coexist are connected gas-tight to an insulator.
  • the gas discharge is ignited by injecting charge carriers into the rear of the cathode.
  • the pressure p of the ionizable gas filling and the distance D between the electrodes on the discharge path are selected so that the ignition voltage of a controlled gas discharge decreases with increasing pressure p.D.
  • Such switches are particularly suitable as switches for high-current and high-voltage circuits.
  • the ignition voltage for a given gas discharge path and its usual graphical representation as a function of the product of gas pressure p and electrode spacing D in the ignition characteristic curve are known to be an important aid for identifying electrical discharge apparatuses, taking into account the probability of ignition.
  • the infinitely large plate capacitor and its ignition characteristic are generally used for comparison.
  • the practical embodiment of such discharge paths has electrodes with finite dimensions.
  • Low-pressure gas discharge lines are known to be suitable as switches for high currents up to about 2 MA and high voltages up to about 100 kV.
  • These gas discharge switches operate with a pressure of the working gas, preferably hydrogen, of less than 133.3 Pa (1 Torr) with an electrode spacing of less than 1 cm with a voltage above 10 kV in the left branch of the Paschen curve. Since these switches can only switch a current on, but cannot switch it off again, they are particularly suitable for discharging large capacitors.
  • the gas discharge switch contains an anode and a cathode, which are arranged coaxially to one another and form a central discharge region, a subsequent shielding region and an insulation region at their edges.
  • the shielding area consists of a coaxial annular cylindrical channel.
  • the electrodes are then bent radially in the insulation region and are each connected to one of the flat sides of an insulator in the form of an annular disk.
  • the distance of the electrodes in their axial direction is approximately as large as on the discharge gap.
  • there is a risk of breakdown on the isolator Proc. IEE, Vol. 111, No. 1, January 1964, pp. 203 to 213.
  • Gas discharge switches with coaxial holes in the electrodes can be controlled by a pulsed low-pressure gas discharge.
  • the main discharge is initiated by a hollow cathode discharge and ignited by injection of charge carriers.
  • a control device is provided which has a hole provided Contains cage that surrounds the cathode rear space.
  • the discharge path is separated by the cage from the area of a pre-ionization discharge, which is a glow discharge.
  • Various auxiliary electrodes for shielding and potential control can also be provided between the cage and the area of the glow discharge (Sci. Instr. 19 (1986), The Inst. Of Physics, Great Britain, pp. 466 to 470).
  • the invention is based on the object of simplifying and improving the known embodiment of a gas discharge switch with electrodes which are arranged parallel to one another and provided with coaxial bores.
  • the object is alternatively achieved by the characterizing features of claim 1 or claim 19.
  • the electrode spacing in the discharge area is larger than in the insulation area and in the shielding area
  • a localization of the discharge is obtained in the discharge area, in particular on the discharge path.
  • the location of the discharge is obtained solely by the fact that the recesses increase the effective distance of the parallel electrodes on the discharge path. Evaporation of the insulator is prevented in both cases since a direct line of sight with the insulator is avoided.
  • FIG. 1 schematically shows an embodiment of a gas discharge switch according to the invention as a cross section.
  • FIG. 2 shows an advantageous further embodiment of the electrodes outside the discharge area.
  • An embodiment of the gas discharge switch for higher voltages is shown in Figure 3.
  • An advantageous embodiment of the cathode rear space with the pre-discharge space is illustrated in FIGS. 4 and 5.
  • FIG. 6 shows an embodiment with a special pre-ionization electrode.
  • FIG. 7 shows an embodiment with a control of the gas discharge by means of a sliding discharge.
  • An embodiment with a special electron source for the gas discharge switch is illustrated in FIG. 8.
  • FIG. 9 shows two embodiments of gas stores for the gas discharge switch.
  • two electrodes 2 and 3 of which the electrode 2 is connected, for example, as a cathode and the electrode 3 as an anode and which each form a rotating body, are arranged coaxially to one another.
  • the axis of rotation indicated by dash-dotted lines is designated by 4.
  • the electrodes 2 and 3 are provided with coaxial bores 5 and 6, on which a discharge gap 10 is formed.
  • the electrodes 2 and 3 consist of electrically conductive metal, for example stainless steel, and can preferably also have inserts 8 and 9 on the discharge gap made of a high-melting metal, for example tungsten or molybdenum or also their alloys.
  • a discharge region 11 is formed around the discharge path 10 and is formed approximately by the space between the electrodes 2 and 3 with the extended distance D. the discharge area between the inserts 8 and 9 is obtained.
  • the diameter of the bores 5 and 6 is preferably chosen to be smaller than the distance D of the electrodes 2 and 3 in the discharge area 11.
  • This distance D of, for example, about 2 to 8 mm, preferably about 4 to 6 mm, in particular about 5 mm, is larger, preferably substantially larger than the distance d 1 of the electrodes in the insulation region 13 in the axial direction of the electrodes 2, 3 at the inner edge of an annular disk Insulator 16 and also larger than the distance d2 in the shielding area 12 between the discharge area 11 and the insulator 16, to which the edges of the electrodes 2 and 3 are attached in a gastight manner.
  • the distance d 1 is at least as large as the distance d 2 and can be, for example, approximately 0.5 to 6 mm, preferably approximately 2 to 4 mm, in particular approximately 3 mm.
  • the annular disk-shaped insulator 16 with the thickness A is extended by a base 23 made of electrically insulating material, which at the same time serves to extend the insulation path between the outer ends of the electrodes 2 and 3.
  • a hollow cylindrical extension of the housing 26 forms a pre-ionization hollow cathode 28 which surrounds a hollow cathode area 32 and projects into the anode area 31 of the pre-ionization space 30.
  • the housing 26 is provided with openings 27 and separated from the hollow cathode region 32 by a gas-permeable metallic partition 29.
  • the partition 29 is provided with openings and can in particular consist of a fine-mesh grid or a network.
  • the pre-ionization chamber 30 is surrounded by a cup-shaped control electrode (keep alife electrode) 33, which rests on an annular insulator 34, which is connected to the electrode 2 in a gas-tight manner.
  • At least one of the electrodes 2 and 3, for example the cathode 2 is provided between the discharge region 11 and the insulator 16 with at least one substantially ring-shaped screen 18, which projects into a likewise substantially ring-shaped recess 21 in the anode 3.
  • a filling with ionizable gas is chosen so that the ignition voltage of the gas discharge switch decreases when the product of the electrode distance D at the discharge path 10 and the gas pressure p increases.
  • a rapid spark-like gas discharge at the discharge path 10 is initiated with a pre-discharge in the pre-ionization chamber 30 with the aid of the control electrode 33 or when the breakdown voltage is exceeded.
  • a magnetic field can be provided which passes through the pre-ionization space 30 and is oriented approximately parallel to the axis of rotation 4. With this magnetic field, the burning voltage can be reduced and thus the pressure range accessible for triggering can be increased.
  • the opposite surfaces of the electrodes 2 and 3 or of the inserts 8 and 9 are on the discharge path 10 Provided with recesses (14 and 15), the surface of which in each case forms the shell of a rotating hollow body, the base of which faces the discharge region 11 and the top surface of which lies in the bore 5 or 6.
  • the electrodes 2 and 3 are each provided with a screen 18 and 19 between the discharge region 11 and the insulator 16, which protrude into a corresponding recess 21 and 22 of the opposite electrode.
  • two diffusion barriers are formed in the shielding area 12 between the discharge area 11 and the insulator 16, which prevent diffusion of the metal vapor from the discharge area 11 to the insulator 16.
  • an intermediate electrode 41 is also provided between the electrodes 2 and 3, which is also provided with a coaxial bore 42 and forms a series connection of discharge paths 44 and 45 with the bores 5 and 6.
  • the intermediate electrode 41 is provided with two annular shields 46 and 47, which each protrude into a corresponding recess 48 or 49 of the other two electrodes. These screens 46 and 47 also serve as diffusion barriers for a metal deposit. In this embodiment, a corresponding increase in the switching voltage is obtained.
  • further intermediate electrodes can also be provided for higher voltages.
  • FIG 4 is only a special embodiment of the Cathode rear space 25 indicated with the pre-discharge space 30.
  • an auxiliary electrode is provided which serves as a blocking electrode 52 and is arranged between two ring-shaped insulators 55 and 56.
  • This blocking electrode 52 is essentially hollow cylindrical and its the lower end shields the openings 27 in the housing 26.
  • a positive potential is preferably applied to this blocking electrode 52, which engages into the housing 26 through the openings 27 and prevents premature triggering of the switching operation. Diffusion of metal vapor to the insulator 55 is therefore not possible.
  • a projection 53 of the pre-ionization electrode 32, which shields the insulator 56, can expediently be provided for the second insulator 56.
  • the blocking electrode 52 is integrated in the control electrode 33. For this purpose, this is extended so far that its lower end covers the openings 27 of the housing 26 of the cathode rear space 25.
  • the potential of the blocking electrode 51 with respect to the cathode potential is thus equal to the operating voltage of the pre-ionization discharge in the pre-ionization chamber 30 and can be adjusted by the height h 1 to the required size.
  • the height h1 will therefore generally be at least a few cm.
  • a particularly advantageous embodiment is obtained in that the housing of the control electrode 33 is provided with a window 51 for coupling microwaves.
  • This window can preferably be made of plastic or quartz.
  • the cup-shaped pre-ionization electrode is separated from the cathode 2 by a decoupling electrode 54, which is used for control and is separated from the control electrode 33 and the electrode 2 by electrical insulation 57 and 58, respectively.
  • the decoupling electrode 54 serves to decouple the pre-ionization in the pre-ionization space 30 from the discharge path 10.
  • a trigger electrode 60 is provided in the form of an annular disc, which is provided with a thin intermediate layer 59, shown somewhat more intensely in the figure, made of a material with a higher specific electrical resistance than metal, for example organic insulators, preferably plastics, in particular Mylar, or also semiconductors and graphite, are separated from the housing 26 of the cathode rear space 25.
  • the thickness of the intermediate layer 59 can preferably be at most about 0.1 to 0.2 mm and will generally not substantially exceed 0.5 mm.
  • the control device for the sliding discharge can expediently be provided with a housing 61, which can be made of metal, for example.
  • the inner diameter D7 of the intermediate layer 59, over the surface of which the sliding discharge is ignited, can preferably be selected to be larger than the inner diameter d7 of the housing 26 of the cathode rear space 25 Housing 26 shielded from a discharge on the discharge path 10.
  • the distance of the location of the sliding discharge on the surface of the intermediate layer 59 determined by the arrow 66 from the discharge gap 10 is essentially determined by the height h 2 of the cathode rear space 25.
  • This height can preferably be used to limit the erosion of the sliding discharge gap and thus to increase the service life of the gas discharge switch if possible be chosen large.
  • the height h 2 can preferably be at least approximately twice the inner diameter d7 of the housing 26.
  • a hot cathode 62 can also be provided in the pre-ionization chamber 30, which is assigned a heating device, for example a heating coil 63, which can be connected to a heating current source 65 via a suitable switch 64.
  • a heating device for example a heating coil 63
  • the electron current is controlled by the decoupling electrode 54.
  • the gas discharge switch according to FIG. 9 can also be provided with an internal hydrogen reservoir, which can consist, for example, of a metallic gas storage 68 for hydrogen or deuterium.
  • This gas storage can consist, for example, of palladium, titanium or tantalum, in the grid of which hydrogen is stored.
  • the gas accumulator 68 is also provided with a heating device, which can consist, for example, of a heating coil 70 which is connected to a heating current source, not shown in the figure.
  • the gas reservoir of the gas store 68 can serve as a pressure control system for the gas discharge switch.
  • the burning voltage of the pre-ionization discharge or its pressure can be measured and the gas addition can be regulated as a function thereof.
  • an electrically controlled gas metering valve 71 or a diaphragm valve can also be provided according to FIG. 9, which regulates the gas supply from an external gas reservoir 69 in the event of a drop in pressure or an increase in the operating voltage until the pressure or operating voltage have reached their normal working value again.

Landscapes

  • Gas-Filled Discharge Tubes (AREA)
  • Circuit Breakers (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)
  • Electron Tubes For Measurement (AREA)

Claims (20)

  1. Interrupteur à décharge dans un gaz pour une décharge dans un gaz à basse pression, présentant les caractéristiques suivantes :
    a) au moins deux électrodes coaxiales (2, 3), qui forment des corps respectifs de révolution et sont disposées côte-à-côte le long d'un axe, constituent l'anode et la cathode pour la décharge dans le gaz à basse pression,
    b) dans une zone centrale de décharge (11), dans laquelle ces électrodes (2, 3) comportent des perçages coaxiaux (5, 6), une section de décharge (10) est formée entre les électrodes (2, 3),
    c) les bords des électrodes (2, 3) sont situés dans une zone d'isolation (13) et sont fixés à l'isolateur (16), d'une manière étanche aux gaz,
    d) il est prévu des moyens pour amorcer la décharge dans le gaz par injection de porteurs de charges dans un espace cathodique arrière (25) de la cathode, qui est relié à la zone de décharge (11) au moyen de l'ouverture (5) ménagée dans la cathode (2) et est entouré par un boîtier (26),
    caractérisé par les autres caractéristiques suivantes :
    e) la distance D entre les électrodes (2, 3) dans la zone de décharge (11) est supérieure à la distance d₁ entre les électrodes (2, 3) dans la zone d'isolation (13), et ce dans la direction axiale des électrodes (2, 3), au niveau du bord intérieur d'un isolateur en forme de disque annulaire (16), dans lequel les électrodes (2, 3) sont reliées respectivement à l'un des côtés plats de l'isolateur (16), et
    f) cette distance d₁ est au moins égale à la distance d₂ entre les électrodes (2, 3), dans une zone de blindage (12) formée entre la zone de décharge (11) et la zone isolante (13) et dans laquelle des moyens sont prévus pour réaliser le blindage de l'isolateur (16), de manière à éviter un troisième contact visuel direct entre la section de décharge (10) et l'isolateur (16) (figure 1).
  2. Interrupteur à décharge dans un gaz suivant la revendication 1, caractérisé par le fait que la distance d₂ entre les électrodes (2, 3), dans la zone de blindage (12), est égale au maximum à la moitié de la distance D entre les électrodes (2, 3) au niveau de la section de décharge (10)
  3. Interrupteur à décharge dans un gaz suivant la revendication 1, caractérisé par le fait que la distance d₁ entre les électrodes (2, 3) est presque égale à l'épaisseur (A) de l'isolateur (16), dans la zone d'isolation (13).
  4. Interrupteur à décharge dans un gaz suivant la revendication 1, caractérisé par le fait que l'une des électrodes comporte, entre la zone de décharge (11) et la zone isolante (13), un blindage essentiellement annulaire (18), qui pénètre dans un évidement essentiellement annulaire (21) de l'autre électrode (figure 2).
  5. Interrupteur à décharge dans un gaz suivant la revendication 1, caractérisé par le fait qu'entre les électrodes (2, 3) est prévue au moins une électrode intermédiaire (41) possédant un perçage coaxial (42), de sorte qu'un circuit série est formé par au moins deux sections de décharge (44, 45) dans la direction de l'axe de rotation (4) (figure 3).
  6. Interrupteur à décharge dans un gaz suivant la revendication 1, caractérisé par une décharge à effluves dans l'espace arrière (25) de la cathode pour la commande de la l'espace arrière (25) de la cathode pour la commande de la décharge dans le gaz, dans la zone de décharge (11).
  7. Interrupteur à décharge dans un gaz suivant la revendication 6, caractérisé par le fait qu'un boîtier cylindrique creux (27) forme un espace arrière de cathode (25) et comporte une cathode cylindrique creuse de préionisation (28), qui enserre une zone (32) de la cathode creuse et dont l'extrémité ouverte est située en vis-à-vis de la zone d'anode (31) d'un espace de préionisation (30).
  8. Interrupteur à décharge dans un gaz suivant la revendication 7, caractérisé par le fait que l'enveloppe du boîtier (26) comporte des ouvertures (27), auxquelles est associée une électrode de blocage (52) (figure 4).
  9. Interrupteur à décharge dans un gaz suivant la revendication 7, caractérisé par le fait que l'espace de préionisation (30) est disposé dans un champ magnétique.
  10. Interrupteur à décharge dans un gaz suivant la revendication 8, caractérisé par le fait que l'électrode de blocage (52) est isolée électriquement par rapport à une électrode de commande (33) et à la cathode (2).
  11. Interrupteur à décharge dans un gaz suivant la revendication 8, caractérisé par le fait que l'électrode de blocage (52) est intégrée dans l'électrode de commande (33) (figure 5).
  12. Interrupteur à décharge dans un gaz suivant la revendication 6, caractérisé par le fait que l'électrode de commande (33) comporte une fenêtre (51) pour l'injection de micro-ondes.
  13. Interrupteur à décharge dans un gaz suivant la revendication 6, caractérisé par le fait qu'une électrode de découplage (54) est associée à l'électrode de commande (33) (figure 6).
  14. Interrupteur à décharge dans un gaz suivant la revendication 1, caractérisé par le fait qu'un constituant du gaz de travail est formé par du mercure Hg.
  15. Interrupteur à décharge dans un gaz suivant la revendication 1, caractérisé par une injection de porteurs de charges dans l'espace arrière (25) de la cathode pour l'amorçage de la décharge dans le gaz, dans la zone de décharge (11), au moyen d'une décharge superficielle (figure 7).
  16. Interrupteur à décharge dans un gaz suivant la revendication 6, caractérisé par le fait qu'il est prévu comme source d'électrons une cathode à incandescence (62), qui est disposée à l'extérieur de l'espace arrière (25) de la cathode dans la chambre de préionisation (30) (figure 8).
  17. Interrupteur à décharge dans un gaz suivant la revendication 1, caractérisé par une commande de l'envoi du gaz de travail en fonction de la tension de combustion de la décharge de préionisation ou en fonction de la pression p du gaz de travail.
  18. Interrupteur à décharge dans un gaz suivant la revendication 17, caractérisé par le fait que pour la régulation de la pression du gaz, il est prévu un réservoir de gaz (68, 69) (figure 9).
  19. Interrupteur à décharge dans un gaz pour une décharge dans un gaz à basse pression, présentant les caractéristiques suivantes :
    a) au moins deux électrodes coaxiales (2, 3), qui forment des corps respectifs de révolution et sont disposées côte-à-côte le long d'un axe, constituent l'anode et la cathode pour la décharge dans le gaz à basse pression,
    b) dans une zone centrale de décharge (11), dans laquelle ces électrodes (2, 3) comportent des perçages coaxiaux (5, 6), une section de décharge (10) est formée entre les électrodes (2, 3),
    c) les bords des électrodes (2, 3) sont situés dans une zone d'isolation (13) et sont fixés, d'une manière étanche aux gaz, à l'isolateur (16),
    d) il est prévu des moyens pour amorcer la décharge dans le gaz par injection de porteurs de charge dans un espace arrière (25) de la cathode, qui est relié à la zone de décharge (11) au moyen de l'ouverture (5) ménagée dans la cathode (2), et est entouré par un boîtier (26),
    caractérisé par les autres caractéristiques suivantes :
    e) les surfaces, qui sont réciproquement en vis-à-vis, des électrodes (2, 3) dans la section de décharge (10) comportent chacune un évidement (14 ou 15), dont la surface forme l'enveloppe d'un corps creux de révolution, dont la surface de base est tournée vers la zone de décharge (11) et dont la surface supérieure est située dans le perçage (5, 6) de l'électrode (2,3) (figure 2).
  20. Interrupteur à décharge dans un gaz suivant la revendication 19, caractérisé par le fait que les électrodes (2, 3) comportent, dans la section de décharge (10), des inserts (8, 9) réalisés en un matériau à point de fusion élevé et dont les surfaces, qui sont tournées l'une vers l'autre, forment au moins une partie de l'évidement (figure 3).
EP89105562A 1988-04-11 1989-03-29 Interrupteur à décharge dans un gaz Expired - Lifetime EP0337192B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3812018 1988-04-11
DE3812018 1988-04-11

Publications (2)

Publication Number Publication Date
EP0337192A1 EP0337192A1 (fr) 1989-10-18
EP0337192B1 true EP0337192B1 (fr) 1994-07-20

Family

ID=6351742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89105562A Expired - Lifetime EP0337192B1 (fr) 1988-04-11 1989-03-29 Interrupteur à décharge dans un gaz

Country Status (5)

Country Link
US (2) US4939416A (fr)
EP (1) EP0337192B1 (fr)
JP (1) JPH01298670A (fr)
AT (1) ATE108946T1 (fr)
DE (1) DE58908057D1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE108946T1 (de) * 1988-04-11 1994-08-15 Siemens Ag Gasentladungschalter.
DE3904013A1 (de) * 1989-02-10 1990-08-16 Knorr Bremse Ag Klotzbremseinrichtung fuer schienenfahrzeuge
DE3904031A1 (de) * 1989-02-10 1990-08-16 Siemens Ag Gasentladungsschalter
EP0433480B1 (fr) * 1989-12-20 2000-04-12 Siemens Aktiengesellschaft Commutateur à électrode creuse
EP0473814B1 (fr) * 1990-09-03 1995-05-24 Siemens Aktiengesellschaft Interrupteur à électrodes creuses
EP0473813A1 (fr) * 1990-09-03 1992-03-11 Siemens Aktiengesellschaft Interrupteur à électrodes creuses
EP0510232B1 (fr) * 1991-04-25 1995-10-18 Siemens Aktiengesellschaft Interrupteur à décharge dans un gaz
DE9117007U1 (de) * 1991-04-25 1995-01-26 Siemens Ag Gasentladungsschalter
US5126638A (en) * 1991-05-13 1992-06-30 Maxwell Laboratories, Inc. Coaxial pseudospark discharge switch
GB9502423D0 (en) * 1995-02-08 1995-03-29 Eev Ltd Gas discharge device
KR0166644B1 (ko) * 1995-11-28 1999-01-15 박주탁 대전력 의사방전 스위치
DE10118210B4 (de) * 2001-04-11 2012-02-23 Dehn + Söhne Gmbh + Co. Kg Gekapselter Überspannungsableiter mit einer Funkenstreckenanordnung
US20070281007A1 (en) * 2004-08-27 2007-12-06 Jacob Jules S Mucoadhesive Oral Formulations of High Permeability, High Solubility Drugs
DE102010011592A1 (de) * 2010-03-16 2011-09-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hohlkathoden-Plasmaquelle sowie Verwendung der Hohlkathoden-Plasmaquelle
US9153427B2 (en) 2012-12-18 2015-10-06 Agilent Technologies, Inc. Vacuum ultraviolet photon source, ionization apparatus, and related methods
US11482394B2 (en) * 2020-01-10 2022-10-25 General Electric Technology Gmbh Bidirectional gas discharge tube
CN113709958B (zh) * 2021-08-30 2022-10-28 西安交通大学 一种基于金属薄片堆栈层叠的微腔放电等离子体喷射装置
CN113721066B (zh) * 2021-09-10 2022-12-27 华北电力大学 一种传导电流测量装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1358043A (en) * 1970-07-21 1974-06-26 Atomic Energy Authority Uk Electrical spark gap switch apparatus
JPS5032414B2 (fr) * 1973-06-09 1975-10-21
US3854068A (en) * 1973-12-26 1974-12-10 Gen Electric Shield structure for vacuum arc discharge devices
US4019079A (en) * 1976-05-07 1977-04-19 The United States Of America As Represented By The United States Energy Research And Development Administration Gas injected vacuum switch
DE2804393A1 (de) * 1978-02-02 1979-08-09 Christiansen Jens Verfahren zur erzeugung hoher gepulster ionen- und elektronenstroeme
US4596945A (en) * 1984-05-14 1986-06-24 Hughes Aircraft Company Modulator switch with low voltage control
EP0259045A3 (fr) * 1986-08-30 1989-10-25 English Electric Valve Company Limited Dispositifs à décharge dans les gaz
ATE108946T1 (de) * 1988-04-11 1994-08-15 Siemens Ag Gasentladungschalter.

Also Published As

Publication number Publication date
DE58908057D1 (de) 1994-08-25
JPH01298670A (ja) 1989-12-01
EP0337192A1 (fr) 1989-10-18
ATE108946T1 (de) 1994-08-15
US5075592A (en) 1991-12-24
US4939416A (en) 1990-07-03

Similar Documents

Publication Publication Date Title
EP0337192B1 (fr) Interrupteur à décharge dans un gaz
EP1248499B1 (fr) Procédé et dispositif pour produire du rayonnement extrême ultraviolet
DE19628925B4 (de) Entladungslampe mit einer Füllung, die Deuterium, Wasserstoff, Quecksilber, ein Metallhalogenid oder Edelgas aufweist
EP0473814B1 (fr) Interrupteur à électrodes creuses
DE2602078C3 (de) Niederdruck-Gasentladungsröhre
DE2610165C2 (de) Duoplasmatron-Ionenquelle zur Erzeugung mehrfach geladener Ionen
DE1640255A1 (de) Funkenstreckenschalter
DE2239802A1 (de) Gasentladungsanordnung
DE1464126A1 (de) Themionischer Converter
EP0433480B1 (fr) Commutateur à électrode creuse
DE102020109610B4 (de) Gasfeldionisierungsquelle
EP0473813A1 (fr) Interrupteur à électrodes creuses
EP0510232B1 (fr) Interrupteur à décharge dans un gaz
DE19945758A1 (de) Gasentladungslampe
EP0513403A1 (fr) Interrupteur à décharge dans un gaz
DE3904031A1 (de) Gasentladungsschalter
DE1589414B1 (de) Spektrale Strahlungsquelle
DE4107174C2 (de) Laseroszillator
DE3908480C1 (fr)
DE4306036C2 (de) Gasentladungsschalter
DE4214331C2 (de) Gasentladungsschalter und Verfahren zu dessen Fertigung
DE3633177C2 (fr)
DE4218479A1 (de) Gasentladungsschalter
DE2362723B2 (de) Ionenquelle zur Erzeugung einfach und/oder mehrfach geladener Ionen
DE4301558A1 (de) Getriggerter Gasentladungsschalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19891108

17Q First examination report despatched

Effective date: 19910424

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 108946

Country of ref document: AT

Date of ref document: 19940815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58908057

Country of ref document: DE

Date of ref document: 19940825

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941024

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950331

Ref country code: CH

Effective date: 19950331

Ref country code: BE

Effective date: 19950331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19950331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010309

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010327

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010530

Year of fee payment: 13

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050329